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TWO VARIANTS OF MINIMUM DISCARDED FILL ORDERING *
E. F. D'AZEVEDO !, P. A, FORSYTH! AND WEL-PAI TANG !

Abstract. It is well known that the ordering of the unknowns can have a significant effect on
the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been consider-
able experimental work on the effects of ordering for regular finite difference problems. In many
cases, good results have been obtained with preconditioners based on diagonal, spiral or natural
row orderings. However, for finite element problems having unstructured grids or grids generated
by & local refinement approach, it is difficult to define many of the orderings used for more regular
problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in
finding high quality Incomplete LU (ILU) preconditicners, especially for problems arising from un-
structured finite element grids. Testing indicates this algorithm can identify a rather complicated
physical structure in an anisotropic problem and orders the unknowns in the “preferred” direction.
The MDF technique may be viewed as the numerical analogue of the minimmum deficiency algorithm
in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses
the next pivot node 8o as to minimize the amount of discarded fill, and hence the MDF ordering is
expensive to cornpute for high-level ILU preconditioners.

In this work, two efficient variants of the MDF technique are explored to produce cost-effective
high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop
tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques
identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum
Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely
related to the minimum degree algorithm. The MUM ordering is especially effective for large problems
arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using
a visualization tool developed at the University of Waterloo.

1. Introduction. There has been much interest in the effects of ordering on
ILU preconditioners [3], [6], [8], [9], [14]. In this work, two less expensive variants of
the Minimum Discarded Fill ordering (MDF) [3] for use with drop tolerance incom-
plete factorization techniques are explored to produce cost-effective high order ILU
preconditioners.

Munksgaard [13] and Zlatev {22] have considered the technique of generating ILU
preconditioners by discarding “small” fill entries that are less than a given tolerance
€. The approach works well for some problems but is sensitive to the initial ordering
of the matrix for strongly anisotropic problems. To see this, consider the following
anisotropic problem

(1) KUsgs +Uyy = f(-t,y) ) (xyy) € (0) 1) X (Ov 1)

with Neuman boundary conditions, K = 100 and discretized on a 30 x 30 regular grid
using the five point molecule with h as the grid size. The right hand side f(z,y) was
defined as

1 if (z,y) = (h, h),
flzyy =4 -1 if(z,y) =(1-h,1-h),

0 elsewhere
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TABLE 1
Factorization and soluiion times for anisotropic problem with drop tolerance ILU preconditioning,

Drop tolerance preconditioning, € = 0.001

Fact. Fill Iteration
Ordering | time | in L | r=10"% | r=10"1¢
z-y 0.15 [ 10242 | 0.19(7) | 0.27(23)
Y-z 0.04 { 2705 | 0.11(13) 0.15(18)

The resulting matrix froun (1) was scaled to unit diagonal and solved with a pre-
conditioned conjugate gradienf. (PCG) method using an ILU preconditioner obtained
from a drop tolerance strategy with £ = 0.001. The zero initial guess was used and
the convergence tolerance was a specific reduction 7 in the I norm of the residual.
Table 1 shows the effects of the natural z—y ordering and natural y—z ordering on the
(incomplete) factorization time, number of off-diagonals in the ILU L factor, solution
time and iteration counts (in brackets).

Close examination of the entries in the ILU factor L reveals a slow decay if the
natural z--y ordering was used (nodes in the z-direction numbered first). If the natural
y-z ordering was used, an effective preconditioner can be constructed using the drop
tolerance technique.

In this work, our experiments show drop tolerance incomplete factorization with
the threshold MDF strategy is effective in identifying anisotropy in complicated phys-
ical structures and orders the unknowns in a “preferred” direction. This threshold
MDF technique may be viewed as a numerical analogue to the minimum deficiency
algorithm [18). A rough estimate of the time complexity of threshold MDF algorithm
is O(nd3) where d is the average number of nonzerc entries in each row of the fill
matrix L 4+ U and n is the size of the original matrix. The threshold MDF technique
is most practical when similar matrix problems need to be solved repeatedly, such as
solving the Jacobian matrices in Newton iterations (2], [5].

There are matrices arising from three-dimensional finite element analysis that
have a large connectivity initially, making the threshold MDF ordering too costly
to compute. For such problems, we propose a more efficient minimum updeie ma-
iriz (MUM) ordering that is analogous to the minimum degree ordering [11]. Only
the norm of the updating matrix (without consideration of actual fill-in entries) is
examined in the ordering process.

The organization of this paper is as follows. In §2, we introduce our notation for
describing the drop tolerance incomplete factorization. In §3, we provide additional
insight into why the 2—y ordering performs poorly when solving (1). A description
of the threshold MDF algorithm is contained in §4. A similar presentation for the
MUM algorithm is given in §5. We describe our test problems in §6, and results are
presented in §7.

2. Drop tolerance incomplete factorization. The LDU factorization of an
n x n matrix A can be described by the following equations:

4 _ld By _| Y 0 di 0 1 8
A“A""[al B | T | an Ina 0 A |0 I

Ar=B-Uy, U = ay B} /dy .

where
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At the k*» ster
do | B[ 0 e 0 1[1 Bt
-t ar B ap  In-k 0 A 0 In-s

Ag = By - Uy, Ur = o /di

Here I,_i denotes the (n — k) x (n — k) identity, di a scalar, oy and B¢ are column
vectors. The matrix Ay is the (n ~ k) x (n — k) submatrix that remains to be factored.

In the drop tolerance incomplete factorization of matrix A, “small” entries in
the factor are discarded to prevent excessive fill and computation. Let Fj contain
the dropped entries. Then the incomplete factorization proceeds with the perturbed
matrix

where

(2) Av=Ay - Fo =By - Uy - F; .
In this work, we have used the criterion
k .
WP < emin(Ri, R;) ,  Ri= llaialloo = nmax [@im]

for discarding small entries in matrix U,

3. Anisotropic problem. With Theorem 3.1 (see [4] and [12] for proof), we
shall see why the natural 2-y ordering performed poorly with the anisotropic problem
(1).

If A is symmetric, the fill entries in factor L can be conveniently described through
a graph model {15], [186. Let the elimination sequence be vy, - - -, v, and G = (Vk, &)

be the graph of Ay = agf) ,
Ve = {vke1, -+ vn} & = {(‘Uhvj) | GS;) #* 0} .
It can be shown [10] that, there is a nonzero entry l;; if and only if there exists a path
(vis Viy,* + 1 Vi, vj) in the graph of A where
Vigy 'y Vi, € {Uls"’)vj-—l} .

The size of l;; is related to the size of entries on this path.
THEOREM 3.1. Let A be an M-matriz and let (vi,vi,, -, vi,.,v;) be a path in
the graph of A where

Uiy 'y VUi, € {Uh"';v;’—l} )
then fori > j

|’-‘jl > iaihaiu’g"‘ai.,.jl

, dyp = agy .
d;,d, - - - d;,, d; BT

For the anisotropic problem (1), the resulting matrix is 2 symmetric M-matrix.
All edges aligner along the z-axis (y-axis) have values O(K/(K + 1)) (O(1/K)). If
the natural z-y row order is used, all new fill entries will have the “z-orientation”
(see Fig. 1). From the lower bound in Theorem 3.1, the new fill entries will have a
slow decay rate. Conversely, if the natural y-z ordering is used, all fill entries will
have the “y-orientation”. The resulting ILU decomposition will be much sparser.
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z—y ordering

y-z ordering

F1G. 1. Orientation of new fill entries in z—y and y-z orderings. New fill entries sndicated by -+ .
4. Threshold MDF. The minimum discarded fill strategy is based on the ob-
servation that a small discarded fill matrix Fj in (2)
Ak=Ak—Fb=Bk~Uk—Fk

would produce a more “authentic” factorization for matrix A. We associale the Frobe-
nius norm of discarded fill matrix Fi. to the discard value for node v; as

1/2
discard(vg) = ||Fellp = E}: Fj '
i>15>1
where
) ui if luij| € ¢ min( R;, R;),
(3) By = { 0 otherwise.

The basic idea of the threshold MDF scheme is to eliminate the node with the
minimum discard value at each stage of the incomplete factorization process. Note
that at each step, if v is chosen to be eliminated, only discard values for neighbors
of v need to be updated [18].
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The following is a description of the threshold MDF algorithm:
An = A
for each node v;
Compute the discard value discard(v;)
end
for k=1...n-1
Choose v; with minimum discard value discard(v;) in matrix Ax~, (break ties
arbitrarily).
Update the decomposition,

Uk = apf/dx

Ak = Bk - Uk - Fk ’ where PkAk_lpg = [i: gi] ’

Fy defined by (3) and P, permutes row v; to first position.
Update the discard values of uneliminated neighbors of v;.
end

5. MUM ordering. The most costly part of computing a threshcid MDF or-
dering is the traversal of adjacency lists in determining which u;;’s are discarded while
updating the discard values. If the average node degree is high, the threshold MDF
ordering is quite expensive. We propose a simpler scheme, the minimum update ma-
triz (MUM) ordering that is motivated by the minimum degree ordering {11). The
computation of the discard value is

. - - u; ii#j,
discard(ue) = (Oulle , ag={ 5 Bi%D

where the matrix U, contains the oft-diagonal entries of Uy.

Note that threshold MDF ordering has discard value computations intimately
coupled to the incomplete factorization strategy. The discard values are the norm of
the actual discarded fill matrices. The MUM ordering uses a simpler (less precise)
measure for the discard value and is less coupled to the factorization strategy nsed.

For anisotropic problems with small computation molecules the MUM ordering
may fail to identify the “preferred” direction. Examination of the ordering process for
the anisotropic problem (1) shows both the £~y and y-z orientations have updating
matrices with the same norm. Without considering the actual discarded fill entries,
the “preferred” direction cannot be identified. However, we find the MUM ordering
works quite well if the average node degree is high (a large computation molecule) and
the decay rate in LU decomposition is less sensitive to the anisotropy in the problem.

6. Test problems. The following problems are derived from solving convection-
diffusion equations and linearized Navier-Stokes equations.
Problem 1 (STONE). This is Stone’s third problem [19]. The equation

e} opP o oP
) 5z ("’79‘5) t oy (Kv 'az‘) ==

was discretized on the unit square with a finite difference technique (see Fig. 2). A
33 x 33 grid was used, and a harmonic average was used for discontinuities in /X, and
Ky [1]. Denoting x; and y; for i = 1,---,33 to be the grid nodes on the z-axis and
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e q2 (3,27) (27,27) q5 o
D
A
® g4 (14,15)
o B
oq1 (3,3) * 9 (23:4)

F1G. 2. Stone’s third probdlem.

FI16. 3. Threshold MDF ordering with € = 0.001 for Stone’s third problem. Lightest, first;

darkest, last.

y-axis respectively, the values of Kz, Ky and q are:

(1,100)
(100, 1)
(0,0)
(L

(Kei Ky) =

q1(3, 3) = 1.0,

if (z,y)€ B, 14<z<30,0<y<16

if (z,y)€C, 5<z<12,56<y<12
if(z,y)eD, 12<z<19,21<y<28 "’
if (z,y) € A, elsewhere

72(3,27) = 0.5, ¢3(23,4) = 0.6,

qa(14,15) = ~1.83, ¢5(27,27) = —0.27 .

Figure 3, which was produced by the visualization tool Matview [20], shows the

threshold MDF ordering.

Problem 2 (ANISO). This problem has the same equation as in (4) except the

6
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F1G. 4. Threshold MDF ordering with € = 0.001 for anisotropic problem (ANISO). Lightest,
first; darkest, last.

value distributions of K, and Ky, are different:

(1,100) if0<z<1/2, 0<y<1/2
(100,1) if1/2<z<1, 0<y<1/2
(1,100) if1/2€2<1, 1/2<y<1’
(100,1) if0<z<1/2, 1/2<y<l

A 30 x 30 grid was used. Figure 4 shows the threshold MDF ordering for this problerm.

Provlems 8,4 (LNS511, LNSP511). LNS511 and LNSP511 are unsymretric ma-
trices of order 511, arising in the solution of linearized Navier-Stokes equations using
velocity-pressure formulation. They were extracted from the Harwell-Boeing collec-
tion of test matrices [7]. LNS511 corresponds to an ordering by variable type with ve-
locity variables, preceding temperature, preceding pressure variables. The discretiza-
tion scheme resulted in zero diagonals in rows corresponding to the pressure equations,
LNSP511 is LNS511 permuted so that all variables at the same grid point are grouped
together.

Problem 5 (NS2D). This problem was derived from a finite volume discretization
of the incompressible Navier-Stc kes equations [16]. A 40 x 40 grid was used to model
the backward step problem, with a Reynold’s number R, = 1000. The matrix was
generated from the Jacobian produced for the second Newton iteration.

Problem 6 (NS$D). This problem was derived from a small three dimensional
finite element discretization of the incompressible Navier-Stokes equations [17]. Use
of a finite element method in three dimensions resulted in a very large computational
molecule. The test matrix was generated from a Jacobian produced near the start of
a pseudo-time solution of the steady-state problem.

(K Ky) =

7. Numerical Results. The computations to solve the test problems were car-
ried out on an IBM RISC/6000 workstation. The initial vector x? was chosen to be
the zero vector and the convergence criteria were

leklle < el , 7 =10"%,107"2,

where r¥ was the residual vector after the kP iteration. CGSTAB [21] acceleration
was used for the unsymmetric Navier-Stokes problems. The best value for the drop
tolerance threshold ¢ is obviously problem dependent, but we have found 10-2<e<
10~4 to be quite effective.

Tables 2-7 show the ordering times, amount of fill, factorization times (in sec-
onds), the acceleration times and the number of iterations (in brackets). ORG(1d-3),

7
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TABLE 2

Results for Stone’s third problem.

STONE, order 961, 4681 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration

Threshold Time in L inU | Time { r= 1_9"’ | r=10"1%
ORG(1d-2) N/A 3417 3417 | 0.08 | 0.28(31) | 0.35(40)
ORG(1d-3) N/A 6695 6695 | 0.09 | 0.14(13) | 0.20(19)
ORG(1d-4) N/A 11262 11262 | 0.16 0.07(5) 0.12(9)
MDF(1d-2) 0.67 4090 4090 | 0.06 | (.14(14) 0.19(20)
MDF(1d-3) 2.04 6666 6666 | 0.09 0.07(7) 0.12(11)
MDF(1d-4) 5.06 9094 9094 | 0.13 0.06(5) 0.09(7)

TABLE 3
Results for ANISO.
ANISO, order 900, 4681 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration

Threshold Time inL inU | Time [ 7=10"% [ r=10"17
ORG(1d-2) N/A 1967 1967 | 0.04 | 0.34(40) 0.61(73)
ORG(1d-3) N/A 6234 6234 | 0.10 | 0.18(17) 0.37(36)
ORG(1d-4) N/A 10955 10955 | 0.16 | 0.15(12) 0.33(27)
‘MDF(1d-2) 0.30 2697 2697 | 0.05 | 0.36(40) 0.64(72)
MDF(1d-3) 0.78 { 4872 4872 { 0.07 0.09(9) 0.20(20)
MDF(1d-4) 1.21 5864 5864 | 0.08 0.05(5) 0.13(13)

MUM(1d-3), and MDF(1d-3) dennte the original ordering, the MUM ordering and
threshold MDF ordering respectively with drop tolerance factorization where ¢ =
0.001.

Without consideration of actual fill entries, the MUM ordering faiied to detect the
“preferred” direction for STONE and ANISO. Results of MUM are similar to those
of the original ordering and are omitted. Threshold MDF showed improvement in the
amount of fill and faster convergence over the original ordering (Tables 2, 3).

Since ties were broken arbitrarily in MUM and threshold MDF, results in LNS511
and LNSP511 were similar but not identical, Tables 4 and 5 indicate threshold MDF
ordering yielded better preconditioners but were more costly to produce than MUM
ordering.

For problems with large computation molecules, MUM is much less costly than
threshold MDF and still produce substantial improvements (Tables 6, 7). Ordering
times for threshold MDF for problems NS2D were over 600 seconds and are not
presented.

To prevent excessive fill and computation for the three-dimensional problem
NS3D, only ILU (levei 0) factorization with no new fill was used. The original order-
ing did not converge, while MUM ordering (surprisingly) performed even better than
MDF ordering (Table 7).

To summarize, our numerical tests show the drop tolerance incomplete factoriza-
tion with threshold MDF ordering to be effective for problems with small computation
molecules, while MUM ordering works well for problems with large molecules.
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TABLE 4

Results for LNS511.

LNS511, order 511, 2796 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration

Threshold Time in L inU | Time { 7=10"° | r =107"¢
ORG(1d-2) N/A 12116 6878 [ 0.17 | 1.03(74) 1.21(88)
ORG(1d-3) N/A 15589 9073 | 0.27 | 0.41(24) 0.47(28)
ORG(1d-4) N/A 19748 13179 | 0.48 | 0.33(16) 0.41(20)
MUM(1a-2) 0.69 3944 4245 | 0.08 ] 0.28(31) 0.36(40)
MUM(1d-3) 1.05 5493 | 5060 | 0.10 | 0.24(24) 0.27(27)
MUM(1d-4) 1.89 7255 7133 | 0.17 | 0.16(14) 0.22(19)
MDF(1d-2). 5.48 4616 4467 | 0.08 | 0.19(18) 0.21(23)
MDF(1d-3) 8.44 5121 5456 | 0.10 0.09(9) 0.11(11)
MDF(1d-4) 8.02 5224 5260 | 0.09 0.03(3) 0.06(5)

TABLE §
Results for LNSP511.
LNSP511, order 511, 2796 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration

Threshold Time inL inU | Time [ r=10"° | r=10""7
ORG(1d-2) N/A 5039 4855 [ 0.08 [ 0.54(55) 0.77(80)
ORG(1d-3) N/A 5690 5791 | 0.08 | 0.25(22) 0.31(30)
ORG(1d-4) N/A 6071 6507 | 0.10 0.10(9) 0.12(12)
MUM(1d-2) 0.76 4191 4414 | 0.07 | 0.23(23) [ 0.26(29)
MUM(1d-3) 1.10 5709 5139 | 0.10 | 0.17(17) 0.23(23)
MUM(1d-4) 2.24 7800 7736 | 0.19 | 0.15(12) 0.19(15)
MDF(1d-2) £.73 4737 4567 | 0.09 | 0.10(10) 0.19(20)
MDF(1d-3) 6.49 5013 5017 | 0.09 | 0.10(10) 0.13(13)
MDF(1d-4) 8.08 5220 5257 | 0.10 0.03(3) 0.05(5)

TABLE 6
Results for NS2D.
NS2D, order 2369, 20619 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration

Threshold Time inL inU | Time [ r=10"° [ r=10""°
ORG(1d-2) N/A 45588 45584 | 1.17 | 5.19(75) | 7.27(105)
ORG(1d-3) N/A 54418 54388 | 1.83 | 3.64(47) 5.17(67)
ORG(1d-4) N/A 54947 54650 | 1.54 | 3.42(44) 4.38(57)
MUM(1d-2) 9.37 42894 51203 | 0.93 [ 0.93(13) 1.26(18)
MUM(1d-3) 111.3€ 153461 140878 | 7.48 1.13(7) 1.61(10)
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Resoults for NSSD.

NS3D, order 684, 52930 entries

Ordering & | Ordering | Nonzeros | Nonzeros | Fact. Iteration
Threshold Time in L inU | Time [ r=10"° [ 7 =10"%¢
ORG N/A 26123 26123 2.00 diverge diverge
MUM 9.50 26123 26123 | 2.26 | 4.59(89) | 6.24(121)
MDF 134.53 26123 26123 | 2.21 | 9.02(175) | 12.65(245)
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