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ABSTRACT

In the test particle approximation, tile scattering amplitude for two-particle

scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity

was computed and compared to the corresponding metric solutions. The formal-

ism was then extended to the exact gauge theoretic treatment of the two-particle

scattering problem and compared to 't Hooft's results from the metric approach.

We have studied dynamical symmetry breaking in 2+1 dimensional field the-

ories. We have analyzed strong Extended Technicolor (ETC) models where the

ETC coupling is close to a critical value. There are effective scalar fields in each

of the theories. We have worked out how such scalar particles can be produced

and how they decay.

The 054 field theory was investigated in the Schrodinger representation. The

critical behavior was extracted in an arbitrary number of dimensions in second

order of a systematic truncation approximation. The correlation exponent agrees

with known values within a few percent.
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1. Scattering in (2+l)-Dimensional

Chern-Simons Gravity and Supergravity

A number of works related to the solution of the two-particle scattering prob-

lems in (2+1)-dimensional gravity and supergravity theories were completed.

They are reported below in the order of their completion"

1.1 TEST PARTICLE APPROXIMATION IN CItERN-SIMONS-\\rITTI._N

GRAVITY [_l

In this work. tile quantum scattering of a test particle bv a fixed point-like

source was studied from the point of view of \Vitten's Chern-Simons gauge theory

of 2+1 dimensional gravity. I21[_1 Particles in Witten's approach are described

by vectors of the Poincare' group, and all the observables of the theory are

obtained from \Vilson loops enclosing one or more of these particles. This problem

had previously been studied by 't Hooft I*l and by Deser and Jackiw I_l in the

fl'amework of Einstein's metric t,heory of gravity. To make contact with these

works, it was necessary to establish a connection between the classical phase

space of the particles in the gauge theory and their space-time coordinates. It

was shown that this can be achieved by noting that in the gauge theory a,l)proach

the position vector, q'_, of the classical test particle transform like an ISO(2, 1)

vector. Then by an appropriate gauge transformation, the space Mq of the

position vectors was mapped into a conical space-time, thus making contact with

the works of 't Hooft and of Dcser and Jackiw. :':i_'l An ullusual fc.at,mc_ •" of tiffs

transformation is that unlike most gauge transformations, it is n(>t 2rr-i)criodic.

It is precisely due to these features that the transformed c()ordinatcs, q", satisfy

tlm matching conditions of tile coordinates on a cone and can be identified with

them. Tile scattering amplitude was also cxpiicittv comtmtcd.



1.'2_ SCATTERING IN TEST PAI/TICI,E APPROXIMATION IN CI[I.:IIN-SINIONS

SUPERGRAVITY [¢1

In this work the results of reference [1] were extended to the scattering of

a test superparticle in the field of a massive superparticle. The motivation for

undertaking this work was to find out the extent to which supersymnietry could

account for the effects of spin. The natural framework for doing this was _Y = 2

Poincare' supergravity coupled to sources, hl AT = 2 supergravity, the gauge

theory approach also plays a central role in restricting tt_e nat, ure of the charges

which can be carried by the sources. By insisting that the coupling to sources

be derivable from an action which is endowed with the same gauge invariances

as in the sourceless Chern-Simons theory, one loses the freedom of assigning

charges to the sources arbitrarily. For example, in the test particle approxima-

tion, we will show that it is possible to gauge away the Grassmann degrees of

freedom of one, but not both. of the particles. So spin effects do appear in the

scattering amplitude I_l The scattering aniplitude is recovered by summing the

contributions from topologically distinct \¥ilson loops in the infinite diniensional

representation of the Poincare" group carried by the test particle.

Fl1.3 BEYOND THE TEST PARTICLE APPROXIMATION

The works described in references [1] and [6] clearly demonstrated that the

gauge theory approach provides an alternative picture for the description of par-

ticle scattering in the test particle approximation. The solution to a nuniber of

problems required further study in this api)roach. One of these was the solution

to the two scattering problem beyond the test particle a,pproximation. The main

putt)orc of r]ii:_ work was to provide a different view of dealing with this prob-

lena. The scattering amplitude that, we obtained agreed with that of "t Hooft

in reference [4] in tlic limit in which lx)r,h p_/rticle:_ _ll'e sh)wly m¢)viilg and ,.pi',."

massive. There was also complete agreenielit when ,)lie of tlie inx'arianrs satisfied
._,

a quantization conditic)n.' :°!



For a 2+1 dimensional manifold..li, with topology R × E, wh('re I? r('tn'('senrs

the time, the Chern-Simons action for Poincare' gravity can be written as t-'lH

_rcs= a  'J °,ot 0j - ,lob  o b']- [el
E (1.1)

ij = 1,2 ; a, b = 0,1, 2.

a and ' ,aIn this expression % ,,, are components of the connection

-4l, = eal, P, + _a_Ja, (1.2)

where pa and da are. respectively, the momentum and the angular momentum

generators of the Poincare' group. Also,

Pa[Al-- _uFaij[.4], (1.3)

where Faij are the spatial compon.ents of the field strength tensor for the con-
• .

nection A. and eu is the antisymmetric tensor in two space dimensions. To cou-

ple a point-like source characterized by phase space coordinates (1)", q_) to the

Poincare' gravity, one can supplement the action (1.1) by the source action I21I_l

I = f dtrlabPa[Cgtqb + tl_eb/L+ _bcdqCwdlL)] +/_(p2 + m2)
(1.4)

it/

C

where the path C is the particle trajectory, I is a Lagrange multiplier, and

t" - dz"/dt is tlm tangent to the path C.

To couple two or more sources to the Chern-Simons theory, it had been argued

that one must add a term of tyl)e (1.4) for each of the t)(,illt smlrc(,s invoh'(,d.

This appeared reasonal)le since it rcgard(,d the intcracti()11 ()f _lcolh,cti()n ()f i)()i:tt

sources to be (lue tr) the sepa.rat(, coui)iii<,g of the "'('har.e;,'s" of ('ach s()_lr('(, t()

the gal,._c tields in a e;auge invariailt maim,'r. \Vl_'tllcr tiffs w;,y ,)f' ,'()lit)lillE is
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suitablefor describinga l)articularphysic:,ll_robl_:ndOl_(-,ndson the l?r(J)l(,n:

at hand. \Ve pointed out tha.t,formore than one source,t.l:eabove method of

coupling point sources to Poincare"gravitywas not unique to the (,xtcntthat

the choice of canonical variables in a phase space corresponding to n:ore than

one particle was not unique. :,',re took advantage of this non-uniqueness to write

down an action which leads to 't Hooft's scattering amplitude and provides an

exact solution to the 2-particle scattering problem in (2-t-1) dimensional gravit.y.

1.4 2+1 DIMENSIONAL CtlERN-SIMONS GAUGE TIIEOIIlES ('OUPLED TO MANY

SOURCES

First we st:ali give the precise connection between the internal co()rdinates,
a a

q(n) (conjugate to P(n))' and spacetime for the special case of a single superpar-

ticle in spacetime. More precisely in the presence of a single so:trce of mass m,

spacetime is a case described by the metric solutions

(Is ?"= dr 2 - dr 2 - n '_-r2dO_. (1.5)

where c_ = -1 - m/2: is related to the deficit angle of the cone. On the other

hand. the internal space, :'tlq, is globally 5Iinkowskian and the connection between

the Chern-Simons phase space and its spacetime countert)art is obscure. \Ve

establi,_hed this connection by showing that the gauge transforn:atio::

, -aoJo
q -+ q = _ q, (1.6)

where J0 is the angular :non:entun: generation of the Point:r(:' gro::p, giv(,s

the set q' in .li T which are manifestly conical coordinates satisfying the s;,::l_'

boundary conditionsas the Sl)aC(,ti:ncco()rdi::atcs.Th(' ga::gctransfer:nati()::

also g(,rsrid c)fthe sl)it:c()nnecd()n,s()ii:(,::(,t('ff()rtas t()t:'a(h,tl:(,:4h)l)allv

trivial:natchin-,;conditionson til,I with a n(m-trivi_dconnccti(m for th_'Sl)::('(,

II,I,which has non-trivialmatcl:in_co::(litio::.__il)::t:_trivial('(_::::(,('ti(_:l.
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Becam:...i, the gauge transformation alcove lives in the coverinA groll I) of tile

Poincare' group; it becomes necessary to view \Vitten's gravity as a gauge theory.

not of tile Poincare' group itself, but of its covering group. During the past year

we have generalized (1.6) to the case of X sources iii arbitrary relative motion. [_-'l

The relationship between AIq with N holes and the multiconical spacetime is best

stated as follows. Consider a test particle located at tile spacetime point P away

from soux'ces. The appropriate gauge transformation, which is the generalization

of (1.6) i.-: the \Vilson line linking the origin to the point _P. \\re assert that the

coordinates

P

q'(P) = Tr_P exp ( / ,4) q(P) (1.7)
ce

obey precisely the matching conditions of the spacetime coordinates given by

the geometric constitution of Deser, Jackiw, and 't Hooft I_°l Indeed, by gauge

transformations analogous to (1.7), one can go from any projection of the cov-

ering group to any other. (1.6) is the special transformation taking us from the

Poincare" projection (tile glc)bally _kIinkowskian st)ace _lfq witll one hole) to a

manifest cone with deficit angle _lI. Equation (1.7) establishes the precise con-

nection between the gauge theoretic and the spacetime approaches to gravity and

supergravity in the pressence of isolated sources.

2. Dynamical Symmetry Breaking

Dynamical symmetry breaking plays a significant role in particle physics re-

search. Starting with the work of Xamblt and Jona-Lasinio. I_l it has been inves-

tigated as a mechanism for generating fermion masses. The breaking _)f the chiral

symmetry of QCD is now widely accepted as a realization of" this phenomenon.

It is also proposed as a nlecll_:tliisnl f()r electro-weak symlnetry l)r,,akilig iii the

standard model [_21 Among it,s appealilig features ;tre the fact tllat it r('qttir('b

fewer arbitrary parameters than the alternative spontaneolls symmetry breaking

with elementary Higgs fields.
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The examples discussed in the previous paragraph deal with dynanfical 1)rc;_k-

ing of continuous symmetries. It is also important to investigate the possibility of

discrete symmetry breaking through dynamical means. \:afa and \Vitten [1"_Ihave

shown that dynamical parity (P) or time reversal{T) breaking cannot happen in

vector like gauge theories in 3+1 dimensions. Their arguments also applied ro

2+1 dimensional QED if the number of fermion flavors is even and greater than

two. Further analysis of dynamical parity breaking in QED3 in the large N fla-

vor approximation was also carried out.. I:_l It was found that Parity breaking

does not happen to the leading order in 1/:Xr. This analysis has been elaborated

by Nash. [_'l Analysis of dynamical symmetry breaking in realistic field theories

requires nonperturbative methods. Commonly used are numerical lattice simu-

lations, analytic approximation schemes such as the stud) of Dyson-Schwinger

equations and variational methods. Another useful laboratory where much has

been learned is the solution of models in lower dimensions, particularly in 1+1-

dimensions where there are numerous soh, able interacting quantum field theories

with discrete symmetries broken by composite order parameters. \Ve have studied

the dynamical breaking of parity and time reversal and a certain discrete flavor

symmetry in a strongly-coupled 2+1-.dimensional field theory using a conven-

tional effective potential approach and the large N approximation. Our method

was especially suited to field theories with four-fermion interactions where the

order parameter is the vacuum expectation value of a local composite operator.

We considered a continuum field theory with two kinds of four-fermion con-

plings defined by the action

f :v ,\.4 _ =v A2 -
- , -- N '- T 3 ,

S da.r _4_,.,,t _t,at, _:,,, 2A-.\
a=l a= 1

(2.1)

with :\' flavors of complex four-component fermions. A is the ultraviolet cutoff

and ,\. h and c are (li:nensi():fles_. cut()ff dep(u:(tenr constants. A!' is tilt,

7
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fermion wavefunction renormalization parameter, ,\ and ,,"are the dimensi_mh,._s

four-fermi vertices.

We write down two kinds of fermion mass operators in this model, a scalar

fermion mass _r a_,, a pseudoscalar fermion mass _/,. If this model is gauged wi;11

a U(1) gauge field .A, it is also possible to have a Chern-Simons topological mass

term for the photon field e_"_At, cg,A,x. The latter changes by an exact derivative

under a gauge transform and therefore has a gauge invariant spacetime integral. I1_1

These mass terms are distinguished by the way in which they transform under

discrete symmetries.

The action (2.1) has U(N) x U(N) symmetry. It also has a discrete Z2

symmetry,

Under this transformation the scalar fermion mass operator _ra_/, changes

sign

Z2 :_7"3'_/' _ --_7 "3_'

and the mass operators _g, and e_u'_.A_Oz,./-l,_are invariant

Since _ra_ is not invariant under Z2 a non-vanishing expectation value,

< _r3_b > =fi0, would indicate that the vacuum of the theory is not Z2 symmetric.

This operator is therefore an order parameter for Z2 symmetry breaking.

The action in (2.1) is also invariant under the Euclidean three dimensional

parity

Under parity transformation the mass operator _raz/, transforms like a scalar

and _V, like a pse_ldoscalar We also note that the topological mass term is parity

odd. (_1

Either of the vacuum expectation values < _..-'0> or < .l d_U,_Ai,0,A,_ > _re

()rder parameters for parity breaking. If we h_l\-e both fermions and gauge fields

in a theory if one of these parity odd operators has an expectation vah.m, radiative

8
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corrections can induce an expectation value for tile other one. In g('n('ral this

occurs when the physical fermion has a pseudoscalar mass larger in magnitude

than the scalar mass. t'rJ Then the physical fermion and the physical photon

would have parity violating masses and the Coulomb interaction would be short-

ranged. \Ve have only analyzed pure 4-fermi theories. \Ve have indicated how

these results could be generalized when gauge interactions are present.

The Z'2 and parity symmetries forbid the appearance of a bare mass for the

fermions in action (2.1). If the physical fermion spectrum is to have a mass gap

at least one of these symmetries must be broken dynamically. In the following

we shall seek solutions of the model (2.1) which break either Z, or parity or

both through the generation of fermion masses. We also found that, with the

particular choice of four-fermion couplings taken in (2.1) either parity or chir,,1Z.,

symmetry can be broken but there is no solution where both are simultaneously

broken.

To set up the 1/N expansion we introduced the Lagrange multiplier fields 6

and _Cand rewrote the continuum action in (2.1) as

/ { - IVB_A¢2 NC2A\2} (2.2)S = dax ,4_i,.,Ovg, + iBo,Sg, + iC\u',r3g ' + 2,4_ k + 2A--g_.'

If we solve the equations of motion for the scalar fie!ds 4) and k"and substitute

the solutions into (2.2) yields the four-fermion interaction terms in the action

(2.i).

Using the usual manipulations we computed the effective action in tern is of

the expectation values of 6 and ,_

/5

< o >= iZ II'[J1, g2] = ,n, (2.3)

and

b,

< \ >= bj.zll[J1,,I_ ,] -,__, (2.4)

9
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The computation of the free energy was carried out using the ususal functional

methods but taking into account the fact that we are employing here a large N

resummation of perturbation theory. Eor the details of this computation we refer

the reader to tile the original papers.i'll The leading large N effective action thus

obtained is

NAc 2 o NA b_
F[ml,m2] __ NAbZ,n_ q ., ,n; rc_ (m_ + m_)V 2Aa2 2na- " a _ "

N b3 (2.5)

+ _ _([7_1 -Jr- 17"t2 3 __ lm '1 -- Wt2[ 3) -t-...

where, to !eading order in _ we have taken A = a and B = b = C with a and b

finite dimensionless constants. For now, it is sufficient to absorb the factors b/a

into rnl and m2. Then, if we define the critical coupling constants

,)

71""

Ac = = _ (2.6)2

The leading order in large snr part of F can be written as

1 F[ml m_] NA 1 1 m i + m.;V '" =--5- Xc T -
(2.7)N

-lC-6-_ ( '-til -Jr- "-/213 -lt-[tYI1 --H-12[ 3) -1- • • •

It is evident that if the either of the four-fermion couplings are sufficiently

strong, either A > Ac or _c> _c the free energy is minimized by ml :fi 0 or rn2 ¢- 0

and either the parity or Z2 symmetry are broken dynamically. The completely

symmetric phase with rnl = rn2 = 0 is stable only in the region ,\ < )_ and

< Sc. When ,k > ,Xcand also A > t,: the stableminimmnof(22) has ml :/=0

and rn2 = 0. Vr'hen _c > K_ and h" > A the stable mininmmis where In2 7_ 0

and where ml = 0. There are i1o stable minima where lmth tit 1 _lll(1 11)'2 _lI'e

simultaneously nonzero. On the symmetry line A = h > ,\_ = h,. tlm syllmwtry

breaking imttcrn is discontinuous and jlmlps from til 1 ¢ O. lt? 2 -- (1 f()r ,\ > h t()

10



m] = 0, rn2 7_ 0 for _. > ),. Further details of these calculations can be found

in the paper of Semenoff and \Vijewardhana.I_s] A lattice version of this analysis

has also been performed. Ii9]

3. 5Iass Enhancement in Extended Technicolor Theories

The recent revival of interest in technicolor theories has been stimulated by

the observation that these theories should not necessarily be viewed as sealed

up versions of QCD. Momentum components well above the confinement scale

Atc can play a more important role than they do in QCD, with important con-

sequences such as the generation of large fermion masses. \Valking technicolor is

one example of this phenomena. !:°1 Another possibility is that the higher energy

Extended Technicolor (ETC) interactions, which must be present to generate the

masses of ordinary fermions, can play an important and direct role, along with the

technicolor interactions, in electro-weak breaking, leading to even larger fermion
[211

masses. This can take piace only if the combination of tile ETC coupling and

the technicolor coupling at the ETC scale is sufficiently close to a certain critical

value. [221

It has recently been suggested that this ETC driven enhancement is asso-

ciated with the appearence of composite scalars that are light compared to the

ETC scale, t2_1

The enhanced fermion mass arises from an effective Yukawa coupling of the

fermion to the scalar, which develops a vacuum expectation value from the tech-

nicolor interactions. \Ve llave studied the I)roper_ies of these comp()_ite scalar

fields. \Ve have concluded that unless the technicolor coupling at the ETC scale

is unrealistically weak and the ETC coupling is very close t() thr_ critical c11,v('.

these light scalars have large widths. I2_1

An important question is if the light scalar resonences are able to mediate

Flavor Changing neutral current interactions. If w(_ restrict our att.(_nti()n to

11



CP conserving interactions, then the possible off diagonal couplings of ordinary

fermions to these resonences will not produce unacceptable Flavor Changing Neu-

tral Currents if the zero momentum scalar masses M(0) are above 1.5 TeV. The

contribution of these scalars ro Flavor changing neutral processes involving tile

t quark may be much larger. This could be of immediate interest if the _ quark

is discovered in the next few vents.

4. Field Theories in Scbrodinger Representation

Since the Schrodinger representation of quantum field theories was proved

to be renormalizable by Symanzik, I2sl several attempts ha,ce been made to ap-

ply methods developed for the solution of the Schrodinger equation to quan-

tum field theories. Various authors tried to use Lanczos' systematic variational

method. The space of wave functionals in the Nth approximation of the Lanc-

zos method is spanned b.v polynomials of the Hamiltonian applied to a Gaussian

wave functional. Numerical approximations to various lattice field theories have

been explored. I'61 c,".'l of finite volume and critical slowing down in the critical

regions. Briefly speaking, the matrix elements of powers of the Hamiltonian

between Gaussian states can be calculated as superpositions of nonconnected

Feynman diagrams for operator insertions. The infinite volume limit cannot l)e

taken, because each connected subdiagram is proportional to the volume. Using

simple considerations it is easy to show that the finiteness of the volume puts

severe limitations on the value of the smallest mass one is able to reach in a given

order of the approximation scheme.

One way to avoid the constraint of finite volume is to sl_bstitute the Gaussian

fimctional with a nongaussian one of the form _a[6] = exp{-S[o]}, where S is

not quadratic. The exact ground state wave functional can be shown to have this

f()rm with a connected Sio]. The disadvantage of the al)ore approach is that

the expr, ctation value of the Hamiltonian cannot be exactly calculat_'d. Th_ts

one has to rely on approxiinations, which are not variati(mal in their charact_'r.

12
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Among others, tile approximate energy eigenvalues no longer approximate the

true eigenvalue from above.

The substitution of • = exp{-S} into the Schrodinger equation results in an

infinite set of coupled equations for the Taylor expansion coefficients of S in field

b. One way to arrive at a managable approximation is to truncate the infinite

Taylor series. It was shown that such a truncation leads to excellent numerical

results for a q_4theory in zero spacial dimensions (the anharmonic oscillator), t281

We have shown that the wave functional for the first excited (single parti-

cle) state can be written as WI[b,p] = X[6,p]W0[_], where p is the momentum

carried by the excited state, t291 The functional %, just like S, is connected. Tile

Schrodinger equation for the excited state wave functional leads to an infinite

set of coupled linear integral equations for the Taylor expansion coefficients of \.

After _runcating functional X as well we obtained a set of integral equations for

the remaining coefficients.

The excitation energy, E(p) appears as a parameter in the integral equations

for the Taylor expansion coefficients. It is oasy to see that even if all coefficents of

S and X could be eliminated from the system of equations, one would be left with

a single integral equation for the excitation energy E(p). The solution of that

does not in general have the correct relativistic form E(p) = 4p _equation +

where mR is the renormalized mass. On the other hand, if the truncations

constitute a convergent series of approximations, then in increasing order the

correct relativistic form should emerge.

It turns out that truncated set of equations are still too complicated to

solve.J291 Thus a further approximation, the iteration of the integral equations, is

performed. This leads to an integral equation for E(p) alone, which would agree

with the perturbational approximation for E(p), provided E(p) itself was ex-

panded in a power series of the coupling constant. As it stands, it is a highly non-

linear integral equation for E(p). The ectuation is reminiscent t() the Schwinger-

13
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Dyson equation in the Lagrangian theory on one hand. and to \Vigner-Brillmlin

perturbation theory on the other hand, but it is distinct from both.

Besides a trivial perturbative solution, there is a nontrivial solution of the

intgeral equation for E(p). It is linear for large p, approaches mR for small p,

but it has a power behavior for tl >> p >> mR, where # is the scale. The solu-

tion leads to a nontrivial relation between the unrenormalized and renormalized

masses. This relation determines the critical correlation exponent. _. We have

found exponent v in the second (two loop) approximation. As expected, we ob-

tained t, = 1/2, the correct mean field value in three spatial dimensions (D = 3),

while for D = 1 and 2 we obtained critical exponents, which agree with the

known exact and numerically generated values 1 and 0.631. respectively, within

a few percent.
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