g R TR Py
Qf Yo @ o SLAC-PUB--5504
DEg) 0
FASTBUS Simulation Tools" 03345
T. D. Dean
Stanford Linear Accelerator Center, Stanford University. Stanford. CA 94309
M. J. Haney

University of [llinois. 1110 W. Green Street. Urbana. IL 61801

Abstract

A generalized model of a FASTBUS master is pre-
sented. The model is used with simulation tools to aid
in the specification. design. and production of FASTBUS
slave modules. The model provides a mechanism to inter-
act with the electrical schematics and software models to
predict performance. The model is written ir the IEEE
std 1076-1987 hardware description language VHDL. A
model of the ATC logic is also presented. VHDL was
chosen to provide portability to various platforms and
simulation tools. The models. in conjunction with most
commercially available simulators. will perform all of the

transacticns specified in IEEE std 960-1989. The models
may be usej o study the behavior of electrical schemat-
izs and cuher software models and detect violations of the

FASTBUS protmol For example. a hardware design of
a slave module could be studied. protocol violations de-
tected and corrected before committing money to proto-
1ype development.

The master model accepts a stream of high level com-
mands from an ASCII file to initiate FASTBUS trans-
actions. The high level command language i1s based on
the FASTBUS standard routines listed in [IEEE std 1177-
19534, Using this standard-based command language to
direzt the model of the master. hardware engineers can
simulate FASTBUS transactions in the language used by
physicists and programmers to operate FASTBUS sys-

TEITIS.

I. INTRODUCTION

We have developed tools that allow the designer of a
FA.\TBT_ S I" module to simulate electronic design sche-
s with high level language commands of the type
by the programmers. engineers. and phlivsicists to in-
teract with real FASTBUS modules. These tools aid in
determuning that a design complies with the FASTBUS
specification. Moreover. the code developed by the de-
2er 10 exercise the design can be used as an effective

si

starting potnt for developing the code that will be used to
t=st and operate the fabricated design

4. Conventional Tools

Modern CAE workstations have a variety
= 10 aid 1n the

BUS modules and

of software
design and manufacture of FAST-

other elecrrical cir

cutts. Many complex

Work supported by Department of Energy contracts DE-

ACE3.TRSEG SLAC and DE-ACG2-TEERGTIS3 i M ni-
versity of lllinois
rrrsrmu wl ihe ;EEE Nadd
and Medical Imaging Conference. San

system designs begin at a high level of abstraction where
the function of the system elements are fairly well known.
but their implementation is not. High level modeling lan-
guages (e.g.. Simula. Modula-3. Modsim) can be used to
analyze the abstract function of a circuit board before
physical design begins.

Thus the most difficult aspect of electrical system de-
sign today is the synthesis of a behavicral model into an
electrical schematic. To address this problem, hardware
description languages (most notably VHDL [2] and Ver-
ilog [3]) have become ccmmon approaches to behavioral
modeling. Models written in a hardware description lan-
guage may be as abstract as those written in a pure simu-
lation language: they can also be as specific as an electri-
cal schermnatic. This spectrum of application from behav-
ioral to structural allows hardware description languages
to describe. simulate. and represent designs continuously
throughout the design process. This in turn eases the
transition from abstract model to physical implementa-
tion.

To effectively simulate a behavioral model of a FAST-
BUS board being designed. it is necessary to simulate {or
at least approximate) the environment that the board will
be used in. 1.e.. a “virtual” FASTBUS crate. This is the
motivation for the VHDL models developed by this work.
By providing a simple FASTBUS master and slave. elec-
trical schematics of modules under design can be tested
against virtual modules in a virtual crate.

These same ideas were explored by Willwerthet al. [4.5
using the nonstandard DABL language available from
Daisy Systems Corporation (now Dazix) [6]. The mod-
els described below. however. were developed in VHDL so
as to be portable between CAE systems. and were con-
structed with the FASTBUS standard routines in mind as
a language for control.

Traditional simulation packages require that the de-
sign testing be done in terms of specifying individual sig-
nals at specific times. The simulation proceeds in a fixed.
predefined time sequence. Using the native language of
most simulators limits the transaction to a fixed time step
transaction. This does not allow for variable response of
the addressed slave design. A CSR space read might lock
like the example in Fig. 1.

This is substantially different from the procedures used
by programmers. engineers. and physicists who use the
maodule. [n actual use. more typical to employ high
level Iangua;—:es such as FORTRAN or C. and direct the
actions of the FASTBUS modules using standard rou-
tines 7. In the FASTBUS environment.

1t is

the timing of

the artions 15 ot fixed by an artificial Slmulation. but
 Sermer fomaesiim M[‘ TE

AR EL eI L gL Os s b ‘- a 4

Fe. NM. November 5-9. 1941 ﬂu it

. o -
T e .

e
>

@t=100ns AD=<address>

@t=110ns AS=1 (connect)

@t=200ns MS=2 {set up NTA)

@t=200ns RD=0

@wt=200ns AD=<sec.address>

@t=210ns DS=1 (write NTA)

@t=320ns DS=9

@t=400ns RD=1

@t=420ns DS=1 (read data)

@t=520ns DS=0

@t=530ns AS=0 (disconnect)
Fig. 1. Traditional simulation

are determined by the physical behavior of the modules.
The FASTBUS models developed in this work follow this
more natural pattern of operation; the designer specifies
the FTASTBUS cycles to be performed in a language based
on the FASTBUS standard routines, and the timing of the
simulation is dictated by the behavior of the models, not
by an absolute specification of signal transition times.

B. VHDL

VHDL (VHSIC hardware description language), an
IEEE standard [8], was originally developed on behalf of
the Department of Defense to represent (document) elec-
trical systems delivered to the government [9]. Currently
a mandate for deliverables to the DOD, most CAE ven-
dors are providing (or promising) VHDL support in their
products. Thus VHDL is a suitable choice for developing
models to be portable to various platforms.

Three VHDL models were developed to assist in the
design of FASTBUS modules: a virtual master (VIM).
a virtual slave (VIS), aud the arpitration and broadcast
timing controller (ATC) that services a virtual crate. The
designer must provide a high leve! module that connects
either a VIM or a VIS (or both) and the ATC to the
module being designed. In many CAE systems, this would
involve a single electrical schematic drawing to connect
the models.

If the module being designed is 2 FASTBUS master,
then the VIS model would be used as a basis for exercising
the master. Causing the master heing designed to perform
the desired FASTBUS cycles is the responsibility of the
designer.

[f the module being designed is a FASTBUS slave. then
the VIM model would be used to exercise the slave. In
this case, the FASTBUS operations performed by the VIM
on the slave are provided by an ASCII character control
file (easily manipulated by any text editor) containing the
FASTBUS cycles and arguments.

Finally, the VIM, VIS, and ATC may be used together
as a teaching tool to aid in understanding FASTBUS
transactions.

[

The VHDL models for the VIM, VIS, and ATC are
discussed in the next section; the basic input language to
the VIM is described in the section after. Following these.
a highly portable language translation tool is described
that transforms FASTBUS standard-like subroutine calls
into the basic input for VIM.

IT. VIM, VIS. AND THE ATC

The virtual master (VIM) is a VHDL model of a mi-
crosequencer state machine and a bus driver. The VIM
accepts a stream of I[EEE 1177-like low level commands
(e.g., FB.CYCLE_PA_CSR to send a primary address cy-
cle to connect to the CSR space of a module). These
commands are read from a standard ASCII text file, one
command (or data/argument) per line. This allows easy
editing and manipulation of the command sequences using
any text editor. The model is approximately 2100 lines
of VHDL code, and is capable of performing all of the
action routines described in Section 8 (“Primitive FAST-
BUS Action Routines™) of IEEE std 1177-1989 [7]. From
these, and a few “housekeeping” functions {e.g., TITLE
and COMMENT), complex FASTBUS cycles can be com-
posed. Although this command set is limited. the use of a
high-level language translator (described below) can read-
ily allow highly sophisticated control programs to direct
the VIM.

The virtual slave (VIS) is a VHDL model of a simple
memory-like slave device. The VIS can be addressed geo-
graphically only (logical addressing will be supported in a
future version), in either data or CSR space. Attempts
at broadcast addressing of the VIS result in messages
printed during simulation indicating that broadcasts are
not supported. and the VIS ignores the broadcast. Data
space consists of 11 read-write locations (starting at 0),
and 11 CSR registers (starting at 0) are provided. The
CSR registers are simple read-write locations, and do not
perform any special function (contrary to the FASTRUS
specification for real modules). Only single-word transfers
are supported; all other transactions result in simulation-
time error messages. The VIS is approximately 350 lines
of VDL code.

The ancillary timing controller (ATC') is a VHDL mod-
el that provides the AK and DK handshake signals dur-
ing a broadcast operation. Although the VIS does not
support broadcast, the VIM requires these signals from
the ATC when broadcast operations are performed. The
ATC is approximately 150 lines of VHDL code.

These models can be connected together with a mod-
ule under design by any of several approaches. Using tex-
tual VHDL. it is easy to define a virtual crate consisting
of a VIM (or a VIS)., an ATC, and the design module,
and connect them all with FASTBUS backplane signals.
Alternatively. using a CAE system such as Workview (by
Viewlogic [10]), an electrical schematic of the crate can be
used to connect the models. This drawing is translated to
VHDL by the CAE system for simulation.

One possible view of the design process has the elee-
trical design schematic on the top level of the design set,

Connector
to .
FASTBUS Design
Schematic
Fig. 2. Top level

as shown in Fig. 2. On most CAE systems, selecting the
FASTBUS connector and pushing down one level reveals
the environment of the design under simulation, as shown
in Fig. 3.

Connector
to
FASTBUS
VIM VIS ATC
Fig. 3. Lower level

The lower level electrical schematic consists of the con-
nectivity to the top level, and the VHDL models of the
VIM. VIS, and ATC. as necessary. The geographical ad-
dress of the module(s) is assigned on the lower level.

III. BASE-LEVEL INPUT TO VIM

The VIM microsequencer state machine accepts a
stream of low-level commands from an ASCII text file
to specifyv the sequence of cycles to be performed. These
commands are largely a subset of the FASTBUS standard
subroutines defined by IEEE std 1177, with emphasis on
the “Primitive Action Routines.” These commands allow
the VIM and the FASTBUS simulation to be directed in
abstract terms. and allow {or variable response from the
addressed slave.

Due to the nature of the VHDL I/O routines. these
commands must be presented one per line, and the argu-
ments to these commands must also stand alonc on sep-
arate lines. Thus. the previous example of a C3R space
read would be coded as shown in Fig. 4.

Timing is not specified in this file. The VIM will ini-
nate address or data cycles, but will proceed only when
the addressed slave responds. Thus the slave’s responses
define the timing of the simulation. This reflects the be-
hiavior of a real FASTBUS system, where system timing
15 not specified by the designer, but arises from the inter-
action of devices. The designer is relieved of the burden
of insuring that the timing of the individual signals is

SOrrect.

FB.CYCLE_PA_CSR
<address>

FB.CYCLE_WRITE SA
<sec. address>

FB.CYCLE_READ_WORD

FB.CYCLE_REL_BUS

Fig. 4. Primitive commands

IV. HIGH-LEVEL TRANSLATOR

The low level input to the VIM is simple, but not con-
venient. A higher level language was defined, also based
on the IEEE std 1177, to allow commands and arguments
to be listed in a more comfortable and familiar syntax, as
demonstrated in Fig. 5.

FB_READ_CSR(<address>,
<address>);

FB_.WRITE_CSR(<address>,
<address>
<data>);

Fig. 5. High level commands
These examples use a predefined arbitration level and
the numeric primary and secondary addresses specified.

ARB_LEVEL = 0x000000FE;
pad = Ox11;

sad = 0x1000 + 43;

data = Oxdeadbeef;

FB_.WRITE_CSR(pad,sad,data);

FB_READ_CSR(pad.sad)

Fig. 6. Variables and expressions

Svmbolic variable names and expressions can be used
to simplify the coding of the commands. Reserved-name
variables are used to control the environment. The exam-
ple of Fig. 5 may be coded, as shown in Fig. 6.

Translation from the language of Fig. 6 to the low-level
input needed by the VIM (Fig. 4) is performed through
the use of a parser-compiler, available from the authors.
This translator accepts free-form input containing the com-
mands and arguments for the VIM. and restructures them
into a line-at-a-time command file. Complex FASTBUS
commands are decomposed into sequences of FASTBUS
cycles used to direct the VIM for simulation. These can
be readily adopted for use in a real system to communi-
cate with the implemented design. Although these are mi-
crosequencing masters for FASTBUS, there is no physical

imiplernentation of a “VIM”: thus master-specific changes
to the high-level VIM comumands may be needed to allow
the control of actual FASTBUS masters.

It must be noted that the syntax of the high level lan-
guage is not precisely that of the TFEE standard FAST-
BUS routines. Due to the relative simplicity of the VIM
model (compared to a real FASTBUS master), many of
the standard subroutine arguments are inappropriate. For
cxample. the environment arguments of the standard rou-
tines are meaningless in most simulation environments.
Thus. the argument lists contain only the arguments nec-
essary to perform the requested simulation operations.
With the above considerations about required master-
specific changes. this discrepancy was not considered un-
acceptable. While the argument lists may vary, the FAST-
BUS subroutine names and functions have been main-
tained exactly.

V. PORTABILITY
4. VHDL

The original version of the VIM, VIS. and ATC mod-
els were developed using a VHDL implementation pur-
chased from Viewlogics Systems, Incorporated [10] (a full-
spectrum CAE vendor). The code was developed at SLAC
according to the guidelines provided by Viewlogics for the
creation of “portable” models.

The code was then “ported” to run under a VHDL en-
vironment purchased from Intermetrics. Incorporated [11].
Several “incompatibilities” were encountered that may be
of concern to other users of this code, or others involved
in the creation of “portable” VHDL models. It should be
noted that Intermetrics has been involved in the devel-
opment of the VHDL language since its inception; thus
VHDL code that does not port easily to the Intermetrics
environment probably will not port easily elsewhere.

The most immediate problem in porting the models
was the choice of base logic signals, and the use of file
[/O. As a language. VHDL supports user defined logic
types which can have user defined logic values. typically
“0" and ~1" for true and false, “X” for unknown, etc. Sim-
ulators from different vendors are optimized for different
definitions. Viewlogics has optimized their simulator to
support a 4-level logic variable; Intermetrics has not. The
controversy over the “best” multilevel logic package is still
in progress. For more information on std_logic_1164. con-
tact the VHDL consulting group [12].

Also. although the VHDL as a language supports a
simple notion of file input and output. the specific im-
plementations are vendor-specific. File [/O is extremely
important to the VIM, both for reading thz command
stream, and for generating run-time messages for the user.
describing VIM operation, error conditions. and protocol
violations.

Other harmless, but annoying porting problems oc-
curred because of semantic shortcuts offered by Viewlogic.
but not supported by Intermetrics. For example, “pris-
ing(AS)” is a Viewlogic conditional to test if AS is chang-

ing from 0 to 1. Intermetrics does not support this short-
cut; the more formal VHDL syntax is “fnot AS'stable)
and (AS="1")". For the sake of portability, these short-
cuts had to be identified and eliminated.

B. Unir
The high level translator was developed using the stan-
dard ler parser generator and yace compiler com-

piler [14,15] and the standard C compiler on several plat-
forms. The translator code was compiled and tested on
SUN UNIX. SCO XENIX system, and AIX systemns at
SLAC. The source code is available for compiling on the
target system.

The high level translator was also tested using the Free
Software Foundation {13] fler and bison on a Sun worksta-
tion. There were some differences between ler and fler and
between yacc and bison, leading to some minor problems.
The best results and the easiest porting were achieved us-
ing the UNIX or XENIX system supplied ler parser gen-
erator and yacc compiler compiler.

A UNIX make file was created to generate the parser
and the compiler and to compile the resulting C code.

All of the above are available in source code form from
the authors (see below). The llib and ylib libraries needed
by ler and yacc are normally supplied with the UNIX
system, and cannot be provided.

VII. FUTURE WORK

Many of the features of the VIM, VIS, and ATC are
inherently simple to make simulation debugging easier.
However, theses models are highly modular in nature, and
code modification is straightforward.

For the VIM, improved error handling and protocol vi-
olation checking/reporting are to be added. Also, as the
FASTBUS standard evolves to incorporate more sophis-
ticated broadcast and block-transfer operations, the VI
model will be updated to support these modes.

For the VIS, full functionality is planned (broadcast
and logical addressing, block transfer, CSR registers that
conform precisely with the FASTBUS standard. uniform
SS codes, etc.). There are two reasons for developing a
well organized. FASTBUS compliant slave as a reference
model. First, masters can be tested in a fully consistent
manner; the results of simulation can be expected to corre-
spond very closely to a real FASTBUS environment. Sec-
ond, and perhaps more important. the “technically per-
fect” slave could also serve as a refcrence model (starting
point) for designing real slave modules using “cut-and-
paste” design methods. This is one of the real values of
using hardware description languages.

All of the code described above, as well as the corre-
sponding documentation. is available via electronic mail
and/or file transfer protocols. Information on the VHDL
unplementation and the translator may be obtained by
electronic mail from tomdean@slacvinslac stanford.edu
or from mjh@eng3.hep.anuc.edu. The source code may
be obtained by sending electronic mail to uihepa::nyjh or
myjh &eng3 hep.uiuc.edu.

—
—

VII. REFERENCES
IEEE Std 960-1989, [FEE Standard FASTBUS Modu-
lar High-Specd Data Acquisition and Control System, NY:
IEEE, 1990,
J. R. Armstrong,
Prentice-Hall. 1989,

Chip-Level Modeling with VHDL,

E. Sternheim, et al., Hardware Modeling with Verdog HDL,

Automata Publishing, 1990.

T. W. Willwerth, "A Virtual FASTBUS System,” De-
partment of Electrical Engineering, Tniversity of lilinois.
Urbana, IL. M.S. thesis. 1987.

R. W. Downing. et al., "A Virtual FASTBUS Master
Module.” [EEE Transactions on Nuclear
vol. NS-34, no. 3, June 1987, pp. 692-694.
DAZIX/Intergraph Corp.. Huntsville, AL 35894-00001.

Science,

[7] IEEE Std 1177-1989, [ELE FASTBUS Standard Rou-
tines, NY: IEEE, 1990.
{8] TEEE Std 1076-1987, IFEE Standard VHDL Language
Reference Manual, NY: IEEE, 1988.
[9] D. R. Coelho. The VHDL Handbook, Boston:
Academic Publishers, 1990.
[10] Viewlogic Systems, Incorporated, Marlboro, MA 01752,
[11] In't.er'metri'cs. Incorporated, Cambridge, MA 02138.
[12] William Billowitch, 'he VHDL Consulting Group, Allen-
town, PA 181u3.
[13] Free Software Foundation, Incorporated, Cambridge, MA
02139.
[14] B. I§ernighan and D. Brown, The UNIX Programming
Environment, Prentice-Hall, 1984.
[15] T. Mason and D. Brown, Ler and Yacc, O’Reilly & As-
sociates, 1990.

Kluwer

DISCLAIMER

This report was prepared as an account of work s
Government. Neither the United States Governm

ponsored by an agency of the United States
ent nor any agency thereof, nor any of their

employees. makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, of usefulness of any information, apparatus. product, or
process disclosed. or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

