* CERTAIN DATA
CONTAINED IN THIS
DOCUMENT MAY BE
DIFFICULT TO READ

IN MICROFICHE
PRODUCTS.

()L)/L/f“ (/4()/0 JgU 7 -..,5%0/.

Razived by 0§ 70 %1

DE91 006724
JAN 2 8 1381

"FINDING THE OBJECT" PROCEEDINGS ADDENDUM

October 1990

M.. A. Whiting
D. M. Devaney

Presented at the

Object Oriented Programing Sysctems

Language and Application / European
Conference on Object Oriented Programing '90
Ottawa, Canada

October 22, 1990

Work Supported by the
U. S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory

Richland, Washington 99352 MQQTER
‘ VAR
NS THIBUTIC 007 s e IZfY¢<§i

Pa=a a0 IO (A |
B SRR A A

A 1N ORI ISR o O i .

Finding the Object
An invited-participation, full-day workshop

OOPSLA/ECOOP '90
October 22, 1990
L'Orangerie, Chateau Laurier
Ottawa, Canada

Coordinators:

Mark A. Whiting

D. Michael DeVaney

Pacific Northwest Laboratory

PO Box 999

Richland, WA 99352

phone: (509) 375-2237

fax: (509) 375-3641

email: whiting%snuffy@pnlg.pnl.gov

Introduction

The purpose of this workshop was to discuss finding the object - that is, how software engineers
imagine, invent, design, or recycle objects and their behaviors for object-oriented software engineering.
The workshop organizers (and, as we subsequently discovered, several of the workshop participants)
felt that this'issue is crucial to successful object-orien ed software engincering (after all, finding objects
is what the process is all about, isn't it?). Unfortunately, when previous workshops have had the
opportunity to review and discuss techniques practitioners use to find objects, too often the results were
heated debates on "what is an object?" which becomes all consuming. We believed that, given
appropriate control over the question of which kind of "object” is being discussed (which meant tell us
what object you are trying to find, then tell us your method), a workshop to concentrate on techniques for
finding objects would be quite appropriate to the ECOOP/OOPSLA foruml,

Two situations at the organizers’ workplace, Pacific Northwest Laboratory, motivated the workshop
proposal. First, we have recently been attempting to hire persons versed in object-oriented technology.
Having interviewed several candidates, we found some recurrent themes ir our interactions:

* Most candidates had a very difficult time explaining how they went about finding objects,
g-ven their own definition of ‘what ' ‘objects” they used.

» Most candidates could quote the Booch method [Booch 1991] for finding objects via the noun,
verb, etc,, extraction fromn requirements specifications. However, most then turned around and
admitted that either the specifications usually weren't suff.ciertly complete to allow this
process to be effective, or that they intuitively (thought they) knew how to pick out objects for
the first implementation or prototyping attempt.

» Most candidates decried the lack of reference material that would have assisted them.
Generally, they only had available early Booch reference material and Shlaer and Mellor's
analysis work [Shlaer and Mellor 1988].

1 While discussing the workshop with a colleague, however, he quickly noted that there scemed to be
certain similaritics between "Finding the Object” and Where's Waldo (Handford 1987]-- a children's book where
the object is to find the intrepid traveller Waldo in various situations: on the beach, at the railway station, on the
camp site. Not to carry a facetious statement too far, the analogy becomes relevant when you consider Meyer's
statement: "the objects are just there for the picking” or Shlaer ar.d Mellor's statement: “Identifying objects is
pretty easy to do. Start cut by focussing on the problem at hand and ask yourself, 'What are the things in this
problem?™ :

o a W " Lo f . o g

The second situation involves the type of application our software engincers usually work on. Weare
often called upon to create innovative solutions to information processing problems our clients present.
This implies a high degree of conceptual design in our work. The conceptual aspect of object-oriented
software engineering (and how it fits into an integrated SW methodology) is of great interest at PNL
[Whiting; 1990] and in the technical community overall.

Participants ,
The participants represented interests focussing on several different aspects of the software ensrincering

lifecycle and brought experiences in several different design methodologies and documentation
schemes. They are: ‘

Sam S. Adams, Knowledge Systems Corporation
Erik Altmann, Camegie-Mellon University
Bruce Anderson, University of Essex

Kent Beck, MasPar Computer Corporation
Hassan Gomaa, George Mason University
Sanjiv Gossain, Nokia Telecommunications
Richard Helm, IBM T.]. Watson Research Center
Ian Holland, Northeastern University

Norm Kerth, Elite Systems

Stevan Mrdalj, Eastern Michigan University
Joachim Schaper, Digital Equipment GmbH
Edwin Scidewitz, Goddard Space Flight Center
Regan Wilkinson, Object International

Russel Winder, University College London

Agenda
- The morning session consisting of five preseritations, followed by question and answer sessions, sct the
tone for the workshop. The presenters and their position paper titles were:

Kent Beck, Finding Obijects with CRC Cards

Sanjiv Gossain and Bruce Anderson, Approaches in Object Determination

Hassan Gomaa, Criteria for Structuring a Svstem into Obijects

Richard Helm and Jan M. Holland, Laﬁgum:e Driven Refinement and Abstraction of Objects
Sam S. Adams, Object Discovery Process

The complete set of position papers and related information may be obtained from the workshop
organizers. Following the presentations, three topic areas were identified for further discussion during
lunch and carly afternoon, and results of the afternoon working groups were presented following the
discussions. '
Working Sessions
The group very quickly arrived at the three discussion areas for the afternoon. Thesc issues represented
recuriing themes or questions of interest raised throughout the morning. The arcas identified were:
Social Aspects - How can we describe the human interaction aspects of Finding the Object?
Strategies - How o you answer the question, "How do [go about finding the object?”

Roles/Kinds - What part do object "roles" or "kinds" play in finding the object?

Explanations, motivations. and focus points are expanded upon in the following sections.

e deee L e o T U

Results

Group 1- Socialization (Sam S. Adams) ‘

During the morning sessions, it was noted that several of the "finding the object” procedures depended
on the successful human interactions. For example, in their discussions of CRC (class-respensibility-
collaboration) card use, both Kent Beck and Sam Adams noted that the vitality of the process was
largely drawn from getting the people personally involved in the process. Having someane adopt the
identity of an object and role play was very effective in exploring that object's behavior. Also, working
out misunderstandings and role confusion created an atmosphere where the entire groups’ understanding
of the problem domain was raised. The Social Aspects group was formed to define and understand the
social parameters that affect object-oriented analysis, object-oriented design, and "finding the object”
in the context of the object-oriented software lifecycle. The three arcas the group concentrated on were
"people parameters”, the infrastructure, and the products, all with respect to the social element. The
caveat was raised that some issues would be best handled by those who have studied human
interaction processes--it was acknowledged that we were not specialists in those arcas however it
would be beneficial to cautiously proceed.

"People Parameters"

Initial questions: What is so different about the object-oriented software development process? How
does it affect the life-cycle? What social implications, therefore, come into play? The group noted
that, initially, a domain focus is implied. To obtain a domain focus, you can cither ignore the people
involved (not a good idea) or exploit? the people involved (domain experts, users,
analysts/technologists, facilitators, skill specialists) to achieve understanding in order to build better
systems for users. The converse of the statement is also true. To build better systems, understanding must
be gained, so people can be exploited, which implies more of a domain focus!

Other important people parameters generated by the group include:

* Types of people

e Number of people

* Problem complexity

 Flux in group make-up

» Need for documentation and communication

* Recording/expressing group processes

* Involvement of facilitators

» Process environment -- logistics, room makeup, etc.
* Problem immersion

* Role playing ~ anthropomorphism and scenario exploration
* DProcess activities -- wandering, shuffling

The importance of the changing nature of the group (the “flux") was raised. Different specializations
are required at different points in the life cycle. Problem domain experts are required at certain points;
solution domain experts (including implementation specialists) are required at certain points;
facilitators, managers, and so forth; arc all vital parts of the process.

Infrastructure
The focus for the infrastructure was on the process, tools, and, the development environment.

Processes used in object oriented development efforts seem to naturally lend themselves to enhanced
interpersonal interaction. This can be very clearly seen in the CRC card approach ([Beck and
Cunningham 1989}, and as enhanced by various groups). The approach encourages prototyping. Rele

2 "Exploit" being used in a positive sense here.

playing is vital to the process. Groups can be split and merged and results compared to gain higher
insight to problem domains. The "Field Trip” to the problem domain is a commonly used term to
daescribe the process of exploring and learning about the problem domain as a group.

Tools are required to record, express and facilitate. The process must be captured, yet the tools should
~notdictate the process. Group memory and the learning process should also be captured. Decisions
- should be recorded as well as the rationale behind them. This information should be continually
recorded, maintained and made accessible throughout the entire life cycle.

The environment provided to the object-oriented software engineering tcam must support the process in

several dimensions. Not only should the trappings of a process be provided (e.g., appropriate room

space, tables, CRC cards, markers, and so forth), facilitators should be present, automated support tools
i should be available, an appropriate development environment should be available, and so on.

Products .
Object-oriented development is a process that is evolutionary with the goal of product delivery.
However, intermediate products, those generated by one phase to be used by the next phase (or by an
iteration over the same phase) must be increasingly people-oriented. Object oriented specifications, for
example, must be organized to accommodate change, and there is now a higher emphasis on reuse.
Libraries and frameworks are including the results of implementation, plus analysis, plus design. There
is an enhanced focus on using previous results here as well.

1 .
Products are generated via the process with appropriate tool use. The following shows the
relationship between tools and products:

Tools Products

Express---> Results

Record----> Rationale/History/Audit Trail
Facilitate-> Group Interaction/Team Building

The benefits of optimizing the social interaction parameters seem to be applicable over the entire SE
life cycle. Products must be able to be communicated and understood over time.

Conclusions

Object-oriented processes change the focus of software engineering activity. With approaches focused
on modelling the problem domain, the development team is led to consider issucs of concern to a wider
range of people than in traditional approaches. Increased involvement by different parties in the
development cycle leads to social interactions that should be exploited. Object orientation is the
unifying concept that can be applied throughout the development cycle. Object orientation leads to
social interaction, and sc zial interaction leads to object orientation.

il
|
!
|
|
i
|
1

Group 2 - Strategies (Stevan Mrdalj)

The goals of this working group were to discuss and compare opposing strategies for "finding the object”,
i.c., for developing an object-oriented model for an application. The two main points of discussion
revolved around:

1. Prescriptive versus Exploratory methods, and

2. Top down versus Bottom up systern decomposition approach.
The group started the discussion about prescriptive versus exploratory methods with the following ~
definitions of the terms used.

The term "methods," above, refers loosely to any mechanism (technique) that assists in discovering
(finding) the objects in the svstems.

The term "prescriptive” implies detailed guidelines for system modeling, given in terms of tasks,
checklists, and deliverable. It also implies a restricted set of options available to the developer at
cach stage. Prescriptive methods allow easier tracking and control of the development process, and
ben fit development by promoting completencss and correctness.

The term "exploratory" implies an open, less formal approach. An exploratory mcthod guides
development with a minimum number of constraints with some high-level guidance obtained from the
emphasis on "look and feel” and observation. Also, the output at any stage of exploration is a
refinement of or addition to the output of some previous stage. Exploratory methods do not facilitate
the control of the development process. However, they do support the process of coming to understand
the domain and the requirements of the system.

The following are examples of the methods presented at the workshop with the various levels of
prescriptivencss:

1. Gossain and Anderson's approach uses five categories of objects (classes) and a domain analysis
process which consists of six well defined steps. This method is outlined in their position paper.

2. Helm and Holland's Demeter/Contracts method guides modeling with seven pairs of questions any of
which can be asked at each stage of the exploration. The answers to the questions are phrased in terms

of specific constructs of the language ar.d result in a new abstraction or refinement of the existing model.
This method is outlined in the position paper and represented in the membership of the working group

with Richard Helm and lan Holland.

3. Class/Responsibility/Collaborator (CRC) cards method, which has only a simple, flexible, and
expressive specification machinery (vehicle) associated with it. But it provides very little guidance
for modeling. It was represented in the working group by Kent Beck.

In the first example, each stage in the process dictates particular activities, and what the following
stage is to be. The second example represents a less formal method in which questions can be variably
intermixed and can occur in cycles. The last cxample is the most exploratory method in which the
exploration is driven by test cases and execution scenarios.

Rather than decide on "the best" way to discover the objects, the group attempted to relate the
suitability of the alternatives to the level of knowledge held about the domain and the application.
(The level of domain knowledge was also taken to increase as a function of the experience of the
development teams, assuming transfer of generalized knowledge acquired in other domains.) The graph
proposed by Erik Altmann, shown in figure 1, represents the consensus reached by the group. The x-axis
represents the amount of knowledge held about the domain, and the y-axis ranks development methods
by prescriptiveness. The dashed diagonal line is a guideline that relates prescriptiveness of methods to
the amount of knowledge held about the domain.

The main points interpreted in the figure are as follows:

1. If the domain is well-known then previous experience will likely provide much of the structure of the
domain model and the requirements of that model. In this context, a more prescriptive approach would
be suitabie, as it would lead "finding the object" along a well defined path and prevent omissions and
unnecessary reinvention,

Z. If the domain or the application is unfamiliar, then an exploratory approach is appropriate. With
exploration the domain knowledge required to build a sound model can be discovered and rerined.

\

3. The guideline suggested in the graph can be applied recursively to all aspects of the modiel and at all

Development

methods
A ¥4
Prescriptive 7
‘ /
/
/
/
) /
Gossain-Anderson ——— N Y
&7
0
N g
, ®o°’/
Demeter/Contracts —4— \(‘@ Y
/
/
/
4
C'RC cards —t— y
/
e
/
/ .
Exploratory Domain

Domain Domain Knowledge

Poorly Well

Understood Understood

Development methods versus Domain knowledge

w

stages of the development.

The group also reached a consensus on the question of Top Down versus Bottom Up approaches to object
oricnted system decomposition. Kent Beck suggested that neither of these really applics, rather that
modeling progresses from the "Known to the Unknown". Whether the "Known" portion of the model is
some concrete object or a high level abstraction depends on the experience and Lias of the developer.
Each stage, after cither abstraction from the concrete or refinement of an abstraction, vields some new
known information. Stevan Mrdalj demonstrated that both Demeter/Contracts and CRC can be used in
Top Down as well as in Bottom Up fashion and that the side from which system decomposition should
begin depends on the level of domain knowledge.

Group 3 - Roles/Kinds (Norman Kerth)

During the workshop, it was noted that four of the participants had identified lho casting or
assignment of object roles as a distinctive element in the process of "finding the object” (FTO). It avas
also observed that object-oriented software engincering (OOSE) book authors (c.g., Booch,
Coad/Yourdon) have also identified role casting as part of their FTO processes. It was further
mentioned that there appeared to be similarities and overlaps between the identified roles.
"Roles/Kinds" was chosen as the third area to explore by an afternoon working group session.

Purpose

The "Roles/Kinds" group's primary objective was to.compare and contrast the three scts of roles
identified in the participants' position papers/presentations. Other objectives were to review the
cvolution of roles from the participants' experiences in developing their FTO approaches, to
characterize roles, and to identify the Why, When, and How of roles ("What" being part of the
primary objective). More specifically,

Why - Why use roles? \\'hat support do they provide to OOSE?

When - When should you introduce roles to thL FTO (or OOSE) process? Can we pravide any heuristics
for this?

How - How do you assign roles? How should roles be used?

Definition :
Working definitions are the most desircable asset a working group can Vhav ¢, but also the most difficult
to reach a consensus upon. Object-oriented jargon provided us the worst stumbling block in analyzing
“role." However, there did scem to be an intuitive agreement among the working group members as to
what extent we understood role (i.e., we had a good feel for what we were talking about), what clearly
was not a role, and where the fuzzy arcas of our understanding lay.

Role = ¥ind # Class # Type

Roles are groupings to assist in the conceptual processes in OOSE. Roles may change depending on
several different influences, e.g., the stage of OOSE you arc in, the applicalion type you are attempting
to construct, the view vou are ums\dcrms’ and so forth. An object's rol assighment may, thererore, also
change as these factors change.

Background -
Norm Kerth opened the dizcussion with a brief sketch of how roles evolved in his approaci
His micthod involves a combination of Information Modelling [ala Shlaer, Mcllor) asa
understanding the knowledge within the user's environment, plus Event Partitioning [De?
McMenamin) for under\bnomw the transition of data lhrom_hom the system, plus his own 3D HIP
process to model the human interface to be developed. He round that understanding the diiferences

[RS Sy | NS NS TSRS | KON A [o . W .

between the kinds of objects in the system to be built was crucial to the overall undcrstandmg of the
system to be built. Idontlf\mg these kinds led to his creation of the roles as outlined in his position

papcr.

His expericnces prompted some discussion of role evolution from the other participants . The following
(paraphrased) summaries were elicited from the participants in response to: "How did roles become
part of your approach to FTO?" Kerth - "I needed to capture objects from several rcquircmems
documents from several different views--roles helped to organize this.." Gossain - "\Ve needed to look
at roles to assist in getting through the dcmgn particularly in the transition from problem domain to
solution domain..." Gomaa - "Roles assist in the simulation of the real world during analysis -- also for
the move toward implementation...” |

What Roles Have We Identified?
The following role scts were examined by the working group. Explanations of each role can be found in

the particular author's position paper. .
Gomaa Gossain/Anderson Kerth
Problem Domain Domain Foundation
External Interface Factor Migration/Knowledge
Data Abstraction Application System Domain
Entity Mcdelling . Bridging Application Domain
Control Basic ‘
Algorithm, '
User Role

Solution Domain
External Interface
Data Abstraction
Entity Mo#(elling
Control
Algorithm
User Rele

Attcmpts at a written consensus of the roles was not as fruitful as our attempt to graphically portray
the overlaps (due both to time constraints and the jargon problem). Figure 2udet illustratesthe
graphical consensug reached by the group comparing roles. The considerable degree of commonality
discovered became known as the "Kerth Surprise Factor" and was shared by tho group as a w hole,”
Why Roles? ‘%

Russel Winder su"dinctly stated that "roles provide compartments for thinking." These compartments
may be orthogonal - functionality may be a division, as may be view. Butcach may be required to
enhance unde rstandmg of the proolcm domain.

When Should Roles be Intr«duced?
A heuristic agreed upon by the group was as follows:

Roles may or mav nat be intreduced to an OGOSE effort depending upon the size of the problem, the size
of the teamn handlwv the probiem, and "comiort level” of the individuals working the problem. Small
ciforts probably won't need roles. Inarger efforts, the application siz¢ may require the introduction of
roles to assisi in the overall organization of the objects found. A large C OSE team may require the
introducticn of roles to agsist.in discussing and contolling the object set. Roles may also help
individuals to think apout the pretlem and solution.

How are Roles Assigned?
This was not analvzed in depth, however, the question was asked, "When a role sel has buen decided

' Figure 2- Consensus on Roies'/Kinds

| FSYSem g
\quain N

\ e
.\\\'\\\\\\\\\\\\\\\\\\\'

7,

I & i
] : .:g ' . \\\\\\\\\\\\ g
! g Q\\\\\\\Appncawon‘s
5 QuNFoundy Y Domain |
: ¥ N G N N 3
L ! % ation % % §
\ R \
N NR N
L N
Basic™ \ , § § §
: N
| § § :Q\\\\\\\\\\\\\\\\\\Q
.: \ \
3 N U xeaeae .
13 N ‘\\\g NCETBRRSAN
i) § \ §:edge §
\ NN \
’ ‘ N NI N
N Y N N
N ¥ N N
N Y N N
N Y N N
N) § ‘ §
.\\x\\\\\\\\\\\\\\\% Ay

wa -

Anderson/Gossain NN Kkerth

~System Domain

=== Domain

.\\\\\\:
= =
=N ‘ E\
== N
= = = N EN
= = E 5\\\\\\\.\\\\\\\\\\\\\\\\\\\':‘\
E EBeYe—m ____ __E g
E eV g
S = ‘ Application Domain
= E Prcblem ~HPIC “
'E‘ E - Oomain
= Problem ==t E WADD ‘ ication VI U S U O E R U e
= Domain* N YIFacior weseenn g'ob’,ﬁé}n ST
E =75, lution £ 2 AR NS
= - S = Solution 2\
Domain g 2 \\g
N

|

IR

I!llIHlllunlIIN(IHIIHHIHHIH!I]
1

(//
! |
YIS

I
(it

’,
7
[}

T
.

e
1
’,

3

3
§
N
3
L1
3
h
)
H
H
H

7
7
Z
7
‘

g

7
/
;l
Z
“i

’Eé;s‘}c R

|

QENRRRIRRRRRRRY f\\\\\\\\}‘
Kncwiecge ¢

il
¢

s vy

IHHIiilIHI(H!HIHIHIHHII!IHIIHIHIHIHIHIHHIHI

HHHIRIHHTTH

1l

Tt
it

1

ILL AL LS LS A S SIS S,

" *-Consists of 8 different
"roles”

TS PRI Y £ e > e o Ao R O

4
i
2
§
§
:

—

ENNRS
Foundation R
SO A nA s

[T ITCOCN

SIS TIITLETL IS IS TS0t s,

s

AR R N R DO

S99 0555w,

e

-

.

e G Omaa
Combined Figure

upon, can you find obijects to fulfill particular roles?" The consensus scemed to be positive, and that you
can iterate through a role set guided by your understanding of the problem.

Relationship of Roles to Other Workshop Werking Groups

The use of roles is a consideration when developing any overall strategy to finding objects. The "When”
heuristic is applicable here. However, the discussion of role did not come out in the Strategy group's
(Group 2) discussions (which was not unexped’~d as it was bevond the scope of their topic set). The idea
of role development with respect to group size and socialization aspects of an OOSE team in developing
understanding of a problem was touched upon by the Socialization group (Group 1), and fits into their
overall framework of object use in the software engincering process.

‘ Issues for Further Study

. The group agreed that it is not the appropriate time to attempt to create a standardized sct of roles;

the concept should be further explored overall before a first try. Further analysis and comparisons of .
other role sets that have been described in the literature may be very w orthwhile. There was-also a

! suggestion in the group that different role sets may be common to ditierent application type (c.g., real-
time oriented vs. data-base oriented vs. modelling oriented, and so forth), but this was not C\plorcd in
any detail.

References
Beck, K. and W. Cunningham. 1989. "A Laborator\ for Teaching Object-Oriented Thinking.” OOPSLA

‘89 Conjcrcnce Proceedings. ACM Press, New York.

Booch, G. 1991. Object Oriented Design with A;}plications. Benjamin/Cummings Publishing Company,
Menlo Park, California.

Coad, P. and E. Yourdon, 1990. Object Oricnted Analysis Yourdon Press,
Englewood Cliffs, New Jersey.

Handford, M. 1987, Where's Waldo?. Little, Brown, and Co., Boston, MA.

"Proceedings of the Workshop on Finding the Object, OOPSLA/ECOOP," October 1990, Ottawa Canada.
(Available from the workshop organizers)

- Shlacr, S. and Mellor, S. 1988. Object-Oriented Sustems Analysis. Yourdon Press, Englewood Cliffs,
New Jersey. ‘

Wirfs-Brock, R., B. Wilkerson, and L. Wiener. 1990. Designing Object-Crientea Softizare.
Prentice-Hall, Englewood Cliffs, New Jersey.

Whiting, M. 1990. "Conceptual Object-Oriented Dusnjn Pacific Northwest Software Quality
Conference 1990 Proceedings. October 29-31, 1990. Portland, Orogun

IR N R I .

Acknowledgements
This work was supporied by the U.S. Department of Energy under contract DE-AC00-76RLO 1830,

[' ' o ' . . ! e . . . P . 'L

g gy

- ——

u -
LRI - L DR L | S SR R ——

