ON THE INFERENCE OF CKACK STATISTICS FROM OBSERVATIONS ON AN OUTCROPPING

AUTHOR(S): John K. Dienes

SUBMITTED TO: 20th U. s. Symposium on Rock Mechanics University of Texas at Austin June 4-6, 1979

By acceptance of this arlicle, the pulbistar recogniaes that the U.S. Government retains a nonexclusive, royaliy tref lirense to publish or reproduce the published form of this contribu. tron, or 10 allow others to do so, for U.S. Govermment pur noses

The Los Alamos Scientific Laboratory recouests that the pub listar identily this artiche as work performent under the aus pices of the U.S Dcparmment of Energy


```
Page NuTDo'
```

Fajur inumer
Feynoestr the

ABSTRACT

In rock wechanics it is often assumed that the number of cracks, faults or joints whose size exceeds c is given by the exponential $N_{o} e^{-c / \bar{c}}$. A mathematical argument making this distribution plausible, ac least for a two-dimensional distribution of line eegments in a plane, is given in the Appendix. it is difficult to examine the cracks in a three-dimensionad body, however, and one is usually limited to obeervations on an oitcropping, a cut, or a plane obtained by sectioning a sample. In this paper, we consider tuo problems. The direct problem is to find the distribution of line segments in a plane section when the threedimensional distribution of eracks is homogeneous, isotropic, and exponential. This diatribution can be expressed in closed form by weans of the Hankel functions. It will be shown that the diatribution in a plane eection is qualitatively different f:om the three-dimensional distribution in having a peak for finite value of segment length, ise., there le most probable (non-zaro) eegment length. It is also concluded that the mean aegment aize in the plane $1: \pi / 2$ times the wan crack diameter in three dimenaions. Thia is conaistent uith the vellknown observacion that amall cracke have lover probabllity of belng intercepted by a plane than larger eracke. The number density of line eegments 1s finally expressed in terme of the Hankel function of order sero.

The indirect problem is to infer the ehreedimenaional dietribution of cracke from the dietribution on aection, which could bo, for example, an outcropping. This problew is colved by deriving an

Integrat equation relating the three-dimensional distribution of cracks ind the distribution of line segwents in a plane, and showing that it can be solved for an arbitrary diatribution of segwents on the outcropping. The special case of the Hankel distribution leads to the exponential distribution in three dimensions, verifying the solurion method.

METHOD

We begin by considering a distribution of pennyshaped cracks (i.e., cracks of zero thickness whose edges are circles of radius c) isotroplcally and homogeacously distributed in space. The intersertion of a typical crack with plane, which ue denote as the $x-y$ plane, is shown in Fig. 1 , and we denote by 2 the distance of the center of the crack fron the $x-y$ plane. The angle between tine crack plane and the $x-y$ plane 19 represented by θ. Then,

$$
\begin{equation*}
z=\sqrt{c^{2}-R^{2} / 4} \operatorname{in} \theta . \tag{1}
\end{equation*}
$$

where ℓ is the length of the segment formed by the 10 tersection.

Now consider the statistics of the diatribution. The number of cracks uhose radil lie in the rarige ($c, c+\Delta c$), with normaly in the range of colld anglea ($\Omega, \Omega+\Delta \Omega$), and having centera in the interval ($\varepsilon, z+\Delta z$) is uritten $n(c, \Omega, z) \Delta c \Delta \Omega \Delta z$. Then the number of intercepte of length graater than $\&$ is

$$
\begin{equation*}
\mu(\ell)=\int_{\ell / 2}^{\infty} d c \int_{\Omega} d \Omega \int_{-2}^{2} d \xi n(c, \Omega, \zeta) \tag{2}
\end{equation*}
$$

where Ω is the range of altitanglea in half the undt ephere and $d \Omega$ e dedsiaine. It 1 s convenient to make
the assumption that the distributions of $c, 6$ and f are independent. This ia critical, both because it mase the integrals tractable, and because othervise an exteasive amount of research and data amalyis vould be required to develop a sood correlation for rocks over uide range of biest. Io any case, it deens unlikely that crack size or orientation vould be significantly affected by altitude. lt is more likely that crack ize and orientation would be correlated in bedded materials, but this possibility will not be addresed here. The asampticns of atatistical independence can be expressed mathematically in the form

$$
\begin{equation*}
n(c, r, r)=n_{1}(c) n_{2}(\Omega) n_{3}(r) \tag{3}
\end{equation*}
$$

It is common in rock mechanics to assume that the distrihution of cracks is exponential

$$
\begin{equation*}
n_{1}(c)=\left(N_{0} / \bar{c}\right) e^{-c / \bar{c}} \tag{4}
\end{equation*}
$$

This is supported by the analyois and observations of Glynn, Veneziario, and Einstein, ${ }^{l}$ Baecher and Lanney, ${ }^{2}$ and Barton ${ }^{3}$ and a theoretical argument leading to this fora la wade in the Appendix. The number density of cracks per unit volume being constant, we way urite

$$
\begin{equation*}
A \int_{0}^{\infty} n_{1}(c) d c \int_{-2}^{2} d \zeta n_{3}(\zeta)-2 N_{0} z A \tag{5}
\end{equation*}
$$

vhere A is the aras of the control volume and $2 z$ it It: width. Then

$$
\begin{equation*}
n_{3}=1 \tag{6}
\end{equation*}
$$

Isotripy of crack orientations can be exprassed by puting n_{2} constant. It follows that

$$
\begin{equation*}
\int_{0}^{2 \pi} d \notin \int_{0}^{\pi / 2} n_{2} d \theta \sin \theta=1 \tag{7}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mathrm{n}_{2}-1 / 2 \pi \tag{0}
\end{equation*}
$$

In uriting the iotegral over all (equally probable)
angles, it is acamed that the crack normal makes an angle with the $x-y$ plane that lies between zero and $\pi / 2$. This can always be arranged by eejecting the appropriate one of the tuo possible senses for the crack normal. Integrating over q, ve find chat

$$
\begin{equation*}
P(i)=(2 i \bar{c}) \int_{T / 2}^{\infty} d c \int_{0}^{T / 2} d s \int_{0}^{2} d: N_{0}-c / \bar{c} \sin t \tag{9}
\end{equation*}
$$

The integrals over $=$ and t are elementary, leading to

$$
\begin{equation*}
P(L)=\frac{\pi}{2} \frac{N_{o}}{\pi} \int_{i / 2}^{\infty} d c e^{-c / \bar{c}} \sqrt{c^{2}-s^{2} / 4} . \tag{10}
\end{equation*}
$$

By means of the change of variabae

$$
\begin{equation*}
c=(5,2) \cosh a \tag{11}
\end{equation*}
$$

the integral can be transformed to the form of the Schlafli integral described by Watson ${ }^{4}$ in Sec. 6.22,

$$
\begin{equation*}
k_{v}(i .) \cdot \int_{0}^{\alpha} e^{-\omega \cosh s} \cosh v_{s} d^{\prime} s \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
P(Q)=\frac{T}{16} \frac{N_{0}}{\bar{c}} e^{2} \int_{0}^{\pi} d i(\cosh 2 \pi-1) e^{-\cosh :} \tag{13}
\end{equation*}
$$

Using the recurrence formulas of Watson's Sec. 3.71, ve find that

$$
\begin{equation*}
K_{2}=K_{0}+(2 / \mu) K_{1} \tag{14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
P(\mathcal{L})=(\pi / 2) N_{0} \bar{c} \mu K_{1}(\mu) \tag{15}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \mu K_{\perp}(\mu)=1 \tag{16}
\end{equation*}
$$

according to the series given by Gradehteyn and Ryehik ${ }^{5}$ ee 8.446, 1t follow that

$$
\begin{equation*}
P(0)=(\pi / 2) N_{0} \bar{c} . \tag{i7}
\end{equation*}
$$

This wa be faterpreted as the nuber of intereections per unit area with a fized plane.

The mead aize of the intercepts, \bar{f}, is the quantity such that

$$
\begin{equation*}
\int_{0}^{\infty} d \ell \frac{d P}{d \varepsilon}(\kappa-\bar{\ell})=0 \tag{18}
\end{equation*}
$$

Now,
$\int_{0}^{\alpha} i d i \cdot \frac{d P}{d i}=\int_{0}^{x} P(i) d i=\pi N_{0} c^{-2} \int_{0}^{x} u k_{1}(i) d-=\frac{\pi^{2}}{2} N_{0}^{-2}$
where ve ake use of apecial case of a result of Hatson's in Sec. 13.21

$$
\begin{equation*}
\int_{0}^{\infty} K_{1}(i) \mu d r=\Gamma(1 / 2) \Gamma(3 / 2)=r / 2 \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{L}=\frac{\left(\pi^{2} / 2\right) N_{0}^{2}}{(T / 2) N_{0} \bar{c}}=T \bar{C} \tag{21}
\end{equation*}
$$

- 0 that the wean intercept length in a plane section 15 - $/ 2$ rimes iarger than the wean diameter in three dimensions.

Now, using once again the recursion formulas of Watmon's Sec. 3.71, the number density of incercepts 16

$$
\begin{equation*}
n(\ell)=-\frac{d P}{d \ell}=\frac{\pi}{4} N_{0} \omega K_{0}(\mu), \tag{22}
\end{equation*}
$$

and is shown graphicalivin Fig. 2. This has a maximum for $u=0.60$, using Wateon'e tables of K_{0}, so that the woat probable intercept length ia
$\tilde{\imath}=1.20^{\bar{c}}$
or bot of the man crack diameter.
THE DETERMINATION OF THE GENERAL CRACK LISTRIBLIIION FROM S'A ATISTICS ON A SECTION

The indirect problem of crack atatieticu is to infer the distribution of crack siee in three dimenalons from otaervations on a plane. In the cource of the preceding derivation, Eq. (10) wae written with
the assuption that the diftribution of crack sizes is exponential. If, however, this assumption is not eade, then the integral equation

$$
\begin{equation*}
P(f)=\frac{r}{2} \int_{k / 2}^{\alpha} d x \sqrt{c^{2}-\varepsilon^{2} / L} n_{j}(c) \tag{24}
\end{equation*}
$$

for $n_{1}(c)$ is obtained. By making the change of variables

$$
\begin{equation*}
c^{2}=x \quad, x^{2} / 4=y \tag{25}
\end{equation*}
$$

it reduces to apecial case of Abel's Integral equation, whose colution is given, for example, by whittaker and Watson. ${ }^{6}$ Returning to the current variables, we obtain the solution :o the indirect problem

$$
\begin{equation*}
n_{1}(c)=\frac{4}{\pi^{2} c} \frac{d}{d c} \int_{0}^{\alpha} c^{3} \frac{P(\{) d\{/\{ }{\left(s^{2} / 4-c^{2}\right)^{3 / 2}} . \tag{26}
\end{equation*}
$$

Thus, the chreedimensional distribution of crack sizes can be obtained from the distribution on a section by quadrature.

Of apecial interent is the case when

$$
\begin{equation*}
P(\varepsilon)=(\pi / 4) N_{0} \ell K_{1}(\ell / 2 \bar{c}), \tag{27}
\end{equation*}
$$

which is the solution obtained in the preceding section. Putting

$$
\begin{equation*}
\ell=2 c \sqrt{x} \tag{28}
\end{equation*}
$$

ihe expresaion in (26) becomes

$$
\begin{equation*}
n_{1}(c)=\frac{N_{0}}{\pi c} \frac{d}{d c} c \int_{0}^{\infty} \frac{k_{1}(c \sqrt{x} / \bar{c}) d x}{\sqrt{x}(x-1)^{3 / 2}} . \tag{29}
\end{equation*}
$$

The integral is given by Gradahteyn and Ryzhik ${ }^{5}$ ae 6.59 .12 on p. 703, and after a eries of elementary

$$
\begin{equation*}
n_{1}(c)=\frac{N_{0}}{\bar{c}} e^{-c / \bar{c}} . \tag{30}
\end{equation*}
$$

This in consistent with the asoumption of (4), and verifies the validity of (26).

APPENDIX

ON THE PERSISTENCE OF POISSON STATISTICS

The Griffith theory of cracks predicts that the largest cracks are the most unatable, and hence one alght expect rock mases to be sectioned by extension of the largest crack as anod as its critical etress

$$
0=a v \overline{\gamma E / c}
$$

is reached. Here a denotes a constant that depends on the geomery and type of scr $85, \gamma$ denotes the surface energy; E, Young's modulus; and c, the crack radius or half-length. In fact, this behavior is not ucually observed, but one eees a distribution of cracks that is often idealized by representing it by an exponential distribution. The number of cracks whose aize exceeds c is then written as

$$
N=N_{c} e^{-c / \bar{c}}
$$

Where N denotes the nuaber of cracks per unit volume and \bar{c} denotes the mean size. The distribution is difficult to verify because it would be necessary to sample a large number of sections, and the observed distribution is difficult to quantify. In fact, the distribution in planes is not the same se in three dimensions, as bown in the body of the paper. It appears, therefore, useful to make a mathematical argument in favor of the exponential diatribution. The argument is almilar to one made by Rice ${ }^{7}$ in connection with electronic shot noise.

We begin by considering a gegment of length confined to a plane, illuariated in Fig. Al. The frequency with which the line intersecte other seg-
sents is denoted by \quad (which for an exponential distribution in the plane is $2 \pi / \bar{c}$, with \bar{c} the mean crack aize). He divide the segment into a sections of length E. Then the probability that agen eection intersects another begment is vs/n. The probability that $i t$ does not intersect another aegment 151 -us $/ n$, and the probability that no gegment intersects another egment le (l-ve/n) . For large nthis can be uritten

$$
p=1-e^{-v s}
$$

Hence, if the cotal number of segments in a unit area is N_{o}, the expected number of intersections is $N_{o}\left(1-e^{-V B}\right)$. Assuming that intersection terminates growth of a \quad egaent, the number of segments uhose ize 15 less than $\quad 1 \mathrm{sin}\left(1-e^{\nu 5}\right)$. Hence the number of segwents exceeding s in length $\therefore N_{0} e^{-V G}$. A detalled argument in three dimensions vould be wuch wore intricate because of the geometric and topological complications. A simple, but approximate, argument can be made by considering the frequency with which a random line intersects cracks in three dimensions, which we again denote by v. As before the number of aegments whose length exceeds is $N_{0} e^{-V G}$. The difficulty with this argument is that in three dimensions the crack: edges are closed, and intersections way occur oither tangentially or by edge contacto. These intersections may or mat nothibit grouth, and if inhibited, grouth is not necessarily terminated, it is conjectured that the sawe distribution holds in spite of these complications, but the problew certainly needs further attention.

REFERENCES

1. E. F. Glynn, D. Veneziano, and F. H. Eidstein, The Probabilistic Model for Shearing Resiotence of Jointed Rock, 19th U. S. Rock Mechanics Symp., Stateline, Nevada, May 1, 1978.
2. C. B. Baecher and N. A. Lanney, Trace Length Biases in Joint Surveye, 19th U. S. Rock Mechanics Symp., Staceline, Nevada, May 1, 1978.
3. C. M. Barton, Analysis of Joint Traces, 19th l. S. Rock Mechanics Symp., Stateline, Nevada, May 1. 1978.
4. G. N. Watson, Theory of Bessel Functicns, Cambridge, 192.
5. 6. G. Gradahteyn and 1. M. Ryzhik, Tables of Integrals, Series and Producec, Academic Press, 1965.
1. E. T. Whittaker and G. N. Watson, Modern AnalyEIE, Canbridge, 1961.
2. S. O, Rice, Matheratical Analyais of Random Noise, Bell Syatem Technical Journal, Vols. 23 and 24; also in Selected Papers on Noise and Stochastic Processes, edited by N. Wax, Dover Publications, 1954.

Fig. 1. Intersection of a typical penny-shaped crack with the $x-y$ plane.

Fig. 2. The density of line segments formed by intersection of an exponential distribution of penny-shaped cracks with a plane, expressed in dimensionless form.

Fig. A-1. Intersection of a crack of length s with one of many other cracks in the plane, showing its division into n segments.

