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Abstract. Physical experiments often give rise to integral equations of the first kind. If the
detection equipment can be adjusted that fact can lcad to a kernel function that depends on one
or more parameters. We address the general question of how to choose those parameters in such a
way as to make the integral operator as well-conditioned as possible, thus optimizing the experiment.
Attention is focused on the condition number of the discretized kernel and on its principal singular
vector. Several examples are given and some preliminary general results are obtained.

1. Introduction. In many areas of diagnostic physics linear integral equations
of the first kind arise:

b
(1.1) | g(z) = / K (2, y)f (y)dy

In (1.1) K'(x,y) represents the response of a detector (or a set of detectors) g is
the measured data (usually containing experimental error) and f is the “signal” which
is to be found.

Often there are experimental techniques which make possible the construction of
“families” of detectors. For instance, different {oil thicknesses may be employed, dif-
ferent mirror angles may be used, chemical compositions may be varied, specific diodes
may be chosen, etc. Thus h'(z,y) while it must, in order to perform the experiment,
liave certain properties, can depend on a variety of parameters. In practice, these pa-
rameters are often chosen arbitrarily, or by some “time-honored rules-of-thumb.” Our
goal here is to trv to devise mathematical methods by which to select such parameters
in order to make the experiment as efficient as possible.

In many practical situations a prediction F,(y) of the signal F(y) is available.
This estimate is based on the basic physics involved, past experiences, and often, the
skill and insight of the experimenter. It is reasonable to use this prediction in making
the choice of detector parameters.
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Usually (1.1) is solved approximately by replacing it with a matrix equation

(1.2) g = KF

obtained by some discretation scheme [ ]. In (1.2) K may be A x .V, with F an N
vector and g an M vector. We shall concentrate on (1.2).

A general rule is that the condition number C of K should be as small as possible.
This minimizes the effect of experimental errors in g. Thus a valuable parameter
should be selected so as to minimize C.

2. A Practical Example. Consider the kernel

N

]
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(23) K(z,y) = ¢

' 1/2
az) =A@y - 1@ . 16 - (58) T v

L 6(z)exp(=n(z)(y - 7(2)) » v(z) <y <]

Ilere each of the functions «,8,7,6,v is constant over a given interval 2; < z < 4,
1=1,2,3,4,5. Thus

Q(IE):O’{, zi§1’<$:’+11,

etc. The ay, Bi, v, i, 7 constitute the parameter set, subject to many physical
consiraints. We thus wish to minimize the condition number of the associated matrix
K by varying the parameter sct.

The kernel A'(z,y) in (2.1) arises in certain x-ray spectroscopy experiments. Ob-
viously, the problem of ininimizing C is a formidable one. However, it may be argued
that the analysis may be more easily carried out mathematically than by building
many pieces of equipment. Such a study is undertaken in [ ]. It is found that often
these experiments are designed in a fairly optimal way, indicating that many years of
experience have led to reasonable “rules of thumb.”

3. The Singular Value Decomposition Approach. It is known [ ] that K
may be written as

(3.4) K=UxVvT

where U and V are unitary matrices and T is a diagonal matrix. Equation (3.1) is
the so called singular value decomposition of K. The columns uj and v;of Uand V
are the singular vectors of K and the elements o; of ¥ are its singular values. I (1.2)
has a solution F' then that solution is given by

(3.5) F= z}\gl%“—‘vi



where ( , ) is the usual scalar product.

Equation (3.2) immediately indicates problems which can arise when g contains
experimental error. If any of the o; are small (it is customary to order them by
decreasing magnitude) the term

(3.6) (g,u;)/a;

is “mainly” error, and F will be seriously in error. (Note that if o; is “small” the con-
dition number C will be large.) A common way of partially overcoming the difficulty
is to truncate the series in (3.2) and simply ignore these troublesome o; values.

Equation (3.2) also suggests how use of the predicted signal f,(y)—now the pre-
dicted vector Fp—can be made. Observe that because F|, represents a signal it is
non-negative. For convenience we suppose IFpll = 1. If vi = Fp, and if Fp is a
good prediction thanjthe terms in (3.2) with i > 1 should contribute little to the sum.
Thus the series trincation will be more valid. Our goal, then, is to try to adjust K,
by judicious choice of the detector parameters, so as to obtain vy = Fy,.

4. Adjustment of the “Magnitude” of K. In practice it frequently happens
that the “magnitude” or “height” of the detector is the parameter most casily adjusted.
In the notation of (1.1) we replace A'(z,y) by ¢(z)h'(z,y) where ¢ is non-negative
but otherwise (reasonably) arbitrary. In the matrix formulation we replace K by ¢K
where ¢ is a non-negative diagonal matrix. K is here assumed N x N.

We now ask that Fp be the first right singular vector of K = phiK. It can be
shown that [ ] in general

(4.7) KTKSvi = oyvj .

Thus we desire

(4.8) KTKF, = &Fp, .

It will soon become obvious that we can select 6; = 1 by adjusting ¢. We rewrite
(4.2): ‘

(1.9) (¢K)'¢KF, = KT¢?KF;, = F}, .

Notice that KF, is a known vector W. Thus

T .
(4.10) K*'S=Fp ,
where

(1.11) S = ¢*W .

Equation (4.5) can be solved fcr S. (Observe that there are no data errors in-
volved.) Because K is associated with a detector its elements are non-negative. Hence



W is non-negative. If S is also non-negative then the elements of the diagonal matrix
¢* are non-negative, and the matrix K = ¢K has the requisite property. That is, its
first right singular vector is Fp.

Of course, if ¢? is not non-negative K becomes complex and the physical meaning
(e.g., changing the detector “height” is lost. In such an instance the device fails. Other
detector parameters must be investigated.

5. Two Examples. EXAMPLE 1. Assume that

‘ i 0, j< t
(5.12) Kij = {IJJ'H e~%dx = e — ¢~ (1) y I,
J=12,..,10 .
Suppose
‘ A . .y
' ~ 15 b px .
({)13) Fpi\ = F/ ¢t — 1(11: =

Using the approach described in the previous section we find the entries ¢;; of ¢
as presented in the first column of Table 1. Because they are all non-negative we can
form K as the matrix with entries

(5.14) K = ¢uhy;

The physical experiment can now be performed with the detector(s)h represented
by K. The expected signal Fp, is, of course, unchanged. it is unaflected by any
modification in the detection equipment. The data g will not be the same as if the
original detector(s) (represented by K) were used.

To demonstrate that the general approach can improve accuracy we assumed the
true signal F to be given by F|, + ¢ where

)
‘
l§

(5.15) € =6x101(11)9-1) .

\We then generated the corresponding data vectors g and g, added small amounts of
random noise 7 and 7 to these data vectors, and retrieved the signal vector by solving
KF = g + 7 and KF = g + 7. The results are shown in Table 2.

ExXAMPLE 2. Let the matrix K be as in Example 1, but now assume a predicted
signal whose first @ne:)components are the same as those of F}, in Example 1, but
whose last four components are smaller:

‘ Cpi4l .
(5.16) F,i= 33.343/ e Sz, i=16,7,8,9 .
t

when ¢ is computed in this case.
The elements are as shown in the second column of Table 1. DBecause several
cntries are negative the approach fails.



6. Preliminary Investigation of a Pseudo-Singular Value Decomposi-
tion. Ideally, the first column of V for some constructable K (that is, or e correspond-
ing to a set of acceptable parameters) would Le Fp,. (We always suppose | Fy, ||= 1.)
This is usually too much to hop: for. We ask if there are other orthogonal matrices
P and Q and a diagonal matrix R such that

(6.17) K = PRQT

where q; = Fy.
The answer is no; the decomposition (6.1) implies P = U and Q = V. In an
attempt to salvage something we try constructing P and Q in the following fashion.
Define q1 by

(618) - Ql = Fp
,and p by
(6.19) KQp=rip1, lIp1ll=1 .

Observe that rypy is the predicted data, which we anticipate will be nearly equal to
q, the actual data.
Next, we construct a new vector qo such that

(6.20) (q1,92) =0 , [[qzl= 1,
and
(6.21) (Kqz,p1)=10

Obviously there are many such vectors qg; but there may be physical or mathematical
reasons for a somewhat specific choice. We define p2 and 7y by

(6.22) , Kqaz =rap2 , [ p2f=1.

The process can now be continued in a fairly obvious fashion until the number of
components of q; is less than the number orthogonality constraints. The vectors p;
and q; are pseudo-singular vectors.

In the last analysis it is hoped that good approximations to F and g are

(6.23) F = ¥auqy

(6.24) g = Ebupn .

IT this is the case



gives
(6.26) ' F=%-—qn .

It is hoped that in practice only a very few terms in the sums are needed.

Some numerical experiments suggest that the number of sign changes in the com-
ponents of q; often increases faster than 7. This emphasizes the desirability of very
few terms in (6.6)-(6.8).

This approach is still in a very preliminary state, and much needs to be done.
Simple examples suggest the method has promise.

7. Summary and Remarks. We have considered integral equations of the first
kind which arise from experimentsin diagnostic physics, and whose kernels depend.
upon parameters whose adjustment represents changes in the experimental setup.
The ultimate goal has been to make the experiment as efficient as possible. Such
mathematical studies can reduce the labor, time, and expense of actually adjusting—
or even rebuilding—the experimental equipment.

We first examined an experiment in x-ray spectroscopy which leads to a kernel
dependent on five parameters. Somewhat incomplete numerical studies were made in
an effort to minimize the condition number of the matrix corrésponding to the kernel.
Thus our aim was to make the problem as well-conditioned as possible.

It was then observed that if the predicted signal (presumed to be a good estimate)
in the experiment should happen to be equal to the principal singular vector of the
matrix, the experiment should be close to optimal. We attempted to achieve this
by multiplying cach of the rows of the kernel matrix by a constant corresponding
physically to changing the detector “height.” The matter was studied only for square
matrices, but the idea can probably be extended to the rectangular case. It was found
that this device can sometimes be successful.

We then turned to the cases in which th's simple approach fails and to defined
pseudo-singular vectors and values, the first of these vectors being the predicted signal.
The concept is not yet sufficiently developed to evaluate its level of success.

It is our belief that studies of this type can be of great value in the design of
experiments. We hope that this initial humble effort will lead to further investigations
of this kind.









