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Abstract -

Several versions of implicit Taylor series methods (ITSM) are presented and evalu-

ated. Criteria for the appro.,dmate solution of ODEs via ITSM are given. Some ideas,

motivations, and remarks on the inclusion of the solution of stiff ODEs are outlined.

1 Introduction

One approach for the validated solution of initial value problems for ODEs is built

upon a Taylor series method. Moore [20, 21],, Rail [22], Adams [1], Lohner [17], and

Eijgenraam [14] were the first to use Taylor series methods to enclose the solutions

_ -" ..... of ODEs. One of the main advantages of using a Taylor series method is the simple

: _. _ ._ s _ "=_ representation of the local discretization error. For a Taylor series method, the dis-

"8 >, _ -_--__ --"._ ._ cretization error is the remainder term of the series, which can easily be bounded by.e- f2a. .-, _ _..,

D _ _, _".- _"e _ = using automatic differentiation to generate as many derivatives as required. Further,

- .- = _ _ = o -_ _ the order of the Taylor series can also easily be adjusted to the needed accuracy.

= - _ =-_ = _ - This paper emphasizes approximation methods based on Taylor series, but we also give

el = = _-_ - =- = some initial ideas, motivations, and remarks on the inclusion of the solution of stiff

,_::el _ ,___°o_ 7. __ __, ODEs (Section 5). We compare several numerical methods based on Taylor series to
= el _=- := _ _ - -_ evaluate their suitability for use as methods for the verified inclusion of stiff differential
o _ m'- _r.-- ,- o
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Stiffness

In this paper, we present initial steps towards algorithms for solving stiff systems

of ODEs based on Taylor series. We begin with a brief survey of theory and point

algorithms for stiff problems. The modeling of evolution, or growth, processes in many

applied sciences often leads to stiff ordinary differential equations. Tile initial value

problem

y'=Ay, y(0)=y0 with A<<0 (2.1)

is a simple example of a stiff problem. It shows the following characteristic behavior:

(i) The Lipschitz constant L = ]AI of the right-hand side is very large.

(ii) For Y0 = 0, the solution y(t) - 0 is smooth.

(iii) For Yo # 0, the solution y(t) = e'\tyo is rapidly decaying and very ansmooth in
the sense that derivatives are large during the initial "transient phase." Away

from t = 0, the solution becomes smooth very quickly and tends towards the

smooth solution ("smooth phase").

In most practical situations, rapidly decaying components (corresponding to A << 0)

occur together with smooth (nonstiff) components. Such a system quickly tends to-

wards an "equilibrium," that is, to a smooth solution. Rapid variations occur only

while the state of equilibrium has not yet been reached or when the system is switched

from one state to another (e.g., by nonlinear effects).

Although it is difficult to give a mathematically rigorous definition of stiffness, we call

a system

y' - f(t,y) (2.2)

y(0) = v0

stiff if its Jacobian fv (in a neighborhood of the solution) has eigenvalues Ai with
Re(Ai) << 0, in addition to eigenvalues of moderate size.

Stiff systems are considered difficult because explicit numerical methods designed for

nonstiff problems are forced to use very small steps. If "normal" steps are used, then

perturbations in the computed solution are amplified by the influence of the Lipschitz

constant L >> 0. In order to retain the stability of the true solution in the computed

solution, the step must be very small. It is not possible to use a step size that is

adjusted to the smoothness of the solution sought. That is why authors as early as

1928 [8] or 1947 [9] were led to consider implicit methods in which the approximate

solution yi+l at t = ti+l is given by the solution to some nonlinear system. Many
implicit methods allow step sizes appropriate to the smoothness of the solution.

Historically, the first theoretical concept especially suited for the assessment of numer-

ical methods for stiff problems was A-stability [11]. A-stability means that computed



" numerical approximations to decreasing components are also decreasing. This analysis

is based on the model linear constant coefficient problem y_ = Ay. The more modern.

concept of B-stability [15] is the basis for a general convergence theory for nonlinear

stiff problems. Nevertheless, we use the linear concept A-stability as a first criterion
for the assessment of implicit procedures based on Taylor series methods.

The general algorithm for implicit methods for stiff systems is as follows:

Initialize

Loop for each integration step

Guess step size

Solve some nonlinear system for yi+l
Estimate error

Accept or reject step

Well-known examples of methods of this class that are suitable for the integration of

stiff systems are backward differentiation formulas (BDFs) [10] and implicit Runge-

Kutta methods [4] and [12]. Our contribution is to use Taylor series to formulate the
nonlinear system for yi+l.

Any numerical one-step method applied to (2.1) reduces to

yi+l= R(z)w z = (2.3)

where R : C _ C is a polynomial or (in the case of implicit methods) a rational function

with real coefficients. R(z) is called the stability function of the method.

Definition: A numerical method applied to (2.1) as well as its stability function R(z)

is called A-stable if the left half-plane {z : Re(z) _< 0} is contained in the region

{z: IR(z)l<_

On the one hand, the definition of A-stability is too weak: only linear problems with

constant coefficients are covered. On the other hand, the definition is too strong: many

methods that perform well in practice are not A-stable. Thus we are led to the following

generalization.

Definition: A numerical method is A(c_)-stable if the sector {z: larg(-z)l _<c_,z # 0}

is contained in the stability region {z: IR(z)l <_1}.

In contrast to A-stable methods, there exists little nonlinear convergence theory in the

literature for methods that are only A(c_)-s_able. A step in this direction ftr BDFs was

given by Lubich [19].

We were led to consider implicit Taylor series methods for the validated solution of

initial value problems for stiff ODEs because explicit Taylor series methods that have

proven effective for nonstiff systems [6, 2] cannot be expected to handle highly stiff

systems successfully and because Lohner's program AWA [18]) has proven so successful

using Taylor series methods for computing inclusions.
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• 3 Implicit Taylor Series Methods (ITSM)

The first formulations of ITSM are due to Chang and Corliss [5] and to Stetter [25].

Let us start by recalling explicit Taylor series methods. Let yi be an approximation

for the solution of (2.2) at t = ti. The explicit Taylor series method uses recurrence
relations derived from the ODE to generate the series for y(t) expanded at tj. Then

k hj
Yi+, := Yi + _/j(Yi)- (3.4)

j=l J!'

where fj(y) • dJv for j = 0, k 1 and h := ti+l - ti is taken as large as possible"- dt--'7 "" "' -- '

consistent with error control constraints.

The simplest form of the ITSM is as follows:

Initialize

Loop for each integration step

Guess step size

Loop

Guess yi+_

Generate series for y expanded at t = ti+l
k (ti--ti+l)J

Exit loop when yi = yi+l + _j=l fj(yi+l) j!
is satisfied according to tolerance parameters

Estima'_e error

Accept or reject step

The series at t = ti+l is generated by using exactly the same recurrence relations

as in the explicit method. That is, each fj(Yi+l) is some nonlinear function of yi+l.

The difference is that the "initial condition" yi+l is determined by a Newton iteration,.

rather than being given by analytic continuation at the previous step. See Figure 1.

The Newton iteration for the equation

k (tj -- ti+l )J

Yi = Yi+l + _ fj(Yi+l) j! (3.5)
j=l

requires

0 ( k (ti_ti+l)j) k 0 (fj(Yi+l)) (ti_ti+l) j
(_Yi+l Yi+l -lt-_fj(Yi+l) j! = I+_ Oyi+------_ j! , (3.6)j=l j=i

which is computed from the solution of the variational equation U/ = "g-vy°]U [17].

The stability function R(z) corresponding to this method is a (0, k)-Pad6 approxima-

tion to the exponential exp(z) [12], where k is the degree of the Taylor series. It is well
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Figure 1: Implicit Taylor series method

known that the (m, k)-Padfi approximation is the unique rational function with nu-
merator and denominator of degree m and k, respectively, which appro_mates exp(z)

to O(zk+''+l) as z 0.

Any (m,k)-Pad_ appro_mation to exp(z) is A-stable if and only if k - 2 _< rn _< k.
That is, the diagonal and two subdiagonals in the Padfi scheme are A-stable (see [12]

and [13]).

In our case, only implicit Taylor series of degree 1 and 2 lead to A-stable ITSM.

For degree k = 1, the resulting method is the implicit Euler method, whose stability

and convergence properties are well known. For degree k = :2, the resulting me'&od

corresponds to a special Runge-Kutta scheme, Lobatto IIIC with the number of stages

s = 2. The corresponding stability function is a (s-2, s)-Pad6 appro_mation. Schneid

[24] showed that the Lobatto IIIC method for s = 2 is not only A-stable, but also B-
convergent of order 2 under some reasonable step-size restrictions.

The corresponding stability regions for the (0, k)-Pad6 approximation (see Figure 2)

were drawn by using the software product S [3]. Sand and Osterby [23] give ._tability

regions for certain Runge-Kutta methods that are qualitatively similar to Figure 2.

4 Implicit a Taylor Series Methods (IaTSM)

The lack of A-stability of the simple ITSM for higher orders suggests that we try to

increase the degree of the numerator in the corresponding rational stability function.

The ITSM matches the previously computed yi, with the value obtained by expanding

the solution at ti+l. The IaTSM generates the Taylor series at both ti and ti+l. The

condition that the two series agree at ti + ff(ti+l -tj), tr E (0, 1), provides the nonlinear

equation for Yi+l (see Figure 3).
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• The test

k (ti_ti+l)j (4.7)
Yi "_ Yi+l + __,fj(Yi+l) j!j=l

in the ITSM is now replaced by the test

,,_ aJ(ti+ 1 _ ti)j k (a- 1)J(ti+l - ti) j

yi + _ fj(yi) j! _ Yi-1 + _ fa(Yi+l) j! (4.8)j=l j=l

In general, m need not be equal to k. The IaTSM requires almost no work beyond that

required by the ITSM. The series at ti+l must be recomputed for each new iterate yi+l,
as in the ITSM described in Section 3. The series at ¢i, however, is computed only once

per step, and this computation has already been done at the end of the previous step.

Here, a is a tuning parameter of the method. The case cr = 1 represcnts an explicit

Taylor series, whereas a = 0 leads to the fully implicit form of Section 3. The case
1 is the unique choice of a for which the resulting method is A-stable, for any ordero'=_

m = k. Unfortunately, the resulting stability function is not a Padfi appro.,dmation if

the orders m, k of the Taylor series are higher than 1. Hence, the maximal achievable
order of the local truncation error is reduced compared to the maximal possible order

for the Pad6 approximation.

Remark: The IaTSM with k = m = 1 and a = ½ is the well-known implicit trape-
zoidal rule, which is A-stable, but not B-stable.

In a forthcoming paper [7], a class of high-order stiff ordinary differential equations

so!vers based on Padfi approximations is introduced and analyzed. In this approach,

the advantages of Taylor series methods mentioned above are maintained and combined

with highest possible order of the local truncation error. A general nonlinear stability
analysis remains to be done.

5 Implications for Interval Methods

The first task when developing an algorithm for validated inclusions of solutions to

stiff problems is to understand .un interval analog of the implicit Euler scheme Yi+l =

Yi + hf(ti+l, Yi+I). Let yi represent an approximate solution, and let [ei] be an interval
inclusion for the corresponding error. We represent an interval-valued solution at ti as

[yi] = Yi + [ei]. The implicit Euler method becomes

h2

e,,+l - hfv(_&+l + [0, 1] en+l) • en+l = e_ - -_fv(y(r)). I(y(r)), (,5.9).

for en e [en], and y(r) contained in an a-priori inclusion Yn+l- This is a nonlinear
system of interval equations. In the special case of a linear constant coefficient problem

y' = Ay, the corresponding system reduces to a linear system with interval right-hand

side. The methods presented in this paper can be viewed as higher-order generalizations

of this simplest implicit scheme.



. Another difficulty in the case of stiffness is the inevitably large Lipschitz constant L

of the right-hand f(t, y) with respect to y. This would cause a severe and unrealistic

step-size restriction whenever the Picard-Lindel5f existence theorem is applied to get

an a-priori inclusion. Subtle algorithms have to be developed.

During the preparation of this manuscript, we received Kreuser's thesis [1_], which

presents an alternative approach to computing inclusions of solutions for stiff ODEs.

Kreuser's approach transforms the original stiff system (2.2) into the new system

y' = Ay + (f(t, y)- Ay),

where A is a local approximation of the Jacobian fy(t,y). The a-priori inclusion is
obtained by symbolic computation of the matrix exponential function, thus avoiding

the severe step-size restriction inherent in Lohner's explicit approach [17]. 3:b get an

inclusion [yi] = .yi+ [ei] for the solution at ti, the approximate solution ._iis obtained by
integrating the linear ODE and applying a Taylor series method to the nonlinear part.

The inclusion [ei] is obtained by iterating an interval integral operator. The method of

Kreuser successfully handles stiff problems of the special form y' = Ay -t- g(t, y), where

g(t, y) is Lipschitz continuous in y. This excludes strongly nonlinear models.
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