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ABSTRACT

Present models for the representatioz, of nat urally fractured systmns rely oil tile double-porosity

Wa.rren-Root model or on random arrays of l'ra.ctures, l[owever, field observation ill outcrops has

demonstrated the existence ot" lnultiple length scales in many naturally fractured media. The

existing models fail to cal)ture tl_is in_l)ort_JLt fractal property. In this paper, we use conceI)ts

Dora the theory of fragmeltlaliolJ aitd ['rein t'raclal geometry for the numerical construction of

networks of fl'actures that have t'ractal cllaract.eristics. The method is based mainly on the

work of Barnsley [1] and allows for gz'eal flexibility in the development of patterns. Numerical

techniques are developed for til(, sill_ulal loll of unsleady single phase tlow in such networks, lt is

found that the pressure lrallsiel_l resl)c)lls(, of finite fractals behaves according to the analytical

predictions of (_:hang and Yol'lsos [¢i]. I)rovi(led l.llat there exists a power law in the mass-radius

relationship around the tesi well local i(Jll. Olherwise, finite size effects become significant and

interfere severely with tile id(,llli[i('alioll ()fllle ullderlying t'ractal structure.

1 INTRODUCTION

Fractal geometry is a relatively i_ew al)l)t'oa('h lhr tlle description and modeling of collli)l¢,x

objects and processes [7], [13]. I,, g,c,t_ez",_l,fractal i_ages ;tl'e the result of the repetition of_L

given geoIlmtric shape iltIo ilself¢_v_,_' a c;_sca¢le of different length scales. When coupled with

random ltoise, the resulti_g; co_l_pl_,xily ll_al<es fractal images suitable t'or the description of a

variety of natural objects...\lll_o_glt lllis sl_ould not i_nply that every such object is fractal,

nonethele.ss fractals constilul¢, a very co_ve_ient _elhod to describe many physical I)rocesses.

In particular, the applicalio._ of ['_'a('lals Io I}ol'ous _nedi:: is very I)ro_nising. The review by

Sahirni and Yortsos [17] cl_,.ssifi¢,s 1]_r, frac!:_l l_allerlls tidal result frown various porous _nedia

processes, such as pe_'cola_io_, x'is('_., li l,g,_'l'iI_g a_¢l l'racluri_g;. Networks of fractures in a rock

are natulal ca_,di(lal¢,s ['o_ a f_.,cl ;_l _,,_,_,I iv <l_,.,clil)l i¢_,_. 'l'ltis l_;_rlicular aller_atiw._ is explored

in l]_is paper.

Conventionally, _,al_rallv [l,cl ,_l,,_l .,\_l,,l_,.,, l_ave I_,,e_, _'¢,l_l'vs_,_ted by the \Varre_ and Root

double porosity ,,,odel [21] ,,,' I,v ;, ,_,,,_1<,,,, ;,,,'_,.x' ¢,f I',aclures [5], [12]. Although capturing i,,_-

porta_t prol)erties. _eill_e_' of II_' l\vo .,:_'_l_l_'llies c_ ac{'o_l for fraclal cl_aractel'iSliCs recently

attrib,_led tc) naturally trac_ _,,d s\,_,,t_., [2]. [l(i]. [lS]. Th,, r_,lati¢,_, of fractals to fract_re _e_-



works was first explored in 1985, it_ a st udv of nuclear waste disposal [2]. That study revealed

that many fracture patterns at Y;lcca _lolll_lain, NX7, were self-repelitive over a. range of scales,

spanning from 0.2 to 1.5 lnel ers, will_in wllicl, several generations of fractures were detected.

Additional support for the fractal character of fracture networks can be found in recent studies

of the fracture patterns of the :Xlox_terev ll,r,nalio_ [8] and of the Geysers geothermal field [19].

Prominent fractal features iii lhe lal l{,r il_clu_le file existence of a cascade of fracture scales and

a self-similar structure.

lt was recently propose_l l]lal l lie ['raclllring o1' disordered media, such as natural rocks, can

be modeled using fractals [117)],[2(I]. l_t,le,,d, fractal sl.ruclures ha, re been related to the fracture

resista.nce of the material and to l l_e l_articlllar l'racl.llrillg process it undergoes [20]. For example,

fragmentation with substantial sllearil,g, wllicll api)ears to be a domiaant mechanism for many

fracture networks, leads to fraclal dimeilsiolL rallies ranging between 1.2 and 1.8, [4]. Sammis

ct a.1. have reported fractaldillmnsiolls b¢,lwee_t 1.5and 1.7,[18].

Motivated by such findizlgs, investigators I_ave recently attributed fractal proF.-.rties to net-

works of fractures and l_roc¢,ed_,_l lo alials'z,.' t lleir IIvdraulic response (Chang and Yortsos [6],

Beier [3]). These works dmlLol,sl Ial,,_l Ileal I I1¢,traditional solulions R)r single-phase fluid flow

are particular cases of a. nlor_, g;c_,,r;_l sc_l,_lio_, wl_er(, the di_ensionality (reIlected in the fl'ac-

ta l dimension) is a kev varia])l(,..v;igit_ilicatl_llS, tl,is ¢litt_ettsion ca_t take non-integer values and

cha.ra.cierizes the fractal r_,sl_o_s_,.

Current studies in l.he nt(_t_,li ilg of I'r_cl _,,e(l svst_,tlis witli fractals rely on Sierlfinski carpets

and percolation networks [1.5]. I_t cet-I ailt ca.,,es. _,uttierical sitl_ulation has shown the expected for

a. fracta! transient respo_tse, l[owe\'(,r, l lte i_a_'Iicu la r nel works taken represent rather special and

idealized cases. Fractal n_o_l__,lst_,' ttat uralls' l'raclt_red sysle_ns _nusl be consistent with the basic

mechanisms of fracturing, sucl, as slt(,ar Iracl tll'i_tg. (,x/etlsion frac:_ling, etc. [11]. In addition,

any synthetic _totwork _n,lsl Jl_)l_,_ ;txa,il_l_l¢, _l;_la. stlc}_ as t'ra.clure le_gth distribution, fracture

orientation a_d density, elc. l{,,al .s\'sl,,l_., als¢_ i_oss¢,ss Upl)er and lower cutoffs, which piace

limits on the ral_ge of t'ract;_l I_el_a\'i,,r. SI ricllv sl_eaki_lg, rigoi"o_s _el.l_o(ls for lhe construction

of networks of fractures in_sl awail 11_¢,._l,¢'e.,,s[_l ¢levelol)_enl of fracl.uring theories. Recent

advances in this ar¢,a l_ax¢, I_¢,¢,1,l_l;_llv _¢1 six_ifica_l a_d l l_ev 1_¢_1¢!l_ro_nise thai. a unified

theory may soon en_¢'rge [1()].

A practical all_,rl_;/liv_, l ll;ll i_;_," 1;_¢1<ii ri_<¢_r. I_11 ;_fl'¢_r¢lsgl'e;,l flexit_ility, is possible for



systems that may be described I)y a t'raglllenta.tion process. The latter is known to lead to

fractal size distributions [20]. The essential aspects of fi'agmentation can be simulated with

the application of the II.'S (Iterated l"ullction System) approach introduced by Barnsley [1].

This technique yields networks of the desired fractal properties with much flexibility in the

orientation of the fractures an(_ in tl_t, sl_apes of the fragments. This approach of combining

fragmentation and IFS to t:reate h'actal zletwovks is proposed in this paper. Two issues will be

addressed:

(i) The numericM col_struction ot'a svn_ hetic network of fi'actures with fractal characteristics.

(ii) The simulation of transient, si ngle-pha.se flow of a slightly compressible fluid and its pressure

transient response in such networks.

2 NUMERICAL SYNTHESIS OF FRACTAL NETWORKS

OF FRACTURES

2.1 FRAGMENTATION AND FRACTALS

In many fragmentation proc,,s.s_,s, t l_, _list rib,ltiot_ of fragment sizes can be described by a power

law. This fact has been lCnowl, sil,_'t, 111_,early 19.10s, when Schuhlllann's law [9] was introduced

I:o describe the distributioll iii gl'iadi_g ol>eraliolls. 'l'urcolte [20] documents many fracturing

applications, where tlw size distribulion is described by a power law. More recently, Poulton

et al. [16] postulated a power law bellavior not only for the fragment size, but also for the

length and spacing of discolltinuilies i_l ilie rock. In a related study, a power law distribution

of fracture trace lengths was distort, red by llarlon [2].

Fragmentation was lno¢lel,,¢l il_ l lJ¢,cla,,sical worl,: o1"Gilvarry [9], who used an exponential

distribution to (lescril)(, r(,l)t,l il ixt, t'va('1tllil_..\ I)asi(" l)aranl(,_or in the analysis is the prol)al)il-

ity p:(l)bl thai a given ['v;_lJ_,'_ (,I'..,iz_,i_ I1_,.i_l_erx'al I)olwee_ I and l + bl will be fragmented.

Recently. Turcotle [20] l_as sl_t_xx_,,lileal \xllt,_ 1.'/ is cc,_stant, a power la.w distribution of frag-

rne_tt sizes is obtained, l:ov ;_lt ;,l,,;_li×_,_lfvag_¢,l_lal ioi_ l)VOcess, where the fragments of a given

generation are ali of tlte sal_,, r_,l;tlixe size. the t'ra_n_e_t size distribution is of the power law

type, with an exponent r¢'lale_l _o tt_t, i_rol_al_ility of fracturingl)/, l:'or exat_ple, ifeach block

creates a_t avera:-e of ._"IUl_t,xxI)l,>cks o[ t_,lative siz,' 1/.5', t t_e theoretical value of the exponeilt

is



E - 21n.S'pl (1)
In S

It can be shown that this exponel_l in also equal to the box fi'actal dimension, D, of the

mosaic made up of the sa.lne pieces. Sizlce an unfractured block represents a missing subset

of fi'actures, the fi'acture lengt]l dislri]_Jliol_ will also be power law distributed with the same

exponent. Equation (1) suggesls l]lal _oll-lrivial fi'aclals (D < 2) are obtained only for p.f < 1.

The box counting fractal dinlensi(,l_ is o_e nleasure of a fractal structure. It is typically

calculated by superposing a grid of a given cell-size on the fracture pattern and by counting

the number of occupied cells. The power law relation

.v(r) ~ r -v (2)

between the number N(r) of oc(:ul>ied (:ells and the scale r, yields the dimension D. Box

counting has been routinely used t() cl,a,a('terize the fractal properties of real networks [2], [18].

For more realistic fi'agxnelllalion l)ro('esses, blocks of a given generation are not all of the

same relative size and a given size gro,ll) lllav I)e composed by blocks of different generations.

Nonetheless, as will be shown la! er, a l,OW('r law distribution in fragment size and fracture length

still persists. We should also add /hat fra<'tal behavior typically holds in a. finite range between

an upper and a lower cutoff scale. l'l_e Ul>l_er('uloff is defined by the maximum size fragment

(the "largest hole" in the network). 'l'l,e Iow(,r cutoff is more arbitrary, usually decided from

practical considerations. As showlJ I)elow. [i_lite cutoffs play an important role in the hydraulic

:esponse.

The way by which ])atterlls ar(, ('l'eatet] I)5" fragnlentation, namely the initiation ft'ore a large

scale and the propagatioa towar_ls succc.s._i\'e]y smaller scales in a systematic manner, has a

close analogy with the IFS [ecl,l_i<l,le r(,('v,,ttIv _levelol)ed. In llte following, we propose to mimic

a natural fracturing process ii_ _[,e c_>l_str_l¢'_iolLOf a synthetic i,etwork by combining the IFS

with a probability rule.

2.2 GENERATION OF FRACTAL NETWORKS OF FRACTURES

Barnsley [1] has recently t)rOl>O.',edthe libel I_o<l<>fIterated l;'u1_cl,ion System (IFS) to construct

fractal images. Wit li this t.ecl_niqll<,, a tracl al is ot>lain(,d from an initial siml>le shape (initiator)



by applying in an iterative fashioll a set o1" nLlmerical transformations (propagator). Each

iteration creates multiple sets o[" , st,laller, transtbrmed images that occupy the piace of the

previous image. After several general iol_s tilt: set converges to a fractal. The technique creates

fragments of various sizes and shal)t,s a lid it is well suited for the development of synthetic

networks of fractures.

For the creation of the two-di|lwnsio||al l)atterns to follow, two transformations were used.

Each consists of two quadratic exl)ressions

a',, = aa',__ l + byn-1 + cx,__l Y,_-I + d

y_ = e:t',,-I + fY,,-1 + gx,_-ly,_-I + h

where Xn, Yn are the coordinales of a given point of the sth generation, and a,b,c,d,e,f,g,h are

the coefficients of the transforJllatiol,. \\'lien c = g = 0 the transformation is linear (generally

self-affine). If in ad(litioll , = .f al,(I b = -:. it gives rise to self-similar fractals. The non-linear

terms (c,g) are useful in co|ltrolliltg tile geol_letrv of tile final pattern. However, control of the

fi'act;d characteristics and tl,e t'r_ctal (li|lIOzlsioll is l_lainly obtained by varying the probability

PI. As in fl'agmentation, we n_ay specify that a fraction 1 - Pf of newly generated blocks is

not allowed to further sul)divi(le. The value of Pl affects the fractal dimension, although not

necessarily according to the silnpl¢, result in equation (1).

Figures 1, 2 and 3 show tl_ree typical exan_l)les of fracture networks obtained with the ap-

plication of self-similar, self-afiine aJ,(l l_o||-linear transformations, respectively. A fracturing

probability PI = 0.75 was applied (,very s('('ond gellcration. Because of our interest on fracture

net:works, tile objects of Figure 1 lo :_ tlav(, their fractures retained. Thus, they are not strictly

self-similar or self-affine. In lllis re,gar(l, l l_ey represent nm(lifications of the well-known Sierpin-

ski gasket [la]. Neve|'theless. 111% (1o l)O_sess silllilar fi'actal cllaracteristics. Figures lb, 2b and

ab show plots of the box (()_l_til_g. [ra('lure lel_g;l Ii and fraglnent size distributions correspond-

ing to these objects, li, ali oi)jeers, I)ox counti||gexhibits a power law behavior reflecting the

underlying fractal struclure, wiiIi az_ exl)oll(,lil varviJiK !)etween the values of 1.60 (for Figure

lb) and 1.62 (for Figure 3b). 1)o111 v(.,r\' (l()s(, I,() IIi(, lheoretical value of 1.59 for a Sierpinski

gasket. For tile object ot" iii(, ._,ll'-.,,iIl_ilatr l|'alkst'()rl_atio|_s of l:igure la, the other two fractal

measur_,s (fracture l(,_g, tl_ a_,d ['r;_g,tl_(,_ ,,iz(,) are step-like with steps of equal size. If o_ly the

points at the edges ot the sl_,1) ;_r(' lak_,_, tl,e (lis(vcte (listributiol_ so obtained is of the power

5
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law type with an exponent col,sisteltt witll 111¢,theoretical value. !lowever, tills is not tile case

for Figure 2b, where fracture, l(,l_u,t lt +tl,,l I_ox couJ,ting give approximately the same exponent

but the fragment size distril_ttti¢)l_ llardlv re,_el,_l_le,_ a power law. It must be noted that finite

size effects are present oil ali ¢listribuliotl_. TI_¢, tltird noxl-linear object of Figure 3a can be

characterized as fl'actal, if box ¢'ountit,g is applied (D .._ 1.62). Fracture length still follows a

fairly well defined power law. Ilowever. fraglllel,t size distributioll has a power law behavior

only in segments. Certainly, as nloregeneration are included, the distributions approach the

expected power law. The above difl'erettces serve to enlphasize the relevance of box counting in

the characterization of tile fl'actal st r_tctttre in finite fractals.

The shape and geotnetry of )lt¢, initiator [lave a significant efDct on the geometry of the

filial pattern. Figure-l:_ sltows a l_+_tt¢,rlt ofelevetl get,erations initiated from a quadrilateral

shape with a single fracture, l'l_v.-,icallv, t ltc, t ratlsl'or_natiolt at each stage consists of a rotation

and subdivision of tile origil_al tw,, ¢,tl_l,,,r ¢,r l¢,xver, loll or rigl_t)halves. The apparent relative

complexity of this I.+attor_ I_i¢lr,s 11_, 1_,<_l}_al l ],+,l'e are o_tly lniltor difl'e,'ences with Figures 1 to

3, namely the angle of t lte i_titial I'racl_¢,. I1_¢,i_ilia7 sl_al)e a_td the value of pi (here equal to 1).

In Figure 4a the initial fractttro le_,¢ls 1<>I_¢,I,a;'_tllel loll to top and botton _,edges. Corresponding

box counting, fracture lengll_ allyl t_it_¢,_t .,,iz¢,+listribt_tions are shown in Figure 4b. Because

the pattern is composed of pieces i_ a _arrow size ra_tge, tile box counting Dactal dimension is

very close to 2 in the range ofint¢,tc, st. (:ltanging l l_e l_osilio_ oftl_e initial fracture dramatically

alters the final pattern. Fig_l__, .Sa corr¢,sl,o_ds lo tlm sa_e initia,tor sltape as Figure 4a, except

that tile initial fracture is tilted at a larg;¢,r at_xl¢'. Ill lltis l_igl_ly distorted network, the initial

fracture is hardly recogttizable.

Even though l:igures-t at,(I 3 _tl_l_(,;_ r_,+tlist lc. +ts t_t()t'(' getteratio_s are ittcluded, the fractur-

ing process contir, ues until tl_o _+,+li_,_ c,.,_l_lotelv disi_t(,grates. This results front the fact that

each block was allowed to ft_rtl_<,t s_ll_¢livi¢l+, (pf = l). "1'o ol_tai_ _o_t-trivial fractal patterns, the

fragmentatiort l)robabililv _t_t_st +l,,c_+,a.,¢,. I+_w,,r rallies ill pf resullit_g ittto lower values of the

box counting din_et_sion l). "l'l_e l_at t_,l_s il_ l"i.,.,,_r+,s_Ja a_+l 7a wore co_tstructed as iii Figure 4a,

except that a fractiot_ (1 -/:f)c>[' t;,l_[+_tl_lv s+,1+,¢I+,¢1fl'aglllOlitS W(,l'e left unfractured after the

fourtlt generations, l)if['r.,t¢,_t .,,(,l,,c)i,,_., ,,t li),, ['_';_g_+,l,ls res,Ill ii/to (lifl'erent networks, although

ali realizatio_s ltave tlte sa:_:+, I_× ¢¢_i_v, tr;_c_al ¢ti_,t:si_,_. !_igur+, _it) attd 7b show the box

counting, fractur< +,lr+t_gtl_ aJ,,I ft+t_t_+,_=t size, ¢li.stril_t_tiot_s for tl_:.'s+' parterres. The box ditnelt-



sions are 1.78 and 1.65 for the two networks, respectively. As expected, the values depend on

both Pl and the particular geometry. Away from the cutoffs, fragment size and fracture length

distributions are of the power law type. Fil_ite size effects are limited to sizes close to the cutoffs

for regular and moderately distorted networks.

The sequence of transforniatiolls that creates a fracture also specifies its address. For exam-

ple, if ali IFS of two transformations. ¢lenoted by 0 and 1 respectively, is used, typical addresses

of fractures are 001, 1010. 0II01. etc. The number of digits in the sequence equals that of

the generation to which the ft'act ure belongs. The nunlbers also determine the position of a

particular fracture in the map. This systeniatic fracture identification is especially appropri-

ate for fluid flow simulation. The ne_\vorks presented in this paper were constructed with two

transformations api)lied to a two-dilnoltsional initiator consisting of a single initial fracture in

a quadrilateral shape. Of coulse, this is ltot a limitation of the technique, which allows for an

infinite variety of transfortnatioiis lit ally (]ilnensions and for any initiator.

3 FLUID FLOW SIMULATION

The usefulness of any synthetic netxw,rk in tied to the ability to simulate fluid flow. In the

networks under consideration, tlw IFS technique allows for expedient simulation. Certainly, for

a numerical solution, a finite nUlllber of generations must be considered. As shown below, this

imposes a significant constraint.

3.1 FLOW CONDUCTIVITY MATRIX

The unique binary sequence t lJal idej,tifios each fracture, makes possible to precisely specie, its

address, shape and locatioxt, as w,,ll a.s to ¢levise a numbering system for its end points. In this

fashion, the nodes of the n¢,tw¢_tk al'e ¢lirectlv i_[e_ltified. This is an !;, portant development.

as it alleviates the need for a [illile-¢lif['erellce or a finite-element desc, iption. Moreover, it is

uniquely related to the self-sill/liar, nos,cd slrucltll'e of the fractal object.

To proceed with flow siIIlulat ion. certain assulnl)tions regarding the fluid flow in the fractures

must be made. Consider single pllase llow. :\long each fracture, the usual expression applies:

o = ('.11" i ' (3)



where Q is the mass flow rate, II' is lilt' width of the fracture, Ap is the pressure drop along

the fracture, p is the fluid densily alld ,\ is t]w coJld,,ctivity expozmnt, usually taken equal to

three. To construct the flow cortd_ctivity iliatrix, we lllake use of the address of each fracture.

The two end nodes of the inilial fract uro, of kllt)XVllcoordinates, are numbered nodes 1 and 2.

Each new fracture subdivides al_ oxistillg I)l,,ck ;ltttl adds two new nodes to the system. The

general expression for the nunlber of tile cud node,,; of a fracture are o. and a + 1, respectiw ly,

where

a = "2.j+' - I + "2• (ad) (4)

ttere, j is the generation to whicll tile giveti fracture belongs, and ad is the decimal value of the

binary address. The coordinalcs ofo_ch sucll itoclo are obtained by apl)lying the sequence of

transformations described by t lte add ross lo tile coordinates of nodes 1 and 2. ht this fashion, we

may obtain the coor<liltates allcl tilt Italianiserot'<'a<'h node in the network. Intersections between

fractures are also specified nul_terically ii| a si_ple lna|lner. The final step is to calculate the

conductivity of each fracture a<'cor<lin_ to tile assulnptions nla<le and to fill the entries of the

conductivity nlatrix.

A true fractal pattern of fractures c_lll;|i|ls ali ii|finite number of generations. In practice,

however, only a small nUlllber oF glollol'allolls call be cot_sidered, since the size of the conductivity

matrix doubles with e,,'er_' additional g,_'lioralion. Tliis limitation is very significant on the

response of the fractal.

3.2 PRESSURE TRANSIENTS

We subsequently considered tile sijl_ulatiolt of the pressure transients during drawdown. A

single well is assumed, prodl|cittg al c_,llstaltt rate. wilh no flux bollndary conditions imposed

a.t the sides of the pattern, l:'low occurs o_ly iii the fl'actures. The flow between nodes was

evaluated using (3), while an _,l_Prol_rialely weigllled volunle was assigned to each node. For

simplicity, each fracture was assigt_od l l_, saline width. Denoting by 9i.i the conductance between

neighboring nodes i and j. Iii,, follcm'ittg _liscroto forni for the mass balance for node i can be

readily deri red

eft,, !" ..Xp/ (P,t - Pi)' _x/ - :''/" -
./



where subscrii)t j denotes ali nodes connected to node i, cI is the fluid compressibility and

m is tile node number of the weil. \Ve have also used the shorthand notation 6i,a = 1 for

i = j and tsl,.i = 0 fox' i # j. For further sin_plicity, we take the approximation I:] = ½__Atij,
J

and 9ij = A/c, where /," is the fracture permeability. Defining dimensionless variables pi) =

2,'r(T,,,,-1,)00kAQt,, gD,i,.i = _- and ID = _'at wlmre g is the average size of fractures of the last

generat.ion and PD = 2_. where Po is a reference density, we finally obtain1)0 ' " "

C ])D'i _'l-')I')'j ) _- _i,,TZ (G)PD,i Z lD". :-kl'D'' = _,PD.ij \ (D,ij2_ tD .i ._

This set of equations was solv.d u,_i_g;a t'_Jll.v i1_lplicit algorithm which iterates on the density

term at each time step.

Of crucial importance to IIi(, soluti()Jt of tl_o al)ore is the size ratio N = L, where L is l,he

physical size of the doillain. ,V is also relate(l to the total number of nodes (ai)proximately

proportionM to _N. wll(,re Z is Iii(, coordinatioll mxmber of the network). A theoretical fractal

corresponds to ,5,: >2> 1 (obtaizLed for illfiJtitely Inany generations). Ilowever, as pointed out

above, practical considerations reslricl A to a smaller value (O(100)).

lt is iml)ortant to discuss l li(.' (,fl'(,('t of {. Wllen the number of generations of fractures in the

network increases for a lixed L, tills i._e¢luivalent to a decrease in g, and to an increase in N. In

the dimensionless notatiolk above, tile ,,floor will I)e equivalent to an increase in the size of tho

system, or to a delay of the boun(larv ott)'ct, li follows that, working with a large a number of

generations is t)eneficial in two ways' I1 xlot only assigl_s stronger fractal characteristics to the

network, it also serves to delay t.l_e effect of the I)oundary on the l)ressure transient. On the

other hand, by decreasing (. Ill(, real l)rOssure and real lime corresponding to fixed dimensionless

values also decrease, the real lillle folic)wilLy; al_ (" dependellce, lt is possible that this may render

more difficult the actual idel_tiIi('a_i,_ ot" the fractal structure, because of the demand for an

increased resolution of tit(, diag,_,stic il_st ru_enls, particularly when the fracture permeability

is high.

The solution of (5) can l)e OXl_rO._So_!solely in ters_s of N and tD

/_D.... = f(t_):.,\') (7)

Theoretically (N >> 1). a traclal svsl(,_,_ mt_t x'eslmt_d as descril)ed by the power law of Cl_a_,g

and Yortsos [6]

z) (s)



where ¢5= -_ and ds is the spectral (Iilncnsion. For percolation networks, ds is related to the

mass fractal dimension D and the fractal dimension of the random walk dw [17] through

"2D

4 : (9)

Equivalently, we may use 0 = d,,, - 2 to write

1)
= (10)

While D is an expression of lh(, lllass clilnol_s]o_l, 0 is related to the network connectivity and

describes the deviation from ali or(lin;try rat_(lom walk in the fra,cta] network. Clearly, it is the

combination of both these par_me_,,rs t ltat contributes to the fractal response.

Contrary to the theorelica! ,'esulls. however, the numerical simulation is subject to finite

size effects. These are particularly zlotal)le whe,, tl,e well is "'off-centered" as explained below.

To analyze such effects, wc _o('usod our s(,n._itivity studies on the nunlber of generations, the

position of the weil and the rallclotl_lloss al_d irregularity of the pattern. As a diagnostic of true

fractal behavior we u,;ed tlm pro.,stlr(, resl)c,lse in a log-log plo(. According )o the theo,'y, the

plots of log PD and dl)D/dlogll) vs log tD lnusl bo! h be linear. Equivalently, we may monitor

the slope of these curves a_d t(,sl wl_ol Itor tl_(:v are constan( or not.

For a Euclideal, homogello()_)s )l(,lw(,rk. I)otll slopes should api)roach zero after an early
1

transient. This isirdeed tlle('as(' assllowll ill l.'igureS. The early response with slope of 7 is

present in all our sili_ulations, indicatilJ_ llow itr a sii_gl(, (or a few) fractures that directly feed

the well. It is interesting to note l l,al il is often tl_o seco_d curve (second derivative) that allows

a clearer identification of tlt(, t_n(h,rlyi_g st r_('l ure (it approacl_es a constant value faster). Also

shown in Figure 8c is the radial total t'ra('ture _ass plot corresponding to this regular network.

The plot is obtained bv tracing circles of il,cr(,asing ra(li_s around the well and by mea.suring

the cumulative fract.ure ]m_gtl_ will,il_ (,a('l_ suclt circle. In the homogeneous (:ase we expect a

radial slope of l at s_nall ,,(Iii (sil_gle l'ra('t,,ros orig;i1,aling fro)n llte well site) and a slope of 2

at larger values, charact(:rislic of ]_o)_()gi(.,_oo_ssvston_s. Tl,is is indeed displayed in Figure 8c.

Eor a. fl'actal network, the l.l)o(>r,lical t'ra('tal b(,l_avior is well displayed in Figure 9, which

shows the transient( resl)o]_s(, ot' a well al *ho cel_t,'r of the _no(lified Sierl)inski ga.sket of Figure 1.

After an early transienl, l lte lwo slol)(,s l'('lltail, ('Ol,Slal,l for a signiticanl interval of time, u_til

boundary effects are fell (l"ig_ro 91)). 'I'1_o('(_t_sla)_lslol)e is a clear i_dicalion of an underlying

1()



ffactal structure. In fact, the slope approaches the theoretical value of 0.26 (5 = 0.74), for

D = 1.59 and 8 = 0.16. This value of # was obtained by random walks on the network as

described by Orbach [14]. The numerical values of _ and _ are also in agreement with fluid flow

simulations performed iii modified Sierpinski carpets [15].

The fractal response is a COltSe(luence of the well developed radial fractal structure around

the well under consideration. \Ve confirm tllis in the associated radial mass plot (Figure 9c)

which shows two segments, one for sn_all radii with slope 1, related to the early transient, and

another at larger radii with slope 1.59. related to the later part of the transient response. For

finite size systems, radial fracta[ struct are is necessary in order to counteract finite size effects.

The modified Sierpinski gasket was next taken to investigate the effect of the number of

generations. The transient response for a gasket with nine (two less) generations is shown

in Figure 10a. The early behavior in I_otll Figures 9 and 10 is identicM. IIowever, because

of the additional length scale, tile respol_se of Figure 9 is extended over a longer period of

dimensionless time (one more cycle), tllus nlaking easier the identification of the constant slope

period. This result is consistm,t willl tlm previous analysis.

Finite size effects can be il_troduced by slight rearrangements, for instance by placing the

test well at an "off:centered'" position. I:'ig_lre 11 shows the transient response for a test well

placed at position B in the object of I:'igure la. lt is observed that the early transient of ½ slope

is prolonged, while the period of constant fractal slope al)pears later and it has much shorter

duration. The slope value is also sliglllly lower than in the case of position A. An explanation

of this behavior is as follows, l"or Iii,lie svstelns, the development of a sharp response del)ends

on how well a power law fits l lie radial lllass relationship around the test weil. For a perfect

fracta], this rela.tiolLship is of l lie power law lype witl_ ali exponent equal to the mass dimension

D (D < 2). Tills is not tl_e case for o_lt" tillile networks, l"or location B, the radial mass plot

shows at least three seglllellls. "I'll(, Iii'st. u'it 1, slope of 1 is longer than the corresponding segment

for positioq A. 'Fhis accoul_ts fc,r file lol_gr.,r lasting period of tlw early transierit at position B.

The last two segments of _he radial i_lass plot, with slopes 2.2.1 and 1.72 respectively, can be

related to respective features izl lho (lerivalive slope curve (dashed curve), t[owever, if the

network of Figure la were a s_ll)s(,t ()f a larger self'-simil_n" lletwork, a power law radial mass

plot an(l a t'ractal transient reSl)O1_St, xv¢_lld still Ilave I)een observed, mucl-i like in a l r_e fractal.

regardless of the position of 11_, w_,tl.
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In general, tile respmtse of tillile systc'_lls vary significantly with tile arrangement of tile

matrix blocks (cornputationally obtained by taking different realiza,tions). It appears that if the

blocks are arranged so that the radia,1 structure around the well possesses fractal characteristics,

the response is also fractal. This is consistent with the theoretical results, which assume radially

fi'actal characteristics [6], and with the findings of [15].

Pressure tra.nsient tests were a.lso conducted ibr the networks of Figures 6 and 7. The

square dot in the middle of the pattern indica.tes the position of the test weil. Results are

shown in Figures 12 a.nd 13, respectively. Although both pressure responses are very different

ft'ore the homogeneous ca.se (con_lmre with 1;'igure 8), neither test conforms exactly to the

theoretical expectations for a. fractal. 'l'he well of Figure 6 has a response that tends to a

constant slope, this behavior beillg consisl.elll wilh the radial mass plot which has certain

power law segments, llowever, it cal_not be used I o unambiguously ascertain the underlying

fracta.1. Even less revealing is lhc resl_},_se ot" l lie well of Figure 7, where the approach to

constant value occurs late alld it is interleretl wit.h boundary efDcts, lt should be stressed again

that thi._ depa.rture ft'ore the tlteor(,lical exlw('tations is only a result of the limited number of

gerterations a.llowed in the numerica.l colnl),ll, atio_,s (the objects of Figures 6 a,nd 7 have fra.ctal

characteristics over a small razJg(., of scales oj_ly). Coul)led with the irregularity and randomness

of the patterns, this limitation prevenls l lie idenliIication of the t'ractal structure. On the other

hand, many real systmns are more likely t.han not to cre,rain such limitations. Further work is

necessary to develop be, tier diagltoslic lecl,l,i<l,les for the idelltification of such networks.

A variety of other tests were als,'._ perI'ot'lued arid analyzed. The previous findings were

consistently confirmed, namely thal as lol,g as the nulnber of generations is small, the transient

response is unlikely to have the tl,eorelical cllaracteristics, unless the arrangement of matrix

blocks is such that a radially fracl, al sl rtlcture exits.

4 CONCLUSIONS

A method to create t'ractal fI'_cl,lre ,,¢,lw<,l'ks with l'ractal characteristics wa,s developed. The

method is based o1, a. ('o_nbin,atio_l c)[' life II"S techlli<luO for constructing t'ra,cta.l images [1],

and of a. probabilily rule ('OllSiSl(,lll \villi a ['r_lgl)l(_lllaliol| l)ro('ess. This technique allows one

to create two-(limellsiollal l')'ac,al ,l(,Ixw)rks will, ('()l,{;'oll('(l I'ragnlent sl,al)e, UPl)er a.nd lower

12



cutoffs, fragment sizes, and fractal (limension. Although not attempted here, the method call

be generalized for the creation of three-dinlensional networks.

The simulation of pressure tral_sients showed that the identification of the fi'actal object with

the help of existing theoretical met hods is possible only if a significant number of generations is

allowed, or, equivalently, if the object is fiactaJ over a. large enough range of scales. Otherwise,

finite size effects and randontness lllay dominate the pressure response and make difficult the

identification of the structure. This bel_avior serves to emphasize the importance of cutoff scales

in fractals.

NOMENCLATURE

ad = decimM value of binary nu_nber

A = a,'ea of fracture, L 2

cf = fluid compressibility, L_,_I-IT 2

D = box counting fractal dillwnsion

gij = conductivity of fracture that joillls nodes i and j,L 4

k = permeability of fi'acture. L '2

L = size of medium, 1,

t_= average size of fractllres of la._t gelleration, L

_D = dimensionless lengtl,

p = pressure, L -l_]lT -2

Pin = initial pressure, L-1317 '-_

PD = dimensionless pressure

pl = probability of ft'acturilJg for ['ragillenl of given size

O = mass flow rate, :_I7 '-I

r= size, L

.5' = fracturiltg l)armlwter

tD = dimensionless tilne

I'] = fracture volulne associalod Io no,lr, i, La

l'I" = fi'acture widlh, L

(.t -- llode llllllll)Ol"
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= parameter in fl'a,c;al fluid Ilow l'o,'lllulatiol,

3i,j -- source term for (lilnel_siol,less ltotatiolt

Ap = pressure drop, L-1AI7 '-_

AtD = ctimensionless time increllt(,lJl

A = conductivity exponent for ['ra(lures

p = density of fluid, .al L -:*

0 = conductivity index

lt = viscosity, L-1T-I:I
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Figure 1: (a) Modified Sierpinski gasket (11 generations) with self-similar IFS. Positions A

(square) and B (circle) (b) Corresponding box counting(,), fracture length (solid line) and

fragment size (dashed line) distributions.
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Figure 2: (a) Modified Sierpinski gasket (11 generations) with self-afl3ne IFS. (b) Corresponding

box counting(,), fracture length (solid line) and fragment size (dashed line) distributions.
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Figure 3: (a) Modified Sierpinski gasket (11 generations) with non-linear IFS. (b) Corresponding

box counting(,), fracture length (solid lille) and fragment size (dashed line) distributions.
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Figure 5: (a) Distorted fracture network (11 generations) using a quadrilaterM initiator and

Pl = 1. (b) Corresponding box counting (,), fracture length(o) and fragment size (x) distribu-

tions.
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Figure 8: Pressure transient response for a homogeneous network. (a) Pressure (solid line),

pressure derivative (dashed line). (b) Corresponding slopes. (c) Radial fracture mass plot.
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Figure 9: The response for the modified Sierpinski gasket of Figure la with well at A. (a), (b)

Pressure transients. (c) Radial fracture mass plot for position A.
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Figure 10: The response of the modified Sierpinski gasket (9 generations) with well at A. (a),

(b) Pressure transienLs. (c) tLadial fracture mass plot.
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Figure 11" The response of the modified Sierpinski gasket of Figure la with well at B. (a), (b)

Pressure transients. (c) Radial fracture mass plot for position B.
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Figure 12: (a), (b) Pressure transient response for the network of Figure 6. (c) Radial fracture

mass plot.
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Figure la' (a), (b) Pressure transient response for the network of Figure 7. (c) Radial fracture

mass plot.
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