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ABSTRACT

In rock ❑ echanics it is often assumed that the

number of cracks, faults or joints w~use size ● xceeds
-c /c

c i6 given by the ●xponential Noe . A mathemati-

cal argufnent making thi6 distribution plausible, at

least for a two+imensional distribution of line ●eg-

ments in a plane, 1s given in the Appendix. It 16

difficult to examine the crack6 in a three4imension-

al body, howevpr, and nne 1s usually limited to ob-

oervaclons on ● n o,ltcropping, a cut, or a plune oh-

talned by sectioning a sample. In this paper, we

consider two problems. The direct problem is to find

the distribution of line segments in a plnne section

when the three+lmcnsional distribution uf cracks is

homogeneous, isotropic, and ●xponential. This dis-

tribution can be ●xpressed in closed form by ❑ eanB of

the Hankel functions. It will be ohown that the dis-

tribution in a plane ●ection in qualitatively differ-

● nt f:om the three-dimensional distribution in having

● peak for ● finite value of segment length, i.e.,

thare 10 ● mo~t probsble (non-ccro) oegment length.

It ia ●lno concluded that the mean segment size in

the plane 1s m/2 times the mean crack diametar in

three dimensions. Thi@ in conolatent with the wall-

known obocrvation that #mall crackn have ● lower

probability of baing intercepted by a plane than

larger cracko. The number denoity of lin~ aegmentc

it finally ●xpreooed in terms of the Hankel function

of ordar saro.

The indlract problam io to infer the thrae+l-

mensional diotrlbution of crack- from the distribu-

tion on ● section, which could boo for ●xample, ● n

outcroppirrs, Thic problem is solved by derivinu ● n

integral ●quation relating the three-dimension:~l dis-

tribution of crack6 ~nd the distribution of line aeg-

wents in a plane, and e.hewing that it can be solved

for an arbitrary dlmtribucion of segments on the out-

cropping. ‘f%e special caee of the Hankel distribution

leade to the exponential distribution in three dimen-

sions, verifying the solution method.

KETHOD

lie begin by considering ● distribution of penny-

shaped cracks (i.e., cracks of zero thickness whose

●dges ● re circle6 of radiu~ c) isotropically ●nd homo-

ge.leously distributed in apace. The lntercertion of a

typical crack with e plane, which we denote aa the x-y

plane, is nhown in Fig. 1, and we denote by z the dio-

tance of the center of the crack from the x-y plane.

The angle between the crack plane ●nd the x-y plane ig

represented by e. Then,

where 1 lo the length of the segment formed by the in-

tersection.

Now coneider the statistics of the distribution.

The number of cracks whose rmdii lie in the rafige

(c,c+Ac), with normale in the range of solid ●ngles

(c,G+&7), ●nd having centero in the interval (s,z+Az)

is vrltten n(c,f/,z)bcAMz. Then the number of inter-

cepts of length Breater than I is

(2)

where ~ is the range of ●ol:t angleo in half the unit

sphere ●nd dll ■ ded$(eln!. It is convenient to make
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,

the ●oomptlon that the dlmtributiont of c, b, and c

● rc independent. Thic 1- critlcsl, both becauae it

makes the lntegra16 tractable, ●nd bacause othemloe

an ●xtennive amount of reoearch ●nd data ●mal:-ris

w~ld be required to develop a good correlation for

rocks over s wide range of ●icec. In any came, it

●eemt unlikely that crack ●ice or orientation would

be significantly ●ffected by ●ltltude. It i- ■ ore

likely that crack size ●nd orientation would be cor-

related in bedded materials, but thic posslblllt~

will not be ●ddree~ed here. The ●eeumptlcn6 of sta-

tistical Independence can be ●xpressed mathematically

in the form

n(c,:.,~) - nJ(c)n2(2)n3(r.) . (3)

It 16 common in rock mechanic6 to ● 6nume that

the dietrihution of crack6 is ●xponential

nl(c) ■ (tiol;)e-c’: . (L)

This in supported

Clynn, Veneziario,

and Barton 3 and a

thie form 16 made

by the analysia ●nd obnarvations of

1 Baecher ●nd Ianney, 2
and Einstein,

theoretical argument leading to

in the Appendix. The number denoi-

ty of cracke per unit volume being conetant, we may

write

f J
z

A :n’(c)de-z

dL n3(L) = 2NOZ A (5)

whare A iE the ● raa of the control volume ●nd 22 ie

ita width. Then

‘3 -1. (6)

Ieotrtipy of crack orlentatione can be ●xprea6@d by

putting n2 con6tant. It follows that

(2’ J

7/2

d~ n2 de sine = 1 , (7)
o

or

= l/2n .
‘2

(o)

In writing tha integral ovar ●ll (squally probablo)

anBlec, it la ●matmed that the crack ❑ormal makes ● n

●ngle with the x-y plane LhSt lies between zero and

!?/2. ‘fh~s can always be arranged by aeieccing the

●ppropriate one of the two pooelble ●enees for the

crack noml. Integrating over $, we find chat

(9)

The integralc over ! ●nd ~ ● re ●lt?menLary, leadinR to

P(L) ■

By meane of the change of variabJe

C - (f!2) cosh m (11)

the integral can be transformed to the form o! the

Schlafli integral described by MatsonL in Sec. 6.22,

J

.

K,J(;. ) ■

e-ucoshu
cosh wudu . (1:)

0

The n

(15)

(13)

Ueing the recurrence formulas of Watson’s Sec. 3.71,

we find chat

K2 ■ K. + (2/u) K, (14)

●nd hence

P(L) = (fi/2)No ; UKl(U) .

Since

lim PK1(P) - 1
U*O (16)

●ccording to the 6eries given by Cradehteyn and Ryrhik5

● e 8.446, it followe that

P(o) ■ (W/2)No; . (i?)
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This may be interpreted mm the nmkr of lntexec-

tionc per unit ● ret with ● filed plane.

~he mean olze of the intercepts, ~, Is the quan-

tity ●uch that

Now ,

(18)

(19)

where we make use of ● 6pecial case of a reoult of

Watson’s in 5ec. 13.21

J
.

Kl(u)bd. - 7(1/2) :(3/2) - 7/2 . (20)

c1

Then

(21)
(T/2) !io~

MO that the mean intercept length in a pl~ne section

is ‘/2 times larger than the mean diameter in three

dimensions.

Now, using once again the

Uatoon’s Sec. 3.71, the number

i~

n(C) - - u
dL

■ : No#Ko(u)

recursion formtilaa of

density of intercept

,

●nd la shown graphically in FiB.

mum for u = 0.60, ueing Uatnon’s

that the moat probable lntercapt

1- 1.20 ;

or 00X of the mean crnck

(22)

2. ?hi~ has a maxi-

tabl~n of Ko, 00

length is

the ●ssmptinn that the difitrihclon of crack mizea ifi

●xponential. If, however, this ●-oumptlon 16 ❑ot

made, theo the integral ●quation

P(i) - ~~,z d, JZZn,(c) (24)

for rrl(c) is obtained. By making the chan8e of vari-

●bles

7
c-=x, i2/& 9 y (25)

it reduce6 to ● special case of Abel’s integral equa-

tion, whose solution is given, for ●xample, by Whit-

taker ●nd Uatson.
6

Returning to the current vari-

ables, we obtain the solution to the indirect problem

4 != ~3 P(K) dL/1
nl (c) - ‘A —— ,

~2c dc
(26)

~ (12/4 - C2)3’2

TlluE , the chree+lmenslonal distribution of crack

sizes can be obtained from the distribution on a sec-

tion by quadrature.

Of special interent is the caae when

P(L) = (m/4)No ! Kl(L/2:) , (27)

which is Lhe solution obtained in the preceding sec-

tion. putting

L=2c\T (28)

ihe expression in (26) becomes

N r Kl(cv~/;)dx
od

n~(c) - mc dc c.—

0 G(x-1)3~ “

(29)

TKE DETERJ41NATION OF TiE GENERA. CMCK L?STRIBUTION.—— - —.
FROM S’lATISTICS ON A SECTION

(2?)

The integral is given by CradshLeyn ●nd Ryzhik5 ● s

6.39.12 on p. 703, ●nd ●fter ● ●erleo of ●lementary

TIN Indirect problcm of crack otatlstic,’ 1s to

lnf~r :hc distribution of crack ●ice in thre~ dimen-

01000 from ot~orvationo on ● plana. In the course of

tha prgcading derivation, Eq. (10) was written with

This 10 conoistant with the ●ssumption of (~), and

varifieo the validity of (26).

(30)



CRACK STATISTICS

. APPENDIX “

Oh THE PERSISTENCE OF POISSON STATISTICS

The Griffith theory of cracks predicts that the

largect cracks ● re the mont unstable, ●nd hence one

●ight ●xpect rock manse6 to be ●ectloned by ●xtension

of the largest crack as noon so it- critical strenn

o - CIJYEIC

ifi reached. Mare a denoteo ● con6tant that dependa

on the gemcry ●nd type of zcr sa, y denotes the

surface ●nergy; E, Young’6 ❑odulus; and c, the crack

rsdius or half-length. In fact, this beluvior is not

ueually oboerved, but one aeea ● distribution of

cracks that 1s often idealized by representing it by

an ●xponential diatrlbution. The number of cracks

whooe size ●xceeds c la then written es

-cl;
N - Nc)e .

where N denotes the nunber of cracks per unit volmne

●nd c denotes che mean size. The distribution is

difficult to verify because it would be necessary to

oample a large number of nections, and the observed

distribution 1s difficult to quantify. In fact, che

distribution in plmries is not the samp ES in thr~e

dimen510na, se ohoun in the body of the paper. Ir

appeara, therefore, uneful to make a mathematical ● r-

gument in favor of the ●xponential distribution. The

argument la ●imilar to one made bv Rice’ in confec-

tion with electronic shot noise.

We begin by considering a oegment of length a

confined to ● plane, Illustrated in Fig. Al. The

fraquency with which the line interoecta other segm-

●nts la denoted by .4 (which for ● n ●xponential dln-

tribution in the piane is 2n/;, with ~ the mean crack

●fze). We divide the negment !nto n sections of

length ● . Then the probability that ● given nection

lnteroecta ●nether segment is va/n. The probability

that it does not intersect another segment Is l-’Js/n,

and the probability that no segment interaecta another

●egment 10 (1-va/n) . For large n this can be written

p m l+-va .

Hence, if the tncal number of aegmenta in e unit area

1s No, the ●xpecred number of interaectiona la

No(l*-v~). Aaauming that intersection terminates

growth of a segment, the tmunber of segments whose oize

1s less than a la Nt(l=svs). Iksnce the number of neg-

ments ●xceeding b in length .s Noe-vs. A detailed ar-

gument in three dlmensionu would be much ❑ ore intri-

cate because of the geometric and topological compli-

cation. A sjmple, but approximate, argument can be

made by considering the frequency with which a random

line intersects cracko in three dimensions, which we

again denote by v. Aa before the number of segments

whose length ●xceeds a la Noe-va. The difficulty with

this ●rEument 10 that in three dimenaiona the crack

●dges ● re closed, and intcreectiona may occur either

tangentially or by ●dge contacta. These interaectiona

UY @r may nnt inhibit growth, and if inhibited,

growth la not necessarily terminated. It ia conjec-

tured that the ●ame distribution holds in spite of

theoe complication, but the problem certainly needs

further ●ttention.
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Fig. 1. Intersection of a typical penny-shaped
crack with the x-y plane.

040-

OIC4

0LI
0 0–5 1.0 15 -—z7— 2?

p.llzt

Fig. 2. The density of line segments
fonued by intersection of an
exponential distribution of
penny-shaped cracks with a
plane, expressed in dimen-
sionless form.
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Fig. A-1. Intersection of a crack of length
s with one of many other cracks in
the plane, showing its division in-
to n segments.


