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A large number of optimization algorithms have been developed by researchers to solve a variety of com- 

plex problems in operations management area. We present a novel optimization algorithm belonging to 

the class of swarm intelligence optimization methods. The algorithm mimics the decision making pro- 

cess of human groups and exploits the dynamics of such a process as a tool for complex combinatorial 

problems. In order to achieve this aim, we employ a properly modified version of a recently published 

decision making model [64,65], to model how humans in a group modify their opinions driven by self- 

interest and consensus seeking. The dynamics of such a system is governed by three parameters: (i) the 

reduced temperature βJ , (ii) the self-confidence of each agent β ′ , (iii) the cognitive level 0 ≤ p ≤ 1 of each 

agent. Depending on the value of the aforementioned parameters a critical phase transition may occur, 

which triggers the emergence of a superior collective intelligence of the population. Our algorithm ex- 

ploits such peculiar state of the system to propose a novel tool for discrete combinatorial optimization 

problems. The benchmark suite consists of the NK - Kauffman complex landscape, with various sizes and 

complexities, which is chosen as an exemplar case of classical NP-complete optimization problem. 

A comparison with genetic algorithms (GA), simulated annealing (SA) as well as with a multiagent version 

of SA is presented in terms of efficacy in finding optimal solutions. In all cases our method outperforms 

the others, particularly in presence of limited knowledge of the agent. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Human groups are proven to outperform single individuals in

olving a variety of complex tasks in many different fields, in-

luding new product development, organizational design, strat-

gy planning, research and development. Their superior ability

riginates from the collective decision making: individuals make

hoices, pursuing their individual goals on the basis of their own

nowledge/expertise and adapting their behavior to the actions of

he other agents. Social interactions, indeed, promote a mechanism

f consensus seeking within the group, but also provide a useful

ool for knowledge and information sharing [1–4,40] . This type of

ecision making dynamics is common to many social systems in
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ature, e.g., flocks of birds, herds of animals, ant colonies, school

f fish [40–50] , as well as bacterial colonies [5–7] , and even to ar-

ificial systems [8–11] . 

Even though the single agent possesses a limited knowledge,

nd the actions it performs are usually very simple, the collec-

ive behavior leads to the emergence of a superior intelligence

nown as swarm or collective intelligence [12–15,29] , which in

he last years have seen a huge growth of applications in the

eld of optimization swarm-based algorithms in operations man-

gement context [30–33] . The swarm algorithms exploit the col-

ective intelligence of the social groups, such as flock of birds,

nt colonies, and schools of fish, in accomplishing different tasks.

hey include the Ant Colony Optimization (ACO) [17–19] , the Par-

icle Swarm Optimization [20] , the Differential Evolution [21] , the

rtificial Bee Colony [22,23] , the Glowworm Swarm Optimization

24,25] , the Cuckoo Search Algorithm [26] , and very recently the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Grey Wolf Optimizer [27] and the Ant Lion Optimizer [28] . These

algorithms share remarkable features, such as decentralization,

self-organization, autonomy, flexibility, and robustness, which have

been proven very useful to solve complex operational tasks [34,35] .

Applications of ACO algorithm mainly concern the traveling sales-

man problem, scheduling, vehicle routing, and sequential ordering

[36] . More recently, they have been also employed in supply chain

contexts to solve production-inventory problems [37,38] and net-

work design [39] . 

In this paper we propose a novel swarm intelligence optimiza-

tion algorithm to solve complex combinatorial problems. The pro-

posed algorithm is inspired by the behavior of human groups and

their ability to solve a very large variety of complex problems,

even when the individuals may be characterized by cognitive lim-

itations. Although it is widely recognized that human groups, such

as organizational teams, outperform single individuals in solving

many different tasks including new product development, R&D ac-

tivities, production and marketing issues, literature is still lacking

of optimization algorithms inspired by the problem solving process

of human groups. Similarly to other social groups, human groups

are collectively able, by exploiting the potential of social interac-

tions, to achieve much better performance than single individu-

als can do. This specific ability of human groups has been defined

as group collective intelligence [51,52] that recently is receiving a

growing attention in the literature as to its antecedents and proper

measures [51,52] . 

The proposed algorithm, hereafter referred to as Human Group

Optimization (HGO) algorithm, is developed within the method-

ological framework recently proposed by CG [53,54] to model the

collective decision making of human groups. This model captures

the main drivers of the individual behavior in groups, i.e., self-

interest and consensus seeking, leading to the emergence of col-

lective intelligence. The group is conceived as a set of individu-

als making choices based on rational calculation and self-interested

motivations. However, any decision made by the individual is also

influenced by the social relationships he/she has with the other

group members. This social influence pushes the individual to

modify the choice he/she made, for the natural tendency of hu-

mans to seek consensus and avoid conflict with people they inter-

act with [55] . As a consequence, effective group decisions sponta-

neously emerge as the result of the choices of multiple interacting

individuals. 

To test the ability of HGO algorithm, we compare its perfor-

mance with those of some benchmarks chosen among trajectory-

based and population-based algorithms. In particular, the HGO is

compared with the Simulated Annealing (SA), a Multi Agent ver-

sion of the Simulated Annealing (MASA) and with genetic algo-

rithms (GA). 

2. The decision making model of human groups 

Here we briefly summarize the decision making model pre-

sented in Ref. [53,54] . We consider a human group made of M so-

cially interacting members, which is assigned to accomplish a com-

plex task. The task is modelled in terms of N binary decisions and

the problem consists in solving a combinatorial decision making

problem by identifying the set of choices (configuration) with the

highest fitness, out of 2 N configurations. 

As an example of application of the method, the fitness land-

scape, i.e., the map of all configurations and associated fitness

values, is generated following the classical NK procedure (see

Appendix A for more details), where N are the decisions and K the

interactions among them. Each decision d i of the vector d is a bi-

nary variable d i = ±1 , i = 1 , 2 , . . . , N. Each vector d is associated

with a certain fitness value V ( d ) computed as the weighted sum of
 stochastic contributions W j 

(
d j , d 

j 
1 
, d 

j 
2 
, . . . , d 

j 
K 

)
that eac h decision

eads to the total fitness. The contributions W j 

(
d j , d 

j 
1 
, d 

j 
2 
, . . . , d 

j 
K 

)
epend on the value of the decision d j itself and the values of

ther K decisions d 
j 
i 
, i = 1 , 2 , . . . , K, and are determined following

he classical NK procedure [56–58] . The fitness function is then de-

ned as 

 ( d ) = 

1 

N 

N ∑ 

j=1 

W j 

(
d j , d 

j 
1 
, d j 

2 
, . . . , d j 

K 

)
(1)

he integer index K = 0 , 1 , 2 , . . . , N − 1 corresponds to the number

f interacting decision variables, and tunes the complexity of the

roblem: increasing K increases the complexity of the problem. In-

ividuals are characterized by cognitive limits, i.e. they posses a

imited knowledge. The level of knowledge of the k th member of

he group is identified by the parameter p ∈ [0, 1], which is the

robability that each single member knows the contribution of the

ecision to the total fitness. 

Based on the level of knowledge, each member k computes

is/her own perceived fitness (self-interest) as follows: 

 k ( d ) = 

∑ N 
j=1 D k j W j 

(
d j , d 

j 
1 
, d j 

2 
, . . . , d j 

K 

)
∑ N 

j=1 D k j 

. (2)

here D is the matrix whose elements D kj take the value 1 with

robability p and 0 probability 1 − p. 

During the decision making process, each member of

he group makes his/her choices to improve the per-

eived fitness (self-interest) and to seek consensus within

he group. The dynamics is modelled by means of a

ontinuos-time Markov process where the state vector s

f the system has M × N components s = ( s 1 , s 2 , . . . , s n ) =
σ 1 

1 
, σ 2 

1 
, . . . σ N 

1 
, σ 1 

2 
, σ 2 

2 
, . . . σ N 

2 
, . . . , σ 1 

M 

, σ 2 
M 

, . . . σ N 
M 

)
. The variable

j 

k 
= ±1 is a binary variable representing the opinion of the

ember k on the decision j . The probability P ( s , t ) that at time t ,

he state vector takes the value s out of 2 N possible states, satisfies

he master equation 

dP 

dt 
= −

∑ 

l 

w 

(
s l → s ′ l 

)
P ( s l , t ) (3)

+ 

∑ 

l 

w 

(
s ′ l → s l 

)
P 
(
s ′ l , t 

)
here s l = (s 1 , s 2 , ., s l ., s n ) and s ′ 

l 
= (s 1 , s 2 , ., −s l ., s n ) . The transition

ate of the Markov chain (i.e. the probability per unit time that the

pinion s l flips to −s l while the others remain temporarily fixed)

s defined so as to be the product of the transition rate of the

sing–Glauber dynamics [59] , which models the process of consen-

us seeking to minimize the conflict level, and the Weidlich expo-

ential rate [60,61] , which models the self-interest behavior of the

gents: 

 

(
s l → s ′ l 

)
= 

1 

2 

[ 

1 − s l tanh 

( 

β
J 

< κ > 

∑ 

h 

A lh s h 

) ] 

(4)

× exp 

{
β ′ [�V 

(
s ′ l , s l 

)]}
In Eq. (4) A lh are the elements of the adjacency matrix, J / 〈 κ〉

s the social interaction strength and 〈 κ〉 the mean degree of the

etwork of social interactions. The quantity β is the inverse of the

ocial temperature that is a measure of the degree of confidence

he members have in the other judgement/opinion. Similarly, the

uantity β ′ is related to the level of confidence the members have

bout their perceived fitness (the higher β ′ , the higher the confi-

ence). 
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Fig. 1. The stationary values of the averaged fitness V ∞ , (a); the averaged consen- 

sus χ∞ , (b) as a function of βJ and β ′ . Results are presented for N = 27 , K = 23 , 

M = 11 , p = 1 . The color bar identifies the values of V ∞ and χ∞ respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
The pay-off function �V 
(
s ′ 

l 
, s l 

)
is simply the change of fitness

erceived by the agent when its opinion on the decision j changes

rom s l to −s l . The group fitness value Eq. (1) is used as a mea-

ure of the performance of the collective-decision making process.

o calculate the group fitness value, the vector d = ( d 1 , d 2 , . . . , d N )
eeds to be determined. To this end, consider the set of opinions

σ j 
1 
, σ j 

2 
, . . . , σ j 

M 

)
that the members of the group have about the

ecision j , at time t . The decision d j is obtained by employing the

ajority rule, i.e. we set: 

 j = sgn 

( 

M 

−1 
∑ 

k 

σ j 

k 

) 

, j = 1 , 2 , . . . , N (5)

f M is even and in the case of a parity condition, d j is, instead,

niformly chosen at random between the two possible values ± 1.

he group fitness is then calculated as V [ d ( t )] and the ensemble

verage 〈 V ( t ) 〉 is then evaluated. The degree of consensus among

he members is also computed. Following Ref. [53] this is defined

s: 

( t ) = 

1 

M 

2 N 

N ∑ 

j=1 

M ∑ 

kh =1 

R 

j 

hk 
( t ) (6) 

here R 
j 

hk 
( t ) = 

〈 
σ j 

k 
( t ) σ

j 

h 
( t ) 

〉 
. Observe that 0 ≤χ ( t ) ≤ 1. 

. Criticality and swarm intelligence 

The dynamics of the decision-making process is governed, for

 group of fixed size M , by a tern of parameters, βJ, β ′ and p ,

uch that a 3D phase diagrams would completely identify the be-

avior and performance of the group in making decisions. How-

ver, in order to simplify the discussion, we will fix the parame-

er p , since the qualitative behavior of what we describe does not

hange with this parameter, representing the steady-state response

f the system, in terms of average fitness values V ∞ 

= 〈 V ( t → ∞ ) 〉
nd degree of consensus χ∞ 

= 〈 χ( t → ∞ ) 〉 , as a function of βJ

nd β ′ . Calculations have been carried out assuming that the net-

ork of social interactions on each decision layer is fully con-

ected, i.e. 〈 κ〉 = M − 1 . We simulate the Markov process by us-

ng the well-known stochastic simulation algorithm proposed by

illespie [53,62,63] . For any given set of input parameters we com-

uted 200 different realizations of the same process, calculating

heir ensemble average. An example is reported by the phase dia-

ram shown in Fig. 1 for N = 27 , K = 23 , M = 11 , p = 1 . The emer-

ence of the collective intelligence of the group, i.e. its ability to

ake decisions associated with high group fitness values, is iden-

ified by a U− shaped critical transition front (dashed line in the

ig. 1 ), which provides, for each β ′ the corresponding critical value

 βJ ) C of the social interaction strength that leads to a sudden and

oncurrent change from low to high or relatively high values of

roup fitness V ∞ 

and consensus χ∞ 

. On the critical front a mini-

um can be identified 

{
β ′ 

min 
, ( βJ ) min 

}
, which represents the mini-

um value of reduced social strength βJ at which the collective in-

elligence of the group emerges, provided that the self-confidence

evel takes the right value β ′ = β ′ 
min 

. Very interesting is to observe

hat very high values of group fitness V ∞ 

can only be reached in a

elatively small region [the red parabolic segment in Fig. 1 (a)] near

o the critical front and located close to the point 
{
β ′ 

min 
, ( βJ ) min 

}
,

elonging to the ordered region [see Fig. 1 (b)] of the phase dia-

ram where consensus among the individuals in the group is very

igh. This very specific region is the only part of the phase dia-

ram where collective intelligence emerges. We refer to it as the

ollective intelligence region. 

Interestingly, it can be shown [54] that the mutual informa-

ion MI ( χ∞ 

, V ∞ 

) between the consensus χ∞ 

and the fitness V ∞ 
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Fig. 2. The evolution of the average group fitness 〈 V ( i ) 〉 , (a); and of the consensus 

χ ( i ), (b); for different levels of knowledge p , M = 11 , N = 27 and K = 11 . 
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is strongly peaked just close to the collective intelligence region of

the phase diagram. This evidently shows that, at criticality, the sys-

tem is flexible, the agents explore well the fitness landscape, indi-

rectly exchanging, through social interaction, a consistent amount

of information about it. In this condition, the group, as a whole,

acquires more knowledge about the fitness landscape compared to

each single agent, and experiences the so-called collective intelli-

gence state of the group [51] . 

4. The human group optimization algorithm 

In this section we design the HGO algorithm exploiting the

collective intelligence property of the decision making process to

solve combinatorial problems. To this aim, we emulate the pro-

cess followed to design the Simulated Annealing algorithm [16] .

We first observe that the Markov process defined in Eq. (3) with

transitions rates Eq. (4) converges to the stationary probability dis-

tribution [53] 

P 0 ( s l ) = 

exp 

[
−βE ( s l ) + 2 β ′ V ( s l ) 

]
∑ 

k exp [ −βE ( s k ) + 2 β ′ V ( s k ) ] 
(7)

where the total level of conflict is E ( s ) = −〈 2 κ〉 −1 J 
∑ 

i j A i j s i s j , and

¯
 ( s l ) = V k ( σk ) Eq. (7) is a Boltzmann distribution with effective

energy 

E eff ( s l ) = −V ( s l ) + αE ( s l ) (8)

where α = β/ 
(
2 β ′ ). Since we want to maximize the group fitness

 ( s l ) = V k 
(
σ 1 

k 
, σ 2 

k 
, . . . , σ N 

k 

)
, where s l = σ j 

k 
, k = quotient ( l − 1 , M ) +

1 , and j = mod ( l − 1 , M ) + 1 , we need to slowly increase the pa-

rameter β ′ during the process, in a similar fashion as in the case of

Simulated Annealing (SA). We then make the parameter β ′ change

during the process as follows 

β ′ = β ′ 
0 log ( i + 1 ) (9)

where i is the time iterator and β ′ 
0 

is set according to Ref. [64] .

However, at the same time, we need to guarantee that the system

undergoes a transition to the intelligence state and keep this state

active, in order to exploit the advantage of the emergence of col-

lective intelligence in finding the optimum of the group fitness. We

obtain these by choosing 

βJ = min { μ(i − 1) , ( βJ ) min } (10)

where μ is chosen by the user. These conditions assure that

the critical transition to the collective intelligence state is fully

achieved during the optimization process, and that α = β/ 
(
2 β ′ )

vanishes in the long term limit so as to allow E eff ( s l ) → −V̄ ( s l )
as the optimization process advances. Note that, when the level of

knowledge of individuals is p = 1 , the two conditions Eqs. (9) and

(10) , akin the Simulated Annealing, make the proposed algorithm

converge in probability to the optimum of V ( d ) [65,66] . Also ob-

serve that by setting βJ = 0 , one obtains the classic multi-agent

simulated annealing (MASA), which is characterized by the absence

of social interactions among the agents, and, as such, unable to ex-

ploit the collective intelligence properties of the group. 

5. Simulation and results 

In this section we discuss the performance of the proposed op-

timization algorithm HGO in finding the global optimum of NK fit-

ness landscapes. In all simulations, each stochastic process is sim-

ulated by generating 200 different realizations and the ensemble

average of the results is calculated. The simulations are stopped

at steady-state, i.e. when changes in the time-averages of consen-

sus and pay-off over consecutive time intervals of a given length

is sufficiently small. Calculations have been carried out for N = 27
nd K = 11 , 17 , 23 . The number of agents employed is M = 11 . Dif-

erent levels of knowledge in the range 0.1 ≤ p ≤ 1 have been con-

idered. The parameter β ′ 
0 = T −1 

0 
, i.e. the level of confidence of the

gents about their perceived fitness at the beginning of the search

rocess, has been computed following the algorithm proposed in

ef. [64] . We assumed, for the three landscapes considered, that

n initial acceptance probability is ψ 0 = 0 . 8 , thus obtaining the

alues β ′ 
0 

= 1 . 03 , 0.83, 0.72. Fig. 2 shows the evolution ( i is the

ime iterator) in terms of fitness values 〈 V ( i ) 〉 and consensus χ ( i )

or the most complex case investigated, N = 27 K = 23 . We notice

hat increase of fitness 〈 V ( i ) 〉 [ Fig. 2 (a)] is always accompanied by

 simultaneous increase of the consensus χ ( i ) [ Fig. 2 (b)]. This con-

rms that, as required by the developed methodologies described

n Section 4 , during the optimization process, the critical transition

o the collective intelligence state of the system always occurs. It is

orth noting that increasing the level of knowledge p of the agents

ignificantly enhances the performance of the optimization strate-

ies in terms of V ∞ 

, and also speeds up the convergence toward

he steady state condition. Fig. 3 reports the steady-state values

f the group fitness V ∞ 

[ Fig. 3 (a)], and consensus χ∞ 

[ Fig. 3 (b)]

f the HGO algorithm, as a function of the level of knowledge p ,

or N = 27 , K = 11 , 17 , 23 , and M = 11 . We note that increasing the

omplexity of the fitness landscape determines only a slight de-

erioration of the performance of the HGO algorithm. Concerning

he effect of p at given K , the trends in Fig. 3 (a), show that in-

reasing p has a beneficial effect in terms of optimization perfor-

ance of the HGO algorithm. However as p is augmented the in-

rease of HGO performance occurs at decreasing rate. Hence, for

 > 0 a significant change in the performance of the algorithm can

o longer be observed. This indicates that the enhancement of ex-

hange of information among the agents about the group fitness

andscape, which occurs at criticality (i.e. in the collective intelli-

ence state), makes the system as a whole about the group fitness
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Fig. 3. The stationary values of the average group fitness V ∞ , (a); and the con- 

sensus χ∞ , (b); as a function of p . Results are presented for N = 27 , M = 11 and 

K = 11 , 17 , 23 . 
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Fig. 4. A comparison between HGO and MASA, in terms of the fitness values V ∞ as 

a function of the knowledge level p , for N = 27 , K = 11 , 17 , 23 , and N = 100 , K = 15 . 
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ven in the case of significantly low ( p ≈ 0.5) level of knowledge of

he agents. This property is of utmost importance, as this allows

his algorithm to strongly outperform other algorithms when the

nowledge of the fitness group is only partial and each individual

n the group only possess his own estimation of such fitness land-

cape (see Section 6 ). 

Also we note [see Fig. 3 (b)] that for vanishing values of p the

onsensus χ∞ 

takes high values, because each agent’s choice is

riven only by consensus seeking. Increasing p determines an ini-

ial decrease of consensus, for the self-interest of each member

eads to a certain level of disagreement. However, a further in-

rement of p makes the members’ knowledge partially ‘overlap’.

his pushes the agents, while being driven by self-interest, to make

imilar choices, and, therefore, to increase the level of consensus.

he complexity parameter K slightly deteriorates the performance

f the HGO optimization algorithm. In particular, for p = 1 . 0 and

 = 27, values of K = 11 , 17 , 23 lead respectively to final fitness val-

es V ∞ 

= 1 . 85 , 1 . 71 , 1 . 63 . Recalling that the values of the NK fitness

andscape are almost normally distributed with average V̄ = 0 . 5

nd variance σ 2 
V 

= 1 / 12 (see Appendix A ), it is worth noticing that

he values V ∞ 

= 1 . 85 , 1 . 71 , 1 . 63 fall at a distance from the aver-

ge value V̄ of about four times the standard deviation σ V of the

tness landscapes. This is a very remarkable results as the proba-

ility P of finding a fitness value larger than V > V̄ + 4 σV is really

iny, i.e. P 
(
V > V̄ + 4 σV 

)
= 3 . 17 × 10 −5 . 

. Comparison with other optimization algorithms 

In this section we compare the performance of the proposed

GO algorithm with the multi agent simulated annealing (MASA)

lgorithm. We recall that the latter is characterized by the absence

f social interactions among the agents, therefore in this case the

hoice of the decision vector is made by comparing the fitness val-
es associated with the agents and by choosing the solution which

rovides the better fitness. On the other hand, in the HGO deci-

ions are chosen by enforcing the majority rule. This is not an ir-

elevant difference, as in choosing the solution HGO never has the

eed to compare the fitness values associated with each agents.

his makes the algorithm work also when the agents have only a

uess about the group fitness landscape (partial knowledge). In our

pinion, this is one of the most striking and novel features of the

roposed optimization algorithm. In Fig. 4 we show the results of

he optimization for N = 27 and K = 17 , 23 , with p ranging from 0

o 1. A group size of M = 11 is adopted in all cases. In all simula-

ions, each stochastic process is simulated by generating 200 dif-

erent realizations and by taking the ensemble average of the re-

ults. We note that HGO outperforms MASA on the entire range of

evel of knowledge p , except at p ≈ 1. In fact, in the case of lim-

ted knowledge, the social interactions push those agents in the

roup with no knowledge about a certain decision, to seek consen-

us and make the choices of individuals, who know the influence

f the given decision on the fitness. This clearly explains the ben-

fit of properly including social interactions into the optimization

lgorithm, and also clarifies why the entire group perform much

etter compared to the case of non-socially interacting members

MASA algorithm). Of course for p ≈ 1 the presence of social inter-

ction may be slightly detrimental, as in making the final decision,

mploying the majority rule may be less effective than comparing

irectly the fitness of each agents (which at p ≈ 1 coincides with

he fitness of the entire group) and choosing the best values. We

tress that the considerable gap between the HGO and MASA al-

orithm, in the case of limited cognitive level of the individuals in

he group, is, as a matter of fact, a consequence of the emergence

f collective intelligence, which the MASA cannot profit from. 

We also tested the efficacy of HGO algorithm with the classic

imulated annealing (SA) and genetic algorithm (GA), both partic-

larly suited to solving combinatorial discrete optimization prob-
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Table 1 

Comparison of the final fitness values V ∞ , found by HGO, 

MASA, SA and GA, for the cases N = 27 , K = 11 , 17 , 23 , 

and N = 100 , K = 15 . 

p = 1 HGO MASA SA GA 

N = 27 K = 11 1.853 1.888 1.473 1.565 

N = 27 K = 17 1.713 1.757 1.239 1.456 

N = 27 K = 23 1.629 1.658 1.153 1.381 

N = 100 K = 15 2.660 2.799 1.646 2.420 

Fig. 5. The distribution of the fitness values V ∞ found by HGO, MASA, SA and GA 

respectively. Results are showed for N = 27 , K = 17 and N = 100 , K = 15 . 
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lems. In the case of GA, we utilized the Global Optimization Tool-

box of MATLAB 

® R2015b with 100 agents (recall that for the other

methods we just used 11 agents). The set of parameter utilized

in the GA algorithm are fully reported in Appendix B . Simula-

tions have been carried for p = 1 . Table 1 shows a comparison of

the four optimization methods in terms of the final fitness values

V ∞ 

found during the simulations, for N = 27 , K = 11 , 17 , 23 , and

N = 100 , K = 15 . We note that the HGO algorithm always outper-

forms the other algorithms, except (recall that p = 1 ) the MASA al-

gorithm. Indeed, the latter, as already mentioned so far, presents

slightly better performance than the HGO at knowledge level p ≈ 1.

Fig. 5 show the histograms of the probability density function of

the final fitness values V ∞ 

found during the 200 replications, by

the four mentioned algorithms, for the cases of N = 27 , K = 23 ,

and N = 100 , K = 15 . As already noted, at p = 1 , only the MASA

algorithm slightly outperforms the HGO method here proposed. 

7. Conclusions 

In this paper we proposed a novel collective intelligent-based

optimization algorithm, mimicking the collective decision-making

of human groups. This algorithm, which we termed Human Group

Optimization (HGO) method, describes the decision process of the
gents in terms of a time-continuous Markov chain, where the

ransition rates are defined so as to capture the effect of the self-

nterest, which pushes each single agent to increase his/her per-

eived fitness, and of social interactions, which stimulate mem-

er to seek consensus with the other members of the group. The

arkov chain is, then, characterized by a couple of parameters

hat, likewise the Simulated Annealing, are subjected to a specific

ooling schedule that in the long-term limit makes the system con-

erge in probability to the optimal value. The choice of the param-

ters is made in order to guarantee the transition to a consensus

tate at which the group of agents shows a very high degree of

ollective intelligence. While being in this state, the agents explore

he landscape by sharing information and knowledge through so-

ial interactions, so as to achieve very good solutions even in the

ase of limited knowledge. 

To test the proposed HGO algorithm, we considered the hard-

P problem of finding the optimum on NK fitness landscape and

ompared the methodology with other well established algorithms

s the Genetic Algorithm (GA), the Simulated Annealing (SA) and

he Multi-Agent Simulated Annealing (MASA). In all cases the HGO

as been shown to significantly outperform the other algorithms

ver the entire range of cognitive level of the agents. For p ≈ 1, as

xpected, only MASA slightly outperforms the HGO. 

Summarizing, our algorithm presents several advantages that

ake it very suitable to solve complex problems. It is flexible be-

ause it can be used to solve almost any combinatorial problem.

owever, its most attractive feature relies in its ability to identify

ery good solutions in presence of limited or partial knowledge

f the fitness landscape. For this reason it appears very promising

or applications in distributed decision making contexts. Further-

ore, while the vast majority of collective intelligent algorithms,

imicking the behavior of social groups like insects and animals,

re based on the mechanism of the stigmergy, our algorithm in-

roduces a mechanism based on the direct communication among

ndividuals, which is a more powerful and effective way to achieve

oordination. Under this perspective, the proposed code is novel

nd unique within the class of collective intelligent optimization

odes. 

We recognize that this first version of the algorithm could be

urther improved in future research by identifying better cooling

chedules. The algorithm could be also fine-tuned to solve spe-

ific operations management problems characterized by distributed

ecision making and information asymmetry, such as multi-stage

roduction scheduling, location routing problem, supply chain in-

entory problem, just to name a few. Additional numerical tests

nd theoretical investigation, not in the scope of present study, are

owever needed to quantify pros and cons. 
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ppendix A. The fitness landscape 

In the NK model a real valued fitness is assigned to

ach bit string d = ( d 1 , d 2 , . . . , d N ) , where d i = ±1 . This is done

y first assigning a real valued contribution W i to the i th

it d i , and then by defining the fitness function as V ( d ) =
 

−1 
∑ N 

i =1 W i 

(
d i , d 

i 
1 
, d i 

2 
, . . . , d i 

K 

)
. Each contribution W i depends not

ust on i and d i but also on K ( 0 ≤ K < N − 1 ) other bits. Now

et us define the substring s i = 

(
d i , d 

i 
1 
, d i 

2 
, . . . , d i 

K 

)
, by choosing at

andom, for each bit i, K other bits. The number of contributions

 i ( s i ) is equal to the number of different values that can be enu-

erated with the substring of k + 1 binary elements, i.e. it is 2 K+1 .
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Table 2 

The options set, different from the default values, imposed 

on the Global Optimization Toolbox of MATLAB R R2015b to 

test the Genetic Algorithm (GA) in solving the proposed NK 

optimization problems, N = 27 , K = 11 , 17 , 23 , and N = 100 , 

K = 15 . 

Type Bit string 

Size 100 

Selection Roulette 

Mutation Gaussian 

Crossover Function Two points 

Migration Direction Both 

Generations 10 5 

Stopping Stall generations 50 0 0 

Criteria Stall Test Geometric weighted 

Function tolerance 10 −8 
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ach single value W i ( s i ) is its value is drawn from a uniform dis-

ribution, usually in the range [0, 1]. Thus, a random table of

 × 2 K+1 contributions is generated independently for each i th bit,

llowing the calculation of the fitness function V ( d ). The reader is

eferred to Refs. [56,57] for more details on the NK complex land-

capes. Notice that increasing the complexity C = K + 1 + log 2 N,

ot only affects the number of local maxima, but also the autocor-

elation of the landscape itself. In particular at the maximum level

f complexity i.e. when K = N − 1 , one can show that the num-

er of local maxima is 2 N / ( N + 1 ) and that the fitness values are

ompletely uncorrelated with each other, in this case the fitness

andscape is represented by a isotropic white noise. This means

hat using NK model it is not possible to control separately the

omplexity, the autocorrelation and the actual level of anisotropy

f the landscape. Also, it is worth noticing that the stochastic

tness function V ( d ), being the mean value of several indepen-

ent uniformly distributed contributions of expectation value W̄ =
 

W 〉 and variance σ 2 
W 

= 

〈 (
W − W̄ 

)2 
〉 
, is very well approximated, as

rescribed by the central limit theorem, by a Gaussian distribu-

ion with average 〈 V 〉 = W̄ and variance σ 2 
V 

= 

〈 (
V − W̄ 

)2 
〉 

= σ 2 
W 

/N.

hus, increasing the number of decisions N leads to a decrease of
2 

V , so that for very large N the distribution of fitness values V de-

enerates into a Dirac delta distribution centered in W̄ . To prevent

his from occurring we preferred to rescale the fitness values V in

uch a way to keep the same average W̄ and the same variance
2 

W 

, i.e. we use 

 → W̄ + 

√ 

N 

(
V − W̄ 

)
(A1) 

ppendix B. Genetic algorithm options 

The options we used to perform GA calculations within the

lobal Optimization Toolbox of MATLAB 

R R 2015 b are reported in

able 2 . 

For the meaning of each parameter in the table, the reader

hould refer to the MATLAB guide [67] . 
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