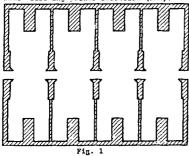
INVESTIGATION OF THE DISC-AND-WASHER STRUCTURE*

G. Mavrogenes Argonne National Laboratory Argonne, Illinois 60439

CONF-810314--192

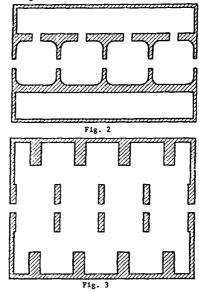

DE83 008856

aná

W. J. Gallagher Boller-Gallagher Engineering Company 2406 Eagle Avenue Alamedia, California 94501

Introduction

About 1971 a proposed accelerating structure was described by the Radiotechnical Institute, Moscow, which was intended for proton acceleration in a planned meson factory linac. The structure has several quite useful features and has been subsequently investigated by AECL (Chalk River, Canada), LASL (UC Los Alamos NM) and Argonne National Laboratory. A sketch of the structure is shown in Fig. 1, which reveals the origin of the name "disc-and-washer structure (DAW).



The origin and development of the concept upon which the structure is founded is provided from considerations of a chain of individual TM-Ol cavities designed to produce kinetic energy gain to a bunched beam transiting their common axis. It is assumed the cavities are individually excited without inter-coupling; so that for maximum energy gain there is a specific phasing requirement based on the transit time from the previous cavity. Such a system would be very complex to operate and would only be considered in the special case of a few cavities as, for example, the LASL PRERMEX.

What is wanted is an automatic or self-phasing system. This system could be provided by a coaxial drive line that in the ultimate case included the accelerating cavities within the center conductor, Fig. 2. The principal draw-back to such a simple system, in addition to the stored energy in the feedline, is that in the case of periodic positioning of the cavities the consequent periodicity of the coupling aperturer, and the associated reactances, would cause in the coaxial line a propagation constant which would depend on details of the coupling spertures and there fore the phasing of the cavities would not be automatically optimized. This defect could, of course, be corrected by including periodic compensating reactances in the coaxial line so as to produce a filter network with the appropriate phase shift per periodic length, which results in the structure shown in Fig. 3. Alternately, one can view this structure as being composed of two sets of cavities with different modes of resonance where, in the standing wave case, alternate,

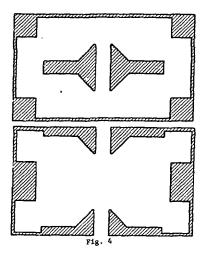
*Work performed under the suspices of the Office of Basic Energy Sciences, US Department of Energy.

unexcited cavities are removed from the beam line. This is, of course, the principle of the side-coupled waveguide designs.

Again, one can view the structure as a length of shorted radial transmission line (outer cavity) matched to another radial transmission line including the axis (inner cavity). In any case, what is accomplished in the DAW structure is to provide a cavity resonant in a TM-01 like mode but with improved transit time factor.

Field Description

In a physically complicated structure, such as the DAW, one cannot hope to find a solution of the wave equation which also satisfied Maxwell's equations, both conditions being necessary to describe a wave which will The usual technique of solving this sort of problem is "mode fitting", that is, to describe in each region of the structure a supposed set of modes which match the boundary conditions and each other at their common boundary. Such a program has been described by Andreev, et al., but the results are too complicated to be practical. For the purpose of determining the appearance of the cavity modes, a practical program consists of experimentally producing a resonance in each of the two types of cavities at the intended frequency. This is done in the precent case by fabricating two cavities, shown in Fig. 4, corresponding to the beam line and side-coupled cavity severed in the planes of symmetry. The dimensions of the cavities are varied to


NOTICE PORTIONS OF THIS REPORT ARE ILLEGIBLE.

1

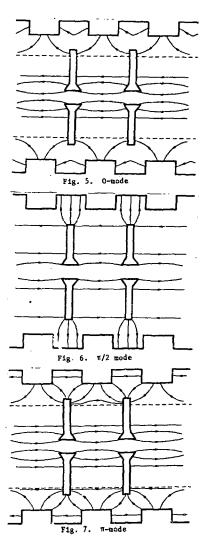
It has been reproduced from the best available copy to permit the broadest possible availability.

MASTFR

PROTESTICAL OF THE DUCHNESS IS UNLIGHTED

produce a TN resonance in each at the same frequency, and the cavities when part of a periodic structure will be the $\pi/2$, or intended mode. In this process certain dimensions will not be varied, for example, the drift tube (nose cone) and the washer thickness. Of course, the periodicity of the structure is fixed by the operating frequency and phase velocity. The inside diameter of the waveguide is, interestingly, set approximately by the solution of $J_{Q}(p_{Q}) = 0$, i.e., $\lambda = d$, the condition for propagation in the TM-02 mode (assuming the lowest TM-mode on the axis is intended).

Exploration of the fields in the structure, by means of perturbation theory, using needles and small dielectric and metallic spheres, revealed the patterns shown in Figs. 5, 6 and 7. There is no quantitative significance to the sketches; the lines shown are the conjectured electric lines.


What is wanted by accelerator designers is the shunt impedance, energy (group) velocity and attenuation coefficient (or 0) of the structure, and these can be measured in a conventional mannet. Some experimental values for phase velocities $0.4 < V_p/c$ 0.8 have been given, based on S-band scaled models by Andreev³ and an extensive study in the phase velocity range $0.4 < V_p/c < 1.0$ has been done by computer simulation by Schriber. By scaling laws, one can anticipate that

$$\frac{\mathfrak{r}_1}{\mathfrak{r}_2} = \sqrt{\frac{\mathfrak{f}_1}{\mathfrak{f}_2}} \qquad \frac{\mathfrak{q}_1}{\mathfrak{q}_2} = \sqrt{\frac{\mathfrak{f}_2}{\mathfrak{f}_1}}$$

insofar as frequency dependence of surface resistance can be ignored. Group velocity does not depend on wavelength, i.e., is a constant in scaling. Also, the computer simulation (LASL SUPERPISH) program can only accommodate cylindrical symmetry⁵ and must use a conjectured surface resistance, which depends on the material and the surface finish of the material

Experimental Program

For the purpose of estimating the difficulties to be encountered in fabricating this structure and determining the achievable microwave properties an experimental study was undertaken. In every case the studies were for $\beta=1$ only; for an electron IInac application only this phase velocity is of interest.

First, it is of interest to determine what non-varying parameters can be set to avoid prolonged investigation. It is well known that the maximum energy gain in a TM-01 mode cavity occurs when the diameter/length ratio is 7/4; in the present case, this maximum occurs when the interaction gap (2) and the periodic length (p) are in the ratio g/p = 2/3. The nose cone details are not of serious importence and one can advantageously use klystron cavity design (30 degree rake with radius $r/\lambda = 0.15$). The above decisions are in second with the studies of Schriber's and Manca. Of course the periodicity of the structure is given by $p = (v_p/c)(\lambda/2)$ but there is no analytic way to decide the ratio of disc thickness to periodic length. In this study we were guided by Schriber's discovery that maximum shunt impedence occurs when the disc thickness is about hali the periodic length, 5 that is, much

thicker than the original RII model. 4 Obviously the ID of the disc was adjusted for resonance when the OD of the washer was chosen.

The first part of the present study was an examination of S-band structures, because of fabrication costs. Three atructures were fabricated and tested at 2450 mcs:

DESIGNATION	<u>s-1</u>	<u>s-2</u>	<u>S-3</u>
Cyl diam., 2Rc, in.		5.896	6.872
Disc diam., 2RD, in.		4.972	5.974
Wash diam., 2Ru, in.	3.948	3.874	3.810
In every case:			
Cyl length, tc, = 1.	834 in.		
Wash thkn., to, = 0.	150 in.		
Disc thkn., td, = 0.	574 in.		
g/L ratio = 0.	6		
Nose Cone. $\theta = 30^\circ$	0		

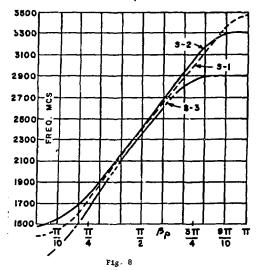
For these models the following properties were determined.

DESIGNATION	<u>v_k/c</u>	<u>K</u>	(r/Q)eff	<u>T</u>	<u>G</u>	Σ ^B HU\edm	
S-1 S-2			46.8 17/cm 43.7				
S-3	0.76	0.70	36.8	.82		.26	
vg/c is normalized group velocity K is the coupling coefficient (r/Q) eff is the effective r/O							
T is the tra G = (/E.dz) ² Z _E is the se	nøit /ʃE ² d	cime z 1s	factor the gap f	ield	shape	factor	

At this point there was no object in continuing to increase the cylinder diameter because the Brillouin diagram showed the π -mode was dropping down to the $\pi/2$ -mode (Fig. 8). In addition, the washers were so thin that the possibility of cooling them by inside water passages appeared to be impractical. The values given in the table above are only comparable to those given by Andreev since the disc thicknesses were designed to be thin as in the RII model. Some indication of the usefulness of the structure is ordinarily given by the product $(2\pi/\lambda)$ $(r/Q)(c/v_g)$, the series impedance of the structure. Because of the high energy velocity, the structure appears to be of little use; as a traveling wave structure it is of no use (a typical value of series impedance is 20 MN/sqm in S-band), but it is a consequence of the intended mode of operation (resonant) that this unusual structure has great use-

Because of the necessity of obtaining a value of Q, in the L-band study aluminum models were investigated and the final model (best structure) was dipbrazed and copper plated. This best version had the dimensions:

cylinder length, t_c , = 6.030 cm cylinder diameter, $2R_c$ = 34.772 cm disc length, tp = 5.501 cm disc diameter, 2Rp = 30.724 cm washer thickness, tw = 0.726 cm washer diameter, 2Ry = 18.144 cm g/L ratio = 0.60 nose cone angle = 30° beam aperture diameter 2rh = 2.283 cm geometrical periodic length L = 11.531 cm


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The experimental properties were:

(r/Q) eff = 2327 Ω/m vg/c normalized group velocity = 0.593 transit time factor, T = 0.818 gap form factor, = 8.11 cm figure of merit, Qo = 22,000

While the Q is not impressive, that is probably owing to the finite length of the structure, as well as the quality of the plating (contaminants, etc). deleterious effects were observed from the radial support rods, as has been reported. By interpolating into computer simulation data5 the microwave properties of this structure do not compare well.

References

- V. G. Andreev, Zh. Tekh. Fiz. 38, 1306 (1968), transl. Sov. Pnys. 13, 1070 (1969). V. G. Andreev, et al., Zh. Tekh. Piz. 40, 523 (1970) transl. Sov. Phys. 15, 405 (1970). V. G. Andreev, et al., Science (Moscow) II, 150 (1972)
- 2. V. G. Andreev, Zh. Tekh. Fiz. 41, 788 (1971),
- transl. Sov. Phys. 16, 617 (1971).
 3. V. G. Andreev, et al., Investigation of the Accelerating Structure for the Second Part of the Meson Factory Linac, Proc. of the 1976 Proton Lines Conf. AECL Rep. No. AECL 5677 (1976) p. 269.
- S. O. Schriber, Room Temperature Cavities for High-Beta Accelerating Structures, Proc. Conf. on Future Possibilities for Electron Accelerators, Charlottesville, VA, LASL Report No. LA-79463 (undated).
 - J. Potter, et al., Experimental and Calculated RF Properties of the Disc-and-Washer Structure, IEEE Trans. Nuc. Sci. (1979); LASL Rep. No. LA-79685 (undated).
- 5. See ref. 4 and K. Halbach et al., Properties of the Cylindrical RF Cavity Evaluation Code SUPERFISH Proc. of the 1976 Proton Linac Conf. AECL Rep. No. AECL-5677 (1976) p. 122.

 J. Manca, et al., Optimisation of the Diso-and-
- Washer Accelerating Cavities, LASL Rep. No. LA-7407