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Abstract fitness can be either explicitly or implicitly defined),
and GAs have been demonstrated to be efficient and

Genetic algorithms (GAs) play a major role powerful search techniques for a range of such prob-
in many artificial-life systems, but there is of- lems (e.g., there are several examples in [19]). How-
ten little detailed understanding of why the ever, the details of how the GA goes about searching

GA performs as it does, and little theoreti- a given landscape are not well understood. Conse-
cal basis on which to characterize the types quently, there is little general understanding of what
of fitness landscapes that lead to successful makes a problem hard or easy for a GA, and in par-
GA performance. In this paper we propose ticular, of the effects of various landscape features on
a strategy for addressing these issues. Our the GA's performance.
strategy consists of defining a set of features In this paper we propose some new methods for
of fitness landscapes that are particularly rel- addressing these fundamental issues concerning GAs,
evant to the GA, and experimentally study- and present some initial experimental results. Our

ing how various configurations of these fea- strategy involves defining a set of landscape features
tures affect the GA's performance along a that are of particular relevance to GAs, constructing
number of dimensions, in this paper we in- classes of landscapes containing these features in vary-

formally describe an initial set of proposed ing degrees, and studying in detail the effects of these
feature classes, describe in detail one such features on the GA's behavior. The idea is that this

class ("Royal Road" functions), and present strategy will lead to a better understanding of how the
some initial experimental results concerning GA works, and a better ability to predict the GA's

the role of crossover and "building blocks" on likely performance on a given landscape. Such long-
landscapes constructed from features of this term results would be of great importance to ali re-
class, searchers who use GAs in their models; we hope that

they will also shed light on natural evolutionary sys-
tcms.

1 Introduction To date,severalpropertiesof fitnesslandscapes
havebeen identifiedthatcan make thesearchforhigh-

Evolutionaryprocessesarecentraltoour understand- fitnessvalueseasyor hard forthe GA. These include

ingofnaturallivingsystems,and willplayan equally deception,sampling error,and the number of local

centralroleinattemptsto createand study artificial optima in the landscape(seeSection3 for details).
life.Geneticalgorithms(GAs) [15,I0]arean idealized However, almostallthe theoreticalwork on GA per-
computationalmodel ofL._rwinianevolutionbasedon formance has been based on the assumptionthatde-

the principlesof geneticvariationand naturalselec- cepticnisthe leadingcauseof difficultyforthe GA.

tion.GAs have been employed in many artificial-lifeThis paperextendsthiswork by (I)proposingseveral
systems as a means of evolvingartificialorganisms, new relevantfitnesslandscapefeatures,(2) studying

simulatingecologies,and modeling populationevolu- one ofthesefeaturesindetail,and (3)demonstrating

tion.In theseand otherapplications,the GA's task thatthereare "GA-easy" functions[27]which alenot

isto searcha fitnesslandscapeforhig_values(where necessarilyeasyforthe GA.

*To appear in Proceedings of the First European Confer-
ence on Artificial Life, 1991. Cambridge, MA: MIT Press.



2 GAs and Schema Processing fact, crossover appears in the Schema Theorem as a
factor that slows the exploitation of good schemas.
The "building-blocks hypothesis" [15, 10] states that

In a GA, chromosomes are represented by bit strings, new schemas are discovered via crossover, which com-

with individual bits representing genes. An initial pop- bines instances of low-order schemas (partial solutions
ulation of individuals (bit strings) is generated ran-

domly, and each individual receives a numerical "fit- or "building blocks") of estimated high fitness into
ness" value--often via an external "fitness function"-- higher-order schemas (composite solutions). For ex-
which is then used to make multiple copies of higher- ample, if a string's fitness is a function of the number
fitness individuals and eliminate lower-fitness individ- of l's in the string, then a crossover between instances

uals. Genetic operators such as mutation (flipping in- of two high-fitness schemas (each with many l's) has
dividual bits) and crossover (exchanging substrings of a better than average chance of creating instances of

two parents to obtain two offspring) are then applied even higher-fitness schemas. However, the actual dy-
probabilistically to the population to produce a new namics of the discovery process--and how it interacts
population (or generation) of individuals. New tenet- with the emphasis process--are not well understood,
ations can be produced synchronously, so that the old and there is no general characterization of the types of
generation is completely replaced, or asynchronously, landscapes on which crossover will lead to the discov-
so that generations overlap. The GA is considered to ery of highly fit schemas. Specifically, there is no firm
be successful if a population of highly fit individuals theoretical grounding for what is perhaps the most
evolves as a result of iterating this procedure. When prevalent "folk theorem" about GAsJthat they will
the GA is being used in the context of function opti- outperform hillclimbers and other common search and
mization, success is measured by the discovery of bit optimization techniques on a wide spectrum of diffi-

strings that represent values yielding an optimum (or cult problems, because crossover allows the powerfulcombination of partial solutions.
near optimum) of the given function.

A common interpretation of GA behavior is that Our main purpose in this paper is to outline
the GA is implicitly searching a space of patterns, the a strategy for examining these questions in detail.
space of hyperplanes in {0,1} t (where I is the length In particular, we are interested in understanding
of bit strings in the space). Hyperplanes are repre- more precisely the relation between various fitness-landscape features and the performance of GAs, and
sented by schemas, which are defined over the alpha- we would like to confirm or disconfirm folk theorems
bet {0, 1, *}, where the * symbol means "don't care." such as the one mentioned above. Our approach
Thus, *0 denotes the pattern, or schema, which re-

quires that the second bit be set to 0 and will accept stresses that there are many factors that make a land-
a 0 or a 1 in the first bit position. A bit string x obey- scape easy or difficult for the GA. Thus, we are inter-

ing a schema s's pattern is said to be an instance of ested in defining a set of landscape features that cap-ture the various sources of facilitation and difficulty.
s; for example, 00 and 10 are both instances of *0. In
schemas, l's and O's are referred to as defined bits, and We believe that such a set of features will be relevant
the order of a schema is simpl) the number of defined both to practical domains in which people wish to ap-
bits. The fitness of any bit string in the population ply the GA and to interesting biological phenomena.

provides an estimate of the average fitness of the 2 i dif- Once such a set of relevant features is defined, a largenumber of fitness landscapes can be "hand-designed,"
ferent schemas of which it is an instance, so an explicit

evaluation of a population of M individual strings is where each landscape consists of some configuration
also an implicit evaluation of a much larger number of of these features. Different landscapes will present dif-
schemas. The GA's operation can be thought of as a ferent types and degrees of difficulty for the GA, de-
search for schemas of high average fitness, carried out pending on what features they contain and how the
by sampling individuals in a population and biasing features are arranged. We can then study the per-formance of the GA on such landscapes to learn the
future samples towards schemas that are estimated to
have above-average fitness, effects of different configurations. A longer-term goal

Holland's Schema Theorem [15, 10] demor:.strates of this research is to develop statistical methods of
that, under certain assumptions, schemas whose esti- classifying any given landscape in terms of our spec-

mated average fitness remains above the population's trum of hand-designed landscapes, thus being able to
average fitness will receive an exponentially increas- predict some aspects of the GA's performance on the
ing number of samples. That is, schemas judged given landscape.
to be highly fit will be emphasized in the popula- lt should be noted that by stating this problem in
gion. However, the Schema Theorem does not address terms of the GA's performance on fitness landscapes,

the process by which new schemas are discovered; in we are sidestepping the question of how a particular



problem can best be represented to the GA. The suc- absence of conflicts among fit schemas.
cess of the GA on a particular function is certainly We can then "mix and match" the various land-
related to how the f_:,lction is "encoded" [10, 21] (e.g., scape features to create a wide variety of fitness rune-
using Gray codes for numerical'parameters can greatly tions. We conjecture that interactions among the fea-
enhance the performance of the GA on some prob- tures are nontrivial, and that this is one reason that
iems), but since we are interested in biases that per- it is so difficult to understand and predict GA perfor-
thin directly to the GA, we will simply consider the mance.

landscape that the GA "sees." Our landscapes will be defined by constructing fit-
ness functions F : {0, 1}t -- _R, (where l is the length

3 Landscape Features and GA of the bit string). Each function F will be defined in
Performance terms of various numbers, or densities, of the different

landscape features (for example, a schema tree (see be-

There is no comprehensive theory that relates char- low) would be considered to be a landscape feature).
A landscape will be parameterized in two ways, withacteristics of a fitness landscape directly to the per-

formance of the GA, or that predicts what the GA's one set of parameters corresponding to the relative lte-
performance will be on a given problem. Such a the- quency and location of each type of feature, and with a
ory will be difficult to articulate because the GA has set of local defining parameters for each feature (e.g.,
many conflicting tendencies (e.g., the need to continue the height of a hill). This separation of parameters
exploring new regions of the search space versus the allows us to include the notion of features embedded
need to exploit the currently most promising direc- within other features, allowing the possibility of defin-
tions). At different times in the search or on different ing fractal-like landscapes. For the remainder of this
problems, one of these tendencies may dominate the paper we focus on the properties of particular land-
others, scape features with the understanding that they can

However, several properties of fitness landscapes be combined with one another in the manner just de-
have been identified that can make the search for high- scribed.
fitness values easy or hard for the GA. Most research
up to now has concentrated on three types of features: Hierarchical Structure of Schemas, and Step-

ping Stonesdeception, sampling error, and the "ruggedness" of a
fitness landscape. Bethke [2] defined a class of func- The building blocks hypothesis implies that an im-
tions that are "misleading" for the GA and therefore portant component of GA performance should be the
hard to optimize. Goldberg extended this work, defin- extent to which the fitness landscape is hierarchical,

ing the class of GA-deceptive functions [8, 9, 11], in in the sense that crossover between instances of fit
which low-order schemas lead the GA away from the low-order schemas will tend to yield fit higher-order

schemas. Consider the fitness function defined in Fig-fittest higher-order schemas. There have been a num-
ber of studies of GA performance on deceptive land- ure 1, which we term a "Royal Road" function. This
scapes (e.g., [8, 3, 20]). Grefenstette and Baker stud- function involves a set of schemas S = {sl,...,sls},
led a function in which high variance in the fitness and is defined as

of a correct low-order schema leads to sampling error F(z) = _ c,a,(z),
that misleads the GA [13]. Other authors also iden- ,es
tify sampling error as a problem in GA performance where z is a bit string, each c, is a value assigned to the
(for example, [21, 12]). Kauffman [18] has studied schema s, and o',(z)is as defined in the figure. In this
how the degree of ru-'gedness of a landscape affects example, c, = order(s). The fitness of the optimum
the ease of adaptation under mutation and crossover, string (64 l's) is 8 • 8 4- 4 • 16 + 2 • 32 + 64 = 256.
Finally, Forrest and Mitchell have identified the exis- As shown in Figure 1, a Royal Road function can
tence of multiple mutually conflicting partial solutions be represented as a tree of increasingly higher-order
as a cause of difficulty for GAs [6]. schemas, with schemas of each order being compos-

In our current research, we are studying param- able to produce schemas of the next higher order. The
eterizable landscape features that are more directly hierarchical structure ofsuch hf unction should in prin-
connected to the building-block hypothesis. As a start- ciple lead the GA, via crossover, very quickly to the
ing point, these include the degree to which schemas optimum; in effect, this structure should in principle
are hierarchically structured, the degree to which lay out a "royal road" for the GA to follow to the
intermediate-order fit schemas act as "stepping stones" global optimum. In contrast, an algorithm such as
between low-order and high-order fit schemas, the de- hillclimbing that relies on single-bit mutations cannot
gree of isolation of fit schemas, and the presence or easily find high values in such a function, since a large



Figure 1" Example Royal Road Function. F(x) = _,es c,#,(x), where z is a bit string, c, is a value assigned

1 if x is an instance ofsto the schema s (here, cs = order(s)), and a,(x) = 0 otherwise.

number of single bit-positions must be optimized si- intervening region of lower fitness. A search algorithm
multaneously in order to move from an instance of such as hillclimbing will reach the largest areas of inter-

one schema to an instance of a schema at the next mediate fitness (**I1 and 11"*), but will in general be
higher-order level of the tree. slow at crossing the intervening "deserts" of lower fit-

The Royal Road functions provide the simplest ex- ness (*111 and 111"). One hypothesis [16] is that the

amples of the features of schema hierarchies and inter- GA should be better able to search landscapes con-
mediate stepping stones, and as we discuss later in this taining such features because the lower-fitness deserts

paper, they can be used to study in detail the effects can be quickly crossed via crossover (here, between in-

of these features on the GA's performance, stances of 11"* and **11). Isolates are a special case of

what have been called "partially deceptive functions"

Isolated High-Fitness Regions [9].

A second type of feature is an isolated region of high The idea of isolated regions of high fitness sur-

average fitness (say, containing the global optimum) rounded by flat deserts of low fitness is similar to the

contained in a larger region of lower average fitness, "mesa phenomenon" proposed by Minsky [24] and to
which is in turn contained in an even larger area of the error surfaces identified by Hush et al. for multi-

intermediate average fitness [16]. These are related layer perceptron neural networks [17]. Thus, the shape

to cases of "isolated optima" described by Bethke [2]. of the surface may be as important to GA performance

For example, using the same notation as for the Royal- as the actual direction of the gradient (deceptive func-
Road functions, a simple isolate can be defined as fol- tions emphasize direction). This feature allows us to

lows: control the shape as well as the direction of the surface

the GA is searching.
F(z) = 5#..li(z) - 16#.111(x)+ 5#11..(z)-

16al l l,(z) + 3 Io')) 1l(z). Multiple Conflicting Solutions

Finally, landscapes with multiple conflicting solutions
Here the highest value is 9 (with optimum point

can be difficult for the GA. For example, consider a

_' = 1111), and the average fitnesses u(s) of the five function with two equal peaks: for example, f(z) =

schemas are: (x - (½))2, which has two optima, 0 and 1. In this en-
u(,, 11) = 2 vironment, a conventional GA initially samples both

u(,lll) =-1 peaks, but eventually converges on one by exploit-

u(ll • ,) = 2 ing random fluctuations in the sampling process (ge-

u(lll,) = -1 netic drift). Since both peaks are equally good, the

u(1111) - 9. population may maintain samples of both for some

time. '_,owever, if the solutions are mutually exclusive

In such a feature, the region of highest fitness is (00... 0 vs. 11... 1 in many encodings), crossover may
isolated from supporting (lower-order) schemas by the



be hindered by crossing good solutions from different example, the number of levels (schema orders) in the
peaks, creating useless hybrids, tree can be varied. In Figure 1, there are four levels

Moving away from a strict function-optimization (schemas of orders 8, 16, 32, and 64); this could be
setting, similar difficulties are encountered for any changed to 3 levels, effectively truncating the hierar-
kind of ecolggical environment in which the popula- chy by eliminating ali of the order-8 schemas. Another
tion needs to maintain multiple conflicting schemas, variation would be to introduce gaps in the hierarchi-

Examples include classifier systems [14] (where genetic cal structure, say, by deleting an entire intermediate
operators are used to search for a useful set of rules level in the tree (thus eliminating some of the inter-
that collectively performs weil) and GA models of the mediate stepping stones to the optimum). Another
immune system [7] (where a population of antibodies variation would be to modify the steepness of increase
is evolving to cover a set of antigens). In functions in the coefficients ca as a function of height in the
with conflicting pressures, issues such as crossover dis- tree. Finally, deception can be introduced by mutat-

ruption [5] and carrying capacity (how many different ing some of the supporting schemas, effectively cre-
solutions a population of a given size can maintain) [4] ating low-order schemas that lead the GA away from
are relevant factors, the good higher-order schemas Royal Road functions

The three categories of features sketched above can be made arbitrarily difficult for the GA (e.g., by
constitute an initial set from which to construct land- changing the values of the coefficients or by truncating

scapes for the purpose of studying GA performance, the tree).
This set is by no means complete; two goals of our The Royal Road functions can be used to ad-
current work are to extend this set and to determine dress a number of general questions about the effect_

appropriate dimensions along which to parameterize of crossover on various landscapes, including the fol-
both the individual features and the landscapes con- lowing: For a given landscape, to what extent does
structed out of such features. However, we believe crossover help the GA find highly fit schemas? What

that this initial set captures several important aspects is the effect of crossover on the waiting times for de-
of landscapes that to date have been largely ignored sirable schemas to be discovered? What are the bor-
in the GA literature, and that experiments involving tlenecks in the discovery process: the waiting times

GA performance on landscapes constructed out of such to discover the components of desirable schemas, or,
features will yield a number of important insights. In once the components are in the population, the wait-
the next section we describe experimental results con- ing times for them to cross over in the desired manner?

cerning the Royal Road landscapes, thus illustrating What is the cause of failure for desired schemas to be
our overall approach, discovered? To what degree is a complete hierarchy (as

opposed to an incomplete one with gaps in the tree)

4 GA Performance on Royal Road necessary for successful GA performance? Answering
these questions in the context of the idealized Royal

Functions Road functions is a first step towards answering them

According to the building-blocks hypothesis, the Royal in more general cases.

Road function shown in Figure 1 defines a fitness land- In the following subsections, we report results from
scape that is tailor-made for search by the GA, since our initial studies of Royal Road functions. These re-
crossover should al|ow the GA to follow the tree of suits address three basic questions:

building-block schemas directly to the optimum. It 1. What is the effect of crossover on the GA's per-
provides an ideal laboratory for studying the GA's be- formance on different landscapes?

havior for the following reasons: (1) ali of the desired 2. More specifically, what is the effect of crossover
schemas are known in advance, since the_ are explic- on the waiting time for desirable schemas to be
itly built into the function, so dynamics of the search discovered, and how can we account for this ef-
process can be studied in detail by tracing the onto- fect?
genies of individual schemas; (2) the landscape can be
varied in a number of ways, and the effects of these 3. What is the role of intermediate levels in the hi-
variations on the GA's behavior can likewise be stud- erarchy (intermediate-order supporting schemas)

led in detail; and (3) since the global optimum, and, on the difficulty of these functions with respect to
in fact, ali possible fitness values, are known in ad- the GA?
vance, it is easy to compare the GA's performance on We report results of computational experiments
different instances of Royal Road functions, that test the GA's performance on these functions,

There are several ways in which the degree of "re- both with and without crossover. We also report re-
gality" of the path to the optimum can be varied. For suits of control experiments which compare the GA's

• _m_idi_mmmlamgHl_ la|_|l|lllmM|N]N_



performance with a stochastic iterated hillclimbing al- significant gaps between the discovery of, say, the first
gorithm (see [26]) on these functions. For each of these order-16 schema and the first order-32 schema. What
experiments, we used functions with i = 64 (the indi- is the cause of these long gaps? That is, what are the
viduals in the GA population were bit strings of length bottlenecks in the discovery process?
64). The GA population size was always 128, and in To make this question more specific, we note that
each run the GA was allowed to continue until the opti- there are two stages in the discovery process of a given
mum string was discovered, and the generation of this schema via crossover: the time for the schema's lower-
discovery was recorded. The GA we used was con- order components to appear in the population, and the
ventionai [10], with single-point crossover and sigma time for two instances to cross over in the right way
scaling [26, 6] with the maximum expected offspring in order to create the schema. Which of these stages
of any string being 1.5. The crossover rate was 0.7 per contributes the most to the long gaps seen in Table 2?
pair of parents and the mutation probability was 0.005 The building-blocks hypothesis suggests that, once
per bit. the lower-order components of a desired schema are

present in the population, timse components will then
4.1 Effect of crossover on GA performance combine relatively quickly via crossover to form the

Our examination of the role of crossover on the Royal desired schema. This would imply that the main bot-
Road functions begins with the following question: To tleneck in the discovery process is the waiting time for
what extent does crossover contribute to the GA's the lower-order components to appear in the popula-

success on simple versions of these functions? That tion, rather than the waiting time for them to cross
is, the initial set of experiments attempts to validate over in the required way. We believe that this is the
the building-blocks hypothesis on these functions. For case, but the results of our experiments in this area
these experiments, we ran the GA with and without were somewhat inconclusive. Given the importance of
crossover on the function given in Figure 1. We also testing this rigorously, it is worth discussing some of
ran hillclimbing on this function, allowing the equiv- the issues related to answering this question.
alent of 2000 generations (256,000 function evalua- lt seems that one could test this hypothesis in a

tions), which is more than three times as long as re- straightforward manner by separately measuring the
quired by a typical GA run (see Table 1). average time required for each stage and comparing the

Table 1 summarizes the results of 50 runs of each two times. We made several measurements to identify
these separate stages. For each schema order in thealgorithm on the function. As was expected, crossover
tree, we measured the average difference in generationsconsiderably speeds up the GA's discovery of the op-
between the time when two components of a given or-timum. Both versions f the GA significantly outper-
der were both in the population and the time when theform hillclimbing: in 50 runs of hillclimbing, the op-

timum was never found, and moreover, the highest higher-order combination of the two occurred. For ex-
fitness attained was only 38% of the optimum, ample, one of the measurements going into the order-8

These results confirm our qualitative expectations: average would be the difference between the discov-
on landscapes in which fit schemas are organized in ery time for 11111111"...* or ********llllllll*...*
a hierarchy like the one in Figure 1, crossover helps (whichever was discovered later), and the time when
to significantly speed up the discovery process. This the combination 1111111111111111"...* is created.
result may seem obvious, but it is necessary to estab- Tabie 3 gives the results of these measurements, av-
lish as a baseline the degree to which crossover speeds eraged over ali schemas of a given order, and over 50
things up before we can study the effects of variations runs. The data in the table seems to indicate that
on the landscape, there is on average a large gap between the time the

..ks a next step, we look more closely at the effects lower-order components are discovered and the time
of crossover on the GA's performance, considering the they are combined to form the higher-order schema.

However, there are several problems with this
effect of crossover on the waiting times for the var-
ious schemas defining the fitness function to be dis- method of measurement. One problem is that there

are times when one of the component schemas andcovered. Table 2 displays the average generation at
which the first schema of a given order is discovered the desired combination schema are created simulta-
for the runs with and without crossover for the Royal neously through mutation (e.g., llllllll*...* is in

Road function (the values are averaged over 50 runs), the population first, but llllllllllllllll*...* and********11111111"...* are created at the same time
The results given in the table show that, as expected,
crossover significantly reduces the waiting time for dis- via mutation). Since the hypothesis we are consider-
covering schemas at each level in the tree. However, ing concerns cases where the component schemas are

in the population before the combination schema, weeven for the runs with crossover, there are, on average,



Mean gens to optimum Median gens to optimum
GA with Xover 590 (50) 542
GA, No Xover 1022 (46) 1000

Hiliclimbing > 2000 > 2000

Table 1" Summary of results on the Royal Road function for GA with and without crossover, and for hillclimbing.
Each result summarizes 50 runs. The numbers in parentheses are the standard errors. Each run of hillclimbing
was for the equivalent of 2000 generations (256,000 function evaluations), but the optimum was never found.

Order 8 Order 16 Order 32 Order 64

GA with Xover .01 (.'1) 28 (4) 152 (16) 590 (50)
GA, No Xover .3 (.25) 106 (14) 386 (26) 1022 (46)

Table 2: The average generation of first appearance of a schema of each order for the Royal Road function. The
values are averaged over 50 runs for the GA with and without crossover. The numbers in parentheses are the
standard errors.

did not include the cases of simultaneous discovery in

Order 8 Order 16 Order 32 the averages given in Table 3.
A second problem is using the discovery time

Mean' time 179 (26) 139 (27) 165 (21) of the lower-order components in this measurement.

to combine (ll0 cases) (27 cases) (21 cases) Further analysis of our data indicated that very of-
ten, a lower-order component (e.g., an instance of

Table 3: The average difference in generations between 11111111'...*) would be discovered fleetingly, only
the first appearance of two component schemas of a to disappear in the next one or two generations, lt
given order and the appearance of the schema that is would appear again later on, and only then be used
the combination of those two components. The num- in a crossover with another lower-order component
bets in parentheses are the standard errors. The num- (e.g., ********11111111"...*) to form the higher-
ber of cases being averaged is also given. Since the order combination. So in essence, the component was

data for ali schemas of a given order are being aver- discovered twice; in Table 3 we recorded only the orig-
aged, there are more cases for the order-8 schemas than inal discovery time. This resulted in a large increase
for the higher-order schemas. Cases in which there was in the measured time to cross over.

simultaneous discovery of a low-order component and To remedy this problem, we recorded the discovery
a higher-order combination were not included in the 5"_meof a component only if instances of it persisted in
averages. See the text for a discussion of the problems the population for at least 10 generations after the dis-
with the data in this table, covery. The results of those measurements are given

in Table 4. Under this measurement, the average time
for order-8 schemas to combine is still high, but seems
to be much less for higher-order schemas. However,

Order 8 Order 16 Order 32 under this measurement, tbe number of cases of si-

Mean time 118 (31) 20 (7) 1 (0) multaneous discovery of a lower-order component and
to combine (55 cases) (13 cases) (3 cases) the higher-order combination increased dramatically,

so the number of cases over which the average is being

Table 4: The same data as in Table 3 but with the first taken is much less in this case. This means that the

appearance of a component schema defined as the first results are legs statistically reliable.
In summary, the various problems with the mea-appearance after which the schema persists in the pop-

ulation for at least 10 generations. This modification surements cause these results to be somewhat incon-
resulted in a decrease in the number of cases for each clusive. The purpose of giving these data is to point

order, since under this new measurement, the number out some of the problems. We believe that more ap-
of cases of simultaneous discovery increased dramati- propriate measuring techniques will demonstrate that
cally, the main bottlenecks in the discovery process are the

waiting times for components to appear rather than



the waiting times for crossovers to take piace. Test- schema is discovered, the GA must start over to dis-

ing this hypothesis is of great importance, and we are cover the second order-16 schema. We observed this
currently exploring methods that will enable us to do process directly by plotting the densities (percentage
so. of the population that are instances) of the relevant

Even though we were not able to satisfactorily con- schemas over time: on a typical run, once an order-
firm what the building-blocks hypothesis predicts-- 16 schema is discovered, its density in the population
that the main bottleneck in the discovery process is the quickly rises, and the density of one or more of the dis-
waiting time for the lower-order components to appear joint order-8 schemas is simultaneously seen to drop
in the populationuit turns out that some surprising significantly, sometimes to zero. Often, this effect will
results about the role of intermediate-order schemas prevent an order-8 schema from being discovered for
(discussed in the next section) actually provide some a long time. This explains the relatively long inter-
validation for this prediction and thus give some clues val3 between the first discoveries of an order-16 and
as to the source of the long gaps seen in Table 2. an order-32 schema, shown in Table 2, and gives evi-

dence that the main bottleneck in the discovery of a

4.2 Do intermediate levels help? higher-order schema is the waiting time for its lower-

To study the effect of intermediate levels on the order components to come into the population.
performance of the GA, we ran the GA with crossover In the function without the intermediate levels,
on a variant of the original Royal Road function w this problem does not occur to such a devastating de-
one in which the intermediate-order schemas were re- gree. The fitness of an order-16 combination of two
moved. The variant function contains eight order-8 order-8 schemas is only 16, so its discovery does not
schemas and one order-16 schema; the fitness of the have such a dramatic effect on the discovery and per-

optimum string (64 l's) is now 8 • 8 + 64 = 128. sistence of other order-8 schemas in the tree. lt seems
Table 5 shows the results of the standard GA, the that once order-8 schemas are discovered, crossover

GA without crossover, and hillclimbing on this func- combines them relatively quickly to find the optimum.
tion. Contrary to our intuitions, it appears that reinforce-

We expected the GA's performance to be worse ment from the intermediate layers is not required in
than on the original Royal Road function, since we these functions. It is possible that larger problems (for
believed that the intermediate-level schemas act as example, defined over bit strings much longer than 64)

stepping-stones, providing reinforcement for the lower- or different coefficients may create landscapes in which
order schemas, and speeding up the process of finding reinforcement is an advantage rather than a detriment.
the optimum. However, the results were the opposite These results point to a pervasive and important
of what we expected. On average, the GA finds the issue in the performance of GAs in any domain: the

optimum faster on the function with no intermediate problem of premature convergence. The fact that we
schemas, observe a form of premature convergence even in this

What is the cause of this unexpected phenomenon? very simple setting suggests that it can be a factor
Further analysis led us to the conclusion that the in any GA search in which the population is simul-
intermediate schemas cause a kind of premature- taneously searching for two or more non-overlapping

convergence phenomenon [10]. For example, suppose high fitness schemas (e.g., the two order-8 schemas
that, on the function with intermediate levels, the discussed above), which is often the case. The fact
GA finds 11111111"...*, ********llllllll*...*, and that the population loses useful schemas once one of

then 1111111111111111"...*. Strings that are in- the disjoint good schemas is found suggests that the
stances of the order-16 schema receive much higher rate of effective implicit parallelism of the GA [15, 10]

fitness (since the fitness values go up exponential!y may need to be reconsidered.
with the level of the schema). The fitness differ- lt is suggestive that in many biological settings
ential between instances of llllllllllllllll*...* functionality is evolved sequentially rather than in par-

and any order-8 schema (say, *...*11111111) is allel. For example, it is hypothesized that the immune

large enough (32 vs. 8) that the instances of system evolved by learning to recognize a base set of
1111111111111111"...* will virtually take over the en- antigens and then successively extended the base set
tire population in just a few generations, often with [25]. Thus, it may be completely appropriate for the

many zeros in the right half of the string "hitchhik- GA to use sequential search (first learning one set of
ing" along with the 16 l's in the left half of the string, schemas, then another) under certain circumstances.
This convergence therefore can negate progress that
the population haz made toward_ good schemas in

the right half of the string. Thus, once one order-16



Mean gens to optimum, Median gens to optimum
Intermediate 590 (50) 542

Levels

No Interrriediate 427 (34) 372
Levels

Hillclimbing > 2000 > 2000
No Intermediate

Levels

Table 5: Summary of results for the original Royal Road [unction (repeated from Table l) and a variant with
no intermediate-level schemas. Each result summarizes 50 runs. The numbers in parentheses are the standard
errors. Each run of hillclimbing (on the function with no intermediate levels) was for the equivalent of 2000
generations (256,000 function evaluations), but the optimum was never found.

5 Conclusions to be able to predict the GA's performance on such

This paper reports the beginning of an investigation of landscapes. Statistical measures such as correlation
the role of crossover in GAs and the characteristics of length and length of adaptive walks to optimamboth

defined in terms of Hamming distance---have been ap-
landscapes in which crossover improves the GA's per- plied to various landscapes for this purpose [18, 22].
formance. We have proposed several features of fitness These measures give some indication of the "rugged-
landscapes that we believe are relevant to the perfor-
mance of GAs (hierarchy, isolation, and conflicts) and ness" of a landscape, which has some re!ation to the

GA's expected performance, but we believe that more
we have sketched a method of creating parameterized
fitness landscapes built out of combinations of these useful characterizations may require statistical mea-
features, on which the GA's performance can be stud- sures that take into account the way crossover oper-ates and measure correlations in terms of some kind
led very clearly. To illustrate our overall approach, we
have introduced a class of functions, the Royal Road of "crossover distance" rather than Hamming distance
functions, which isolate one important aspect of fitness (a version of this approach was studied in [23]).

Additionally, we are interested in understanding
landscapes: hierarchies of schemas. We presented ex- how our discoveries about the GA relate to biological
perimental results that show how crossover contributes

systems, including in the following questions: What
to GA performance on these functions, as well as more

is the relation of function optimization to adaptation
surprising experimental results that show the detri- and evolution? What is the relation of our results
mental role of the intermediate-level schemas in the

hierarchy, on the role of crossover to current work in theoretical
_ population genetics on the types of environments in

Given that genetic algorithms have been applied which recombination is favored [1]? To what extentto so many complex domains, it may seem like a back-

wards step to be studying their behavior on landscapes can we understand biological environments in terms
as simple as the Royal Road functions. However, the of the features we are proposing for our fitness land-

scapes (e.g., hierarchies of building blocks)? We hope
unexpected results we describe in this paper indicate that studying the relation of landscape features to GAthat there is much about the GA's behavior that is

not well understood, even on very simple landscapes, performance will not only shed light on what types of
problems are likely to be suited to GAs, but will also

The building-blocks hypothesis is generally taken as lead to insights concerning the evolution of natural--
an article of faith by those using GAs, but making the and artificial--biological systems.
meaning of this hypothesis more precise and charac-
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