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CALCULATED GCFR FUEL ROD BEHAVIOR FOR STEADY STATE

AND TRANSIENT OPERATION

The Idaho National Engineering Laboratory {INEL) was contracted to

review the Preliminary Safety Information Document (PS1D) Amendment 10 for

Gas-Cooled Fast Reactors (GCFR). As part of this effort the light water

reactor codes, FRAPCON-11 and FRAP-T52 were converted to model GCFR

fuel rod behavior. The conversion and application of these codes for GCFR

analyses is the subject of this paper.

The LWR version of FRAPCON-1 computes the coupled thermo-mecnanical

behavior of the fuel and cladding during steady-state long-term

irradiation. The coupled effects of fuel and cladding reformation,

temperature, and internal gas pressure ave considered. FRAP-75 computes

the coupled thermo-mechanical behavior of the fuel anc cladding during

hypothesized transient accidents such as a loss-of-coolant event or a

power-cooling mismatch. The same three models of deformation, temperature,

and pressure are used by FRAP-T5 with appropriate modifications to account

for transient behavior. T 0 establish initial conditions in FRAP-75 prior

to a transient, a software linking option has been provided between FRAP-T5

and FRAPCON-1. The material properties for the fuel, cladding, 3rd gas are

obtained from the modular subroutines program called MATPRO.-^

The modifications to FSAPCON-1 and FRAP-T5 to make them applicable for

analysing GCFR rods include gas reactor design changes and rue; pellet and

c?3dding behavior while exposed in a fast reactor environment. The design

modifications were the replacement of zircaloy with SS 316, ZQ% CW material

properties, replacement of water with helium cooling, replacement of a

smooth with a roughened cladding exterior, and modifying the fuel roc

internal pressure to equalize with the system pressure. The fuel pellet

behavior included the fast-fuel effects of central void formation, columnar

and equiaxed grain growth, and fuel cracking and relocation. The fuel



behavior model also includes swelling and densi f icat ion. The cladding

behavior model includes primary and secondary creep and the GCFR effect of

fast neutron swelling of SS 316, 20% CW.

The GCFR versions of FRAPCON-1 and FRAP-T5 were used to calculate the

fuel rod behavior for the coastdown to natural c i rcu lat ion transient.

F i r s t , FRAPCON-1 computed tlie changes in fuel rod geometry and f i l l gas

composition resul t ing from prior steady-state power generation. Then,

these i n i t i a l conditions were passed to FRAP-T5 which computed the

transient behavior of the fuel rod.

The steady-state fuel rod behavior was calculated by FRAPCON-1 to

end-of- l i fe for a typical GCFR fuel rod. The results of the FRAPCON-1

calculations show that during prior steady-state i r rad ia t ion , neutron

swelling of SS 316, 20% CW cladding is the dominant fuel rod behavior. As

a resul t , no fuel-cladding mechanical interaction is predicted to occur in

the model. The gap thickness between the fuel pel le t surface and cladding

inside rcdius are shown in Figure 1 for beginning-, middle-, and

end-of- l i fe (BOL, MOL, EOL).

The FRAP-T5 transient analysis assumed that a c i rculator t r i p would

occur when the reactor had been operating for 750 f u l l power days. The

scram signal to the control rods was delayed 2.6 seconds after the

circulator t r i p . The helium coolant then experienced coastdown to natural

c i rculat ion ve loc i t ies . Due to the uncertainty of the cracked fuel radius,

a modification was made to the FRAP-T5 calculat ion. The modif ication

closed the fuel-cladding gap at the i n i t i a t i o n of the transient. Closing

the gap reduces the uncertainty in the cracked fuel radius and allows a

conservative prediction of radial and axial cladding stresses.

The results of th? FRAP-T5 calculation predicts no fuel-cladding

mechanical interact ion. The fuel-cladding gap remains closed only during

the f i r s t time-step of the transient. During th is time the gap conduction

is a maximum allowing the fuel pe l le t ' s stored energy to pass into the



cladding very rapidly. This rapid energy transfer lowers the fuel pellet
temperature and causes i t to thermally contract away from the cladding.
The gap never closes for the remainder of the transient because the fuel
contraction is larger than the cladding contraction. These results are
i l lustrated in Figure 2 which show the rod power, inlet mass f lux,
fuel-cladding gap thickness, and cladding temperature.
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