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ABSTRACT

Over the last ten years the development of PC's and workstations has
changed the way computing is performed. Previously, extensive
computations were performed on large high speed mainframe machines
with substantial storage capacity. Large capital and operational costs
were associated with these machines. The advent of more powerful
workstations has brought more computational cycles to the users at lower
cost than was achieved with busy timesharing systems. However, many
users still can't afford individual special purpose hardware or gigabytes
of storage. A successful distributed processing environment must share
these resources.

Client/Server models have been proposed to address the issues of
shared resources. "rhey are not a new idea, but their implementation has
been difficult. With the introduction of SUN's public domain Remote
Procedure Call (RPC) Protocol and SUN's interface generator, RPCGEN,
their implementation has been made easier. SUN has developed a set
of "C" callable routines that handle the Client/Server operations. The
availability of Network File System (NFS) on the SRL CRAY and the
arrival of Wollongong's latest version of NFS has allowed applications to
be ported easily. Only recompiling is required to allow resource and
information sharing between computing platforms.

This paper reviews the Client/Server model with respect to SUN's RPC
implementation. The discussion will focus on the RPC connection
between local and remote machines, the RPC Paradigm for making
remote procedure calls, and the programming levels of the RPC libraries.
The paper will conclude with summaries of two applications developed at
SRL using the protocol and their effect on our computing environment.
These include the Nuclear Plant Analyzer and an animation of fluids
using behavioral simulation of atom-like particles.
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O. Introduction

Over the last ten years the development of PC's and workstations has changed
the way computing is performed. Previously, extensive computations were
performed on large high speed mainframe machines with substantial storage
capacity. Large capital and operational costs were associated with these
machines . The advent of more powerful workstations h'a,s brought more
computational cycles to the users at lower cost than was achieved with busy
timesharing systems. However, many users still can't afford individual special
purpose hardware or gigabytes of storage. A successful distributed processing
environment must share these resources.

Client/Server models have been proposed to address the issues of shared
resources. They are not a new idea, but their implementation has been difficult.
With the introduction of SUN's public domain Remote Procedure Call (RPC)
Protocol and SUN's interface generator, RPCGEN, their implementation has
been made easier. SUN has developed a set of "C" callable routines that
handle the Client/Server operations. The availability of NFS on the SRL CRAY
and the arrival of Wollongong's latest version of Network File System (NFS) has
allowed applications to be ported easily. Only recompiling is required to allow
resource and information sharing between computing platforms.

The RPC developed by Sun Microsystems relieves programmers from
concerning themselves with the detailed aspects of UNIX sockets programming.
In addition, SunOS includes a set of External Data Representations (XDR) for
the transmission of data across sockets. The combination of RPC and XDR
allows programmers to implement Client/Serw_r connections between
disconnected processes with minimal effort. The programming of RPC/XDR
applications is thoroughly documented in the SunOS Network Programming
Manual [1]. The following discussion will not cover detailed programming
aspects of RPC/XDR programming, but will present the algorithms by which
RPC connections are made and XDR transmissions are accomplished.

1. RPC Interprocess Connections

The object of RPC connections is to allow local user applications to access
remote services, possibly user defined, by establishing a Client/Server
relationshipwith a remote host. The remote hostcan be any machine where
RPC/XDR librariesare available. In the interest of debuggingthe application,
Client and Server applications could reside on the local machine. The
followingdiscussiontraces SUN's procedure for establishingthe Client/Server
connection.

2. Installation of Remote Services

Beforeconnectionsare possible,the remote service programsmust have been
installedwiththe portmapper on the remote machine. Each service program is
installed on its own port and contains multiple versions of each of the seryice
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procedures. The service procedures are "C" callable functions that use the
address of a single argument, either a value or structure, and return the address
of a single result, either a value or structure. Sun has simplified this process by
suppling an interlace generator.

The Client/Server interface routines for these functions may be generated using
RPCGEN and thus may be modified by the programmer if necessary. RPCGEN
is a SunOS application that uses "C" like XDR constructs to-define argument
and result interfaces for each of the service procedures (RPC.x). RPCGEN
generates four files from the interface definitions: the interface "C" structures
(RPC.h), the interface encode/decode filters (RPC xdr.c), the Server installation
program (RPO_svc.c), and the service procedure stubs for the Client application
(RPC_clnt.c). The Server installation program, XDR filters, interface structures,
and service procedure functions are moved to the remote machine where they
are compiled and linked with the RPC/XDR libraries. These steps are shown in
Figure 1. Note that in the figure the CRAY is the Client and the SUN is the
sever.

The installation program (RPO_svc.c) preforms the following functions, lt
ensures that the old copies of the programs and versions to be installed have
been removed from the portmapper registers each of the service programs and
ali their versions, and executes a Server loop that waits until the portmapper
receives a request for its services. Installation of service programs is denoted
by step 0 in Figure 2. Note that each service program can have multiple version
which allows modifications to be made without affecting access to older
versions of the functiqn. Making connections and using these services is now
possible.

3. The Remote Procedure Call Process

The RPC processis a four-stepprocedurethat has been diagrammed in Figure
2. Steps 1 throgh 4 include contacting the portmapper, return the port of the
requested service program and version, calling the remote service procedure
on the returned port, and then waiting to receive the results. Each of these
steps will be considered in more detail.

Making the connection between the Client and the Server, step 1 and 2, is
performed by procedures supplied with the RPC/XDR implementation. They are
not limited to making connections to the portmapper, but can also connect to
files, pipes, or memory. For Client/Server applications, the local procedure
contacts the remote portmapper with the program and version number
(constants define in RPC.h) of the services to be requested. The portmapper
returns the port of the requested services to the procedure. The procedure
builds a Client structure that contains the remote port address, the instructions
for the access the specific connection and the current operating conditions of
the Client/Server interface.

The programmer uses a remote service by calling the remote service stub
provided in RPC_clnt.c. Four changes have been made to the calling struc'ture
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of ali service procedures. The calling structures of the services have been
modified by RPCGEN. The version number is first appended to the the
procedure name (see Figure 1). The Client structure has been added to the
argument list and the address of the argument structure is passed in place of
the structure itself. This passes the Client and argument structure to the port
address returned earlier. Note that the Client application now waits until the
remote service has completed and returned Control to the Client. This is
important when considering RPC for distributed parallel applications. When the
remote service procedure has completed, the result structure is passed back
across the port connect and returns control to the Client application. This
process is represented by step 3 and 4 of Figure 2 and will be discuss in further
detail in the next sections.

Using RPCGEN is advantageous because the Client/Server model just
presented can be implemented by writing the RPC.x file and its remote service
procedures. This is an excellent method for interface control as weil.

4. The RPC Paradigm

The RPC paradigm defines the protocol used to perform remote service
procedure executionusingSunOS Remote ProcedureCalls. This process has
been diagramed in Figure3. The operationperformed is divided intofive steps
including local CALLRPC function, invocation of remote services, service
procedureexecution,requestcompletion,and returnreply. Each of these steps
will be discussed.

CALLRPC Function

The CALLRPC functionappears as a functioncall withinthe Client application.
Its arguments includesthe address of the argument structure and the RPC
Client structure. This function call is one of the Client stubs produced by
RPCGEN. The stub performs two functions, lt sets the static return structure to
zero and performs a Client call to the Server. The Client call passes as its
arguments the Client structure, the remote service procedure number for the
function called, the XDR translation filter for the argument structure, the address
of the argument structure, the XDR translation filter for the return structure, the
address of the return structure, and a time-out structure. The Client call
encodes the Client and argument structures onto the port connection. The
argument translation is performed with the XDR filter generated by RPCGEN.
The function waits for control to be returned from the Server. The Server will
return control when it has finished processing the service procedure. Note that
if no reply is received within the time-out period, an error is returned by the
function call.

Invocation of Remote Service

The Server has been asleep since it was installed, lt is awakened by data
appearing at its port. Svc_run performs this function, lt was called during

_..
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installation, but should never return. The svc run routine decodes the Client
structure from its port and calls the installed Server routine (RPC_svc.c).

Service Execution

The RPC_svc.c remoteServer routinewas generatedby RPC. lt is a listof case
statements, one for each service procedure associatedwith this program and
versionnumber. Each case assignsthe argument filter, the service procedure,
and the return filter to default variables. The case statements are concluded
and the defaults are executed. First,the argumentstructureis decoded from the
port, then the remote service procedure is called, and after execution has
completed the return structureis encoded onto port. lt should be noted that
decodingof the argument structuremay have caused memory to be allocated
on the remote machine, lt not freed, memory allocationswill accumulate each
time the service is called. Thus, the service execution should always free
memory allocated for the argument structure. When these operations have
completed,controlis returnedto the service deamon.

Request Completion

The requestcompletionfunctionof the servicedeamon does littleat this point, lt
putsthe Server back intoa waitstate and returnscontrolto the Client.

Return Reply

The returnreply perfQrmsthree functions, lt awakens the Client for processing
when port action is detected. Next, it decodes the return structure from the port
using the XDR filter and passes the the address of the return structure to the
Client.

5. Three Levels of RPC

Sun divides RPC into three levels. The first level is not really a part of RPC, but
is rather how to use RPC. This is the sharing of information and computing
cycles between heterogeneous machines. This level keeps the user isolated
from network programming by presenting RPC services as callable routines in
link libraries. The second level of RPC is the process shown in Figure 1 which
has already been functionally described. This level provides the programmers
with simple access to RPC communication, allowing them to install user
services with the remote portmappers and to develop local Client applications
for using these remote services. The third level is the nuts and bolts of
programming the RPC interface. This level gives the programmer greater
control over the RPC/XDR connection and allows for development of new
applications based on the tools provided in the RPC libraries. The programmer
has control over the following areas:

* TCP vs. UDP NetworkProtocols
* Memory Allocation during XDR
* Authentication

__.
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* Time-out Control
* Selection of Sockets
* Broadcast RPC/Batching
* Callback Processing
* Port, File, Pipe, and Memory Input/Output
* Control of Direction (Encode, Decode, and Free)
* Advance Data Structures

._

The last area is accomplished with a rich set of XDR primitives provided in the
RPC libraries and documentation for programmer use. These primitives include
word and char, floating point, enumeration, void, and constructed data type
filters. The constructed data types are build on the earlier primitives and are
included in the library for user convenience, lt is important to note that the XDR
format produced by encoding the data is the same on other systems. Thus any
system can decode XDR information encoded by any system. This simplifies
the sharing of information between different machines because the software
used to generate the information is directly portable to any machine that needs
to use the information. This is why RPC/XDR was selected for our projects.

6. RPC/XDR Projects at Savannah River Laboratories

Two projectsthat use the SunOS Remote ProcedureCalls and External Data
representationswill be discussed in the followingsections. TRANS_RPC is a
distributedprocessthat translatesandtransfersTRAC graphicsinformationfrom
the UNICOS CRAY to the Sun Workstations. The other project is a
computational Server on the UNICOS CRAY that does particle motion
simulationfor a Sun V%rkstationClientwho is feedingthe particlepositionsto a
PIXAR for rendering. The PIXAR performs the renderingindependentof the
workstation and allows some parallel processing to occur. Each project will be
presented in moredetail.

7. TRANS_RPC Project

TRANS_RPC is a sub-taskof the Nuclear PlantAnalyzer (NPA) currentlyunder
development at Savannah River Laboratory. The NPA is a graphical user
interface that allows the user to analyze data being generated remotely.
Currently,the remotesourceof informationis the thermalhydraulicscode TRAC
runningon our UNICOS CRAY. TRANS_RPC functionsto transportthe remote
informationto the localuser. The followinggoalswere set for this task.

* Captureof TRAC GraphicsData
* ConvertTRAC/CRAY Informationin PTR/GRF/SUN Format
* Convey PTR/GRF/SUN formatted Data to SUN Workstation
* Concurrent Performance of Tasks

The original method for meeting these goals is presented in Figure 4. The
process required four user steps. The user began by generating the TRAC
results in the form of a TRCGRF binary file. This file was than processed by
SUNGRF which decoded the binary information into an ASCII pointer file
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(TRCGRF.PTR) and the time dependent binary graphics file (TRCGRF.GRF). lt
should be noted that the TRCGRF.GRF is formatted IEEE 32-bit float point
values with UNICOS blocking words inserted at regular intervals. Transferring
these file was accomplished using FTP between the CRAY and the Sun
Workstation. The final step was unblocking the TRCGRF.GRF file by removing
the UNICOS blocking words. This method was abandoned because it was
cumbersome to the user and did not lend itself to concurrent performance.

°.

TRANS_RPC was developed to replace the previous method. "i"he first step in
in the process was designing the RPC interfaces using RPCGEN (Figure 1).
The next step required being able to read UNICOS binary files and named
pipes with a "C" program. "C" had to be used because it would properly
interface with a FIFO named pipe which automatically synchronizes data
transmission between concurrently running processes. The development of the
routines for processing the binary information into the PTR and GRF argument
structure, and the routines for writing these structures in TRCGRF.PTR and
TFRGRF.GRF file formats, were performed in parallel (Figure 5). This provided
a quality assurance check at each step in the development. When the CRAY
program could process the entire TRCGRF fi_ecorrectly, the structure writing
routines were replaced with their equivalent RPC stubs and the routines were
modified to be used as remote procedure services (Figure 6). These modified
routines were moved to the Sun Workstation and linked into the remote Server.
The Client/Server application was then tested using both named pipes and
previously produced TRCGRF files of various sizes. Ali tests have been
successful.

The results of this project have been good. lt has provided faster access to the
information, a simpler user interface between the CRAY and Sun Workstation,
and automatically reformatted information from 64-Bit CRAY words to 32-Bit
SunOS words. In addition, it has shown how to build Client/Server shells
around large programs on remote machines and transport the necessary I/O to
local workstations, giving the illusion to the user that the program is being run
locally.

8. Simulation of Liquid Across a Sun/Cray RPC Link

A method was developed to create animations of liquids using behavioral
simulations [2]. The behavioral simulation relied on representative "super-
atoms"to simulatethe motionof liquids. These super-atomshad similarnuclear
properties to normal atoms, however, one svper-atom represented millionsof
normal atoms. The odginal animation code was developed on a Sun 3/280
which was acting as a hostfor a Pixar Image Computer. The Sun was used to
determine the motion of individualatoms of the liquidwhile the Pixar was used
to render the surface described by the atoms.

Due to the number of atoms which were used in the simulation, the Sun quickly
proved ineffective as a motion control engine. However, since the Sun was the
host for the Pixar it was necessary for the Sun to have some part of the image
generation process. The use of RPC calls to a Cray X/MP was picked as a

....
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method which would allow the complex molecular interactions to be calculated
quickly while still allowing the Sun/Pixar to render the liquid surface.

The code was then designed so that it ran on three separate machines: a Cray
X/MP, a Sun 3/280, an Abekas A60, and a Pixar Image Computer. This was
done to optimize the code fully so that reasonable turnaround times for
animations could be achieved. The Cray and Sun are linked using RPC with
XDR protoco_ to pass data between them. The Sun and-Pixar are linked
through Pixar's proprietary software using a high speed data link.

The driver progra_n resides on the Sun. This program is responsible for
initializing ali of the super-atoms, as well as setting up links to the Cray, Pixar,
and Abekas A60. The user interface resides on the Sun as weil. RPC calls are
made to the Cray to do the super-atom motion calculations. After each time step
calculation, the Pixar is called to render the new set of positions of the liquid
super-atoms. Once the Pixar renders the image, the Sun directs the A60 to
record the frame. This provides a smooth, heterogeneous computing
environment for producing animation of the simulated liquids.

Figure 7 shows the flow of program control and data for the animation system.
As shown, most of the Sun's work involves initialization and control, The Cray
is called before and during the animation loop. Whenever possible the code
runs in parallel. The call to the ChapReyes subroutine (Chreyes in the diagram)
causes the Pixar to begin rendering the image. Control, however, is
immediately returned to the Sun when the rendering process begins. At this
point the Sun is free tQdo anything which does not affect the rendering process.
In particular, the Sun calls the Cray to generate the super-atom position for the
next time step. These operations occur in parallel. Once the Cray RPC retums,
the Sun waits for the Pixar to finish so that it can tell the A60 to record the frame.

There are many advantages to this system. First, by breaking the different
routines down into ones which can be spread out over a network of machines, it
is possible to get better overall speed performance. This is shown effectively in
the current implementation. The motion routines could easily be moved to more
massively parallel machines which could capitalize on the parallel nature of the
code. Distributed computing is one of the methods used to increase the total
productivity of a system [3]. Given the existing code, it would be fairly easy to
swap routines onto faster nr more suitable computers.

The next advantage of this type of approach is that the front end (user interface)
can be placed on a mac,hine which is well suited for this job. For inel ',_ce,it
would not be as logical to put the user interface on the Cray, since the Cray is
better suited for number crunching. The user interface, shown here, does not
pull CPU power away from the number crunching machines (Cray and Pixar).

An advantage which deals primarily with the modular nature of the code is the
idea of routine substitution. Different types of liquid dynamics codes can quickly
be interfaced into this system as long as the new code conforms to the data
protocols set up by this paper. Without using RPC it is possible to have these

[8] ,..
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alternative dynamics codes run separately and dump their output to a file.
Depending on the number of particles in the system, however, this could prove
to be very costly in terms of disk storage. Using the RPC approach eliminates
the need for massive disk storage since each step of the animation requires
only the current data coordinates. There is no need to store these values on
disk.

9. Conclusions ....

An algorithmic discussion of Client/Server model implemented with SunOS
Remote Procedure Call has been presented. The discussion reviewed the RPC
process, the SunOS RPC paradigm, and the various levels of RPC
programming. Two projects using RPC were summarized. They both
demonstrated many of the advantages of using the RPC/XDR protocols. The
primary advantage is the application of a Client/Server model between remote
machines that are distinctly different. The primary disadvantage is the transfer
of control while remote processing occurs. This hinders the direct application of
RF'C to parallel processing. However, as both applications demonstrated, there
are ways to work around this limitation. In the future, RPC protocols will continue
to be an integral part of the NPA and will be used as a centralized Server of
huge databases that cannot be stored locally.
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