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Here we relate two stellarator transport optimization schemes to single particle orbits.
We also show that reducing transport in the \jv regime reduces transport over a much
broader range of collisionality.

In unoptimized stellarators, the orbits of deeply trapped particles usually have the
greatest deviation from a flux surface and hence contribute most to diffusive transport
losses. Thus it is of interest to focus on these particles. Using the adiabatic invariant J*
[1,2], one can show that the most deeply trapped particles closely follow surfaces given by

/i-5min + e<t>E - const (1)

Here -Bm;n(
1Il, 8) is the minimum of B with respect to the Boozer toroidal angle, <f>, at fixed

Boozer coordinates $ and 8. The electrostatic potential, the magnetic moment, and the
charge are <pE, fi, and e, respectively.

If we make the usual assumption that <J>E is independent of poloidal angle, 9, then all
the poloidal dependence of fiBm\n + e<j>£ is through J9m;n. Indeed, if Bmin were independent
of 8, then the contours of constant nBm\n + e<f>E would be contours of constant 'I', and
the bounce-averaged motion of deeply trapped particles would not deviate from the flux
surfaces.

We can quantify these ideas by considering a simple model, r™agnetic field of the form

B = Bo {1 - et cos(0) - [ek - Aet cos(0)] cos(M0 - IB)} (2)

The minimum value of B with respect to <f> is

#min = B0 [1 - eh - Ct(l - A) COS(0)] (3)

Here we note that the parameter A is related to cr of My nick et al. [3] by

A = aeh/et (4)

From Eq. (3) we see that there are two ways to make Bm]n independent of 8. One way
is to set A = 1, which is the optimization scheme introduced by Mynick et al. [3]. The
second way to make Bmin independent of 8 is to arrange for e< to be equal to zero, i.e.
the quasi-helical or "straight" stellarator enunciated by Niihrenberg [4]. From J* one can
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show that setting et = 0 causes the bounce- and transit-averaged motion of all particles
(not just the deeply trapped particles) to follow the flux surfaces. Thus, while one would
expect that the et prescription would be more effective in reducing transport, it is still of
interest to examine the A prescription, since other design considerations may suggest the
simultaneous use of both prescriptions.

To examine the dependence of transport on A, we begin by considering the \jv regime.
This regime is formally independent of the magnitude of the electric field and is sufficiently
simple that a large amount of magnetic geometric detail can be incorporated analytically.
A sequence of analytic approximations has been developed for the \ju regime (5). For
our purposes here, it is sufficient to use an approximation that is usually accurate to a
few tens of percent. All the transport coefficients in this approximation have a common
geometric factor of the form

G = Jd9(9l- 2g2X + 93X
2) sin2(0) (5)

where the gn are functions of the single parameter

T) = 2 [efc - Ae, cos(0)] / [1 - eh - et(l - A) cos(0)] (6)

For eh. 3> £t, V — 2c^/(l — ek), and the integral in (6) is trivial. Minimizing the transport
with respect to A is then reduced to finding the minimum of the quadratic form

R1/v = 1 - 2A52/si + X2g3/gi (7)

The normalization of R\/v has been chosen so that it is unity at A = 0, allowing us to treat
it as a "reduction factor" for non-zero A. Because the factor G includes the effect of all
trapped particles, not just the deeply trapped ones, the minimizing value of A, 52/53, is not
precisely equal to unity and varies with e^. For example, when th — 0.3, the minimizing
value of A is 1.3.

By using the DKES code [6] to calculate the transport flux, Tn, we have compared
its \jv regime dependence on A with the dependence in other collisionality regimes. At
collisionalities just below the \(u regime, a peak in transport occurs as a function of
collisionality. The sensitivity of this peak value of transport to A is of considerable interest.
To compare "peak" transport with \Ju transport, we define a reduction factor by

* p e . k = r n ( A ) / r n ( A = 0) (8)

where both values of T\\ are to be evaluated at the peak in transport as a function of
collisionality (which may occur at different collisionalities for different values of A).

Figure 1 shows the two reduction factors, R\/v and Rpeaki f° r three different values
of the electric field parameter "EFIELD" = EJv. (The smallest value corresponds to
e<j>E/Te ~ 1, while the largest value corresponds to e<f>EJTi ~ 1.) For the cases shown,
eh = 0.3 and et — 0.1. Also shown is an estimate of the A dependence of the loss of
high-energy particles due to unconfined drift orbits (proportional to et|A — 1|). Notice that



the diffusive transport results for "peak" and \/u are quite similar and that the estimate
of direct losses is qualitatively similar.
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Figure 2 allows comparison of an unoptimized case (A = 0) with a A optimized case
(A = 1.3) and an ^-optimized case. All three cases have eh = 0.3. The unoptimized
and A-optimized cases have et = 0.1, while the e<-optimized case has et = 0. The electric
field parameter is E/v — 0.001. Other values of the electric field parameter give similar
behavior. Notice that a broad range of collisionality {u/v) is shown, and that both A and
et optimizations significantly reduce transport over the entire range.
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We conclude that both optimization techniques are effective at reducing transport
over a broad range of collisionality. This suggests that the two techniques can be used
simultaneously to reduce transport, while meeting other design constraints that are outside
the purview of transport.
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