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ABSTRACT

The character of polarization correlations in six-vertex
systems will be discussed. Making use of a connection between the
1-d Heisenberg-Ising chain and the six-vertex problem, we draw upon
existing results for the chain correlations to obtain information
about long-wavelength polarization correlations in six-vertex models.
These results are compared with a neutron scattering study of 2-d
polarization correlations in the layered compound copper formate
tetrahydrate. Because the six-vertex model is equivalent to a
particular roughening model, these results also explicitly predict
the critical behavior of that roughening model just above its
roughening temperature. The results correspond to the predictions
of Kosterlitz and Thouless for the phase transition in the 2-d
Coulomb gas.

^Research has been performed under Contract EY-76-C-O2-OO16 with the Division
of Basic Energy Sciences, U.S. Department of Energy.



Although quite a bit is known about the statistical mechanics
of 2-d six-vertex systems [1], much remains to be said about the
fluctuations in these models. Here, we will present a short dis-
cussion of those aspects of the fluctuations that seem particularly
germane to the subject of this particular conference. In particu-
lar, we will discuss analytic expressions for the long wavelength
polarization correlation functions for these models which are asymp-
totically exact at large distance [2]. We will apply these results
to neutron scattering experiments on a quasi-2-d hydrogen-bonded
system, copper formate tetrahydrate (CFT) [3]. We will also show
the relevance of these results to models of the solid-on-solid in-
terfacial roughening transformation [4], and comment on the rela-
tion of Kosterlitz-Thouless theory [5] to six-vertex systems.

The models under discussion have been introduced by Dr. Weeks
in his lectures at this conference [4]. The allowed vertex con-
figurations are prescribed by the ice rules. The vertex weighting
scheme is shown in Figure 1. (In adopting these weights, we are
tacitly ruling out applied fields.) If vertices 1 and 2 are favored
energetically, the ground state is ferroelectric along ± y; if 3 and
4 are favored, the ground state is ferroelectric along ± x; if 5 and
6 are favored, the ground state is antiferroelectric. The parameter
A, defined in Fig. 1, is a measure of how close the system is to
being ferro- or antiferroelectric. n, also defined in Fig. 1,
measures the anisotropy in the polar configurations. Baxter [5]
showed that singularities in the free energy corresponding to ferro-
electric and antiferroelectric transformations occur at A • +1 and
-1, respectively. The relation between the three phases (antiferro-
electric, disordered, and ferroelectric) is summarized in Fig. 1.
For the weighting scheme we employ, no single physical system dis-
plays the full range of behavior shown in Fig. 1; the point A * 1/2
corresponds to T • °°. But the polarization correlations we discuss
are a property of the entire disordered regime, and it is natural to
discuss them as a function of A rather than T. We will also have
occasion to mention the so-called FSOS roughening model [4] and the
1-d Heisenberg-Ising chain; certain relevant attributes which arise
from equivalences within these models are summarized in Fig. 1.

Our primary interest is in long-wavelength polarization fluctu-
ations. For this purpose, it is convenient to define a coarse-
grained polarization. Consider the correlation function between
two parallel arrows for the isotropic case, a • b. Introduce the
variable a* (m,n) to denote the sense of the arrow at site (m,n)
(the subscript j • 1,2 denotes the arrow direction — right or left
sloping in Fig. 1). For A • 0, Sutherland used an equivalence to a
free fermion system to show that for large r
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Figure 1.

where m,n are integer coordinates and r • /m +n . We see that
there is an antiferroelectric contribution which oscillates rapidly,
and a ferroelectric component which does not. We therefore form
the "coarse-grained" ferroelectric polarization

Pj(r) • a.(m,n) + a.(m+l,n).

It is easy to see that the leading contribution to <Pj(O)Pj(r)> is
the smooth contribution to <o^(0)aj(m,n)> ; the other contributions
cancel, to leading order in 1/r. In fact, making use of a connec-
tion between this model and nhe dimer model [6], we have shown [2]
that leading contributions t.. the coarse-grained polarization cor-
relations at A • 0 have the form

<Py(0)Py(r)> -A
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vhere A * 2/ir . These quantities also depend on n» for simplicity*
we have temporarily set n • 1. In these expressions and In the
following, the symbol * means "is asymptotically equal to in the
limit of large r."

The simple fora of these functions reflects ea underlying
simplicity in the system. The slat-vertex condition (Fig. 1) is the
condition that polarization be locally "divergenceless" at each
lattice site. This condition is largely responsible for the fora
of Eq. (2-4). The ice rules (Fig. 1) state that the polarization ±a
"divergenceless" at each lattice site, which in turn means that
?(r) is a solenoidal vector field, V-?C?) - 0. This guarantees
that ?(r) is the curl of a mathematically simpler vector field,
n*(r). Fortunately, there Is a physical as well as a mathematical
motivation for introducing h(r). We know from the work of van
Beijeren [3] that 1i(r) is simply related *to the height variable of
a surface roughening model. _'

Dr Weeks' lecture in this volume [4j discusses the relation
of a particular roughening model (which .\e denotes FSOS) with the
six-vertex model which we are discussing? In particular. Fig. 3 of
his third lecture shows on a discrete lattice how to associate a
spin variable with the local gradient of the column height h. With
the appropriate choice or coordinate syitram, this is just

o^fcn.n) - -fh(m,n + §) - h(m,n - |>] (5)

o2(m,n) - [h(m + ̂ ,n) - h(m - |,n)'j (6)

Thus, for example (Fig. 2a), an ordered polar 3ix-vertex configura-
tion pointing along (say) y, is equivalent to a surface with a mono-
tonically increasing Jtieight, 3h/3x - coast ant. The local polariza-
tion conservation 7«P • 0 completely suppresses longitudinal polari-
zation fluctuations, which in the language of the height variable
translate Into a discontinuous "tear" on the crystal surface, as
shown in Fig. 2b. Such configurations correspond to unacceptably
large step sizes In the roughening modal.

It is clear from jche foregoing paragraph that the proper choice
of vector potential n(r) - h(r)z, so that

Then, i f we define a height-height correlation function

<h(r)h(rQ)> ^ -



Fig. 2a. The completely
polarized state of the six-
vertex lattice corresponds
to a monotonically sloping
surface. (Compare vertex 3
of Fig. 3 of Weeks' third
lecture.) The numbers give
the heights of the lattice
sites above which they
appear.
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Fig. 2b. A longitudinal
polarization fluctuation
(violating 7-P* * 0) corres-
ponds to a tear in the
surface (violating the
step size constraint in
the roughening model).

Eqs. (2-4) can be restated very^concisely in terms of the height-
height correlation function, V(T-TQ).

(8)
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Thus far, all of our results have been restricted to 4 » 0,
where the problem is especially simple. However, we can now proceed
to extend the results throughout the regime - 1<A<1, by making con-
tact with previous work on the 1-d Heisenberg-Ising chain. McCoy
and Wu [9] showed that the transfer matrix of the six-vertex problem



commutes with the Heisenberg-Ising Hamlltonian, shown in Fig. 1.
Therefore, there is a connection between the correlation functions
in the two problems. Recent work by Luther and Peschel [10] and
Fogedby [11] gives the leading asymptotic contribution to
<Sz(0,0)Sz(x,t»0)>, which (by virtue of the above-mentioned commu-
tation relation) has the same general form as <0j(O,Q)Oj(m,n»O)>
(equation 1), including a prefactor A which is a known function of
A. This result effectively prescribes the coarse-grained correlation
function along one axis. Since V-? * 0, there is still a generating
vector potential which can be analytically continued from that axis
to cover the entire x-y plane. Thus we arrive at the following
result, valid for - 1<A<1.

f(r) -v -Ain r + constant (11)

2 -1
where A - (ir 9) (Luther and Peschel, [10], Fogedby [11])

and e " 7 3^n'' * (Johnson, Krinsky and McCoy [12])

The formulation of Che correlation function ?(r) given in
Eq. (11), together with Eq. (8-10) (which generate the asymptotic
polarization correlation functions), constitute the principal re-
sults of this paper. We now turn to a discussion of their signifi-
cance in two different areas.

Since Chui and Weeks [13] have shown that the discrete Gaussian
roughening model maps onto the 2-d Coulomb gas problem, and since
van Beijeren [8] has explicitly demonstrated that a similar rougen-
ing model maps exactly onto the F model, it is natural to suppose
(along with Shugard et al. [14] and others [4]),that there is a
close connection between the critical behavior of the Kosterlitz-
Thouless transition and the critical behavior of the six-vertex tran-
sition at A » -1. In particular, the prefactor K,, appearing [14] in

G(r) - 2(<h(O)2>- < h(0)h(r)>) % ^ 2 — In r + c (12)

is to be compared with A(A) appearing in Eq. (11). If we can iden-
tify K Ĵ T) with 2TTA(A), we can expand A(A) to obtain

K (T -•• T_+) - § + (nonuniversal constant). (T-Tw)
1/2+.. (13)09 R IT R

2
Both the value Km(Tn) a ^ and the leading square root behavior are
predicted by Kosterlitz-Thouless theory for the unbinding of vor-
tices. Thus, the present results for ¥ explicitly support the idea
that the six-vertex model (together with its various equivalents)
is in the same universality class as the 2-d Coulomb gas (together
with its equivalents).



Now we turn to polarization fluctuations in CFT. A full de-
scription of this work is contained in Refs. [2] and [3]. Crystals
of CFT contain 2-d layers of water molecules interleaved with 2-d
layers of copper formate. Above T • T o • 248 K (in the deuterated
compound), there is icelike disorder in the hydrogen-bond network.
Below To, the layers become ferroelectric, the direction of polari-
zation alternating between +b and -b from one layer to the next.
The in-plane longitudinal momentum coordinate is K; the transverse
momentum coordinate is H. Figure 3 shows some results of a diffuse
neutron scattering study of the long-wavelength polarization corre-
lations. ("Polarization" here means that of the hydrogen atom
positions, measured from the centers of their respective bonds.)
The quantity plotted is the measured intensity, !(($).

(14)

($) is a geometrical structure factor, which is a rather slow-
ly varying function of ($ • <» + "?t where 5 is a reciprocal lattice

INTENSITY

K

Fig. 3. Shown here are results of a neutron scattering study of
polarization fluctuations in the 2-d hydrogen-bond network of copper
formate tetrahydrate (Ref. [3]). The origin of the indicated co-
ordinate system corresponds to a reduced intralayer momentum trans-
fer q of zero. Data are shown for essentially an entire (intralayer)
Brillouin zone.



vector. Syy(q) is the Fourier transform of <Py(0)Py(r)>, and the
bar denotes an average over instrumental resolution. The important
feature in this plot is the notch at q * 0. Typically Cfor example
in Ising-type systems), pair correlations near To give rise to
scattering which peaks at q =• 0; as T c is approached, the diffuse
peak associated with order parameter fluctuations is seen to grow.
Here, instead of peaking, the intensity dips to near zero, in
spite of the incipient transition to an ordered state in which
there is a Bragg peak at q » 0. (In calling the origin of Fig. 3
q • 0, we have suppressed the L momentum coordinate, upon which the
scattering is only weakly dependent. This is the expected quasi-
2-d behavior. Hcwever, it is important to note that the data of
Fig. 3 lie in a plane in which L is half-integral, in which the
antiferroelectric Bragg peaks occur below T ,)

In the CFT problem,n 5* 1, and the hitherto suppressed n de-
pendence of the correlations must be taken into account. It is
shown in Ref. [2] that this can be done by replacing r in Eq. (11)
with

p(r) - /x2 + X2y2 (15)

For & =• 0, we have X = n- Polarization correlations are still given
by Eqs. (8-10)_. The Fourier transform of <Py(0)Py(r)> is given by

2
at small q. (16)S w(q)

This function is plotted in Fig. 4 in units of irA, with X chosen to
correspond roughly to the experimental observations. Note that
there is a strong formal resemblance between the singularity in this
function and that occurring in dipolar-coupled systems (see Dr.
Als-Nielsen's notes on LiTbF4). However, we stress that the calcu-
lated effect is due entirely to six-vertex ineractions. The absence
of longitudinal fluctuations (Syy(rh,k*0)*0) is a direct consequence
of the ice rule restrictions, 7>p • 0. In real scattering experi-
ments, the cross section one observes is somewhat smeared by finite
instrumental resolution. , This effect is partially taken into account
in Fig. 5. There is a strong resemblance between Figs. 3 and 5;
thus, the small-q regime (the notch) of Fig. 3 is evidence that the
pair correlations in CFT are qualitatively obeying Eq. (2). It
would be of some interest to perform further measurements with much
higher resolution to test Eq. (8) quantitatively.

In summary, we see that in the disordered phase of a particular
class of six-vertex systems, long-wavelength polarization correla-
tions are governed by a logarithmic (2d-Coulomb-like) potential.
The scattering cross section of hydrogen-bonded systems of this
type depends on particular spatial derivatives of this potential;



Fig. 4. This is a contour plot of SyyCq) (see Eq. (16)). The
contours are at integer multiples of Arr, for the case X = A . The
arrow indicates a longitudinal resolution width (see Fig. 5).

X= .250 = .0333 = .125 CT= .0333

These are plots of I(Q) calculated from Eq. (14). 5yy
given by Eq. (16), with A held constant. F(Q) corresponding to
the data shown in Fig. 3 is included, a is the halfwidth along k
of a Gaussian instrumental resolution function (the resolution along
h is assumed to be perfect), a, h, and k are given in reciprocal
lattice units.



the observed cross section from such correlations is quite distinc- 10
tive. Given certain rigorous connections between the Heisenberg-
Ising problem and the six-vertex problem, we can draw upon existing
results to obtain new information about the six-vertex problem away
from the free fermion limit, £ » 0. In particular, we can infer
the temperature dependence of the prefactor of the logarithmic
potential. In addition to making an explicit statement about a
particular roughening model, the results correspond gratifyingly to
predictions of Kbsterlitz-Thouless theory for the vortex-unbinding
transformation, thereby reinforcing the idea that roughening models
are in the same universality class.
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