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.; Summary

The composition of the mobile phase employed in capi].lary zone

electrophoresis and the related technique, micellar electrokinetic capillary
,, chromatography, is art important factor in determining separation performance.

i_ The influences of ionic salt, surfactant, and organic solvent mobile phase ,
additives on separation efficiency, retention, and elution range are

•_ discussed and demonstrated.

(

i Introduction

Capillary zone electrophoresis (CZE) has developed over the past decade

. into an electrophoretic separation mode that is capable of rapid, very high '

, efficiency separations of charged solutes Ii]. As with other forms of '

'_ electrophoresis, separation is based on differences in electrophoretic

_, mobility. The use of microcapillaries permits the application of relatively ,.

': large electric fields without the problem of thermal peak dispersion[2]. [

Under the proper conditions plate counts in excess of I0 6 can be achieved "i ' '

; A major limitation of CZE is its inability to separate neutral

compounds. One approach to extend the applications of CZE to include

• neutrals involves tl_e addition of surfactants to the mobile phase at .

concentrations sufficient to form charged micelles[3]. With this type of ".

' mobile phase, neutral compounds can be separated based on differential ,

.. chromatographic partitioning between the aqueous and micellar components of '

the mobile phase, which are transpoL'ted through the capillary at different

_!: velocities due to electrophoretic effects[4]. We refer to this technique as _:
l

. micellar electrokinetic capillary chromatography (MECC) and have applied it

in the separation of a variety of mLxtures of compounds including many of
7_, ' _

' biological interest[4-8] it . ,.
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,;_ Instrumental at_d operational aspects of these techniques except for

;_ detection which is complicated by diminutive peak volumes, are straight-

,._ forward and amenable to automation. In coutrast, critical acljustments of tlte

•_ composition of the mobile phase, with a variety of additives, can produce,.

"' both dramatic and subtle effects on separation performance. Separatioll

performance is ultimately measured in resolution which depends largely on,¢'+

, efficiency and selectivity. Additionally, elution range is important with

the MECC technique[9]. This paper will first focus on the effects that pll

' and salt concentration in the mobile phase have on the efficiency obtained in• .

_+ CZE for a selected protein. The objective in this case is the minimization

'!.. of adsorption on tlle surface of the capillary column. Second, the influences
' .._ _

+_'.+ of surfactant concentration and the use of mixed aqueous-organic mobile
T

phases will be presented for the MECC separation of fluorescently-derivatized
'.? f

+_ alkylamines. Efficiency, capacity factor, at+td elution range are ali '.

._ influenced by these mobile phase additives. Finally, significant changes in

._ elution profiles will be demonstrated for the same chemical system when,+it

.: organic solvent gradients are employed.•,'ii
•;,; i

_ 2 Experimental..

'+' 2 1 Materials and Cllemicals '+

i Separations were performed using untreated fused-silica capillary tubit_g."

•_:! supplied by either Scientific Glass Engineering (Austin, TX) or Polymicro

., Technologies (Phoenix AR) and octadecylsilane (ODS) modified capillary ,
++,

+ .tubing supplied by Supelco, Inc. (Bellefonte PA) Capillary diameters

+, ranged from 25 iLm to 75 pln wit|l lengths up to 1.5 m. Sodium dodecyl sulfate, . +.

• ; ,:t_ (SDS) eonalbumin 2-(N-cyclohexylamine)-ethanesulfonic acid (CIIES), and 7-
..

,_ chloro-4-nitrobenz-2-oxa-l,3-diazole (NBDoCI) were obtained from Sigma

_i. Chemical Co. The laser dye Coumarin 343 was purchased from Exciton Corp. i

, _! ' ,',i Amines and buffer components were reagent graded and obtained from Fischer
i

.!! Scientific. The NBD-CI fluorescent derivatives of the alkyl amines used in

:.,; this work were prepared using a pre_,iously reported procedure[lO].

_._

._ 2.2 Apparatus arld Procedures +'+'

++'_ The apparatus at_d procedures for tl_e work reported herein varied :•+_ '_

}i depending on the study and consequently only a cursory description will be

::, provided herein. More detailed descriptions can be found in the appropriate
.++

',_ cited references. The basic CZF./MECC apparatus, including llipotronics Model
i

'_ 840A power supply (Brewster NY) and arrang_ment: of column and buffer

.I._, reservoirs, is the same as described in previous reports (e.g., /4). Samples

_I were injected by both hydrostatic axed electromigration techniques. Gradient6 i

'I



_: elution was performed u._iug an inlet reservoir chamber than included a meansii
._ to pump-in new solveut and drait_-out the contents of the reservoir[ll].

.: Linear, concave, and COliVeX shaped solvent gradients were possible via

suitable adjustme_t-s of tlle reserw_ir volume and the pump-in and drain-out

" rates

.:, Several modes of on-column optical detection were employed.

", Investigations involving the effect of pl[ on the efficiency of conalbumin in

i.ii CZE were performed using a Laboratory Data Control UV III monitor absorbance
i_ detector that was modified with fiber optics a cadmium pen lamp (229 urn)

_! light source, and an unique laser-etched flow cell[iii, The effect of mobile

':' phase salt concentration on efficiency was studied using the natural.0

' _:_'_i_i fluorescence of the protein. Excitation was provided using a Coherent
1

i} Radiation Corp. (Palo Alto, CA) Model Innova lO0 argon ion laser (515 nra, 9
•_!
:':; W) frequency double to 257 nm (9 mW) using an Inrad Corp. (Northdale NJ)

_,! Model 527-003 harmonic generator. The emission was isolated with a
':_;,

monochromator/filter combination centered at 330 nm More details concerning

,: the optical detection of proteins can be found elsewhere[12]. The NBD-amines

:_i were also detected via laser fluorimetry using either a Cyonics (San Jose, ','[

"! CA) Model 2001-20BL argon ion laser (488 nra, 20 mW) or a Liconix (Sunnyvale, _'

) CA) Model 4230 NB lle-Cd laser (422 nra, 30 mW). The emission was isolated :;,

_ with a monochromator/filter combination centered at 525 nm[ll].
2

_ 3 Results and Discussion

_ 3 1 Effects of pll and Salt Concentration or, CZE Efficiency for Proteins ,.

.',_ lligh separation performance is generally as_ociat:ed with the ability of

a separation technique to rapidly resolve structurally similar compounds or

iJ to resolve the many components in complex samples. In CZE resolution depends

on differences in electroplloretic mobility (selectivity) and efficiency, i

i_i Improvements in resolution can be achieved, at the expense of time, by i
:i
:. modifying the capillary walls or the composition of the mobile phase such

: that eleetroosmotic mobility opposes and is of similar magnitude to the!

• electrophoretic mobilities of the solutes to be separated[2]. Although the

' mobile phase can be adjusted to alter solute electrophoretic mobility the

: effects are not" dramatic unless h_ghly specific interactions are involved

, (e.g., tlme formation of charged complexes[13]). Thus, efficiency is

/, generally tlme most important factor in determining separation performance i

Ignoring injection and detection related band dispersion, the major factors

,} that reduce plate counts ill CZE are longitudinal diffusion, thermal !
• /

dispersion and wall-solut_, interactions[14]. The latter two factors are

, particularly important in clue appl.ication of CZE to protein/peptide analysis. ;

.' !,

J
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: Proteins can "stick" to the surfaces of the untreated or treated silica

_: capillaries that are usually emplojed in CZE via coulombic, induced dipole,.L

atld dispersive interactions, bloreover, the large size of the protein can

facilitiate multiple interactions for a single protein molecule. The

coulombic interactions are generally the strongest and are of prinlary/

"_ concern, lt is also clear that these interactions vary.greatly depending on

_,_ the protein and the interested reader should not overextrapolate the
f

_i'_ usefullness of CZE or specific operating conditions to the separation of

';: proteins that: have not been previously investigated

:q, Approaches to minimize protein "sticking" include modifying the surface

j,! of the capillary[15-17], adding large concentrations of salts, including .

,_'i_ zwitterionic salts, to the mobile phase to compete for interaction sit-es on

, the capillary wall[If], and utilizing mobile phases buffered to low pll[17] or

" high pl[[19 20] The effect of pl[ adjustment and surface modification are' .

i_, demonstrated in Figure I with elution profiles of conalbumin obtained in our

.: laboratory.
J

#
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i Figure 1 :..

::! Elution profiles of Conalbumin using (A) 501_m i.d. x '75 iLm untreated _

ii. capillary, mobile phase, 0.01 M CIIES, 0.015 M KC1, pll adjusted to 8.3, '
,,: (B) Same capillary and mobile phase, pll adjusted to I0.I, (C) ODS modified

:_i capillary, 50#m i.d. x 50 cml mobile phase, 0.0! M Na211PO4, 006 M Na2B407, pl[ ,
,_ adjusted to 8.0

.,_ i",
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'i By increasing tile pll significantly above the isoelectric point of the ii
;i "

:i protein (the pl Of conalbumin is 6.7) both the protein and the silica surface i

'_ of the capillary acquire a llet negative charge. Because of the complex

,_ nature of the protein-su_-face interaction, this pll adjustment does not

totally eliminate tlle "sticking" problem. If limited only by longitudinal

diffusion, the plate count for the conalbumin should be greater than 10G[18].

The observed efficiency at plt 10.1 in Figure 1I', is only approximately 12,000

plates. Nevertheless, comparison of Figures lA and g illustrates the effect

._. of increasing the pti to hlerease the coulombic repulsion between the protein :

., and the capillary wall. The strong wall adsorption at pll 8.1 is evident• lt ..

.i_ is surprising that the leading edge of tile conalbumin peak at pll 8.1 is sharp ,

and the peak height is roughly the same as for the symmetric peak at pll i0.i. :,
J

This may be partly explained by differences in detector response factors at .

:, the two ptl values, llowever the elution profiles in this experiment were ,

_: reproducible and intermediate effects were observed at p}l values between 8.1 (. .,_'.!.i,'q _ .

; and i0 1 Figure lC is the elution profile obtained with a capillary
,! . •

'4

: modified with ODS. A short "break-in" period , involving a few protein
f ,

:..: injections, was required with this column. These preliminary studies

' indicate that surface interactions were significantly reduced by the ODS

i modification The ability to operate at a moderate pH can be important in

'; t:he separation of protein mixtures as at extreme plt values differences in :i
"I

;. protein mobility are reduced and selectivity suffers. The silica surface is

_¢. also unstable at very high pll.

_i The absorption of proteins on tile capillary wall can also be reduced by
.1

._ employing mobile phases with relatively high salt concentrations[21]. Our ""

i studies of the influence of KCI concentration on efficiency for 25 #m and 75

_: /LIni.d. capillaries is summarized illTable i, On-column absorbance detection

i is commonly employed in CZE but is difficult to perform with very small i.d.,._

;{ capillaries This study was conducted employing laser-based fluorescence '4 "

,_ detection using the frequency double output of an argon ion laser for ,_

'; excitation[12]. The ability to focus laser beams to extremely small spot !'

sizes facilitates the use of very small diameter capillaries This is% ' i,
f i

important since electrophoretic current hence thermal load, decreases and5 '

'_ the ability to dissipate heat Increases as the diameter of the capillary is

:i reduced, Thus, the advantages of high salt concentration can be exploited t

., with very small diameter capillaries As seen from the table the 25 #m i d. i• . [

capillary provided the higher efficiency, llowever, at 45 mM KCI the effects '
4

, of thermal dispersion are eviden_ even witl\'_che small diameter capillary.

1
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Table i

Influence of salt (KCI) concentration and column diameter on efficiency for

i conalbumin
L
i

N(plates x lO00/m)/Power Dissipated (W)

Capillary KCI Concentro, tion (imM)

:! diameter

_,i (#m) 15 30 45i
:I

;I 25 78/0. i0 390/0.20 280/0.4D

75 80/0.24 12/0.42

,i!
,_, .,
t

ii.,

3.2 The Influence of Mobile Phase Composition on Separation Performance in .
ii MECC
!
){ Resolution, Rs, in MECC is given by equation I[3]
ii

"j

c_- . - to/tru
'i, Rs -- (1) "
i _ i + (to/tm)k'

1
1_ _,

ii where performance is dependent on plate count N selectivity factor

! capacity factor, k', and the elution range as reflected in to/t m. The most

:_ common surfactant employed in MECC is SDS llowever, other surfactants have
'! .

been employed to provide unique selectivities and improve performance (e.g., .

i consider our accompanyi_ig report involving the use of chiral-order bile salts !

"qi for the separation of btnapthyl enantiomers). Likewise, mobile phase

.,. additives such as organic modifiers and complexing reagents have been shown

'I to influence selectivity. It: is, however, the general influences of

., surfactant concetLtration and organic solvent additives on efficiency_ P

capacity, and elution range that are considered in this report

! Table 2 presents the results of our experiments involving manipulation i
i i
,j. of mobile phase composition in MECC. NBD derivatives of alkylamines were i

used as test solutes in the experiments. The data was obtained using 50 _in

_i i,d. x 1.5 m columns, an applied voltage of 20 kV, and a mobile phase that "v

_' contained 0.O1 M NalIPO4, 0.005 M Na2B407 (pll 7.5). NBD-ethanolamine and the
!

'_ fluorescent dye coumaxin 343 were used to mark to and tm, respectively. ',

.: Increasing SDS concentration from 0.015 M (slighly above the SDS critical ,

! micelle concentration) to 0.I0 M resulted i_l.adramatic increase in plate

number and an increase in capacity :factor for NBD-n-butylamine. The latter ::

._ effect is a result of an increase in micellar phase volume The optimum k'|' ' i'

:!

.i

.,
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1 in MECC depends on elution range, but is generally in the range of 1-513],

' The increase in plate count w.lth SDS concentration is probably attributable

_ to an increase in the rate of monomer-micelle exchange, which minimizes the _.,

band dispersion caused by micelle polydispersity[22 23] SDS micelle systems;_ I ' ,

:,, exist with a range in aggregation number that produces a concomitant range in i

• micelle electrophoretic mobility. Increasing the dynamics of micelle

i_ rearrangement via increases in surfLlctant concentration and temperature has i
f '_

'_ an averaging effect in solute band velocity that improves efficiency[22], :','

i Unfortunately, large increases in surfactant concentration can produce the _

i thermal band dispersion discussed in the previous section and excessive k _ _'

.!i values. Optimization of surfactant concentration in MECC is straightforward _'!

but critical. _o achieving high separation performance, i

!
Table 2

,! Effects of [SDS] and organic additive on the electrophoretic behavior of NBD-
n butylamine in MECC i

[SDS ] _2 -propanal k' N (plates/m)

0.015 0 1 20 8,000
i

I

0 10 0 3 26 350 000 ,
I."

., to/t m i

0.075 0 1.02 310,000 0.65

.i' t t... 0.075 i0 0,41 250,000 0.14 I.
_' i

",

;. MECC generally exhibits large k' values for hydrophobic compounds and a

limited elution range As can be seen by inspection of equation i this
I

;'. degrades resolution for solutes with large k' values. Organic solvents cant
_ be added to MECC mobile phases to provide some solution to this problem. The

bottom two rows in Table 2 demonstrate the effects of 2-propanol on the

elution characteristics of NBD-n-butylamine An intermediate SDS
,_

concentration was employed. The addition of 2-propanol has several effects.
!

_i Critical micelle concentration is increased, resulting in a decrease in the i
,'.

' micellar phase volume. The partition coefficient for the test solute is also" ! ,:

decreased (elution characteristics with this MECC system resemble reversed

phase LC), These effects result in a significant reducti°n in k'. It should

be noted that this experiment was performed separately from the SDS concen-

tration experiment described above. Differences in operating temperature are
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! likely responsible for the disparity of k' values between the two experl-

'j ments.

A slight reduction in plate count is observed with addition of 2-

; propanol. This is persumed to be a result of a reduction in micelle

concentration that il_fluences tile problem of polydispersity discussed above
°

,_ Nevertheless, significant reductions in k' are possible without excessive .,
"_ !

:,_ reductions in plate COULlt Organic solvents that interact with the capillary '

) wall such as alcohols reduce electroosmotic flow and extend the elution,_,
il

,_ range. This is seen in the to/t m values in the table and the chromatograms ,,,

i in the next section. 'the extended elution range and reduction in k' improves t

!_ the resoituion of moderately hydrophobic compounds i

.,

_ 3 3 Gradient Elution in MECC
_ •

,_ The discussion and data presented in the previous section illustrates t'_

;' the importance of manipulating retention in btECC to optimize separation i.

._ performance. As in conventional LC, solvent gradients offer promise i[_ MECC l"
,1

. for separations of complex mixtures. The addition of organic solvents during
I

i the course of a MECC separation causes partition coefficients and micellar

,_ phase volume to reduce, both of which reduce solute capacity factor. The

'_: organic solvent also tends to increase the MECC elution range. The
'j

:_ implimentation and optimization of solvent gradients represents a significant •

:i advance in MECC methodolgy. The effects discussed above are demor:strated in ;

Figure 2 for the separation of NBD-derivatized n-alkylamines using the l,

?! gradient apparatus described in the experimental section and discussed in :
'i_ (

. L
'ii reference ii ,

i The isocratic chromatogram in Figure 2A clearly demonstrates the :,i

'i aforementioned problem of resolving moderately hydrophobic compounds, i

Compounds with large k' values tend to "bunch-up" with retention times near
• ,

that of the micelle (tm). The acetonitrile gradients that produced the ,'

,_! chromatograms in Figure 2B & C clearly improved the separation by lowering '_i

i', the k' values for the late eluting components and extending the elution 1

range• Acetonitrile was used to generate the gradient because it alters

i retention while causing only moderate changes in electroosmotic flow and '

.i to/tn, lt can be further seen from the figure that the shape and extent of i

,; the gradient influences the elution pattern for the text mixture Current

efforts in our laboratory involve using elution parameters (i.e,, k' and "

electroosmotic and micellar flow velocities) obtained for isocratic runs of

., standard compounds, and computer simulatiofi_-, to optimize gradients for the

: efficient separation of mixtures of the compounds

i '
!
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i Figure 2 ,

i MECC chromatograms for separations of a mixture of (a) NBD-n-propylamine, (b)
" NBD=n-butylamine, (c) NBD-n-pentylamine, (d) NBD-n-hexylamine, (e) NBD-n-

't heptylamine (f) NBD-n-octylamine (g) NBD-n-decylamine (h) NBD-n-

? dodecylamine, and (I) impurities using a mobile phase consisting of 0 01 M
i Na2HPO4, 0.006 M Na2B4OT, 0.05 M SDS with (A) no solvent gradient, (B) a i

'_:: linear acetonitrile gradient, and (C) a concave acetonitrile gradient.
) ' ,.
i
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