LA-UR -83-413 /’07/ -X2A07/07-~]

Los Alamos Natonal Laborstory 8 operated by the University of Celifornis for the Unned Jistes Depariment of Energy under contrac' W.7405.ENG-3E

LA-UR--83-4.3

DFB83 007558

TITLE TWO PARALLEL FORMULATIONS OF PARTICLE-IN-CELL MODELS

AUTHOR(S| BE. Buzbee

SUBMITTED TO Puruue Workshop on Algorithmically-Specialized Computer Organizations
(WACO), Purdue University, West Lafayette, Indiana
September 27 -~ October 1, 1982

To be published by Academic Press

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
cmployces, makes ary warranty, expreas or implicd, or assumes any legal liability or responsi-
bility for th: accuracy, completeness, or usefulness of any information, apparatus. product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, provess, or service by trade name, trademark,
manulacturer, or otherwise does not neceasarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
anu opinions of authors expreased hercin do not necessarily state or reflect those of the
United States Governmenl or any agency thereof.

By accepiance of this articie the publimher recognizes thet the U 8 Government retsing a noneaciusive roysity.free ircense 10 Publish of reproduce
he pubisned form of this contnibution. or to allow others 1o 00 80, for US Government pirposes

The Los Alamos Nations! LBbOI8I0TY requests 1hat the pubhisher igentify thig ariicie as work performed unde the auspices ¢f the U S Depsnme~r of Enerps

(
r
ot b s G HTED

LOS AlannoS Lesaamos NatoralLaboraior
oo o8 4 MAS‘[ER


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


TWO PARALLEL FORMULATIONS OF PARTICLE-IN-CELL
MODELS

B. L. Buzbeel

Computing Division Los Alamos National Laboratory Los
Alamos, New Mexico

Particle-in-cell (PIC) models are widely used in fusion
studies associated with energy research. They are also used
in certain fluid dynamical studies. Parallel computation is
relevant to them because

1. PIC models are not amenable to a lot of vectorization--
about 50% of the total computation can be vectorlized in
the average model;

2. the volume of data processed by PIC models typically
necessitates use of secondary storage with an attendant
requirement for high-speed 1/0; and

" 8. PIC models exist today whose implementation requires a
computer 10 to 100 times faster than the Cray-1.

This paper discusses parallel formulation of PIC models for
master/slave architectures and ring architectures. Becauss
interprocessor communication can be a decisive factor In
the overall efficiency of a parallel system, we show how to
divide these models into la1 ge granules that can be executed -
in parallel with relatively little need for corimunication. We
also report measurements of speed-up obtained from experi-
ments on the UNIVAC 1100/84 and the Denelcor HEP.

YThis work was supported in part by the Applied Mathemati-
cal Sciences Program, Office of Basic Energy Sciences of
the US De%artment of Energy and the Air Force Oftice of
Scientific Research.



PARTICLE-IN-CELL MODELS

We discuss particle-in-cell models (PIC) in the context of studying
the behavior of plasmas in the presence of force flelds [7]. We assume
a two-dimensional region that has been discretized with N cells per
side for a total of N® cells in the region. The discretization is illus-
trated in Fig. 1. The approach is to randomly distribute particles over
the two-dimensional region and then study theii movement as a func-
tion of time and forces acting on them. Typically, the average number
of particles per cell will be 0(N) and particle information irncludes
position, velocity, charge, ete. Thus, the total particle information will

be O(N?®). In its simplest form, the plasma simulation proceeds as fol-
lows.

1. ‘"Iutegrate" over particles to obtain a charge distribution at cell-
centers {a cell center is denoted by "X" in Fig. 1),
2. Solve a Poisson equation for the poteatial at cell-centers,

3. Interpolate the potential onto particles for a small interval of

time At; i.e., apply force to the particles for a small time interval,
recomputing their positions, velocities, ete.

T

.

FIGURE 1. Relationship of region, mesh, and particles.

Step 2 requires O(N?) operations. Steps 1 and 3 require O(N?) opera-
tions and thus dominate the overall computational process. Gen-
erally, the particle information is stored in a large array and there is
no correlation hetween particle posilion in that array and particle
position in the rectangle. Thus, Step 1 is a many-lto-cne mapping of
random elements from the list onto a cell center. Conversely, Step 3
is a one-to-many mapping of informaticn at the cell center onto ran-



dom elements of the particle list. These mappings {rom and to ran-
dom elements in a list generally preclude eflicient vector implementa-
tion. In general, only about 50% of the total operations in a PIC model
are subject to eflicient vector implementation. Of course, tn achieve
the highest level of performance from a vector processor, one needs
to vectorize 90% or more of the total work in a computation [9].
Further, some PIC simulations used within the fusion energy research
community require a computer that is about 100 times faster than the
Cray-1 to successfully model phenomena of interest [4]. This need for
higher performance combined with difficulties in implementing PIC
efliclently on vector processors mectivates our interest in asynchro-
nous parallel (MIMD) formulations of them.

PIC ON A MASTER/SLAVE CONFIGURATION

Assume that we have an MIMD processor with a master/slave con-
trol schema as illustrated in Fig. 2. In practice a single processor may
execute the function of both the master and one of the slaves, but for
purposes of discussion we assume that they are distinet. The key to
achieving eflicient parallel implementation of PIC on a master/slave
configuration is to divide the particles equally among the slaves and to
keep all particle-related information within the slaves. Assuming that
the master has the total charge distribution In Its memory, the com-
putativnai procedure is as follows.

Step 2B. Master solves potential equation and broadcasts potential
(O(N?)) to each slave.
Step 3. Each slave applies the potential for
At (moves its particles).
Step 1A. Each slave integrates over its particles to
obtain thelr contribution
to total charge distribution at cell centers.
Step 1B. Each slave ships its charge distribution
(O(N®)) to the master.
Step 2A. Master sums charge distribution from slaves.

Master

JI

Slave Slave Slave Slave

FIGURE 2. Master/slave communication geometry for four processors.



Note that in this apprrach the "particle pushing” (O(N%)) portion of
t .e computation is sh. d equally among the slaves. The amount of
computation dune by th master is O(N?) and the amount of interpro-
cessor communication it ?(N2). Further, the potential calculation is
amenable to parallel implementation [2], but because the particle
pushing dominates the overall calculation, we will not concern our-
selves with parallel processing the potential calculation.

The key to efficient parallel implementation of PIC on a
master/slave conflguration lies in dividing particles equally among the
s'aves irrespective of particle position in the region. This was not our
first approach in attempting to parallel process PIC. Rather, our ini-
tial approachs considered dividing the region into subregions and hav-
ing a processor assigned to particles in each of the subregions. Such
an approach produces a number of complications. For example, at
tbe end of each time step some particles will ruigrate to its neighbor-
Ing subregion. Thus, there must be an "exchange" of particles
between processors at each time step. This exchange will necessitate
garbage collection within the particle list of a given processor and,
should the particles eventually concentrate in a small region, a single
processor will do most of the computation while the others sit idle. To
rectify such a situation, the region must be resubdivided, particles
reallocated, etc. The computational cost of such processes is
significant.

A simllar phenomenon seems to occur in the paraliel solution of
elliptic equations. Again, the natural approach is to subdivide the
region and to assign a processor to a subregion. It is extremely
difficult to do this in a fashion that will yield a net gain in computa-
tional efficiency [5). The point is that eflicient implementation
involves techniques that are somewhat counterintuitive.

PARALLEL PROCESSING PIC ON A RING CONFIGURATIUN

PIC can also be efliciently implemented on a MIMD machine with a
ring control/communication organization. For purposes of discussion

we assume a fnur-element ring with communication from left to right
as indicated in Fig. 3. The key to success in this environment is again
to divide particles equally among the processors but, in addition, have
processors do a significant amount of redundant computation. Assum-
ing that each processor has the total charge distribution at cell
centers in its memory, the computational process is as follows.

Step 2. Each processor solves the potential equation.

Step 3. [Each processor moves its particles.

Step 1A. Each processor integrates over its particles to obtain their
contribution to the total charge distribution.



Stzp 1B. For 1 = 1, 2, 3, 4: pass partial charge distribution to neigh-
bor; add the one received to "accumulating charge distribu-
tion."

/P1

P2 P4

P3

FiGURE 3. Afour-element ring confilguration.

ESTIMATING PERFORMANCE OF THE MASTER/SLAVE IMPLEMENTATION

The key issue In parallel processing is speedup as a function of
the number of processors used. We deflne speedup as

. ezecviion time using one processor
ezeculion lime using p processors

To estimate performance of the master/slave formulation, we use a
model of parallel computation introduced by Ware [B]. We normalize
the execution time using one precessor to unity.

Let
p = number of processors,
and
o. = percent of parallel processable work.

Assume at any instant that either all p processors are operating or
only one processor is operating; then

1

S, = ———.

a
] =) + —
(1-a)+ 2

Also

dS, __e
rralltht At



This model is unrealistic because the basic assurnption will sel-
dom, if ever, be realized in practice. However, with a little averaging,
a lot of reality can be mapped onto this model. Note the behavior of
the derivative of S, in the neighborhood of a=1. This rapid and "last
minute” growth as a function of a is displayed for a 4-processcr, an 8-
processor, and a 18-processor system in Fig. 4. Thus, successtul reali-
zation of the potential performance of a parallel processor necessi-
tates parallel formulation of at least 80% of the total computaticn.
Therein lles the challenge in research in parallel processing. In 1970
Minsky [8] conjectured that average speedup in parallel processing
would go like logp. Indeed, if only 60% or 707% of the total computation
is implemented in parallel, then he will be correct. However, for the
master/slave imJ)lementat.ion of PIC, recall that we are parallel pro-
cessing the O(N®) component of the calculation and sequentially pro-
cessing the O(N?) component. Thus, we have the possibility of achiev-
ing relatively high efliciency. at least on systems with a few proces-
sors.

S=2RGFTES

y T T T 17T T 7T 0T T 7T

—1— 16 PROCESSORS
)

SPELDUP

—— 8 PROCESSORS

4 PROCESSORS

wa NGOV O

0.6 0.7 0.8 0.9

-

FIGURE 4. Ware's model of speedup for 4, 8, and 18 processors.

To estimate Sp for PIC in the master/slave environment, let

T

Total Operation Count

C,N"logN + Cg,N‘ + C,KNZ
* * +

Poisson Mesh Particle
Solve Transmission '"Push"



and

o= pcrticle push operations
- T

1
C)logN + Cep
CsK

1 1if C,logN + Cop < CsX .,

i

where K = average number of particles/cell.

It we further assume that each of processors has performance com-
parable to the Cray-1, then

C, = 0.300 us/cell,
Ce = 0.075 u s/cell, and

Ca = 5.500 u s/particle.

Assume
N=K=128;
then
P «a Sp
4 99 ~3.8
B8 99 ~75

i6 .89 ~13.9

COMPUTATIONAL EXPERIMENTS

Because of the p® behavior in the slope of S, as a approaches 1,
the only way to be sure of how well a parallel implementation will w.rk
is to implement {t and measure speedur experimentally. Iln other
words, small perturbations in seemingly irsignificant areas of the
computation may, in fact, lead to large perturbations in overall per-
formance. Thus, to confirm our aralysis, we have implemented vari-
ants of the master/slave configuration of PIC on two parallel process-
ing devices—the UNIVAC 1100/84 and the Denelc~r Heterogeneous Ele-
ment Processor (HEP).



The UNIVAC 1100/84 is a commercially available system whose
typical use is to process four independent job streams. With the help
of UNIVAC personnel, and a bit of ingenuity, Los Alamos personnel
have devised ways to control all four processors in this machine and
use them to process a single PIC mode] [5]. Speedup measurements
as a function of p are given in Table 1. These results compare favor-
ably with our estimates and reflect the fact that indeed we have suc-
cessfully paralle! processed a large percentage of the total computa-
tion.

Equipment 2 _ Speedup
UNIVAC 1100/84 3 1.80
3 243
4 3.04
Deneleor HEP 6.0

Recently, a PIC model was implemented on HEP. HEP is designed
to do task switching on each instruction. The architecture of a single
processor is reminiscent of the CDC 8000 series, PPU system. There is
an eight-slot barrel with a task assigned to each of the slots, and the
processor exarines the slots sequentially, executing a single instruc-
tion from eight concurrent processes. Most instructions in the
machine require about eight cycles for execution. Thus, loosely
speaking, a single processor 1s analogous to an eight processor paral-
lel system. Los Alamos personnel have implemented a PIC model on
HEP, first as a single-process and then as a multiple-process calcula-
tion. The ratio of the associated execution time is given in Teble 1.
Again reflectirg the fact that a large percentage of the total computa-
tion is being done in parallel.

CONCLUSION

High-performance computer systems involving several vector
processors that can operate in parallel have already been announced
[38]. Our analysis and experiments indicate that these systems can be
used to parallel process particle-in-cell calculations whose current
computational demands exceed the ability of a single processor. Real-
izing the highest levels of performance of a parallel system requires
that a large percentage of the total computation be done in parallel.
In the case of particle-in-cell models we were able to realize such per-
formance by taking software modules written for a uniprocessor and



combining them with appropriate communication and data replica-
tion. Thus, parallel implementation of "cff the shelf” particle-in-cell
models is likely to be easier than their implementation on a vector
processor.

ACKNOY _.EDGEMENTS

1 am endebted to Ingrid Bucher, Paul Frederickson, Robert Hiro-

moto, and Jim Moore, all of the Los Alamos National Laboratory, for
the experimental results discussed herein.

(1]

(2]

(3]
4]

(5]

(6]

[7]

(8]
(e]

REFERENCES

D. Boley 'Vectorization of Some Block Relaxation Techniques,
Some Numerical Experiments,” Proceedings of the 1978 LASL

.Wotkshop on Vector and Parallel Processors. Los Alamos National

Laboratory report LA-7491-C (1978).

B. L. Buzbee, "A Fast Poisson Solver Amenable to Paralle! Imple-
mentation.” JEEE Trans. en Computers, Vol. C-22, No. 8 pp. 793-
796 (August 1973).

Datamation, "Seymour Leaves Cray," pp. 52-59 (January 1980).

D. Forslund, "Large Scale Simulation Requirements for Inertial
Fusion,” presented at the conference on High Speed Computing,
leneden Beach, Oregon, 1981.

R. Hiromoto, "Results of Parallel Processing a Large Scientific
Problem on a Commercially Available Multiple-Processor Com-
puter System,” Los Alamos National Laboratory report LA-UR-82-
B62 (1982).

M. Minsky, "Form and Content in Computer Science,” ACM Lec-
ture, JACM 17, pp. 197-215, 1970.

R. L. Morse, C. W. Nielson, "One-, 7 »-, and Three-Dimensanal
Numerical Simulation of Two Beam Plasmas,"” Phys. Rev. Letters
23, 1087 (1969).

W. Ware, "The Ultimate Computer,” JEEE Spect, pp. U9-81 (March,
1873).

W. J. Worlton, "A Philosophy of Supercomputing.”" Computerworld,
(October 1881).



