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a b s t r a c t 

We present a technique to search for the presence of crucial events in music, based on the analysis of the 

music volume. Earlier work on this issue was based on the assumption that crucial events correspond to 

the change of music notes, with the interesting result that the complexity index of the crucial events is 

μ≈ 2, which is the same inverse power-law index of the dynamics of the brain. The search technique an- 

alyzes music volume and confirms the results of the earlier work, thereby contributing to the explanation 

as to why the brain is sensitive to music, through the phenomenon of complexity matching. Complexity 

matching has recently been interpreted as the transfer of multifractality from one complex network to 

another. For this reason we also examine the mulifractality of music, with the observation that the mul- 

tifractal spectrum of a computer performance is significantly narrower than the multifractal spectrum of 

a human performance of the same musical score. We conjecture that although crucial events are demon- 

strably important for information transmission, they alone are not sufficient to define musicality, which 

is more adequately measured by the multifractality spectrum. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

One of the outstanding mathematicians of the twentieth cen-

tury, George Birkhoff, argued that the aesthetics of art have math-

ematical, which is to say a quantitative, measure. The structure

in various art forms, music in particular, that he discussed in his

book [1] was largely overlooked by other scientists until the last

quarter of the twentieth century, when Mandelbrot introduced the

scientific community to fractals [2] and his protégé Voss applied

these ideas to the mathematical analysis of music. Voss and Clark

[3,4] used stochastic, or 1/f , music, in which notes are selected at

random and the frequency with which a particular note is used

is determined by a prescribed distribution function, to gain in-

sight into the structure of more conventional music. They deter-

mined that a variety of musical forms, jazz, blues, classical, have

a blend of regularity and spontaneous change characteristic of 1/f -

music. Aesthetically pleasing music was found to have a 1/f α spec-

trum, with an inverse power-law index in the interval 0.5 < α < 1.5,

thereby connecting the structure of music to the physical phenom-

ena of 1/f -noise [5] . 

In 1987 the newly developed concept of self-organized critical-

ity (SOC) was used by Bak et al. [6] to explain the source of 1/f
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noise. Subsequently, 1/f -noise has been found to be an ubiquitous

roperty of complex networks near criticality, such as the brain.

his suggests an exciting connection with the problem of cogni-

ion [7] because 1/ f noise may represent the brain self-organizing

hrough a vertical collation of the body’s spontaneous physiolog-

cal events. Soma et al. [8] have shown that the brain is more

ensitive to 1/f -fluctuations than to other forms of noise, result-

ng in higher information transfer rates in the visual cortex [9] ,

ain-relief efficiency by electrical stimulation [10] and enhanced

fficiency by biological ventilators [11] . West et al. [12] speculate

hat there is a complexity matching between Mozart’s music ( 1/f -

omposition), the brain’s organization ( 1/f -complex network) and

he heartbeat (another 1/f -process), to explain the result of Tsu-

uoka et al. [13] that listening to Mozart has the effect of inducing

/f -noise on heart beating. This also supports the conjecture that

usic mirrors the mind [14] in that its complexity is a reflection of

he 1/ f -complexity of the brain. The issue of complexity matching

s closely related to the subject of the recent workshop [15] and

e invite the readers to consult this reference for details on these

nteresting connections. 

The observation that listening to Mozart’s music enhances the

easoning skills of students [16] contributed to the ever-expanding

ircle of research interest centered on the possible complexity

atching between Mozart’s music and brain function. This is a

horny problem having aspects of a number of fundamental human

ssues, including but not limited to creativity, free will, determin-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. An example music signal. 
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sm and randomness [17] . Our purpose here is to present a math-

matical theory that explains these interesting aspects of music,

hich picks up where the above mentioned popular works leave

ff. 

The approach presented herein uses the concept of a crucial

vent as a fundamental building block for the underlying time se-

ies, resulting in 1/f -variability being the signature of complexity.

he theory is an application of the recent work of Mahmoodi et al.

18] , which contains an intuitive description of crucial events and

evelops a generalized form of SOC, self-organized temporal critical-

ty (SOTC), based on the dynamics of complex networks. Experi-

ental observation shows that moving from physics to biology is

ignaled by the emergence of the breakdown of ergodic behavior

ith increasing complexity. Ergodic behavior is one of the founda-

ional assumptions of statistical physics, that being that time av-

rages of system variables produce results equivalent to those ob-

ained from ensemble averages of those variables [19] . Its almost

biquitous breakdown in complex systems came as a surprise. 

Ergodicity breakdown is caused by complex fluctuations be-

ng driven by crucial events. The time intervals between consec-

tive crucial events are statistically independent and described by

 markedly non-exponential waiting-time probability density func-

ion (PDF). To realize the temporal complexity of crucial events re-

uires the concept of an intermediate asymptotic region, character-

zed by an inverse power law (IPL) with index μ< 3. These events

re renewal [20] in the sense that their occurrence invokes a total

ejuvenation of the system implying that sequential renewal events

ccur at times having no correlation with the times of occurrence

f preceding events. SOTC shows that beyond the intermediate

symptotic region an exponential time region appears which en-

ails that the system recovers the ergodic property in the long-time

imit. This exponential truncation, generated by the same coopera-

ive interaction responsible for the IPL nature of the intermediate

symptotic region, is often confused with the effects produced by

he finite size of the observed time series. 

We conjecture that music, being the mirror of mind, natu-

ally reflects the brain’s dynamics (which is a generator of 1/ f

fluctuations [20] ) thereby confirming the early observations of

oss and Clarke [3–5] . However, the arguments adopted by these

ioneers are based on the assumption that 1/ f -noise is generated

y fluctuations with very slow, but stationary correlation functions.

hereas, the crucial events emerging from the statistical analysis

f the time series generated by the brain [20] , on the contrary,

ave non-stationary correlation functions. The significance of SOTC

odeling is that the crucial events generated are the same as the

/ f -noise produced by the brain, that is, the fluctuations have non-

tationary correlation functions. 

The importance of crucial events for music composition was

ecognized in two earlier publications of our group [21,22] ; the

rst paper illustrates an algorithm for composing music based on

rucial events. The present paper is closer to the main goal of the

econd publication, which was the detection of crucial events in

n existing musical composition. Vanni and Grigolini [22] assumed

hat the time at which a note change occurs is a crucial event and

ound that the IPL index was μ≈ 2. Kello et al. [23] define events

sing the amplitude envelope of the data and study their proper-

ies. Out of the many possible ways to define events, we adopt a

imple criterion for detecting events based on the volume of the

usic and we show that these events are crucial events. 

Herein we confirm that music is driven by crucial events. Our

nalysis establishes a significant difference between computer and

uman performance of the same musical score, which is not sur-

rising. The computer plays the notes as written by the composer,

ithout interpretation. Humans, on the other hand, bring all their

nowledge, experience and feeling for the music to their perfor-
t  
ance. The computer can provide the heart of the music, but only

 human can make the heart beat. 

We also make a preliminary attempt at establishing a connec-

ion between crucial events and multifractality. A time series with-

ut a characteristic time scale can be characterized by a scaling ex-

onent, the fractal dimension. An even more complex time series

an have a time-dependent fractal dimension, resulting in a spec-

rum of fractal dimensions. This spectrum defines a multifractal

ime series and the width of the multifractal spectrum is a mea-

ure of the variability of the time series’ scaling behavior. 

. In search of crucial events 

According to the theoretical perspective established in earlier

ork [24] we define crucial events , as events for which the time

nterval between two consecutive events is described by a waiting-

ime PDF ψ( τ ) with the asymptotic IPL structure: 

(τ ) ∝ 

1 

τμ
, (1) 

ith an IPL index μ< 3. In addition, every pair of time intervals

etween events must be uncorrelated 

τi τ j 

〉
∝ δi j , (2) 

here the bracket indicates an average over the waiting-time

DF. The occurrence of crucial events establishes a new kind of

uctuation-dissipation process [25] and the transport of informa-

ion from one complex system P to another complex system S is

etermined by the influence that the crucial events of P exert on

he time of occurrence of the crucial events of S [26] (complexity

anagement). 

To search the crucial events in music we defined a threshold of

.1 V for the signal of the musical piece under study and whenever

ignal reaches the threshold we call it an event. We measure the

istances between these event and apply this analysis technique

o the time series resulting from both computer and human per-

ormances of the music composition. The computer performance

onsisted of a MIDI (Musical Instrument Digital Interface) file and

 FLAC recording (Free Lossless Audio Codec) provided a human

erformance. In Fig. 1 we depict the music selection for a orches-

ral performance of Mozart’s Concerto for Flute, Harp, and Orchestra,

llegro . The music signal was sampled at 44,100 samples per sec-

nd. 

The IPLs in Fig. 2 have slopes of μ = 2.07 and 2.2 for the hu-

an and computer performances, respectively (shown in black). To

how that these events are renewal events we use the aging exper-

ment [24] . Being renewal means that there is no statistical depen-

ence between the lengths of any two intervals between events.

o do aging we select a window size t a , put the beginning of the

indow at an event and calculate the distance between the end of

he window and the nearest subsequent event, this time is called
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Fig. 2. The top panel is the waiting time PDF of the Human performance, the bot- 

tom panel is the PDF for the Computer performance. In each, the black line repre- 

sents the waiting time PDF of the time intervals between two consecutive crossings 

of the threshold (0.1 V). The red and blue lines both represent the waiting time 

PDF of the corresponding aged time series, and the shuffled and aged time series, 

respectively. The size of the window used for the aging experiment is t a = 100. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Power spectra for human (black) and computer (red) data. The IPL indices 

are approximately one. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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the aged τ . In the figure, the red line is the waiting time PDF of

the aged τ ’s of the time series, using windows size of t a = 100. The

blue line represents the PDF of the aged τ ’s of the time series that

is shuffled prior to being aged. As can be seen in the figure, the red

and blue lines essentially overlap one another. We interpret this

overlap to mean the events defined by the crossings are renewal

and are therefore crucial events. 

3. Power spectrum 

Another way to establish that the events detected are renewal

is to evaluate the spectrum S ( ω) to detemine if it is IPL. In this

section, we will describe some of the theory behind this assertion

and present the results of its application to the two time series in

which we are interested. We find that the power spectra obtained

lend further to support the assertion that both time series are re-

newal. 

Lukovi ̌c and Grigolini [27] demonstrated that the power spec-

trum of a time series is a useful indicator of the presence of re-

newal events. The time series of a process with crucial events

yields a process with a non-stationary correlation function. This

non-stationarity is a consequence of ergodicity breakdown, which

becomes perennial for μ< 3. According to [27] , the spectrum of

fluctuations in this case cannot be derived from the Wiener–
hintchine theorem, relying as it does, on the stationarity assump-

ion. It is necessary to take into account that in both cases of inter-

st in this article ( μ = 2 . 07 and μ = 2 . 2 ), the average time interval

etween two consecutive events diverges, thereby making the pro-

ess driven by the crucial events non-stationary. This anomalous

ondition leads to a spectrum that is dependent on the length of

he time series L [27] : 

(ω ) ∝ 

1 

L 2 −μ

1 

ω 

β
, (3)

ith the IPL index 

= 3 − μ. (4a)

This result was obtained by going beyond the Wiener–

hintchine theorem adopted by Voss and Clarke in their analysis,

ut which cannot be applied to our condition if we make the rea-

onable assumption, based on the results depicted in Fig. 2 , that

he events we detected, are renewal. If they are renewal and they

rive the signal ξ ( t ), namely the music intensity, then the spec-

rum S ( ω) is expected to follow the prescription of Eq. (3) . In the

ase where the process yields a slow, but stationary correlation

unction, we would have β < 1 [27] . Evaluating the power spec-

rum in this case becomes computationally challenging because, as

hown by Eq. (3) , the noise intensity decreases with increasing L ,

he length of the time series. Nevertheless, the results depicted in

ig. 3 yield an IPL index β ≈ 1, and Eq. (4a) yields β = 3 − 2 = 1 ,

he agreement between these results is very encouraging. 

Both the aging experiment and the spectrum satisfactorily sup-

ort the claim that the events revealed using the threshold method

re crucial events. To clarify this point Fig. 4 illustrates the waiting-

ime PDF of the intervals between two consecutive crossings of

he threshold line, when the threshold is set equal to 0.002. This

hreshold is not large enough to filter out the events that are not

rucial. We see that these non-crucial events produce a well pro-

ounced exponential shoulder in the waiting-time PDF. The results

f Fig. 2 have been obtained by filtering out these non-crucial

vents. We therefore conclude that the crucial events, which are

he mechanism for information transport [26] , also have the signif-

cant effect of determining the behavior of the spectrum for ω → 0.

. Multifractality 

The discovery of 1/ f noise in music by Voss and Clarke [3] was

nterpreted assuming the music time series is stationary, which is

onsistent with Fractional Brownian Motion (FBM), and yields a
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Fig. 4. The waiting-time PDF of the human performance time series, obtained using 

a threshold of 0.002. 

Fig. 5. The black line represents the multifractal spectrum of the computer per- 

formance, the red represents the human performance’s multifractal spectrum. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

m  

t  

s

 

y  

f  

f  

m  

b  

i  

T  

h  

p  

f  

b  

p  

t  

t  

i  

m  

m  

f

 

w  

M  

m  

c  

l  

o  

l  

i  

p  

h  

w

5

 

b  

t  

e  

o  

e  

f  

b

 

t  

v  

b  

l  

b  

v  

s  

s  

t  

d  

t  

b

A

 

G  

A  

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ono-fractal [2] . However, the present work goes beyond [3] and

he ergodic assumption, by taking a non-stationary approach con-

istent with multifractality. 

Using the method of Multifractal Detrended Fluctuation Anal-

sis (MF-DFA) [28] to analyze each time series of the two per-

ormances gives the results shown in Fig. 5 . The computer per-

ormance yields the narrow multifractal distribution, whereas the

ultifractal distribution of the human performance is significantly

roader. This notable difference between the multifractal spectra

ndicates different levels of complexity in the two performances.

he narrowness of the computer performance suggests a strict ad-

erence to a single fractal dimension and consequently less com-

lexity than observed in the human performance. In fact, the dif-

erence between the two performances may be better described

y what the computer performance lacks compared to the human

erformance. This extra information, or musicality, contained in

he human performance includes specific techniques that add to

he complexity of the music through subtle variation in timing,

ntonation, articulation, dynamics, etc., which are likely a better

atch to the brain’s complexity. The human performance is largely

ore aestheticly pleasing to the listener than is the computer per-

ormance. 

Suppose the brain of Mozart contains a certain complexity,

hich is well described by SOTC as a generator of 1/ f -noise. Then
ozart transcribes his complexity, albeit incompletely, into the

usical score of the chosen selection. To recover this lost musi-

ality, the human performer injects their own interpretation of the

ost complexity using their specific performance techniques. On the

ther hand, the computer performance is unable to interpret this

ost component and delivers exactly what was transcribed, result-

ng in less variability in complexity. The computer performance is a

artial record of the brain of Mozart even if Mozart himself would

ave produced a broader multifractal distribution when the piece

as performed. 

. Concluding remarks 

Crucial events exist in the changing of notes in music, as found

y Vanni et al. [22] . Similarly, our analysis of the music signal via

he change in volume, leads to the same conclusion. This differ-

nce in analysis is very important because the statistical analysis

f the dynamics of the brain [20] shows that the brain is a gen-

rator of crucial events with the same IPL index. Additionally, we

ound that there is a noticeable difference in the fractal measures

etween human and computer performances. 

Music is aesthetically pleasing to the brain [21,22] because of

he crucial events described by μ = 2. Multifractality may pro-

ide a clearer picture of which performance of Mozart would

e more pleasing. The difference in musicality is obvious to the

istener’s ear and this difference can be quantified through the

roader multifractal spectra. The increasing aesthetics of music fa-

ors a broader multifractal spectrum. Indeed, multifractality de-

cribes an additional measure of complexity. Crucial events mea-

ure the complexity of the intermediate asymptotics, whereas mul-

ifractality contains additional information, beyond the interme-

iate asymptotics, regarding the transient region and exponential

runcation. All this subtlety in composition is experienced by the

rain through the transfer of the music time series’ multifracality. 
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