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Abstract

We introduce a modification of existing algorithms that allows easier analysis
of numerical solutions of ordinary differential equations. We relax the re-

quirement that the specified problem be solved, and instead solve a "nearby" =c_ _ _oe_problem exactly, in Wilkinson's tradition of backward error analysis. The _'_ _ _ _- _;__"
precise meaning of "nearby" is left to the user. This inexpensive algorithm _ "_'_'_ _ _" _ 3 _

sublimates the well-known difficulties associated with the propagation of ac- _ " ° - = _" N •

cumulated error and avoids the difficulty of exponential growth of inclusion _ _ _ a _ .g- _ z _

widths associated with interval techniques. No claim is made for the accu- _ = = nn., _ -, -
racy with which the specified problem is solved. It is shown that often no g_." ,_ ," =__'`, .,_= _-
such claim ,o:° necessary, o _, .. _ ,, _ ._-

1 Problem Addressed ......

The idea of guaranteed defect control is applicable to large classes of operator _ = a _ = - "- = -" _
,, 9, ,, 9,

uations. The concept of defect, or residual, was used by Kriickeberg - _, o _ = _ ..,

_I_ruc68] in the solution of partial differential equations. We restrict our _-.,"=--_ " _,_" o_='=

consideration in this paper to initial value problems in ordinary differential =_-_--= -"°-"-"_. __ _ -o-_o ^ _ ='='=_

_,,_ .,._ _ _. _ .._ .-, _

_t-f(x't)' x(to)-xo, (1) = =" _ :_ _ __. _ :3 _ ,.., "_
0 _ ,-_ "*._" _1_ _. ¢_

where x 6 R . We refer to Equation (1) as the specified problem [Kuli88]. _ _ g _ ° _ - _ o_.
O ;m "_ O"" ""

We discuss a new error control strategy based on computing an interval g _ " _ _ _ = = g-- _ _ _ -_ =.o _
enclosure of the defect for such problems. = "__, " _';, o _ "O _,_ _ _" ,._ ,-i "_ _."

Enright and others [Enri89a, Enri89b, Hans83] have examined the idea _ -_"., _-o"_K=_ _.,g
of "defect control" as an error control strategy in this context and found it -" _ - _ - = = "
practical. They use point methods and estimates for the defect. We show

here that it is practical and more satisfactory to use interval methods to
bound the defect.

"Supported in part by the National Science Foundation grant No. CCR-8802429, by
the Apphed Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38, and through NSF Cooperative
Agreement No. CCR-8809615. On leavefrom Marquette University, Milwaukee, WI 53233
USA.

, The submitted rnanuzcriPt haz been auth°red '

J bY a contraczor of the U.S. Gcv_rnment |

1 | Accordir_ly, she U. S. Governmenz retains a | "
] nonexclusive, royalty-free license to publish|
| or reproduce the published form of this[for|
/ contribution, or allow others

to do SO,
/

| U. S. Government purposes. J t_

t" r; " * " r- ,_'_

"....... ' :'J:- , " i, .._.'" i_,,_5 _........ _ , .-- C....x
_-/_--"_'._.'i,-:¢..;. 4 _ *_"



.... i " 6 _',\,'- ,:_i_lme _£nri,g!lr,_ ,,ere .... :c_::,:,i :,iea v.ith techniques for computing

:rv, ,_u,:/,:,._vr,_:or the :aa_ ,:,( ,_ 5__::-i,-_n. We outline the algorithm for using

g_,_r:tutee_[ e,.lC'Osures ,)( _he/er_t:t :o control the step-size selection for the

:l,_v.,.eric:_fisohlti,_n )f OU_Ez. A more detailed description of tile algorithm

wi[h ,aumericai e:::_mcies i_ in preparation [Corl91b]. Here, we concentrate
,__uu11der_tatnding w','._a: the "answer" we compute actually means. Specif-

ic_t_:., we _re ct._ncerned not wi_h the accuracy of the solution computed,

bu_ =_ther v_ith the vMS_ty of the model of the physical problem. The con-

veu_ioucfi view or"modeling as the formulation and solution of the specified

pr,,biem is depicted in Figure 1. The defect control approach is illustrated in

Figure '2. lt a_ks whether the nearby problem, for which the exact solution
is k_towt_, is _t sut_ciently accurate model of the physical problem.

Modeling Process

Approx. Sol'n......,_ ? I

,,," global e

I l .... "" Exact Solution
Specified Problem

Figure 1. Modeling based on a specified problem



In either case, the defect 5(t) is simply some function of t, and we have
a formula for that function. To illustrate, we consider a simple logistic

equation

dz z2 z(O) 1/2d---[= x - , = .

1 t t 3

Let _:(t) := g + 4 96 be an approximate solution oil 0 _< t _< h. The
approximate solution can be generated by a number of methods. Here, we
introduced a deliberate error into a 4-term Taylor series. From Equation (2)

(using Ivlaple [Char88]),

d_

.= dt
1 t2

= _:+i: 2
4 32

The defect _(t) is a polynomial in ¢. There is no remaining evidence of the

ODE. The function _:(t) is the true solution of the equation

d_xx _2 t2 @ +9216dt =f(z't)+ - 1 2 t4 --_1 t6" (4)

If we prefer to use the relative defect for the logistic equation, we get

instead (using Mathematica [Wolf88])

di:

dt 1
/_(t) := f(_?,t)

t2(t 2 + 48t - 228)
t 4 -- 48t 3 + 576t 2 - 2304"

With either the absolute or the relative definition of t_, we see in Figure 3

that I_(t)l is small if h is small.
The key question to be asked is, Is Equation (4) a sufficiently good

model of the underlying scientific problem being studied? We provide insight

into the answer by computing guaranteed bounds for _(t). We can do this

computation because the problem of bounding the range of a function is a

very well studied problem in interval analysis (see [Moor79] or [Ratc84]).
The step-size control strategy comes from determining a step h for which

we can guarantee that Ilt_(t)ll _< e for all t E [0, h], where I1" li is some



appropriate norm (usually L_).
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Figure 3. Absolute and relative defects for the logistic equation

The defect can often be interpreted physically, offering insight into the

modeled problem. If 5(t) is small relative to the terms that were neglected

in the derivation of the equations, or if it is smaU relative to uncertainty in
parametric values, then one would expect that the equation that we have

exactly solved is just as good a model as the specified problem. In this case,
2(t) is just as good for practical purposes as the solution to the specified

problem would have been (see Figure 2). Further, the modeler can choose

the step size appropriately to control the size of 5(t) and to guarantee that

no error larger than those already made in the modeling process will be
introduced by the solution process.

Adding a small, time-dependent forcing term 5(t) to t!,o logistic equa-

tion is reasonable in many physical contexts modeled by t_le logistic equa-

tion. For example, if the logistic equation is being used to model population

growth of some species, then small, time-dependent perturbations of that
population are reafistic. The perturbations might be due to such factors as

accidental deaths or to momentary fluctuations in the birth rate caused by

small changes in the food supply. To simplify the solution process, one usu-

ally ignores such fluctuations. In contrast in the defect-controlled method,
it is the difference between the small physical perturbations and the small
numerical perturbation that is ignored.

The idea of considering the defect is related to Wilkinson's idea of back-

ward error analysis for finear systems [Wilk63]. It is in sharp contrast to the

usual approach in interval mathematics of considering the accuracy of the



solution computed for the specified problem. More details of the history of
the study of the defect in the context of differential equations can be found

in [Corl91 a].
As noted by Enright [Enri89b], a major practical advantage of the defect-

controlled approach is a separation of the concepts of any numerical instabil-

ity resulting from the appro_mation method used and any ill-conditioni _g

of the problem itself. If the problem is well conditioned and the defect is
small, then _ commits a small global error. However, the global error for

an ill-conditioned problem is guaranteed to be large, even for small defects.

Clearly, the model is very sensitive to the modeling errors made in deriving

the specified problem, and a small global error usually is not a reasonable

goal. Nevertheless, a small defect is achievable and gives much insight into

the physical problem being modeled.

Chaotic systems give rise to unstable initial value problems, by defi-
nition. On the other hand, achievement of a small global error over long

time integration is computationally intractable (see [Adam90], for example).
Achievement of a small defect is both possible and useful for such systems

[Corlgla]. The defect-controlled approach sidesteps the bothersome question
of computational chaos.

3 Defect-Controlled Algorithm

An outline of the defect-controlled algorithm is given in Listing 1. A more

complete description of the algorithm is given in [Corl91b].

Input: to, tfin_t, z0, E = max lls(t) I
Output" Nodes to, ta, ..., t,_ = tf,n_t,

dz
Continuous _: which solves -j/= f(z,t)+ 6(t),
Guarantee that [16(t)]] _<s for all t E [to, tiin_t ].

h := Initial trial step;

t := to;

loop for each step k = 0,...

Compute a?(t), a continuous approximate solution on tk _<t <_tk + h;

d_ f(_:, t)"Define the defect 5(t):= dt
A := Enclosure of 115(t)ll; -- Only interval part.
if A > s then

reduce h and repeat
else if A << _ then

increase h and repeat
else

accept step;
t := t+h;

end if;



end loop;

Listing 1. Defect-controlled algorithm

The outline of this algorithm is essentially like the outline of any modern
ODE solver. The defect control functions as a part of the step-size selection
strategy. In our implementation, interval computations are restricted to
computing an enclosure of 116(t)ll. We use interval Taylor operators imple-
mented in Ada [Cor191c]. These operators achieve tight bounds on the range
of the defect and its derivatives by using natural interval extensions, mono-
tonicity, concavity, mean value forms, centered forms, and Taylor forms.
In the logistic equation example presented earlier, we use interval Taylor
arithmetic to (in effect) evaluate the assignment statements

T := Taylor (0); -- Taylor seriesfor t at 0 = (0, I, O, ...)
XHAT:= (1/2) + T * ((1/4) + T * (0 + T * (-1/96)));

-- Horner form
DEFECT := (1/4) + T * (0 + T * (-32)) - XttAT+ XtlAT* XtlAT;

As part of the computation of a tight enclosure for 116(t)ll, we evaluate

6(t) at each end, at the midpoint, and on the entire interval of the integration
step. This approach allows us to compute both inner and outer enclosures

to help verify the tightness of the enclosures (see Figure 4). Our operators

allow integration steps 103 greater than naive interval arithmetic evaluation

of 11/5(t)[[.

defect

midpoint
I I t

ti.1 t__

inner _

inclusion _" ,
outer ._/ _u

inclusion

Figure 4. Inner and outer enclosures of the defect



4 Conditioning

If we compare our algorithm to other defect-controlled algorithms (see En-

right [EnriSga, Enri89b]), we see that our approach provides a guaranteed
bound on the range of the defect, while conventional approaches estimate

the range by evaluating it at the final point (_(t + h)), at an intermediate

point (5(t + Oh) with 0 < 0 < 1), or at a sample of intermediate points

(5(t + 0ih) with 0 < 0i < 1). By providing a guaranteed bound, we can
be assured that the problem we have solved is indeed close enough to the

specified problem to be of interest.
If we compare our algorithm to Lohner's interval method for solving

ODEs [Lohn87], we see that our approach encloses the defect, whereas
Lohner encloses the solution. With our approach, _: is the exact solution

to a problem whose distance from the specified problem is gu_tranteed to

be small. Lohner [Lohn87] computes an interval that is guaranteed to en-

close the exact solution to the specified problem. These are complementary

approaches; each has its own domain of apphcability.

Our guaranteed control of the defect and Lohner's guaranteed enclosure
of the solution are connected by the condition number of the differential

equation. The concept of the condition number of a differential equation is

the same as the better-known concept of a condition number of a system of

lineal" equations. The condition number is a number C for which one can
make statements of the form

II Error in the answer II -< C. 11Error in the problem II.

Suppose that _(t) is the exact solution to Equation (3) and that x(t) is

the exact solution to Equation (1). Then we have

•(t) = _(t) - _z,(t) + o(_),

where xi satisfies the first variational equation

dxl

d--t-= Jj(_:(t))xl(t) + v(t), (5)

which has the solution

_,(t) = _(t)x,(0) + ,(t). _-'(_-)_(_)e_-,

where _(t) is a fundamental solution matrix of the homogeneous version of

Equation (,5). Let z_(0) = 0 for simplicity. Define the condition number of
the differential equation to be

Jo'c := Ill(t). _-_(T)IIdr.



.b

This condition number depends on t, while the condition number defined in

[Asch88] is the maximum of our condition number taken over the relevant
domain of t. With our definition (recall that _ = I]5(t)l]),

I]x - _[I -< C. ]]ti]], in the limit as E _ 0.

We can replace the above with a bound valid for all values of E by starting
instead with the Alexeev-Grbbner nonlinear variation of constants formula

[Nots81].
Various difficulties hamper using the condition number to compute global

error bounds:

1. It is hard to compute or bound C exactly.

2. Sometimes the quantity C[Ifl] is overly pessimistic.

3. Sometimes the global error ]Ix- _]1 is not of real interest.

4. Sometimes [nx - &li is too large.

In contrast, using the condition number has several advantages:

1. It is not hard to estimate C.

2. An estimate of C is useful in the modeling context.

3. Even if we are philosophically satisfied with the more easily computed

bound on 11511,estimates for IIz- &ll are useful.

5 Conclusions

For stable problems (perhaps containing interval coefficients), solution en-

closures may work better than a defect-controlled approach. Similarly for

Hamiltonian systems, fixed time-step, symplectic methods appear to be su-

perior [Sanzgl].

For a wide range of problems, however, the _(t) term introduced by
numerical methods can be viewed as one more in a sequence of reasonable

simplifications made in the quest for an exact solution. In particular, defect-

controlled methods appear to be appropriate for chaotic problems, for they

avoid the difficulty of exponential growth of the error, and they yield useful
results at a reasonable cost.
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