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Abstract 

The fixed point structure of the renormalization group equations for the 

scalar quartic couplings in the one and two-doublet models is studied. Masses 

of the physical Higgs bosons can be determined by the infrared fixed points 

of the quartic coupling constants. The existence of these fixed points in the 

two-doublet model requires the presence of a heavy fourth generation in which 

quarks are coupled to both doublets. Otherwise, the potential can become 

quartically unstable at low energies for arbitrary initial stable values of the 

coupling constants. 
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Higgs Boson Spectrum From Infrared Fixed Points 

CHUNG NGOC LEUNG 

Fermi National Accelerator Laboratory 

P. 0. Box 500, Batavia, Illinois 60510 

ABSTRACT 

The Sxed point structure of the renormalization group equations for 

the scalar quartic couplings in the one and two-doublet models is stud- 

ied. Masses of the physical Higgs bosons can be determined by the 

infrared tied points of the quartic coupling constants. The existence 

of these Sxed points in the twwdoublet model requires the presence of 

a heavy fourth generation in which quarks are coupled to both dou- 

blets. Otherwise, the potential can become quartically unstable at low 

energies for arbitrary initial stable values of the coupling constants. 

Despite the successes of the standard model, the Higgs sector remains a mys- 

tery. The main reason is that the mass of the physical Higgs boson nn depends on 

the quartic coupling constant X in the scalar potential, which is a free parameter 

of the model. Many attempts i-s1 have been made to constrain or to predict X 

(and hence ma) all of which involve extra assumption(s). Pendleton and Ross31 

first suggested the interesting possibility that low energy physics may be dictated 

by the infrared (IR) fixed point structure of the renormalization group equations 

(RGE). If the RGE for the various couplings in a theory possess stable IR 6.xed 

points, the couplings will be swept towards these Sxed points when evolving from 

high energy (e.g., a unification scale A,) to low energy (e.g., the weak interaction 

scale Aw - M,), irrespective of their initial values. Consequently predictions for 

low energy parameters can be obtained without knowledge of the symmetry con- 

ditions at Au. Implicit in this approach is the assumption that a desert exists and 

perturbation theory is valid throughout the desert. 

The work61 I am going to describe was done in collaboration with Chris Hill 

and Sumathi Rao. We study numerically the IR 6xed point structure of RGE for 

the scalar quartic couplings in the standard model and its extension to two Higgs 
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two neutral scalars. Their (mass)’ are, respectively, 

m2, = -+x4 + x+2 
m; = IXsIv2 

1 
rn: = -q+vs 

2 
1 

m; = -?&v2, 
2 

where 

(3) 

q+ = (X1cos2p + X2 sins p) 

f [(Xl cos2 p - X2 sins p)’ + (Xs + Xq + x5)2 sin2 2p]‘/* 
(4) 

and 

tanp = ; . (5) 

Here vi/@(vs/fi) is the vacuum expectation value of I$~(&) and vs = vt + ~2”. 

In order to have a residual U(1) EM symmetry so that the photon remains 

massless, X4 must be negative. Then the rquirement that the potential energy 

of the vacuum be bounded below necessarily implies the following conditions in 

tree-approximation: 

x1 > 0, 

x2 > 0, (6) 
and 4XiXs > -Xs + 1x41 + ]Xsl 

The RGE for the gauge, Yukawa and quartic couplings are given in Ref. 6. The 

RGE are numerically integrated from A” = lOis GeV to A, = 100 GeV assuming 

large initial values for the Yukawa and quartic couplings (by large couplings we 

do not mean the saturation of unitarity bounds, g2 - 477, but rather g2 “of order 

unity”). For simplicity the Yukawa couplings are assumed to be diagonalrl. The 

Yukawa couplings of the light fermions (lighter than the t-quark) are set to be 

zero since they have negligible effects on the evolution of the coupling constants 

except for the counting in the gauge coupling beta-functions. Fixed points of the 

scalar quartic couplings are universal values attained from a sample of random (but 

satisfying Eq. (6)) initial values. 



Xl > 0, 

x2 > 0, (6) 

and 6 > -As + IX,/ + I&( . 

The RGE for the gauge, Yukawa and quartic couplings are given in Ref. 6. The 

RGE are numerically integrated from Au = 10 l5 GeV to A,,, = 100 GeV assuming 

large initial values for the Yukawa and quartic couplings (by large couplings we 

do not mean the saturation of unitarity bounds, g* - 47r, but rather gz “of order 

unity”). For simplicity the Yukawa couplings are assumed to be diagonal’]. The 

Yukawa couplings of the light fermions (lighter than the t-quark) are set to be 

zero since they have negligible effects on the evolution of the coupling constants 

except for the counting in the gauge coupling beta-functions. Fixed points of the 

scalar quartic couplings are universal values attained from a sample of random 

(but satisfying Eq. (6)) initial values. 

We now discuss the results. Consider first the one-doublet model with three 

fermion generations. The evolution of the quartic coupling X and the Yukawa 

coupling of the t-quark gt is shown in Fig. la. For sufficiently large initial values 

of gt X reaches a fixed point. For smaller initial gt it terminates on the dashed line 

of Fig. la. This can be turned into a relationship between mn and mt, the mass 

of the t-quark, which is shown in Fig. lb. Curiously, mn lies around 170 GeV for 

a large range of mt. If more heavy fermions are present, mn tends to increase. 

In the two-doublet model fixed points exist only if both doublets are coupled 

to heavy quarks. This can be understood from the structure of the RGE. Suppose 

all Yukawa couplings are negligible. Then the RGE for X1 (and similarly As) can 

be written as (gr and gr are the gauge couplings for SU(2) and U(l), respectively) 

167r2p- = 
a/J 

12[XI - i(3g; + &I2 + 2x: + 2(X3 + X,)2 +2x: 

(7) 

+ ;k4 + 9:) + $7x . 

Notice that the right hand side is always positive and thus no fixed point ex- 

ists. Consequently X,(X,) always decreases from its initial value when evolved to 

lower energy. In fact it decreases so fast that it can exit the stability region be- 

coming negative and eventually negative infinite, thereby causing other couplings 
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Fig. la. Flow of X and gt towards fixed points in the standard one- 

doublet model. 
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Fig. lb. Relation between the Higgs mass and the t-quark mass in the 

one-doublet model. 
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Fig. 2 Flow of X1, AZ, AS, and X1 towards 6xed points. 



to diverge. This suggests the interesting possibility that a theory which is per- 

turbatively weak at high energies can become non-perturbatively strong at lower 

energies. This is reminiscent of technicolor and might be applied to generate the 

breaking of the electroweak symmetries. Coupling 41 (or 42) to a heavy quark with 

Yukawa coupling f introduces to the RGE of Xi (orXs) the terms 12Xrfs - 12f’. 

The f’-term is negative and hence a fixed point can exist if f is sufficiently large. 

Coupling to heavy lepton with equal Yukawa coupling introduces the similar terms 

but 3 time smaller, hence less effective in driving X,(X,) to its fixed point. 

Let us consider then the following Yukawa coupling scheme consistent with the 

natural suppression of off diagonal neutral couplingssl 

L,,k. = &UUW$; + &Dd& + &L .c eR& + h.c. , (8) 

in which at least one of each charged fermion species has a large Yukawa coupling 

(corresponding to coupling scheme I in Ref. 6). This necessarily implies the exis- 

tence of a fourth generation. Here QL(LL) is the left-handed quark (lepton) dou- 

blet, ‘llRj dR, and ea are, respectively, the right-handed up-quarks, down-quarks, 

and charged leptons, and U, D and L1 are Yukawa coupling matrices. Genera- 

tion indices have been suppressed. Fixed points for the quartic couplings exist in 

this case and are shown in Fig. 2. Notice that the fixed point for X4 is negative 

(corresponding to a massless photon) for arbitrary initial values. It is somewhat 

remarkable that the renormalization group fixed point will select the physically 

interesting vacuum! 

The masses of the physical Higgs particles can be determined from Eq. 3 with 

the fixed point values of the quartic couplings. These are shown in Table 1. The 

masses of the neutral scalars mi,s depend on the unknown vacuum expectation 

value ratio vs/r+. However, they lie within a finite region (as shown in Table 

1) for ~s/vr ranging from 0 to 00. (A recent renormalization group analysis’] 

constrains (~s/vr)s to be less than 60. This does not affect the range shown in 

Table 1). The msss of the pseudoscalar tnr depends on Xs whose fixed point is zero 

(since the right hand side of the RGE is proportional to Xs) but is never reached 

in the finite running time, although it tends to be small. The values of mP shown 

in Table 1 are for typical values of Xs at Ah,. 

Also shown in Table I is the dependence of the Higgs masses on nt. There 

is essentially no difference between rnt = 0 and mt = 50 GeV, whereas a heavier 



Table I. Fixed point masses (in GeV) of the physical Higgs particles (N = number 

of generations). I 1 
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t-quark tends to lower the masses. Similar effects occur with the addition of extra 

heavy generations as seen in the case with N=5. All the masses lie in an interesting 

range which is accessible to experiment in the near future. 

Other distinct Yukawa coupling schemes are also considered in Ref. 6. We do 

not have the space-time to discuss them here. 

ACKNOWLEDGEMENTS 

I wish to thank C. Hill and S. Rao for a most enjoyable collaboration. The 

hospitality of the Aspen Center for Physics where part of this talk was prepared 

is also gratefully appreciated. 

REFERENCES 

[I] A.D. Linde, JETP Lett. 23, 64(1976); S. Weinberg, Phys. Rev. Lett. 36, 

294 (1976). 

[2] B.W. Lee, C. Quigg and H.B. Thacker, Phys. Lett. 38,883 (1977); Phys. Rev. 

D16, 1519 (1977); M.Veltman, Acta Phys. Pal. B8, 475 (1977); D.Dicus 

and V. Mathur, Phys. Rev. D7, 3111 (1973). 

[3] B. Pendleton and G. Ross, Phys. Lett. 98B, 291 (1981). 

[4] N. Cabibbo, et al., Nucl. Phys. B158, 295 (1979); M. Machacek and 

M. Vaughn, Phys. Lett. 103B, 427 (1981). 



[5] L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B136, 115 (1978); 

R. Dashen and H. Neuberger, Phys. Rev. lett. 50, 1897 (1983); D.J.E. Call- 

away, Nucl. Phys. B233,189 (1984); M.A.B Beg, C. Panagiotakopoulos and 

A. Sirlin, Phys. Rev. Lett. 62, 883 (1984); E. Ma, Phys. Rev. DSl, 1143 

(1985); K. S. Babu and E. Ma, UH-511-552-85 (1985). 

[S] C. T. Hill, C. N. Leung and S. Rae, Fermilab-Pub-85/56-T (to be published 

in Nucl. Phys. B). 

[7] E. A. Paschos, 2. Phys. C26, 235 (1984); J. W. Halley, E. A. Paschos and 

H. Usler, DO-TH 84/24 (1984). 

[E] S. Weinberg, Phys. Rev Lett. 37, 657 (1976); S. Glashow and S. Weinberg, 

Phys. D5, 1958 (1977). 

[9] J. Bagger, S. Dimopoulos and E. Masse, SLAC-PUB-3587 (1985). 


