R．A．Early and J．K．Cobb
Stanford Linear Accelerator Center
CANT－ $8 / 1=1=17$
Stanford University，Stanford，California，94305

Abstract

The three dimensional magnetostatic computer program TOSCA，running on the NMFECC CRAY X－MP computer，was used to compute the integral of gradient length for the SLC type QT4 positron return line quadrupole magnet．Since the bore diameter of the magnet is 12.7 centimeters，and the length is only 10.16 centimeters，three dimensional effects are important． POISSON calculations were done on atwo－dimensional model to obtain magnetic shimming which assured enough positive twelve pole to offset end effects，while TOSCA was used to estimate the effective length of the quadrupole．No corrections were required on the magnet as built．Measurements showed that the required integrated gradient was achieved for the given current，and that integrated higher harmonics were generally less than 0.1 percent of the quadrupole component．

Introduction

The SLAC SLC QT4 position return line quadrupole magnet has a length of 10.16 centimeters and a bore diameter of 12.7 centimeters．The required strength（ $\int G d z$ ）is 1.5 Tesla at 19800 ampere turns per pole．Strength calculations were done using TOSCA，\＆three－dimenalonal magnetostatic code，${ }^{1}$ running on the NMFECC Cray X－MP computer．Because of inexperience with this code，it was used primarily to predict saturation effects．POISSON was used to shim the quadrupole to offset end effects．The original plan was to oyar－correct the integral 12 －pole end effect：and then reduce the shim as required after measurements．This later step proved unnecessary．Since then，the latest vernon of TOSCA (4.3) has been installed on the X－MP．This version allows more symmetry options for coils and a more accurate model of the quadrupole who made．This was done in order to gain a better understanding of how to use a three－dimensional computer code for quedrupold design．The results of these cotoputer studies and the associated measure－ meats are reported here．

Fig．1．The SLC QTA Ponitera Return Line Quadrupole．

[^0]
Computational Results

A drawing of the quadrupole is shown in Fig．1．The short length was dictated by apace requirements in the beam line．The TOSCA model was initially made two－dimensional by the use of periodic boundary condition－In order to compare the resulting field distribution with POI！ON results．The POISSON runs were used to shim the magnon sr a positive three percent twelve－ pole component in two dime．ont．These runs were also used to check that the mesh dentil；in the two－dimentional TOSCA runs was sufficient，and finally，to check that approximating the quadrupole paleface by only th n line segments did not cause significant error．This scheme irked because the shim was a line，tangent to the hyperbolic surface and occupied most of it，

Ore sixteenth of the problem woes set up to take full advantage of cytumetry．The element configuration for the base plane is shown in Fig．2．This mesh was generated by XMESII， a pre－processor written by John Ste vast of LLNL．${ }^{2}$ The three－ dimensional mesh used is shown is．Fig．3．Iron elements only are shown in Fir－4．Quadratic mes．elements were used every－ where．While this causes an increas：： \boldsymbol{n} running time compared to a mesh of linens elements，quad：ic elements approximate the potential distribution better．fit follows the work of M．R．Harold et al．${ }^{\mathbf{3}}$ The final runs ut ted nearly ten thousand nodes and took between forty and forty－five minutes of CPU time on the Cray X－MP．

Because to much of the field in this magnet is in the fringe region，tare had to be tater to position the boundary far enough away from the center of the problem．A value of 30 centimeters was chosen．The integrations were made over $2 \omega 27.5$ centj－ meters．This corresponded to the length of the long coil used in the harmonic asalynis and strength memsuremerts．

Calculations on initial designs for this magnet showed that saturation at the root of the pole was occurring and the required strength was not being met．Two B－H tables were used ta these calculations．（Set Fig．5．）Table 1 is the standard cable to be found in POISSON and correspond to annealed 1010 tel．Table 2 is a table which in often need at SLaAC for magnet calculations and hes been mede more pessimistic as on safety factor in shim calculators．For a given A ，the induction，

Fig．2．Finite Element Configuration in the Base Plane．

Fig. 3. Finite Element Mesh for onc-sixteenth of the Quadrupole.

Fig. 4. Finite Element Mesh for Iron Elements Only.
B is about a hilogauss lower. The initial design was done with the more peasimistic table. Laler, caiculations wert repented with Table 1.

The results for values of the induction, B versus diathace along the beamline from the center of the mingnet, are chown in Fig, 6. The results for values of the integral of the gradient are shown in Fig. 7 and compared to measurementa. The agreement in good when Table 2 is used, and resulte are more optimistic for Table 1 , as one would expect. The magnet Wata apecilied to be bullt with 1010 ated. The gerecment in better using Table 2. This has been found to be towe also for results from POISSON for long magnets. The etrength measurements were made with a long, rotating coll. The exial field distribution shown in Fig. 6 was made with e Hall probe through the magnet from -25.4 centimeters to +25.4 centimeters. The two sets of data reflect a slight error in locating the center of the quadrupole. Aleo, the points fell elightly below the calculations for Tabie 2, while the integrated guadrupole component of the calculations agreet closely with the loag coil

Fig. 5. B-H Tables Used in Calculations.

Fis. 6. Meaturements and Colculetions, B va. 2

Fis. 7. Measurements and Calculations of Strength.
results. We believe that this discrepaney in due to emall erfors in the radial porltion of the probe.

The results from harmonic analysif are shown in Fig 8 . These are quite ensouraging. Calculationa can only be done for multipole numbers 2, 6,10 , etc., because of the symmetry of the problefm. Mensurements show additional terms which are due to conatruction errors. Unfortunately, no exial survey of harmonic content was taken due to scheduling requirements for installing the quadropole-

Fig. 8. Integrated Biarmonites.

Aeknowledgemente

The magnetic measuraments were performed by Dave Jenaen of the SLaC Magnetic Menortemants group. We would like to thank R. Lari of ANL for useful diecusaions and M. R. Harold of RhL for advice on eviting up quedrupole problems with the TOSCA prograp.

References

1. J. Simkin, C. W. Trowbridge, Three-dimanhional NonIinear Electromagnetic field Caleulationa, Uaing Sealar Potentials IEEE Proceedings, vol 27, Pt B, No. 6, 1980.
2. J. J. Suewart, private communicaton.
3. M. R. Harold, L. Rinalif, F. H. Unotetter, Combined Quadrupole-Sextupple Mapneft for the GERN Antiproton Collector, MT-9, 1005.

DISCl.AMER

This report was prepared as an iccount of work sponsored by an agency of the United Stales Government. Neither the United Slates Government nor any agency thareof, not any of their employees, mukes any warranty, express or implied. or assumes any legal liabilily o: responsibility for the accuracy, complereresss, or usefulness of any information, apparatus, product, or process diselosed, or represents that its use would not infringe privately owned rights. Reference berein to any specifre commercial product. process, or servife by trade name, trademark, manufacturer, or otherwise does nul necessarily constitute or imply its endorvement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United Siates Government or any agency thercof.

[^0]: －Work exported by the Department of Energy，contract DEAC03－76SF005IS．

