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Abstract 
A brief outline of the longitudinal single particle dynamics at transition is pre- 
sented in terms of phase-space mappings. Simple quantitative prediction about 
the phase-space dilution is made. More realistic simulation (ESME) of the tran- 
sition crossing is carried oat (including various collective and single particle ef- 
fects contributing to the longitudinal emittance blow up). ‘Ibe simulation takes 
into account the longitudinal space-charge force (bunch length oscillation), the 
transverse space-charge (the Urnstitter effect) and finally the dispersion of the 
momentum compaction factor (the Johnsen effect). As a result of thii simulation 
one can separate relative strengths of the above mechanisms and study their indi- 
vidual effects on the longitudinal phase-space evolution, especially fdamentation 
of the bunch and formation of a “galaxy-like” pattern. 

1.0 Introduction 

We start with a simple description of the longitudinal beam dynamics near transition. A pair of 
equations of motion is integrated analytically and expressed in terms of time evolution matrices and 
longitudinal phase-space trajectories. Mapping of equal density contours across transition yields quanti- 
tative predictions about the longitudinal emittance blow up. Our simple model do-es not include any 
nonlinearities nor intensity dependent forces. To illustrate more realistic phase-space dilution effects, 
we employ a sacking code ESMEl (to simulate transition crossing in the Main Injector). One of the 
advantages of the simulation compared to existing analytic formalisms, e.g. baaed on the Vlasov equa- 
tier?, is that it allows us to consider the collective effecta in a self-consistent manner with respect to 
the changing accelerating conditions. Furthermore, this scheme enables us to model nonlineatities of 
the longitudinal beam dynamics, which are usually not tractable analyticaily3. 

2.0 Single Particle Dynamics at Transition 

The longitudinal motion, energy-phase oscillations (E-Q), near transition is governed by the fol- 
lowing set of equations 
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dt eVwo - = 7 (sin+ - sin@,) , dt 

where the frequency slip factor, q, depends now on energy offset, E, and also on time. It is given by the 
following expression 

q=a,+(a,+2a l-ao2)+++e"s';pt, 
EP -/t 

where I& is the synchronous phase. The momentum compaction factor,a , is defined by the following 
expansion 

g= a, 6+ a, Sz +...., 
CO 

s=P, 
PO 

where C, is the nominal closed orbit path length, and AC is the increase in path length for an off-mo- 
mentum particle. The coefficients a, and a, are geometrical properties of the lattice, given by 

where angle brackets ( . . . ) denote averaging weighted by bend angle. The quantities beiig averaged are 
component dispersions in a momentum expansion of the total dispersion function,;l ,given below 

x = x0 6 +x1 s= + . . (5) 

One can notice that the first and third terms in Eq.(2) cancel identically. To simplify these 
equations even more one introduces new set of canonical variables, 13-p. and dimensionless time in 
units of the nonadiabatic time, T = 0, defined by 

T= J F ($)’ “$ Sin@rllcOS@,l 

The set of equations of motion in reduced variables simplifies as follows 

ml 

* _ sin($, + 0) - sin@, 
dr- 1 co& 

(6) 

Q 

where the oxfticient 

a= &(at+iG)Icot@,l 
0 (8) 



is proportional to the so-called Johnsen time, defined as the rms average of ban&ion crossing time de- 
lay (with respect to the synchronous particle) taken over the entire bunch. The strength of this effect7 
is directly related to the formation of long tails and longitudinal emitlance blow up. However, to reduce 
OUT model even more - to a minimum, but still nontrivial case of transition crossing - we turn this 
nonlinearity off for the time being, by setting a = 0. Applying linear approximation to the RF fo- 
cussing in Eqs.(7) further reduces them to the second order Airy equation given below 

dz sp*rp=O 

aal (9) 

e*&p=o. 

Here the upper sign refers to ‘above’ and lower ‘below’ transition situations. A convenient way of illus- 
trating solutions of this system of equation of motion is to introduce propagators for phase-space tra- 
jectories. A trajectory is defmed in p-I3 space by the following column vector 

PO) X(T) = [ 1 em . (10) 
To propagate the above trajectory across transition one has to construct a time evolution matrix, M, 
for E4.(9), defined according to 

x@(r) = WT,-T) x(-r) , (11) 

where z = 0 was chosen at transition. Explicit form of the matrix M can be written in the following 
foml 

WM=[ :, -)T) [; ;]A-‘(%) , (12) 

where the matrix A is given below in terms of two orthogonal Airy functions Ai and Bi and their 
detivatives 

Ai Bi(-z) A(T) = 1 A?(-T) Bi’(-r) ’ 

The Airy functions are in turn expressed in terms of the Bessel functions of the fmt kind 

AX-T) = $ V,,(5) + J.. (5) 1 Ii-3 ’ 

(13) 

Bi(<) = 1 . (14) 



The mapping defined by M allows one to propagate any equal density contour across transition. Figure 
1 illustrates evolution of initially elliptical contour. Since M represents a linear mapping the contour 
remains elliptical, but its area gets compressed approaching transition. After transition the area enclosed 
by the contour expands and the final contour represents the same longitudinal emittance as the initial 
one. The final ellipse is stretched and rotated with respect to the initial one. We can conclude qualita- 
tively that when the kinematic nonlinearities are present (a f 0) shearing will filament the contour and 
it will gradually fill up the smallest matched (straight) ellipse, which includes the final contour in 
Figure 1. To get a qualitative result for a realistic situation, where both kinematic nonlinearities and in- 
tensity dependent forces are present, one resorts to numerical solution of the original set of equations of 
motion, where Johnsen effect and the space charge forces are built in explicitly. This will be carried out 
in the next section. 

P 

Figure 1: Equal density contours: below transition (T = -1). at transition (‘c = 0) and above transition 

(7= 1) 



3.0 Longitudinal Phase Space Tracking with the Space Charge 

The tracking procedure used in ESME consists of turn-by-turn iteration of a pair of Hamilton-like 
difference equations describing synchrotron oscillation in +E phase-space (0 5 $5 2n for the whole 
ring and E = E - E,, where E, is the synchronous particle energy). Knowing the particle distribution 
in the azimuthal direction, p(o), and the revolution frequency, coo, after each hnn, one can conshwt the 
longihdii wake field induced by the coherent space charge force4 

when 

Vi(~) = eo, Cp” Z,+(“~,)ei”$. 
“=--o 

(15) 

Z,.,(“Q) = nZ, 
m* 

1 1. 1+21*; 

Here, a and b are the radii of the beam and the smooth vac”“m pipe, respectively. 

The above force is defocusing below and focusing above the transition. Therefore it corra‘ts the 
equilibrium bunch length to be longer below and shorter above the transition (compared to the case 
without any space charge). This yields bunch length oscillation above the transition set off by nonlin- 
ear bunch length oversho&. 

4.0 Implementation of the Urnstitter and Johnsen Effects 

As a result of the transverse space charge forces each particle suffers a horizontal bet&o” tune 
shift, which is proportional to the particle density, p($), at the given longitudinal position $I. This 
tune shift translates directly into the change of yt, Close to the transition, when q goes through zero, 
even very small corrections to ‘(t play dominant role and they govern the longitudinal beam dynamics. 
One of the features of ESME code is that each particle has its own yt, which allows for straightforward 
implementation of the Umstiuer effect (described above). Similarly, to account for the dispersion of the 
momentllm compaction factor (Johnsen effect). different parts of the bunch (particles with different 
momentum offset) are allowed to cross transition at different times. Both contributions to the yt shift 
are summarized below6 

1 2 
A U, = 2hrPRB{7a* 

0 
-p(e) - (2al + a, - ao2) 5Q 

P 

5.0 ESME Simulation - Main Injector 

As a starting point for OUT simulation a single bucket of the Fermilab Main Injector in +-E phase- 
space is populated with 5000 macro-particles according to a b&Gaussian distribution matched to the 
bucket so that 95% of the beam is confmed within the contour of the longitudiul emiuance of 0.4 eV- 



sec. Each macro-particle is assigned an effective charge to simulate a bunch intensity of 6~10~~ pro- 
tons. 

The fmt set of results, Figure 2, corresponds to the situation when only intensity-dependent coher- 
ent forces are present (a1 = 0). The simulation is carried out over a symmetric (with respect to the tran- 
sition) time interval of 2700 turns. Figure 2 represents a sequence of the longitudinal phase-space snap- 
shots taken every 400 turns. One can clearly see dilution effects leading to extensive filamentation of 
the beam at transition. It yields the longitudinal emittance blowup (100%) and beam loss (5%) at tran- 
sition. 

The second set of simulations incorporates in addition to previously discussed coherent space 
charge forces also the Johnsen effect. The dispersion of the momentum compaction factor, al, is as- 
signed a value of 5x1r3 and both the longitudinal and transverse space charge forces described by Eqs. 
(15) and (16) are used in the simulation. Again, the phase-space snap shots are illustrated in Figure 3. 
One can see fast development of long tails contributing to the longitudinal emittance blow up (150%) 
and substantial (30%) beam loss, since the particles from the tails quickly stream to the unstable phase- 
space region. 

6.0 Conclusions 

One can see from our simulation that the presence of large al has crucial impact on beam degrada- 
tion at transition. One can look at the Johnsen effect using simple physical picture of instantaneous 
phase-space configurations. Particles with large positive momentum offset cross transition scxmer than 
the synchronous particle and they end up “seeing” unstable phase-space region long before the syn- 
chronous phase is “snapped” (& + n - & at the transition crossing for the synchronous particle). 
They follow unstable orbits in phase-space and eventually leave the bucket (long tail formation). 
Similarly, for particles with large negative momentum offset transition crossing is delayed with respect 
to the synchronous particle. After the synchronous phase “snap” they are still below transition and 
drifting into unstable region, which contributes to formation of the second tail (see Figures 2 and 3). 

7.0 References 

1. J.A. MacLachlan, FERMILAB TM-1274 (1984) 
2. S. Krinsky and J.M. Wang, Particle Accelerators, 17, 109 (1985) 
3. S. Stahl and S.A. Bogacz, Phys. Rev. D, 37, 1300 (1988) 
4. J.A. MaLachIan, FERMILAB m-446 (1987) 
5. S.A. Bogacz and K-Y Ng, Phys. Rev. D, 36,1538 (1987) 
6. A. SQrenssen, Particle Accelerators, 6,141 (1975) 
7. S.A. Bogacz. Transition crossing in the Main Injector - ESME simulation, Proceedings of the F III 

Instability Workshop, Fermilab, July 1990. 



-~j 
~ ..~~i 

,_II 
~Ir;~~.i;~,In~ ~“. ~^~ I~ _. “. .” ._. ,~~n 

I 

I __..,....,~,..., 8<-.0..0~‘1 

I_ 

.I~ 4 

‘4 f 
A ,...; -‘ 3 ~~2 
2 .. ~“~ 
( :j 

_~ 

-. . . 

I 
L,l, ..eI,,,.el .._..,^” 

j ,..c~a, SIC 

..,;;.., I-~.j~ ,.e”.^. ,.. ..~~.._ ,..“.~j 

Ilj 3 . ...:..., I-.nj ,..“.~. 

. ..< 

; 

‘“~ 3 

1 

.,O,” ,^,.L,D- ,..^..,.O1 ,..“..,I” 
.,.. .oo ,...<~O, TIC 

..;.., ..?A... ~..‘A.. ;. /:.:- A., 
1 

.i~l 3 .,L., .&..- ~..,L.. 

..,1 2 

.:.. 

..,, 2 I 

~ 

,: 2 

.,, j ! 
~j’ji 3 

i -l ~.... 2: ~..~~ B : a .‘l” i \ ~._~ 2 y ‘\ 
1 --TV “Tmpm”,n~G 1 ~ .“. i’i: s(,.~~y _, .I.. . . . .~11 
,_....... e,.“., 

,,i .~,n. lll,,,“. ,~.i ..,.” 
.j.R ~nr 1~1:/~1, n 

..,,,.. ~I .A,... ..,::.... L ,~,LiI ..f.... 

.il~ : . ...:.., ,A.... ,..L.. I 

..~. 1 

“~j i 

“DD 2 I i 
2 ,Ijl j 

~ J 
~“;; a f!G 

~,.~~ 4 

~,_~ 1 ~ 

I :::I’;,,. j 
~._I ..I. . . 

I -_... “~ ..,. “_, .~. i’i&.“,b.,y~ 

Figure 3: Phase-space dilution for (at = 5x10-3) illustrated by a sequence of the longitudinal phase- 
space snapshots taken every 400 turns. 
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Figure 2: Phase-space dilution for (at = 0) illustrated by a sequence of the longitudinal phase-space 
snap-shots taken every 400 turns. 


