
v ‘LA4JR -83-413 (’L-f4- - s!207/07 --]

LA- UR--63-4i3

DE’83 007558

TITLE TWOPARALLELFORMULATIONSOF PARTICLE-IN-CELL MOI’ELS

AUTHOR(SI B. L. Buzbee

SUBMITTED TO

Br ●oemonca of ths mc*

Puruue Workshop on Algorithmically-Specialized Computer Organizations
(WACO), Furdue University, West Lafayette, Indiana
September 27 - October 1, 1982

To be published by Academic Press

DISCLAIMER

This rqmri was prepared man account of work qnrnsored by an a,gencyof the United States

Government, Neilher the Unilcd States Government noranyagcncy ihereof, norany of their

employca, makes .my warranty, express or implied, or assumes any legal liability or ruponsi-

bility for th accuracy, mmpletenaa, or usefuhreas of any information, apparatus. product, or

pr~disclosod. or represmm that its use would not infringe privately owned rights. Refer.

cncc herein toanyspesific commercial product, prums. orservicc by Irude name, tradcmar~

manufacturer, or otherwise does nol neccsaarily constitute or imply its endorsement, mom.

mendation, or fnvoring by the United Stales Ckwernment or my ngency thereof. The views

anu opirtions of aulhors expressed herein do not nccesmrily state or reflect thoat of the

United Statss Government or any agency hereof.

tipublrntir re~nlsastnctmou S ~~rn~nl~lnsano~mclualm r~ally.wn lmwlopubltsh wrop, oduco

A.-i’

lbNkmilcD~
~:Q~fll:;J,i; ; :, ;,::., :...,:: “ ;; :,. - ,!”IH

Los Alamos National Laboratory
Los Alamos,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

TWO PARALLELFORMULATIONSOF PARTICLE-IN<ELL

9

Computing Division
Alamos, New Mexico

MODI!XS

B, L, 13uzbeel

Los Alamos National Laboratory Los

Particle-in-cell (PIC) models are widely used in fusion
studtes associated with energy research. They are also used
“in certain fluid dynamical studies. Parallel computation is
relevemt to them because

1. PIC models are not amenable to a lot of vectorization--
about 50Z of the tottil computation can be vectorlzed in
the average model:

2. the volume of datla processed by PIC models typically
necessitates use of secondary storage with an attendant
requirement for high-speed 1/0; and

3. PIC models exist today whose implementation requires a
computer 10 to 100 times faster than the Cray-1.

This paper discusses parallel formu.latlon of PIC models for
master) slave architectures and ring architectures. Because
interprocessor communication can be a decisile factor in
the overall efficiency of a parallel system, we show h~w to
divide these models into la~ ge granules that can be executed
in paraUel with relatively little need for communication. We
also report measurements of speed-up obtained from experi-
ments on the UNIVAC 1100/04 and the Denelcor HE?.

‘This work was supported in part by the Applied Mathemati-
cal Sciences Program, Office of Basic Ener y Sciences of

+the US De artment of Energy and the Air orce Office of
5Scientlflc esearch,

PARTICLE-IN-CELL MODELS

Wediscuss particle-in-cell models (PIC) inthecnntext of studying
the behavior of plasmas in the presence of force fields [7]. We assume
a two-dimeu~ional re ion that has been discretized with N cells per

#side for a total of IV cells in the region. The discretization is illus-
trated in Fig. 1. The approach is to randomly distribute particles over

‘ the two-dimensional region and then study theii- movement as a func-
tion of time and fcrces acting on them. Typically, the average number
of particles per cell will be 0(.N’) and particle information in~ludes
position, velocity, charge, etc. Thus, the total particle information will
be C7(lk’g). In its simplest form, the plasma simulation proceeds as fol-
lows.

1. “Integrate” over particles to obtain a charge distribution at cell-
centers (a cell center is denoted by ‘X’ in Fig. 1),

2. Soive a Poisson equation for the potc atial at cell-centers,

3. Interpolate the potential onto particles for a small interval of
time At; i.e., apply force to the particles for a small time interval,
recomputing tkiii positions, velocities, etc.

FIGURE 1. Relationship of region, mesh, and particles,

Siep 2 requires 0(/42) operations. Steps 1 and 0 require 0(.?4s)
tions anti thus domi.late the overall computational Drocess,

opera-
Gen-

erally, the particle Imform.ation is stored in ~ Iurge arr~y and there 1s
no correlation between particle posiiion in tha~ array- and particle
position in the rectangle. Thus, Step 1 is a many-to-one mapping of
random elements from the list onto a cell center, Conversely, Step 3
is a one-to-many mapping of information at the cell center onto ran-

dom elements of the particle list. These mappings from and to ran- !
dom elements in a list general!.y preclude efficient vector implementa-
tion. h gensral, only about 50% of the total operations in a PIC model
are subject to efficient vector implementation. Of course, to achieve
the highest level of performance from a vector processor, one needs
to vectorize 90% or more of the total work in a computation [9].
Further, some PIC simulations used within the fusion energy research
community require a computer that is about 100 times faster than the

4 Cray-1 to successf-ully model phenomena of interest [4]. This need for
higher performance combined with difllculties in implementing PIC
efficiently on vector processors mctivates our interest in asynchro-
nous parallel (h IIMD)formulations of them.

PIC ON A MASTER/SLAVE CONF1GURATION

Assume that we have an MIMD processor with a master/slave con-
trol schema as Illustrated In Fig. 2. In practice a single processor may
execute the function of both the master and one of the slaves, but for
purposes of d.tscussion we assume that they are distinct. The key to
achieving efficient parallel implementation of PIC on a master/slave
configuration 1s to divide the particles equally among the slaves and to
keep all particle-related information within the slaves. Assuming +.hat
the master has the total charge distribution in lts memory, the com-
putatkmai procedure is as follows,

Step 2B.

Step 3.

Step 1A,

Step lB,

Step 2A,

Master solves potential equation and broadcasts potential
(~(~z)) to each slave.

Each slave applies the potential for
At (moves its particles),

Each slave integrates over its partioles to
obtain their contribution
to total charge distribution at cell centers,

Each slave shipB lts charge distribution
(~(~e)) to the master,

Master sums charge distribution from slaves.

&’,[’b,
Master

Slave S I we Slave S I we

FIGURE 2, Master/slave communication geometry for four processors.

Note that in this apprf~ach the “particle pushing” (O(lVs)) portion of
t Le computation is sh d equally among the slaves. The amount of
computation dime by th master is O(/VE) and the amount of interpro-
cessor communication i: 9(fVa). Further, the potential calculation is
amenable to parallel imp cementation [2], but b~cause the particle
pushing dominates the overall ca!culatlon, we will not concern our-
selves with parallel processixu the potential calculation.

The key to etficient parallel implementation of PIC on a

t master/slave configuration lies in dividing particles equally among the
s’aves irrespective o? part~cle position in the region, This was not our
first apprnach in attempting to parallel process PIC. Rather, our lui-
tied approachs considered dividing the region into subregions and hav-
tng a processor assigned to particles in each of the subregions, Such
an approach produces a number of complications. For example, at
the end of each time step some particles wl.11tigrate to its neighbor-
ing subregion. Thus, there must be an “exchange” of particles
between processors at each time step. This exchange will necessitate
garbage coUection within the particle list of a given processor and,
should the particles eventually concentrate in a small region, a single
processor will do most of the computation while the others sit idle. To
rectify such a situation, the region must be resubdlvided, particles
reallocated, etc. The computational cost of such processes is
significant.

A similar phenomenon seems to occur i-n the parallel solution of
elllptlc equations. Again, the natural approach 1s to subdivide the
region and to assign a processor to a subregion, It Is extremely
difficult to do this in a fashion that will yield a net gain in computa-
tional efficiency [5]. The point is that eflicient Implementation
involves techniques that are somewhat counterlntultive.

PARALLEL PROCESSING PIC ON A RING CONFIGURATIUN

PIC can also be efficiently implemented on a MIMDmachine with a
rhg control tcommunication organization, For purposes of discussion
we assume a four-element ring with communtcatlon from left to right
as Indtcatod in Fig, 3, The key to success in this environment is again
to dlvlde particles equally among the processors but, In addition, have
processors do a significant amount of redundant computation. Assum-
inz that each processor has the total charge distribution at cell
ce-nters in lts memory, the computational proc~ss is as

Step 2. Each processor solves the potential equation.
Step 3! Each processor moves its particles.
Step 1A. Each processor integrates over it~ particles

contribution to the total charge distribution.

follows,

to obtain their

step lE, For 1 = 1, 2, 3, 4: pass partial charge distribuUon to neigh-
bor; addtheone received to’’accumulating charge distrlbu-
tion.”

PI

P2 I P4

P3

HGURE 3. A four-element ring configuration.

ESTIMATING PERFORMANCE OF THE MASTER/SIAVE IMPLEMENTATION

The key issue in parallel processing is speedup as a function of
the number of processors used. We deilne speedup as

Sp= eze cu.tim time wing one processor
ezecution time =in~ p processors

To estimate performance of the master/slave formulation, we use a
model of p~rallel computation introduced by Ware [6]. We normalize
the execution time using one procemor to unity.

Let
p = number of processors,

and
u = percent of parallel processable work,

Assume at any instant that either all p processors are operating or
only one processor is operating; then

Sp 1

(l-a)+;

Also

‘Sp lam, =p~-p ,
da

This model is unrealistic because the basic assumption will sel-
dom, U ever, be realized in practice. However. with a litde averaging,
a lot of reality can be mapped onto this model. Note the behavior of
the derivative of S’ in the neighborhood of a = 1. This rapid and “last
minute” growth as a function of a is displayed for a +processbr, an 8-
processor, and a 16-processor system in F!g. 4. Thus, successful reali-
zation of the potential performance of a parallel processor necessi-
tates parallel formulation of at least 90% of the total computation.

t Therein lies the challenge in research in parallel processing. In 1970
Minsky [6] conjecture d that average speedup in parallel processing
would go llke log,p. Indeed, if only 60% or 70% of the total computation
is implemented in parallel, then he will be correct. However, for the
master/slave im lamentation of PIC, recall that we are parallel pro-

8cessing the O(IV) component of the calculation and sequentially pro-
cessing the 0(lV2) component. Thus, we have the possibility of achiev-
ing relatively high efficiency, at least on systems with a few proces-

16P

Is
14
13
U
11
10
9
8
7
6
5
4

3 -

16 PROCESSORS

8 PROCESSORS

4 PROCESSORS

lo-
1

FIGURE 4, Ware’s model of speedup for 4, 8, and I@processors.

To estimate SP for PIC in the master/slave environment, let

T ❑ Total Qzx?ratian Cbunt

❑ c,/v~logN + C*w + c@v2
? T

Poisson Me~h Particle
Solve Transmission “Push”

and

a=

=

1
g

where K =

pcrticle pus h operations
T

C1lO:N + c#
i+

C9K

1 u cJogN + Cgp << cgK ,

average number of particles/cell.

If we further assume that each of processors
parable to the Cray-1, then

c, = 0.300 # s/cell,

Cg = 0.075p s/cell, and

has performance com-

Cg = 5.500p s/particle,

Assume

N= K= 128;

then

pa Sp

4 ,99 -3.8
8 .x) -7.5

16 .99 -13.9

COMPUTATIONALEXPERIMENTS

Because of the pe behavior in the slope of 5P as a approaches 1,
the only way to be sure of how well a parallel implementation wtll wf.rk
is to implement it and measure speedup experimentally. In other
words, small perturbations in seemingly lr~ignificant. areas of the
computation may, in fact, lead to large perturbations in overall per-
formarlce. Thus, to confirm our analysis, we have implemented vari-
ants of the master/slave conllguratlon of PIC on two parallel process-
ing devices-the UNIVAC 1100/64 and the Denelc_r Heterogeneous Ele-
ment P?ocessor (HEP).

The UNIVAC 1100/84 is a commercially available system whose
typical use is to process four lndependen: job streams, With the help
of L7NIVACpersonnel, and a bit of tngenulty, Los Alamos personnel
have devised ways to control all four processors in this machine and
use them to prosess a single PIC model [5]. Speedup measurements
as a function of p are given in Table 1, These results compare favor-
ably Wth our estimates and reflect the fact that indeed we have suc-
cessfully paralle! processed a large percentage of the total computa-

‘ tion.

TABLE 1. SPEEDLT MEASUREMENTS FOR A MASTER/SLAkZ MPLEMENTATION

Equipmrnl P Speedup
L..NAC 11~/61 2 l.m

a 2.43
4 3.(M

Recently, a PIC model was implemented on HEP. HEP is designed
to do task switching on each instruction, The architecture of a single
processor is reminiscent of the CDC 6000 series, PPU system. There is
an eight-slot barrel with a task assigned to each of the slots, and the
processor examines the slots sequentially, executing a single instruc-
tion from eight concurrent processes. Most instructions in the
machine require about eight cycles for execution, ‘I%US, loosely
speaking, a single processor IS analogous to an eight processor paral-
lel system. Los Alamos personnel have implemented a PIC model on
HEP, first as a single-process and then as a multiple-process calcula-
tion, The ratio of the associated execution time is given in T~.ble I,
Again refiecti~ the fact that a large percentage of the total computa-
tion is being done in parallel,

CONCLUSION

High-performance computer systems involving several vector
processors that can operate in parallel have already been announced
[3]. our analysis and experiments indicate that these systems can be
used to parallel process particle-in-cell calculations whose current
computational demands exceed the ability of a single processor, Real-
izing the highest levels of performance of a parallel system requires
that a large percentage of the total computation be done in parallel,
In the case of particle-in-cell model~ we were able to realize such per-
formance by taking software modules written for a uniprocessor and

combining them with appropriate commmication and data replica-
tion. Thus, parallel implementation of “cdl the shelf” particle-in-cell
models is likely to be easier than their implementation on a vector
processor.

ACKNOY.EDGEMENTS

6

I
moto,

am endebted to lngrid Bucher, Paul Fredrickson, Robert Hiro-
and Jim Moore, all of the Los Alamos National Laboratory, for

the

[11

[2]

[3]

[4]

[5]

[6]

[7]

[B]

[9]

experimental results discussed herein.

REFERENCES

D. Boley ‘Wectorization of Some Block Relaxation Techniques,
Some Numerical Experiments,” Proceedings of the 19?8 LASL
Workshop on Vector and Parallel Processors. Los Alamos National
Laboratory report LA-’?49 I-C (1978).

B. L. Buzbee, “A Fast Poisson Solver Amenable to Parallel Imple-
mentation.” IJ%5’I?fians. on Compdms, Vol. C-22, No. 8 pp. 793-
796 (A~ust 1973).

Datamation, “Seymour Leaves Cray,” pp. 52-59 (January 1960).

D. Forslu.nd, “Large Scale Simulation Requirements for Inertial
Fusion,” presented at the conference on High Speed Computing,
Gleneden Beach, Oregon, 1961.

R. Hiromoto, “Results of Parallel Processing a Large Scientific
Problem on a Commercially Available Multiple-Processor Com-
puter System,” Los Alamos National Laboratory report l.A-UR-82-
862 (1982).

M. Minsky, “Form and Content in Computer Science,’! ACM Lec-
ture, JACM 17, pp. 197-215, 1970.

R. L. Morse, C. W. Nielson, “One-, T ~-, and Three-Dimensional
Numerical Simulation of Two Beam Plasmas,” fiys. Rev, Letters
23, 10B7 (1969).

W. Ware, “The Ultimate Computer,” IEEE S’ect, pp. J9-91 (March,
1973).

W. J. Worlton, “A Philosophy of Supercomputing,” Computerwortd,
(October 1961).

