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Abstract

An asymptotic analysis is performed on a family of discontinuous finite element methods
(DFEM:s) for spherical geometry transport. It is found that transport methods of this type
transition into discrete versions of the spherical geometry diffusion equation in the thick diffusion
limit wiith boundary conditions that may, in general, be inaccurate. A linear DFEM method has
been designed such that its asymptotic diffusion boundary conditions are accurate. In a related
development, the asymptotic diffusion equation is used to accelerate the transport calculation and
the iterative scheme is fully described. The results of the analysis are confirmed by numerical
testing of the specific case of linear elements.

I. Introduction

Recently, much work has been done in developing transport methods that are accurate in
optically thick, diffusive regions!-3, Realistic problems in thermal radiation transport often contain
regions of this type. The main emphasis is the design of schemes that allow the use of spatial grids
whose cells are thick compared .. a mean-free path in these regions. Our interest is in constructing
discontinuous finite element methods (DFEMs) for spherical geometry transport
(1-D) that are accurate for diffusive problems.

The first component of our design is an asymptotic analysis of the transport equation,
which previously has been performed only in rectilinear geometries. We perform this analysis on
an entire family of DFEM:s in spherical geometry. Numerical testing follows, in which we
consider the special instance of linear elements. We discover that in thick, diffusive regions, every
spherical geometry DFEM produces a solution that (to leading order) satisfies a discrete diffusion
equation. This is a highly desirable result, for we know that in the interior of such regions the
exact transport solution (to leading order) satisfies a diffusion equation. Despite this, we find that
in general the spherical geometry DFEM solution can be inaccurate in diffusive regions, because it
satisfies boundary conditions that in general can be inaccurate. We find that, for the the case of
linﬁar elements, the boundary conditions are inaccurate when using coarse spatial grids on small
spheres.

We are also interested in utilizing the diffusion equation resulting from this analysis in a
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synthetic acceleration scheme for iteratively solving the spherical geometry DFEM equations.
Currently, we are using a combined Asymptotic - Py acceleration technique which we full 3'
describe. This technique is essentially the same as that presented by Wareing and Larsen®.

II. Asymptotic Analysis
First, we will look at the behavior of the exact spherical geometry transport selution in a

diffusive region. We write the conservative form of the monoenergetic spherical geomety transport
equation, assuming isotropic sources and scattering, as:
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where
‘ ¥(r,u) = angular flux at radius r, direction 4,
&(r) = scalar flux at radius r

1
du ¥F(r.p)

-1
F(4) = angular flux incident on inner boundary,
G () = angular flux incident on cuter boundary,
o;(r) = total cross section at radius r,
0,(r) = absorption cross section at radius r,
Q(r) = inhomogeneous source.

In order to analyze the behavior of this equation in thick diffusive regions, we write the problem in
dimensionless form and introduce a scaling parameter € that measures the degree to which the
problem is diffusive. Our scaled transport equation has the form,

M 9 i pyer 2 (1-2) P, i+ 22, 1) =L T 00,) B HL0(0),
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r""<r< row,

and we observe the character of the solution as € tends towards zero. We find that in the interior of
the diffusive region the solution satisfies thie following conditions:

W(r p) = ldz(r) +0(8, raway from the boundaries | (3a)
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0
Do) = j duWep G . (3d)
Note that both boundary conditions are Ijlirichlet conditions equal to weighted integrals of the

incoming intensity. The weight function W is defined in terms of Chandrasekhar's H function for
a purely scattering mediumS:

W=LpHe . )
W can be approximated by a simple polynomial:

W(u) = 0.956u + 1.565u% + 0.0035 5
= pu+ 1.5u2

We now look at the DFEM discretized spherical geometry transport equations. We starf
with the Sy analog of equation (1a):

#m_a%rz t},m(r)+'{am+1/2 .{’m+1/2(’2)'am-1/2 ¥m-172(r) +O',I'2 ()
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Ym(rin) = F(Um)=Fm , for pm>0

¥Yn(rou) = GUm)=Gm , for lim <0 (6b) -

where

Um , wn = angles and weights of the quadrature set, m=1,...N ,
Om.12 » Om+172 = angular derivative differencing coefficients

¥n(r) = angular flux at radius 7, direction K,

N
dXr) = scalar flux at radius r = Z Wi Fm(r)
m=1

At this point, we specify a spatial grid that breaks the problem into K regions,

=2 sz Tewz Twerz Tweziz Tkerz Tke1257 ow

and in each k*» region choose a set of weight functions {vy(r), 1<i</;} and basis functions
{b,q(r), 1<j<J, ). The weight and basis functions are assumed tc be continuous within each
region, but may be discontinuous at region edges. The weight and basis functions associated with
a given region are assumed to vanish outside that region. We can now derive the DFEM form of
the equations in four steps:

1) Multiply the transport equation (6) by a weight function, v(r) and integrate



over the k' region volume. Convert the integral of the leakage terminto a
surface integral using Green's theorem. The resulting equation is:
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2) Replace quantities on region edges (where they can be discontinuous) by their
upstream values: '

Yim{r I+1/2) , for p,, <0
Yn(Ti12) » fOr b > 0

Yn(rks1p2) = { ®

where

r},1p i located just to the right of i,y (just ousside the kth region)
Ti.+172 is located just to the left of ri.1p (just inside the kth region).

3) Approximate the unknowns and sources as expansions in basis functions:

K A
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k=1 j=1
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d=gN=Y Y Gbiir) )

k=1 j=1

K A
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4) Define the following matrices and vectors:

rke12
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This gives us the spherical geometry discrete-ordinates general DFEM transport equation:
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To begin the asymptotic analysis of the discretized problem, we must scale the DFEM
equation in a way consistent with the scaling of the analytic transport equation (2). We fix the
spatial grid as we let € go to zero, so that we are investigating what is known as the "thick"
diffusion limit, or the limit as each spatial region becomes thick compared to a mean free path.
Now we assume our solution to be an asymptotic expansion in powers of €, and observe the
behavior of the leading-order terms as € shrinks to zero. The result is that the leading-order scalar
flux is continuous in the problem interior and satisfies the following diffusion equation:
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where v
Dy = diffusion coefficient = 1
30k
-rEap =1, j=1
(Vihi =\ rapsi=lnj=l 1SiisT
0, otherwise

Note that Eq. (11a) includes information from two adjoining regions, whereas Eq. (11b) is local to



the kth region; for linear elements, J, = 2 and Eq. (11a) is our only diffusion equation. With this
equation we obtain our first major result: the general DFEM discrete-ordinates spherical geometry
transport equation goes over to a diffusion equation which is a discretized version of Eq. (3b) in
the limit as the spatial regions become optically thick. The boundary conditions associated with
this diffusion equation are found to be: . :

v i) =160 = X wm Wo, it
' Hm>0 (12)

Wr(r?)(rout) =%‘¢(0)(rou:) = Z wm Wp, o:u(luml)Gm .
Hm<0

These are discrete-ordinates representations of Dirichlet conditions, where the weight functions are
defined by ‘

Wo, ) = (l-a{ %ﬂm] * a[ L + %u,%.]
‘ (13a)
Wo, k) = (1-B) Zum| + B Ltim + 34

p= Y e 1. | asv)

>0 01 thn<0

a and f are determined by the particular DFEM in use, and depend on the width of the region
adjoining the boundary and the spatial position of the boundary. Notice that the most accurate
approximation of the analytic boundary conditions occurs when & and 3 are near 1. If aand
are near zero, the discrete boundary conditions will be poor approximations to the analytic
boundary conditions. Also, if the incident angular flux at the boundary is isotropic, both boundary
conditions go over to the analytic result, independent of & and 8. We have our second main
result: the boundary conditions associated with the asymptotic diffusion equation can be inaccurate
in some cases. » '

We will now turn our attention to some representative DFEM schemes, namely the linear
DFEM (derived using linear basis and weight functions) and the lumped mass-matrix linear
DFEM. It can be shown that aand f satisfy the following equations for the lumped mass-matrix
linear DFEM: .

2
a=—20 (142)
1+
=3 (14b)
1+m4n?
where 77 is given by
| _ region inner radius (14¢)

"~ region outer radius

Notice that as ) approaches 1 (i:¢ slab geometry limit) both e and B go to 1 and the boundary
conditions are accurate. However, when 7 is small, the boundary conditions will be inaccurate.



This corresponds to the situations where we are solving problems on geometrically small spheres
with coarse spatial regions. Without mass-matrix lumping, the equations for o and B are more
complicated and the corresponding boundary conditions are considerably less accurate3,

We would like a DFEM transport method that limits to a reasonable diffusion equation with
boundary conditions that are always accurate. By perturbing the linear DFEM system of equations
we have designed a method for which o:and B are equal to 1 in all cases. This new method has
the same T} and V, matrices as in the lumped mass-matrix linear DFEM, but the L and Ry
matrices are defined in this way: _

ml 1421+3 107 23421, +n?
Lk:rzfz M+ 37 i T'Ik+77k)} (15

(142n+372) nH{3+2me+n?)

Rk - ’;_E_+_l_/2(l‘nk 1+4nk+57713 ‘ 'nlg(5+477k+77l%) (15b)
24 (1+1) 3+8M+3N7 (8+12m+9m2+4n2+nf) |
with
M= Fern

‘We obtain this result by requiring that our method have three properties: 1) the method should
satisfy particle balance, 2) the infinite medium transport solution should be preserved, and 3) the
resulting asymptotic diffusion boundary conditions should have the accurate weight function.

III. Asymptotic-P; Diffusion Synthetic Acceleration
In this section we describe the iterative technique used to solve the optically thick, diffusive
problems we are interested in. We will concentrate on the case of linear DFEMs only. The

acceleration scheme has three steps ([ is the iteration index):

1) Transport sweep: with a previous estimate for the scalar flux, perform one full
transport source iteration,

#m["_k(rkn/z)’fn/2V’,(,£+1’2)(’ T2 (e 2)r 2.1/7.'#’,(;{”/2)(’-2_.1/2)]
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1) _ 1+1/2)
% =), WYk (16b)
m=1

2) Asymptotic diffusion acceleration: we solve the asymptotic diffusion eqhation
for continuous updates to the scalar flux,
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3) P1 mapping of updates: we apply the P; approximation to our transport
equation and obtain a way of mapping the asymptotic diffusion updates back
into a discontinous representation,

, ﬁ‘m) - Y‘,}[Z kféifl/Z) +(On-0g) T 1{ @c(mlz)_ ng!))] :
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where

p= Z mWm

Hen>0 Or <0

Q/SI+1)= k(l+1/2) + FD (16e)

The direct coupling of the angular and spatial variables in spherical geometry prohibits us
from performing a Fourier analysis of this acceleration scheme. We have, however, numerically
studied the convergence performance of the linear DFEM, lumped mass-matrix DFEM, and our
new method. We will present thesc results in the next section.

IV. Numerical Results

In this section we present the results of numerical tests designed to 1) substantiate the
claims of our asymptotic analysis and 2) illustrate the convergence behavior of the acceleration
- schemes. To confirm the asymptotic analysis results, we consider two spherical geometry test
problems, both of which contain thick diffusive regions. Each problem is solved with the linear
DFEM, lumped-mass-matrix linear DFEM, and the new method, and we use the S, 4 Gauss-
Legendre quadrature set. Both problems are solved using a diffusion synthetic acceleration (DSA)
technique described in the previous section.

In our first test problem we simulate a purely-scattering shell 1000 mean-free paths thick
surrounding a small purely-absorbing sphere. Our system is void of sources and there is an
isotropically incident flux on the outside surface. We generate a reference solution using the linear
DFEM with a very fine spatial mesh, and coarse-mesh (10 region) solutions with linear DFEM,
lumped linear DFEM, and the new method. In purely-scattering cases, we expect the lumped and
unlumped linear DFEM solutions to be the same to leading order. Our result are shown in Figure
1. We see that all methods perform very well, as our analysis predicts, because their boundary



conditions are correct for isotropically incident fluxes.

Our second test problem is a purely-scattering, source-free, 1000 mean-free-path thick
sphere with an incoming flux on the outside surface that is a delta-function in angle atm #0.1.
Kesults are given in Figure 2. We obtain our reference solution as before, and generate solutions
for 2 regions and 10 regions with both the linear DFEM and the new method. The new method
obtains the same interior solution regardless of the number of regions, as the analysis suggests;
this interior solution is accurate compared to the reference solution. The solution in the outermost
region is incorrect; this, too, is precisely predicted by our analysis. (In fact, our analysis predicts
that all DFEMs will produce the same solution at the problem boundary.) With 2 regions the linear
DFEM solution is low in the interior by a factor of 2. For this mesh, b *1.7, and Wy p
/Wanalytic *0.5, explaining why the interior solution is low. The 10 region solution compares
weﬁ w1tﬁ the reference, as b * 1.1, and Wrp /Wapalytic * 0.9. In short, our numerical tests are
in precise agreement with our asymptotic analysis.

Turning now to the convergence behavior of the acceleration algorithm, we focus on
homogeneous, purely-scattering (c =1) spheres at least 50 mean-free-paths (myfp) thick, solved
using various spatial grids. The results are presented in Table 1.

Table 1. Estimated Spectral Radius for Spherical Geometry DFEM schemes,
c=1, Isotropic Scattering

Ar (mfp) Linear DFEM | Lumped mass-matrix|  New LDFEM
(LDFEM) : LDFEM

0.01 0.224 0.223 0.965
- 0.03 0.224 . 0.225 0.889
0.1 0.225 0.226 0.645
0.3 | 0.225 - 0.290 0.204
1.0 - 0.223 0.346 0.511
3.0 0.186 - 0.204 0.808
10.0 0.089 0.084 0.958
30.0 0.034 0.031 0.979
100.0 - 0.011 0.010 0.991

We find excellent performance for both the linear and lumped mass-matrix linear DFEMs, but
unacceptably poor behavior for the new scheme. Because of the new method's convergence
properties, we are forced to discard it as a viable way of solving practical transport problems, at
least until we are able to formulate a better iterative scheme. :

IV. Conclusions

We have performed an asymptotic analysis on a family of discontinuous finite element
methods for the spherical geometry transport equation, in an effort to understand their behavior in
thick diffusive regions. We have found that in these regions, the numerical solution satisfies a
discretization of the proper diffusion equation. For the case of conventional linear elements, we
see that the diffusion boundary conditions imposed on the numerical solution are accurate for the
most part, but can be inaccurate when the spatial cells are large and the system under consideration
is small. By perturbing the linear DFEM equations, we have designed a method that limits to a
reasonable diffusion equation with correct boundary behavior, regardless of the problem.
However, we do not expect this new method to be useful for practical problems until an
acceleration scheme with more desirable convergence properties is implemented. We have tested
the methods numerically, and our results corroborate the findings of our asymptotic analysis.
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Figure 1. Results from Test Problem 1.
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Figure 2. Results from Test Problem 2.
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