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Abstract. Physical experiments often give rise to integral equations of the first kind. If the
detection equipment can be adjusted that fact can lead to a kernel function that depends on one
or more parameters. We address ttle general queslion of how to choose those parameters in such a
way as to make the integral operator ,as well-condilioned as possible, thus optimizing the experiment.
Attention is focused on the condition number of the discretized kernel aud on its principal singular
vector. Several examples are given and some preliminary general results are obtained.

1. Introduction. In many areas of diagnostic pttysics linear integral equations
of the first kind arise:

b
(1.1) :9(x) = l,'(a:,y)f(y)dy

In (1.1) h'(a:,y) represents the response of a detector (or a set of detectors.) 9 is

l lie measured data (usually containing experimental error) and f is the "signal" wllich
is to be found.

Often there are experimental techniques which make possible the construction of

'"families" of detectors, For instance, different foil thicknesses may be employed, dif-

ferent mirror angles may be used, chemical compositions may be varied, specific diodes
mav be chosen, etc. Thus k'(z,y) while it must, in order to perform the experiment,

have certain properties, can depend on a variety of parameters. In practice, these pa-
rameters are often chosen arbitrarily, or by some "time-honored rules-of-thunlb." Our

goal here is to try to devise matllematical metlmds b.v which to select such parameters
iii order to make the experiment as etficient as possible.

In many practical situations a prediction l_(y) of llte signal F(y) is availadfle.
This estimate is based on the basic physics involved, past experiences, and often, the

skill and insight of the experimenter, lt is reasonable to use tllis predictior, in making
tlle choice of detector parameters.

I Computer Research and Applications Group, Los Alamos National Laboratory, Los Alamos, New
Mexico.



Usually (1.1) is solved approximately by replacing it with a matrix equation

(1.2) g = KF

obtained by some discretation scheme []. In (1.2) K may be M× .V, with F an N
vector and g an M vector. We shall concentrate on (1.2).

A general rule is that the condition number C of K should be as small as possil)le.

This minimizes the effect of experimental errors in g. Thus _Lvaluable parameter
should be selected so as to minimize C.

2. A Practical Example. Consider the kernel

(a(z)) 1/20 , 0 <_u_ 7(_)- \_ ,

(2.3) K(x,y) 1/2

, . _ _<,j _<-:(x) ,

5(x)exp(-,l(x)(y- 7(x)) , 7(x) < y < 1 .

IIere each of the functions (_,fl,7,5, u is constant over a given interval xi <_x < xi+l,
i = 1,2,3,4,5. Thus

a(z)=a; , x;<z<z;+l ,

etc. The o_i, /3i, 7i, _i, r/i constitute the parameter set, subject to many pltysical
constraints. We thus wish to minimize the condition number of the associated matrix

K by varying the parameter set.

The kernel h'(z,y)in (2.1) arises in certain x-ra.v spectroscopy experiments. Ob-

viously, the problem of minimizing C is a fbrmi(table one. Itowever, it may be argued

that the analysis may be more easily carried out mathematically lhan by bl_ilding

many pieces of equipment. Such a study is undertaken in [ ]. It is fbund that often
these experiments are designed irt a fairly optimal way, indicating tl,at many years of
experience have led to reasonable "rules of thumb."

3. The Singular Value Decomposition Approach. It is known [] tllat K
may be written as

(3.4) K -- UEV T

where U and V are unitary matrices and E is a diagonal matrix. Eqllation (3.1) is
lhe so called singular value decomposition of K. The columns u i al,(t v i of U aiId V

are the singular vectors of K and the elements a; of E are its sillgular values. If (1.2)
has a solution F then that solution is given by

(3.5) F E M g' ui= i=l --Vi



where ( , ) is tile usual scalar product.

Equation (3.2) immediately indicates problems which can arise when g co_ltains

experimental error. If any of the ai are small (it is customary to order them bv

decreasing magnitude) the term

(3.6) (g, ul)/a i

is "mainly" error, and F will be seriously in error. (Note that if ai is "sznall" the con-

dition number C will be large.) A common way of partirllly overcoming the dimcultv

is to truncate the series in (3.2) and simply ignore these troublesome ai wflues.

Equation (3.2) also suggests how use of the predictedsignal fp(y)_now the pre-

dicted vector Fp_can be made. Observe that because Fp represents a signal it is

non-negative. Fgr_0nvenience we suppose ]]rp]] = 1. If vi = rp, and if Ep is a
good prediction ¢_chan)the terms in (3.2) with i > 1 _hould contribute little to tlm sum.

Thus the series tri_ncation will be more valid. Our goal, then, is to trs' t,o adj_lst K,

by judicious choice of the detector parameters, so as to obtain vi = Fp.

4. Adjustment of the "Magnitude" of K. In practice it freqll(,iltly hal)pens

that the "magnitude" or "height" of the detector is the parameter most easily adjusted.

In the notation of (1.1) we replace K(z,y) by ¢(z)K(x,y) where ¢ is non-negative

but otherwise (reasonably) arbitrary. In the matrix formulation we replace K by CK

where ¢ is a non-negative diagonal matrix. K is here assumed N × N.

We now ask that Fp be the first right singular vector of I( = phiK. It can be

shown that [] in general

(4.7) KTKSvi = criv i .

Thus we desire

(4.8) I_TIS(Fp = 5iF p .

It will soon become obvious that we can select &l = 1 by adjusting ¢. We rewrite

(4.2):

(.1.9) (¢K)TCKFp = KT¢2KFp = Fp .

Notice that KFp is a known vector \V. Thus

(.1.10) KTs = Fp ,

wllere

(,1.11) S = ¢2W .

Equation (4.5) can be solved for S. (Observe that tllrre arc no data errors in-

volved.) Because K is associated with a detector its elements are non-negative, llence



W is non-negative. If S is also non-negative then the elements of tile diagonal matrix
¢2 are non-negative, and tile matrix I_ = CK has tile requisite properly. Tllat is, its

first right singular vector is Fp.

Of course, if ¢2 is not non-negative I_ becomes complex anal tile physical meaning
(e.g., changing tile detector "height" is lost. In such an instance tlie device fails. Other

detector parameters must be investigated.

5. Two Examples. EXAMPLE 1. Assume that

' {0, j<i(5.12) Kij = j_+l c__dx = c-J - c -(j+a) , j >_ i ,

j= 1,2,...,10 .

Suppose

15

--fit.i+l pX3 dx ,i -
(5.13)

Using tile approach described in the previous section we find the entries 0ii of ¢

as presented in the first column of Table 1. Because they are ali non-negative we can
form K as the matrix with entries

(5.14) /_'ij - ¢;il(ij •

The physical experiment can now be performed with the detector(s)' represented
by I_. The expected signal Fp is, of course, unchanged, it, is unaffected by any
modification in the detection equipment. Tile data g will not be the same as if the

original detector(s ) (represented by K) were used.

To demonstrate that the general apt>roach can iinprove accuracy we assumed the

lrue signal F to be given by Fp + e where
?

(5.15) el =6 x 10"(11)(9 - I) .

We then generated the corresponding data vectors g and g, added small amounts of
random noise r/and 1) to these data vectors, and retrieved the signal vector by solving
KF = g + r/and I_F = _ + 0. The results are shown in T_ble 2.

EXAMPLE 2. Let the matrix K be as in Example 1, but now assume a predicted

_ignal whose first _ine)components are the same as those of Fp in EXaml)le 1 but.... .J

whose last four components are smaller:

ii4 1
(.5.16) [_,i = 33.343 e-_'2/_;dx , i = 6,7,8,9 .

when $ is computed in this case.
The elements are as shown in the second column of T;d)le 1. Because several

entries are negative the approach fails.



6. Preliminary Investigation of a Pseudo-Singular Value Decomposi-
tion. Ideally, the first column of V for some constructable K (that is, o"e cor,'espond-

ing to a set of acceptable I)ar;m_eters) would be Fp. (\Ve always suppose [[ FI) [[= 1.)
This is usually too much to hop:: for. We ask if there are other orthogonM matrices
P and Q and a diagonal ma.trix 12.such that

(6.17) K = PRQ T

where ql = Fr.
The answer is no; the decomposition (6.1) implies P = U and Q = V. Iii an

attempt to Salvage something we try constructing P and Q iu the followi1_g f_shion
Define ql by

(6.18) Q1 = Fp

. and p by

(6.19) I(Q1 = rlpl , [[ pl ]- 1 .

Observe that rlpl is the predicted data, whicll we anticipate will be nearly equal to
q, the actual dat_.

Next, we construct a new vector q2 such that

(6.20) (ql,q2)---0 , IIq2 II--J, ,

and

(6.21) (Kq2, pl) = 0

Obviously there are many such vectors q2; but tl_ere may be i)hysical or Inatllt_'lnatical
reasons for a somewhat specific choice. We ¢lefi,le P2 and r_ by

(6.22) Kq2 - r2p2 , IIp2 II= 1 .

The process can now be continued in a fairly obvious fashimi until tlm nlJlnber of
,]

components ofql is less than the number ortlmgonMity constraiILts. '['lle vectors Pi
and qi are pseudo-singular vectors.

In the l_t analysis it is hoped that good approximations to F all(i g are

(6.23) F - )2auq,l ,

(6.24) g - _b,,pn .

If this is the case



(6.25) KF =: G

gives

(6.26) f - _-b_--_qn .
til

It is hoped that in practice only a very few ,t,erms in the sums arc needed.
Some numerical experiments suggest that the number of sign changes in tile com-

ponents of qi often increases faster than i. This emphasizes the desirability of very

few terms in (6.{3)-(6.8).

This approach is still in a very preliminarystate, and much needs to be done.
Simple examples suggest the method has promise.

7. Summary and Remarks. We have considered integr_fl equations of the first

kind which arise from experiments'tn diagnostic physics, and whose k(_rnels depend
upon parameters whose adjustment represents changes in the experimental setup.

The ultimate goal has been to make the experiment as efficient ;ts possible. Such

lnathematical studies can reduce the labor, time, and expense of actually adjusting--
or even rebuilding--the experimental equipment.

We first examined an experiment in x-ray spectroscopy which leads to a kernel

dependent on five parameters. Somewhat incomplete numerical studies were made in
an effort to minimize the condition number of the matrix corresponding to the kernel.
Thus our aim was to make the problem as well-conditioned ,as possible.

It was then observed that if the predicted signal (presumed to be a good estimate)
il_ the experiment should happen to be equal to the principal singular vector of the
matrix, the experiment should be close to optimal. We attempted to acltieve this

l_y multiplying each of the rows of the kernel matrix by a constant corresponding
physically to cha.nging the detector "height." The matter was studied o_tly for square

nlatrices, but the idea can proba.bly be extended to the rectangular case. lt was found
l llat this device can sometimes be successful.

We then turned to the cases in which tli's simple approach fails alld to defined
pseudo-singular vectors and wflues, the first of these vectors being the predicted signal.

The concept is not yet sufficiently developed to evaluate its level of success.

It is our belief that studies of this type can be of great wflue in the design of
experiments. We hope th.at this initial humlfle effort will lead to furtlmr investigations
of this kind.






