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ABSTRACT

Present models for the representation of naturally fractured systems rely on the double-porosity
Warren-Root model or on random arrays of fractures. However, field observation in outcrops has
demonstrated the existence of multiple length scales in many naturally fractured media. The
existing models fail to capture this importaiii fractal property. In this paper, we use concepts
from the theory of fragmentation and from fractal geometry for the numerical construction of
networks of fractures that have fractal characteristics. The method is based mainly on the
work of Barnsley {1] and allows for great flexibility in the development of patterns. Numerical
techniques are developed for the simulation of unsteady single phase flow in such networks. It is
found that the pressure transient response ol finite fractals behaves according to the analytical
predictions of Chang and Yortsos [6]. provided that there exists a power law in the mass-radius
relationship around the test well location. Otherwise, finite size effects become significant and

interfere severely with the identification of the underlving fractal structure.

1 INTRODUCTION

Fractal geometry is a relatively new approach for the description and modeling of complex
objects and processes 7], [13]. Tu general, fractal images are the result of the repetition of a
given geometric shape into itsell over a cascade of different length scales. When coupled with
random noise, the resulting complexity makes fractal images suitable for the description of a
variety of natural objects. Although this should not imply that every such object is fractal.
nonetheless fractals constitute a very convenient methed to describe many physical processes.
[n particular, the application of fractals to porous mediz is very promising. The review by
Sahimi and Yortsos [17] classifies the [ractal patterns that result from various porous media
processes. such as percolation, viscous fingering and fracturing. Networks of fractures in a rock
are natural candidates for o fractal geometry description. This particular alternative is explored
in this paper.

Counventionally, naturally fractured systems have boen represented by the Warren and Root
double porosity model [21] or by a random array of fractures [5). [12]. Although capturing im-
portant properties. neither of the two ceometries can acconnt for fractal characteristics recently

attribnted to naturally fractured systems [2], [16). [18]. The relation of fractals to fracture net-



works was first explored in 1985, in a study of nuclear waste disposal [2]. That study revealed
that many fracture patterns at Yicca Mountain, NV, were self-repetitive over a range of scales,
spanning from 0.2 to 15 meters. within which several generations of fractures were detected.
Additional support for the fractal character of fracture networks can be found in recent studies
of the fracture patterns of the Monterey formation [8] and of the Geysers geothermal field [19).
Prominent fractal features in the latter include the existence of a cascade of fracture scales and
a self-similar structure.

It was recently proposed that the fracturing of disordered media, such as natural rocks, can
be modeled using fractals [10]. [20]. hideed. [ractal structures have been related to the fracture
resistance of the material and to the particular fracturing process it undergoes [20]. For example,
fragmentation with substantial shearing. which appears to be a dominant mechanism for many
fracture networks, leads to fractal dimension values ranging between 1.2 and 1.8, [4]. Sammis
et al. have reported fractal dimensions between 1.5 and 1.7, [18].

Motivated by such findings, investigators have recently attributed fractal proparties to net-
works of fractures and proceeded to analyze their hydraulic response (Chang and Yortsos [6],
Beier [3]). These works demonstrated that the traditional solutions for single-phase fluid flow
are particular cases of a more general solntion. where the dimensionality (reflected in the frac-
tal dimension) is a key variable. Siguilicantly, this dimension can take non-integer values and
characterizes the {ractal response.

Current studies in the modeling ol fractured systems with fractals rely on Sierpinski carpets
and percolation aetworks [15]. I certain cases. numerical simulation has shown the expected for
a fractal transient response. However. the particular networks taken represent rather special and
idealized cases. Fractal models for naturally fractured systems must be consistent with the basic
mechanisms of fracturing, such as shear fracturing. extension fracturing, ete. [11]. In addition,
any synthetic network must honor available data. such as fracture length distribution, fracture
orientation and density, ete. Real systenms also possess upper and lower cutoffs, which place
limits on the range of fractal behavior, Strictly speaking. rigorous methods for the construction
of networks of fractures must await the successful development of fracturing theories. Recent
advances in this area have heen many and significant and they hold promise that a unified
theory may soon emerge [10].

A practical alternative that may lack in rigor. bat affords great flexibility, is possible for
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systems that may be described by a [ragmentation process. The latter is known to lead to
fractal size distributions [20]. The essential aspects of fragmentation can be simulated with
the application of the II'S (Iterated Function System) approach introduced by Barnsley [1].
This technique yields networks of the desired fractal properties with much flexibility in the
orientation of the fractures ana in the shapes of the fragments. This approach of combining
fragmentation and IFS to create fractal networks is proposed in this paper. Two issues will be
addressed:

(i) The numerical construction of a synthetic network of fractures with fractal characteristics.
(ii) The simulation of transient, single-phase flow of a slightly compressible fluid and its pressure

transient response in such networks.

2 NUMERICAL SYNTHESIS OF FRACTAL NETWORKS
OF FRACTURES

2.1 FRAGMENTATION AND FRACTALS

In many fragmentation processes. the distribution of fragment sizes can be described by a power
law. This fact has been known since the carly 19105, when Schuhmanu’s law [9] was introduced
to describe the distribution in grinding operations. Turcotte [20] documents many fracturing
applications, where the size distribution is described by a power law. More recently, Poulton
et al. [16] postulated a power law behavior not only for the fragment size, but also for the
length and spacing of discontinuities in the rock. In a related study, a power law distribution
of fracture trace lengths was discovered by Barton [2).

Fragmentation was modcled in the classical work of Gilvarry [9], who used an exponential
distribution to describe repetitive fracturing. A basic parameter in the analysis is the probabil-
ity ps(0)él that a given fragment of size in the interval between [ and [ 4 61 will be fragmented.
Recently. Turcotte [20] has showed that when py is constant, a power law distribution of frag-
ment sizes is obtained. For an idealized fragmentation process. where the fragments of a given
generation are all of the same relative size. the fragment size distribution is of the power law
type, with an exponent related to the probability of fracturing py. For example, if each block
creates an average of Spy new blocks of relative size 119, the theoretical value of the exponent

is



. 2In Spy
) = — 1
¢ InS (1)

It can be shown that this exponent is also equal to the box fractal dimension, D, of the
mosaic made up of the same picces. Since an unfractured block represents a missing subset
of fractures, the fracture length distribution will also be power law distributed with the same
exponent. Equation (1) suggests that non-trivial fractals (D < 2) are obtained only for py < 1.

The box counting fractal dimension is one measure of a fractal structure. It is typically
calculated by superposing a grid of a given cell-size on the fracture pattern and by counting

the number of occupied cells. The power law relation

N(ry~r7P (2)

between the number N(r) of occupicd cells and the scale 7, yields the dimension D. Box
counting has been routinely used to characterize the fractal properties of real networks [2], [18].

For more realistic fragmentation processes, blocks of a given generation are not all of the
same relative size and a given size group may be composed by blocks of diflerent generations.
Nonetheless, as will be shown later, a power law distribution in fragment size and fracture length
still persists. We should also add that fractal behavior typically holds in a finite range between
an upper and a lower cutoff scale. The upper cutoff is defined by the maximum size fragment
(the “largest hole” in the network). The lower cutoff is more arbitrary, usually decided from
practical considerations. s shown below. finite cutolfs play an important role in the hydraulic
response.

The way by which patterns are created by fragmentation, namely the initiation from a large
scale and the propagation towards successively smaller scales in a systematic manner, has a
close analogy with the IF'S technique recontly developed. In the following, we propose to mimic
a natural fracturing process iii the construction of a synthetic network by combining the IFS

with a probability rule.

2.2 GENERATION OF FRACTAL NETWORKS OF FRACTURES

Barnsley [1] has recently proposed the method of Iterated Function System (IFS) to construct

fractal images. With this technigue. a [ractal is obtained from an initial simple shape (initiator)




by applying in an iterative fashion a sct of numerical transformations (propagator). Each
iteration creates multiple sets of u staller, transformed images that occupy the place of the
previous image. After several generations the set converges to a fractal. The technique creates
fragments of various sizes and shapes and it is well suited for the development of synthetic
networks of fractures.

For the creation of the two-dimensional patterns to follow, two transformations were used.

Each consists of two quadratic expressions
Xy = A¥poy + bynoy + €Ty Yn1 + d

Yn = Tucy + fYn-1 + 9Tn-1Yn-1 + h

where 2, y, are the coordinates of a given point of the nth generation, and «,b,¢,d,e,f,g,h are
the coefficients of the transformation. When ¢ = g = 0 the transformation is linear (generally
self-affine). If in addition « = fand b = —¢. it gives rise to self-similar fractals. The non-linear
terms (¢, g} are useful in controlling the geometry of the final pattern. However, control of the
fractal characteristics and the fractal dimension is mainly obtained by varying the probability
ps. As in fragmentation, we may specify that a fraction 1 — ps of newly generated blocks is
not allowed to further subdivide. The value of ps affects the fractal dimension, although not
necessarily according to the simple resalt in equation (1).

Figures 1, 2 and 3 show three typical examples of fracture networks obtained with the ap-
plication of self-similar. self-affine and non-linear transformations, respectively. A fracturing
probability py = 0.75 was applicd every second generation. Because of our interest on fracture
networks. the objects of Figure 1 to 3 have their fractures retained. Thus, they are not strictly
self-similar or self-affine. In this regard. they represent modifications of the well-known Sierpin-
ski gasket [13]. Nevertheless. they do possess similar fractal characteristics. Figures 1b, 2b and
3b show plots of the box counting. {racture length and fragment size distributions correspond-
ing to these objects. In all objects, box counting exhibits a power law behavior reflecting the
underlying fractal structure. wiih an exponent varving Letween the values of 1.60 (for Figure
Ib) and 1.62 (for Figure 3b). both very close to the theoretical value of 1.59 for a Sierpinski
gasket. For the object of the self-similar transformmations of rigure la, the other two fractal
measures (fracture length and fragment size) ave step-like with steps of equal size. If only the

points at the edges of the step are taken. the discrete distribution so obtained is of the power
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law type with an exponent cousistent with the theoretical value. However, this is not the case
for Figure 2b, where fracture length and box counting give approximately the same exponent
but the fragment size distribution hardly rescmbles a power law. It must be noted that fiuite
size effects are present on all distributions. The third non-linear object of Figure 3a can be
characterized as fractal, if box counting is applied (D ~ 1.62). Fracture length still follows a
fairly well defined power law. IHowever. fragiment size distribution has a power law behavior
only in segments. Certainly, as more generation are included, the distributions approach the
expected power law. The above differcnces serve to emphasize the relevance of box counting in
the characterization of the fractal structure in finite fractals.

The shape and geometry of the initiator have a significant effect on the geometry of the
final pattern. Figure 4a shows a pattern of eleven generations initiated from a quadrilateral
shape with a single fracture. Physically. the transformation at cach stage consists of a rotation
and subdivision of the original two (npper or lower, lett or right) halves. The apparent relative
complexity of this pattern hides the fact that there are only minor differences with Figures 1 to
3, namely the angle of the initial [racture. the initia® shape and the value of py (here equal to 1),
In Figure 4a the initial fracture tends to he parallel to the top and bottom edges. Corresponding
box counting, fracture length aud fragiment size distributions are shown in Figure 4b. Because
the pattern is composed of picces i a narrow size range, the box counting fractal dimension is
very close to 2 in the range of interest. Changing the position of the initial fracture dramatically
alters the final pattern. Figure 5a corresponds to the saine initiator shape as Figure 4a, except
that the initial fracture is tilted at a larger angle. In this highly distorted network, the initial
fracture is hardly recognizable.

Even though Iigures f aud 5 appear realistic. as more generations are included, the fractur-
ing process continues until the medium completely disintegrates. This results from the fact that
each block was allowed to further subdivide (py = 1). To obtain non-trivial fractal patterns, the
fragmentation probability must decrease. lower values in py resulting into lower values of the
box counting dimension ). The patterns in Figures Ga and Ta were constructed as in Figure 4a,
except that a {raction (1 — py) of randomly selected fragments were left unfractured after the
fourth generation. Different sclections of the fragments result into different networks, although
all realizations have the same bhox connting fractal dimension. Figure 6b and 7b show the box

counting, fracture length and [ragiment size distributions for these patterns. The box dimen-
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sions are 1.78 and 1.65 for the two networks, respectively. As expected, the values depend on
both ps and the particular geometry. Away from the cutofls, fragment size and fracture length
distributions are of the power law type. Finite size effects are limited to sizes close to the cutoffs
for regular and moderately distorted networks.

The sequence of transformations that creates a fracture also specifies its address. For exam-
ple. if an IFS of two transformations. denoted by 0 and 1 respectively, is used, typical addresses
of fractures are 001, 1010. O0L101. etc. The number of digits in the sequence equals that of
the generation to which the fracture belongs. The numbers also determine the position of a
particular fracture in the map. This systematic fracture identification is especially appropri-
ate for fluid flow simulation. The networks presented in this paper were constructed with two
transformations applied to a two-dimensional initiator consisting of a single initial fracture in
a quadrilateral shape. Of course, this is not a limitation of the technique, which allows for an

infinite variety of transformations in any dimensions and for any initiator.

3 FLUID FLOW SIMULATION

The usefulness of any syvuthetic network is tied to the ability to simulate fluid flow. In the
networks under consideration. the 1FS technique allows for expedient simulation. Certainly, for
a numerical solution, a finite number of generations must be considered. As shown below, this

imposes a significant constraiut.

3.1 FLOW CONDUCTIVITY MATRIX

The unique binary sequence that identifies cach fracture. makes possible to precisely specify its
address. shape and location. as well as to devise a numbering system for its end points. In this
fashion. the nodes of the network are direetly identified. This is an iu portant development.
as it alleviates the need for a finite-difference or a finite-element description. Morcover, it is
uniquely related to the self-similar. nesved structure of the fractal object.

To proceed with flow simulation. certain assumptions regarding the fluid flow in the fractures
must be made. Consider single phase flow. Along cach fracture, the usual expression applies:

Q0= ('p”"\[é[—]—)] (3)




where @ is the mass flow rate, 11 is the width of the fracture, Ap is the pressure drop along
the fracture, p is the fluid density and A is the condictivity exponent, usually taken equal to
three. To construct the flow conductivity matrix. we make use of the address of each fracture.
The two end nodes of the initial fracture, of known coordinates, are numbered nodes 1 and 2,
Each new fracture subdivides an existing block and adds two new nodes to the system. The
general expression for the number of the cud nodes of a fracture are a and a + 1, respectively,

where

a =2t~ | 4 2% (ad) (4)

Here, j is the generation to which the given fracture belongs. and ad is the decimal value of the
binary address. The coordinates of cach such node are obtained by applying the sequence of
transformations described by the address to the coordinates of nodes 1 and 2. In this fashion, we
may obtain the coordinates and the nummber of cach node in the network. Intersections between
fractures are also specified numicrically in a stimple manner. The final step is to calculate the
conductivity of each fracture according to the assumptions made and to fill the entries of the
conductivity matrix.

A true fractal pattern of fractures contaius an infinite number of generations. In practice,
however, only a small number of generations can be considered. since the size of the conductivity
matrix doubles with every additional generation. This limitation is very significant on the

response of the fractal.

3.2 PRESSURE TRANSIENTS

We subsequently considered the simulation of the pressure transients during drawdown. A
single well is assumed. producing at constant rate. with no flux boundary conditions imposed
at the sides of the pattern. Flow occurs only in the fractures. The flow between nodes was
evaluated using (3), while an appropriately weighted volume was assigned to each node. For
simplicity, each fracture was assigned the same width. Denoting by g;; the conductance between
neighboring nodes ¢ and . the following discrete form for the mass balance for node i can be

readily derived

A — 0 (p = pi)
Y s S T 0b 5
VA vEDY e )8 (5)
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where subscript j denotes all nodes connected to node 7, ¢y is the fluid compressibility and

m is the node number of the well. We have also used the shorthand notation é;; = 1 for

= j and é;; = 0 for ¢ # j. Lor further simplicity, we take the appioximation V; = %Z/wij~
J

and g;; = Ak, where & is the fracture permeability. Defining dimensionless variables pp =

T -7 : { . . .
%ﬁ—)o—o—‘ﬁ.éai‘j = 2 and (p = %:, where ( is the average size of fractures of the last

generation aund pp = ;% where pg is a reference density, we finally obtain

ﬁl—)[t Z, (i, Appa = ;M).g/ (%) + biim (6)
This set of equations was solved using a fully implicit algorithm which iterates on the density
term at cach time step.

Of crucial importance to the solution of the above is the size ratio N = %,‘ where L is the
physical size of the domain. N is also related to the total number of nodes (approximately
proportional to %1\7. where Z is the coordination number of the network). A theoretical fractal
corresponds to N > 1 {obtained for infinitely many generations). However, as pointed out
above, practical considerations restrict N to a smaller value (0(100)).

It is important to discuss the effect of £, When the number of generations of fractures in the
network increases for a fixed L, this is equivalent to a decrease in £, and to an increase in N. In
the dimensionless notation above. the effect will be equivalent to an increase in the size of the
system, or to a delay of the boundary effect. It follows that, working with a large a number of
generations is beneficial in two wayvs: It not only assigns stronger fractal characteristics to the
network, it also serves to delay the effect of the boundary on the pressure transient. On the
other hand. by decreasing (. the real pressure and real time corresponding to fixed dimensionless
values also decrease, the real time following an (¢ dependence. It is possible that this may render
more difficult the actual identification of the fractal structure, because of the demand for an
increased resolution of the diagnostic instruments. particularly when the fracture permeability
is high.

The solution of (5) can be expressed solely in termms of N and tp

PO = fllpi N) (7)

Theoretically (N > 1). a fractal system must respoud as described by the power law of Chang

and Yortsos (6]

- ,
PD.n ™~ ’[) (' )
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where ¢ = %‘ and d; is the spectral dimension. For percolation networks, d; is related to the

mass fractal dimension D and the fractal dimension of the random walk d,, [17] through

2D |
ly = — 9
ds = - (9)
Equivalently, we may use 8 = d,, — 2 to write
D
d = ———— 10
T2y (10)

While D is an expression of the mass dimension. 8 is related to the network connectivity and
describes the deviation from an ordinary random walk in the fractal network. Clearly, it is the
combination of both these paremeiors that contributes to the fractal response.

Contrary to the theoretica! results, however. the numerical simulation is subject to finite
size effects. These are particularly notable when the well is “off-centered” as explained below.
To analyze such eflects, we {ocused our sensitivity studies on the number of generations, the
position of the weil aud the randommness and irregularity of the pattern. As a diagnostic of true
fractal behavior we used the pressure respouse in a log-log plot. According to the theory, the
plots of log pp and dpp/dlogt;, vs log t; must both be linear. Equivalently, we may monitor
the slope of these curves and test whether they are constant or not,

For a Euclidean homogencous network, both slopes should approach zero after an early
transient. This is indeed the case as shown in Figure 8. The early response with slope of % is
present in all our simulations. indicating flow in a single (or a few) fractures that directly feed
the well. It is interesting to note that it is often the second curve (second derivative) that allows
a clearer identification of the underlying structure (it approaches a constant value faster). Also
shown in Figure 8c is the radial total fracture mass plot corresponding to this regular network.
The plot is obtained by tracing circles ol increasing radius around the well and by measuring
the cumulative fracture length within cach such circle. In the homogeneous case we expect a
radial slope of 1 at small , adii (single fractures originating from the well site) and a slope of 2
at larger values, characteristic of llomogenecous systems. This is indeed displayed in Figure 8c.

For a fractal network. the theoretical fractal behavior is well displayed in Figure 9, which
shows the transient response of a well ;\t the center of the modified Sierpinski gasket of Figure 1.
After an early transient. the two slopes remain constant for a significant interval of time, until

boundary effects are felt (Figure 9b). The constant slope is a clear indication of an underlying
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fractal structure. In fact, the slope approaches the theoretical value of 0.26 (6§ = 0.74), for
D = 159 and 6 = 0.16. This value of § was obtained by random walks on the network as
described by Orbach [14]. The numerical values of 4 and € are also in agreement with fluid flow
simulations performed in modified Sierpinski carpets [15].

The fractal response is a consequence of the well developed radial fractal structure around
the well under consideration. We confirm this in the associated radial mass plot (Figure 9c)
which shows two segments, one for small radii with slope 1, related to the early transient, and
another at larger radii with slope 1.539. related to the later part of the transient response. For
finite size systemns, radial fractal structure is necessary in order to counteract finite size eﬁects.

The modified Sierpinski gasket was next taken to investigate the effect of the number of
generations. The transient response for a gasket with nine (two less) generations is shown
in Figure 10a. The early behavior in both Figures 9 and 10 is identical. However, because
of the additional length scale. the response of Figure 9 is extended over a longer period of
dimensionless time (one more cycle). thus making casier the identification of the constant slope
period. This result is consistent with the previous analysis.

Finite size effects can be introduced by slight rearrangements, for instance by placing the
test well at an “off-centered™ position. Figure 11 shows the transient response for a test well
placed at position B in the object of Figure la. It is observed that the early transient of % slope
is prolonged, while the period of constant fractal slope appears later and it has much shorter
duration. The slope value is also slightly lower than in the case of position A. An explanation
of this behavior is as follows. For finite systems, the development of a sharp response depends
on how well a power law fits the radial inass relationship around the test well. For a perfect
fractal, this relatiouship is of the power law type with an exponent equal to the mass dimension
D (D < 2). This is not the case for our finite networks. For location B, the radial mass plot
shows at least threo segments. The first with slope of 1is longer than the corresponding segment
for positien A. This accounts for the longer lasting period of the early transient at position B.
The last two segments of the radial mass plot. with slopes 2.24 and 1.72 respectively, can be
related to respective features in the derivative slope curve (dashed curve). However, if the
network of Figure la were a subset of a larger self-similar network, a power law radial mass
plot and a fractal transient response would still have been observed, much like in a true fractal.

regardless of the position of the well.



In general, the responsec of finite systems vary significantly with the arrangement of the
matrix blocks (computationally obtained by taking different realizations). It appears that if the .
blocks are arranged so that the radial structure around the well possesses fractal characteristics,
the response is also fractal. This is consistent with the theoretical results, which assume radially
fractal characteristics [6], and with the findings of [15].

Pressure transient tests were also conducted for the networks of Figures 6 and 7. The
square dot in the middle of the pattern indicates the position of the test well. Results are
shown in Figures 12 and 13, respectively. Although both pressure responses are very different
from the homogeneous case (compare with PFigure &), ncither test conforms exactly to the
theoretical expectations for a fractal. ‘I'he well of Figure 6 has a response that tends to a
constant slope, this behavior being consistent with the radial mass plot which has certain
power law segments. IHowever, it cannot be used to unambiguously ascertain the underlying
fractal. Even less revealing is the response of the well of Figure 7, where the approach to a
constant value occurs late and it is interfered with boundary effects. It should be stressed again
that this departure from the theoretical expectations is only a result of the limited number of
generations allowed in the numerical computations (the objects of Figures 6 and 7 have fractal
characteristics over a small range of scales only). Coupled with the irregularity and randomness
of the patterns, this limitation prevents the identification of the fractal structure. On the other
hand, many real systems arc more likely than not to contain such limitations. Further work is
necessary to develop better diagnostic techiniques for the identification of such networks.

A variety of other tests were also performed and analyzed. The previous findings were
consistently confirmed, namely that as long as the number of genecrations is small, the transient
response is unlikely to have the theoretical characteristics, unless the arrangement of matrix

blocks is such that a radially fractal structure exits.

4 CONCLUSIONS

A method to create fractal fracture networks with fractal characteristics was developed. The
method is based on a combination of the IFS technique for constructing fractal images [1],

and of a probability rule consistent with a fragimentation process. This technique allows one

to create two-dimensional fractal networks with coutrolied fragment shape, upper and lower



cutoffs, fragment sizes, and fractal dimension. Although not attempted here, the method can
be generalized for the creation of three-dimensional networks.

The simulation of pressure transients showed that the identification of the fractal object with
the help of existing theoretical methods is possible only if a significant number of generations is
allowed, or, equivalently, if the object is fractal over a large enough range of scales. Otherwise,
finite size effects and randomness may dominate the pressure response and make difficult the
identification of the structure. This behavior serves to emphasize the importance of cutoff scales

in fractals.

NOMENCLATURE

ad = decimal value of binary number

A = area of fracture, L?

¢y = fluid compressibility, LA ~1772

D = box counting fractal dimension

gi; = conductivity of fracture that joints nodes ¢ and j,L*
k = permeability of fracture. L*

L = size of medium, /.

€ = average size of fractures of last gencration, L

{p = dimensionless length

p = pressure, L™YAIT~?

pin = initial pressure, L=13/ 72

pp = dimensionless pressure

ps = probability of fracturing for fragment of given size
Q = mass flow rate, A/T!

r = size, L

S = fracturing paramecter

tp = dimensionless time

Vi = fracture volume associated to node 7, [,3

W = fracture width. L

a = node number




& = parameter in fracial fluid flow formulation

source term for dimensionless notation

Il

Ap = pressure drop, L™ M T1~*

Atp = dimensionless time increment

A = conductivity exponent for fractures
p = density of fluid, Af L~3

0 = conductivity index

p = viscosity, L™1T"1Af
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Figure 1: (a) Modified Sierpinski gasket (11 generations) with self-similar IFS. Positions A
(square) and B (circle) (b) Corresponding box counting(*), fracture length (solid line) and

fragment size (dashed line) distributions.
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box counting(*), fracture length (solid line) and fragment size (dashed line) distributions.
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ing box counting(*), fracture length(o) and fragment size (z) distributions.
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Figure 12: (a), (b) Pressure transient response for the network of Figure 6. (c) Radial fracture

mass plot.
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