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ABSTRACT
In rock mechanics it is often assumed that the
number of cracks, faults or joints whuse size exceeds

c is given by the exponential Noe-c/c.

A mathemati-
cal argument making this distribution plausible, at
least for a two-dimensional distribution of line seg-
1t 1s

difficult to examine the cracks in a three~dimension-

ments in & plane, is given in the Appendix.

al body, however, and cne 1s usually limited to ob-
servations on an outcropping, a cut, or a plane oh-
tained by sectioning a sample. In this paper, we
consider two problems. The direct problem is to find
the distribution of line segments in a plane section
when the three—dimensional distribution of cracks {s
This dis-

tribution can be expressed in closed form by means of

the Hankel functions.

homogeneous, isotropic, and exponential.

It will be shown that the dis-
tribution in a plane section is qualitatively differ-
ent f:om the three-dimensional distribution in having
8 peak for s finite value of segment length, {.e.,
there is a most probable (non-zero) segment length.
It 18 also concluded that the mean segment size in
the plane i{s 7/2 times the mean crack diameter in
three dimensions. This is consistent with the well-~
known observation that small cracks have a lower
probability of being intercepted by a plane than
larger cracks. The number density of line segments
is finally expressed in terms of the Hankel function
of order sero.

The indirect problem is to infer the three-di-
mensional distribution of cracks from the distribu-
tion on a section, which could be, for example, an

outcropping., This problem is solved by deriving an

integral equation relating the three-dimensional dis-
tribution of cracks nd the distribution of line seg-
wents in a plane, and showing that it can be solved
for an arbitrary distribution of segments on the out-~
cropping. The special case of the Hankel distribution
leads to the exponential distribution in three dimen-
gions, verifying the solution method,
METHOD

We begin by considering a distribution of pennv-
shaped cracks (i,e,, cracks of ezero thickness whose
edges are circles of radius ¢) isotropically and homo-
geaeously distributed in space. The intersertion of a
typical crack with a plane, which we denote as the x-y
plane, 18 shown in Fig. 1, and we denote by z the dins-
tance of the center of the crack from the x-y plane.
The angle between tie crack plane and the x=-y plane is
Then,

t® e = £%/4 gin B. (

1)

represented by 6.

wvhere £ i{s the length of the segment formed by the in-
tersection,

Now consider the statistics of the distribution.
The number of cracks whose radii lie in the rarnge
(c,c+Ac), with normals in the range of solid angles
(R, 0+A0), and having centers in the interval (z,z+Az)
is written n(c,0,z)AchANAe. Then the number of inter-
cepts of length greater than L {s

] z
B(2) f ch' an f &t n(e,,0) (2)
R/2 [} g ]

where ) 13 the range of soli: angles in half the unit

sphere and d = d6d¢sin®, 1It is convenient to wmake



the assunption that the distributions of c, 6, and ¢
are independent. This is critical, both because it
makes the integrals tractable, and bscause othervise
an exteasive amount of research and data anal.-{s
would be required to develop a good correlation for
rocks over & wide range of sizes. In any case, it
seens unlikely that crack size or orientation would
be significantly affected by altitude. It is more
likely that crack size and orientation would be cor-
related in bedded materials, but this possibility
will not be addressed here. The assumpticns of sta-
tistical independence can be expressed mathematically

in the form
n(c,n,n) = nl(c)nz(ﬂ)na({) . (&)

It is common in rock mechanice to assume that

the distrihution of cracks is exponential
= (N /' -C/C . 4
nl(c) ( o cle (4)

This i8 supported by the analysis and observations of

Glynn, Veneziarno, and Elnstein.1 2

Baecher and Lanney,
and Barton> and a theoretical argument leading to
this forn {s made in the Appendix. The number denai-

ty of cracks per unit volume being constant, we may

write
L z
A
j‘ nl(c) dcj‘ de, na(;) - 2Noz A 5
<) -2
where A is the area of the control volume and 2z 1s
ite width. Then
n3 =1 ., (6)

Isotrupy of crack orientations can be expressed by

putting n2 constant. It follows that
2n n/2
f “f n, ds atng = 1 )
(- o
or
n, = 1/2m , (0)

In writing the integral ovar all (equally probable)

CRACY STATISTICS

angles, it 1s assumed that the crack norma! makes an
angle with the x-y plane that lies between zerc and
n/2.

appropriste one of the two possible senses for the

This can alwvays be arranged by seilecting the

crack normal, Integrating over ¢, we find that

- "2 z -c/Csint
P(g) = (2;’:)[ dcf dGI - § omc/esint
/2 (4] s} ©

(9)

The integrals over ” and © are elementary, leading tc

N o -
Py = T2 dc e ¢/ V252 (109
/2
By means of the change of variab.e
c = (F/2) cosh (11)

the integral can be transformed to the form of the

Schlafli integral described by Hntsonb in Sec. 6.22,

K,G) = f e MO8 sh va du (12)
(o]
Then

T ND 2 " =uccsh:
P(R) » — = L da(cosh 21 =1)e

16 ¢

[o]
(13)

Using the recurrence formulas of Watson's Sec. 3.71,

we find that

K, =K+ 2/w K, (14)
and hence

P(2) = (T/2)N, ¢ UK (1) (15)
Since

ti: BR(H) =1 (16)

5
according to the series given by Gradehteyn and Ryehik
as 8,446, 1t follows that

P(o) = (T/2)N c . (in
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This may be interpreted as the number of intessec-
tions per unit azea with a fixed plane.
The meao size of the intercepts, £, is the quan-

tity such that

o
-1 -
J- dt ar (£-18) 0 (18)
0
Now,
dP- = , ’ 7.‘2 1K()d'ﬁh-2
Lkdf e P(L)di= hoc 9]  (-)¢- 7 B¢
o 0 (<
(19

where we make use of s special case of a result of

Watson's in Sec. 13,21

a

J. Kl(b)hdg = T(1/2) T(3/2) = T/2 (20)
[¢]
Then
%72y n-2
- ________J%_ - re (21)
(r/2) K ¢
(o]

0 that the mean intercept length in a plane section
16 7/2 vimes iarger than the mean diameter in three
dimensions,

Now, using once again the recursion formulas of
Watgon's Sec, 3.7), the number density of intercepts
is

o
o

m
n(i) = - iy NOHKO(U) ' (22)

(-9
=N

and is shown graphically in Fig., 2. This has a maxi-
oun for u = 0,60, using Watson's tables of Ko, (1]
that the most probable intercept length is

Ta=1.20¢ (22)
or o0 of the mean crack dismeter,

THE DETERMINATION OF THE GENERA. CRACK LIYSTRIBUTION
FROM S'1ATISTICS ON A SECTION

The indirect problem of crack statistic. {s to

infer the distribution of crack size in three dimen-
sions from oteervations on & plana. In the course of

the preceding derivation, Eq. (10) wae written with

the ;llumptlon that the distribution of crack sizes is

exponential. If, however, this sssumption i{g not

made, then the integral equation
Pf) = %j dc \/c2 - 12/4 BJ(C)
£/2

for nl(c) is obtained.

(24)

By making the change of vari-
ables

?ex ,(Muey (25)
it reduces to a special case of Abel's integral equa-
tion, whose solution is given, for example, by Whit-
taker and Uutson.6 Returning to the current vari-

ables, we obtain the solution to the indirect problem

4 d P(f) d&/&

3
n(c)-———fc—~—— (26)
1 nfe d¢ J 274 - 532

Thus, the three-dimensional distribution of crack
sizes can be obtained from the distribution on a sec~
tion by quadrature.

Of special intereat is the case wvhen

P(L) = (n/6N_ £ xl(n/zé) , (27)

which is the solution obtained in the preceding sec-

tion, Putting
L= 2evx (28)
che expression in (26) becomes
N K, (¢ Vx/c)dx
n(0) =2 2 cf L (29)
c dc o Vxi(x-1)

The integral is given by Gradshteyn and Ry:hlk5 an
6.59,12 on p. 703, and after a series of elementary
(30)

n,(c) =

Eg .-c/E .
1 -

This {a consisteant with the assumption of (4), and
verifies the validicty of (26).
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. APPENDIX

ON THE PERSISTENCE OF POISSON STATISTICS

The Griffith theory of cracks predicts that the
largest cracks are the most unstable, and hence one
might expect rock masses to be sectioned by extension

of the largest crack as soopn as Iits critical stress

o= aw’yE/c
is reached. Here a denotes s constant that depends
on the geomerry and type of zcr s8s, y denotes the
surface energy; E, Young's modulus; and c, the crack
radfus or half-length, In fact, this behavior is not
usually observed, but one sees a distribution of
cracks that 1s often fdealized by representing it by
an exponential distribution. The number of cracks
whooe gize axceeds c¢ is then written as

N= Noe .

where N denotes the nunber of cracks per unit volume
The distribution is
difficult to verify because it would be necessary to

and ¢ denotes the mean size.

sample a large number of sections, and the observed
distribution is difficult to quantify. In fact, the
distribution in planes is not the same as in three
dimensions, as shown in the body of the paper. It
appears, therefore, useful to make a mathematical ar-
gument in favor of the exponential distribution. The
argument is similar to one made by Rice7 in conunec-
tion with electronic shot noise,

We begin by considering a segment of length s
confined to a plane, 1llugtrated in Fig. Al. The

frequency with which the line intersects other seg-

sents is denoted by - (which for an exponential dis-
tribution in the piane is 2n/¢, with € the mean crack
size). We divide the segment Into n sections of
length 8. Then the probabjility that a given section
intersecte another segment is vs/n, The probability

that {t does not intersect another gegment is l-us/n,

and the probabi{lity that no segment intersecte another

segnent is (1-vs/n) . For large n thie can be vritten

p = l-e'\Js .

Hence, 1f the total number of segments in & unit area
is No‘ the expected number of intersections is ‘
No(l-e-vs). Assuming that intersection terminates
growth of a segment, the number of segments whose size
is less than s 1is N((l-evs). Hence the number of geg-
ments exceeding s in length s Noe-vs. A detailed ar-
gument in three dimensions would be much more intri-
cate because of the geometric and topological compli-
cations. A simple, but approximate, argument can be
made by considering the frequency with which a random
line interpects cracks in three dimensions, which we
again denote by v. As before the number of segments
whose length exceeds s ie Noe-“s. The difficulty with
this argument is that in three dimensifons the crack
edges are closed, and intersections may occur either
tangenti{ally or by edge contactas. These intersections
may or may not inhibit growth, and if inhibited,
growth i{s not necessarily terminated, It is conjec-
tured that the same distribution holds in spite of
these complications, but the problem certainly needs

further attention,
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Fig. 1. Intersection of a typical penny-shaped Fig. 2. The density of line segments

crack with the x-y plane. formed by intersection of an

exponential distribution of
penny-shaped cracks with a
plane, expressed in dimen-
sionless form.

Fig. A-l. Intersection of a crack of length
s with one of many other cracks in

the plane, showing its division in-
to n segments.



