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A NEW APPROACH TO CHIRAL FERMIONS ON THE LATTICE"
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We present a new method for implementing fermions with chiral couplings to gauge fields on the lattice.

I. GENERAL CONSIDERATIONS titles (i.c.. chiral current conservation) to control

We wish to describe a method for formulating, the number of renormalization counterterms that

on the lattice, field theories that contain Dirac par- can arise from superficially divergent Green's func-

ticles with chiral couplings to gauge fields. As is tions and to preserve relationships between countert-

weil-known, the most straight-forward lattice tran- erms. Furthermore, one needs chiral-current con-

scription of the continuum action for a Dirac parti- servation in rcnormalizcd Green's functions in order

cle _eadsto the doubling problem: for every particle to prove that the negative norm states--ghosts and

of a given chirality in the continuum theory, there would-be Goldstone bosons--decouple from the the-

appear on the lattice, in d dimensions, 2_ particles, cry, thereby preserving unitarity.

with equal numbers of particles of left- and right-

handed chirality. I No-go theorems I'2 state that it 2. THE NEW APPROACH

is impossible to eliminate tile doubling problem and 2.1. PerturbativeCurrent Conservation

still maintain an exact chiral gauge symmetry. In weak-coupling perturbation theory, violations

Rat..er than follow an approach that attempts of the Ward identities corresponding to chiral-current

to circumvent the no-go theorems let us, instead, conservation appear because the Wilson term in the

explore the possibility of abandoning exact chiral action generates a propagator mass term and in-

symmetry. We introduce a Wilson term in the lat- teraction vertices whose Dirac structures are those

tice Dirac action, thereby giving an infinite mass to of scalars. The Wilson mass and vertex terms

the doublers in the continuum limit. Of course, the have the property that they vanish as one takes

Wilson term, having the Dirac structure of a mass, the lattice spacing a to zero with ali momenta

breaks the chiral symmetry. Such a loss of chiral fixed. For example, the Wilson mass is M(p) =

symmetry may be acceptable in a theory like QCD, C_(2/a)sin2(½P_a). Hence, a Wilson mass term

which contains no 3'5's in the interactions, but it or vertex term gives a vanishing contribution in the

is potentially a disaster in theories, like the stan- continuum limit to any convergent subgraph. How-

dard electroweak mc,del, in which the chiral symme- ever, the Ward identity that one obtains from a given

try is one of the gauge symmetries. In particular, graph by dotting a momentum into its associated

in sdch a theory, one needs the chiral Ward iden- vertex actually involves expressions whose degree of
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divergence D is one greater than that of the origi- the presentation, we discuss the Abelian theory here.

nal graph. The reason for this is that the applica- The generalizations to the non-Abelian case and to

tion efthe Feynman identity and its generalizations, 3 theories involving both left- and right-handed gauge

leads to the cancellation of a propagator or the re- couplings and fermion-Higgs Yukawa couplin6s ap-

placement of a dimensionless vertex with a Wilson pear to be straightforward.

mass term. Hence, we conclude that subgraphs with 2.3. Electron Loops with No Radiative Correc-
D >_ -I potentially violate chiral current conserva- tions

tion even in the continuum limit, whereas subgraphs First we examine the case of an electron loop

with D < -i respect chiral current conservation as with no radiative corrections (i.e., no photon propa-

sz---, 0. gators). We consider explicitly only electron-photon

2.2. Strategy vertices, although our method may be of use in

Our general strategy will be to restore chiral cur- loops involving external currents as well. The one-

rent conservation in the continuum limit, for tenor- electron-loop graphs that potentially violate chiral-

rnalized Green's functions, by introducing suitable current conservation (D _> -i) are those with 2-

renormalization counterterms. Our approach differs 5 external photons. We call these graphs (includ-

from that of Borrelli ct a.l.,4 however, in that we do ing all permutations of external photons and seagull

not add the many ccunterterms allowed by the lattice graphs with the same number of external photons)

symmetry directly to the action. Rather, we imple- the "vacuum polarization", "triangle", "rectangle",

ment a large class of counterterms by introducing and "pentagon", respectively. For these graphs, let

two auxiliary Dirac species, one with Fermi statistics us decompose each left-handed vertex into a vec-

and one with Bose statistics. As we shall ee, be- tor vertex (corresponding to the I in the left-handed

cause of cancellations between the auxiliary species, projector) and an axial-vector vertex (corresponding

the number of physical Dirac species is unchanged by to the 75), so that each graph is written as a sum of

this procedure, aside from a trivial (non-dynamical) graphs involving vector and axial-vector vertices.

doubling. Consider first those graphs in the sum in which

Of course, no counterterm can remove the trian- the electron loop contains an odd number of 75's.

gle anomaly in the axial-vector current without pro- Current conservation at the vector vertices holds ex-

ducing a violation of vector-current conservation.5 actly, since a (gauged) Wilson mass term in the

We deal with the anomaly by requiring that action does not break the vector gauge symmetry.

the theory in question contain a set of physical The vacuum polarization graph is identically zerobe-

species satisfying the anomaly-cancellation condition cause the trace of an odd number of 3'5's is propor-

Tr),_{Ao, Ac} = 0. Here, the A's are the coupling tional to the completely anti-symmetric tensor _,p_,

matrices associated with the chiral gauge interac- and there are not enough independent four-vectors

tion. to saturate the indices. In the triangle graph, cur-
We illustrate our approach in the context of rent conservation is violated at the axial-vectorver-

massless chiral QED--that is, QED but with left- tices. However, this violation is precisely the tri-

I(i 5'5)) of the photon to angle anomaly, and it cancels, provided that thehanded couplings (ac _ --

the electron. Of course, the weak-coupling pertur- physical complement of Dirac species satisfies the

bative analysis that we give here is strictly valid in anomaly-cancellation condition. The rectangle and

the limit cz_ 0 only in an asymptotically free (Le., pentagon graphs also potentially violate current con-

non-Abelian) theory. However, in order to simplify servation at the axial-vector vertices. In an Abelian



theory, these violations cancel because of Bose sym- is the contribution to the action that arises from

merry; in a non-Abelian theory, the violations have gauging the kinetic term,

the group structure of the triangle anomaly and carl-

(1/cel when one sums over a physical complement of Sw = a4__.-_(x) I
Dirac species. _.. r2 (ld)

Now consider the graphs in which the electron 1

loop contains an even number of O's's. Suppose × 9-_a[_/'(x-l-al.)-l-_(x-a.)- 2_/,(x)]
we could anti-commute the %'s through propaga-

's is the Wilson term andtorsand vertices to bring pairs of O's together and

then useT_ = Itoelimlnate them. The resulting a4 (1) i (1)
expressions would be vector-like, and current conser- Sw/= _ _(x) 1 7)[i - % vl ]
vation would be satisfied exactly. "'l-he problem with _,. r.., "_ rl

l
this manipulation is that the Wilson mass and vertex x ---[(U,(x) - 1)',/,(x + a,,)
terms, having the Dirac structures of scalars, com- 2a

mute, rather than anti-commute with %. However, + (Ut(x - a_,).- 1)_/_(z- a,)]

the Wilson mass terms in rationalized-propagator is the contribution to the action that arises from
numerators and the Wilson vertex terms are irrel-

gauging the Wilson term. The Dirac matrices sat-

evant unless the electron loop momentum is of or- isfy {7_,%} = 25._, and %2 = 1. The U,'s are

derTr/a >> external momenta. Thus, the net effect the usual gauge-field link variables. Theri'sarema-

of anti-commuting, rather than commuting, the %'s trices in a two-dimensional auxiliary "flavor" space,
.-)

with the Wilson mass terms and vertices, is to add with {vi,r,2} = 0 and rf - l, and 1 is a unit matrix

counterterms to the graphs. Similar counterterms in that space. The fields _-_and _, are Dirac spinors

arise in dimensional regularization, and are doublets in the r space. The action (1) is ac-

A perturbative rule for anti-commuting %'s does tually a short hand for the actions for three separate

no good in a lattice simulation unless it can be lm- species. In the column vectors that appear in (1),

plemented at the level of the action. To that end, the upper entry corresponds to "electron" type 1,
we consider the following lattice action for the Dirac which is an ordinary Wilson-Dirac particle satisfying

particle in chiral QED. Fermi statistics. This is the original electron in the

_q_= SA- + SKz + Sw +Siv[, (la) theory. The middle entry corresponds to "electron"
type 2, which is an auxiliary Dirac particle satisfying

where Bose statistics. The bottom entry corresponds to

"electron" type 3, which is an auxiliary Dirac parti-S_- =a4_-_-_(x)% [¢(z+a,,)-_,(x-a.)] (lh) cle satisfying Fermi statistics. The type 2 electron.T..,/.t

differs from the type 1 electron in that there is a fac-

is the "naive" kinetic term, tor r_ associated with every vertex 75 and there is

, c,o e ,oo .T,ea 4_(x)%1[1-% differs from the l electron in that there is fac-SKI

z,. rl tor rl associated with every vertex 7s and a factor
L

1
x 2a[(U_,(x) - 1),/,(x + a,) r2 associated with every Wilson mass term or Wil-son vertex term. The action (1) is to be employed

- (Ut(x - a_) - l),/J(x - a..)] only in computing electron loop contributions (Dirac



determinants). For external electron lines, one uses limit only for loops with ]) >_ O. Since the coun-

the ordinary Wilson-Dirac action, terterms arise from loop momenta of O(Tr/_l.), they

Now let us see how the auxiliary fermions lm- cannot contribute to the imaginary parts of loops

plementthecountertermstrategy that we have out- with fixed (finite) external momenta. Hence, the

lined. For electron loops with an odd number of%'s, type 2 and type 3 contributions have no effect on

the type 2 and type 3 contributions vanish because Minkowski-space unitarity in the limit (L_ 0.

the T trace containsan odd number ofT1'S. Then we In the method that we have presented, the

are left with the type i contribution, which is that 7-trace introduces a factor of two in the contribution

of the original electron (multiplied by a factor of 2 of each electron loop. This is a trivial, non-dynamical

from the 7" trace). The violations of chiral-current doubling, which merely replicates the contribution of

conservation cancel because the physical species sat- the original electron without introducing species of

isfy the anomaly-cancellation condition. For electron opposite chirality. We expect, then, that the dou-

loops with an even number of-75's, we can use _-_= I bling can be removed in a simulation by ccmputing;

to eliminate the 7-i matrices from the type 2 contri- the square roots of the determinants (or inver_"_de-

bution. Then the type 1 and type 2 contributions terminant for type 2) of the Dirac operators. Al-

cancel because of the relative minus sign from their ternatively, one could avoid taking the square root

opposite statistics. In the type 3 contribution, the of the type I determinant by introducing the type 1

_._,T]factors anti-commute with all vertices and prop- electron as a singlet in the 7"space.

agator factors--either because the "?'santi-commutes Finally, we note that there is some freedom with

with another T matrix in a non-Wilson propagator or regard to the gauging of the Wilson term. For the

vertex term or because the TI anti-commutes with a type 3 electron we nz_t._tgauge the Wilson term; that

7_ in a Wilson mass or vertex term. Then we can is, we must retain interactions of the type Sw! in

use ('?'sTf)2 = i to eliminate the 7s's and T1's from (le) in order the preserve current conservation for

the type 3 contribution. Now, the Dirac trace van- the vector-like interactions. However, for the type i

ishes unless it contains an even number of Wilson and type 2 electrons, we require only that their gaug-
mass terms, and, hence, an even number of _'2's. ings be the same, so that their contributions can-.

Thus, we can use 7"_= i to eliminate the 7-2'sfrom cel exactly in loops containing an even number of

the type 3 contribution..At this point, the type 3 7_'s. That is, we are free to drop the interactions

contribution has reduced to the contribution from a in Sw1 for the type 1 and type 2 electrons. This

Wilson-Dirac particle with vector-like gaugeinterac- would lead to violations of vector-current conser-

tions (aside from a factor of 2 from the r trace). For vation in loops containing an odd number of 75's.

it, current conservation is e,xact. However, these violations have the same group struc-

The type 2 and type 3 contributions would can- ture as those that appear in the axial-vector-current

cel each other precisely if one could neglect the Wil- anomaly, and their cancellation is guaranteed by the
son vertex terms and the numerator Wilson mass anomaly-cancellation condition.

terms. Such Wilson terms can contribute only for 2.4. Radiative Corrections

electron loop momenta of O(Tr/cz). Thus, the net Now let us consider radiative corrections toex-

effect, in the continuum limit, of the type 2 and ternalelectron lines and electron loops. We assume

type 3 contributions is to add local counterterms that the photon field has been fixed to a tenor-

to the electron loops. Power counting shows that rnalizable gauge. Then the radiative corrections

thecountertermsarenonvanishing in the continuum with D _> -1 are the corrections to the electron



proper self-energy, the corrections to the electron- where A. is the gauge field. We note that

one-photon proper vertex, and the corrections to the such a counterterm also appears in dimensional

electron-two-photon proper vertex, regularization.7 Because contributions to the tenor-

For a type 3 electron, all of the interaction ver- realization factor ZI are dominated by loop momenta

rices are effectively vector-like, even in the radiative of order Tra, they are calculable in lattice perturba-

corrections, so there are no violations of current con- tion theory forg in the scaling region, lt is easy to

servation. However, owing to the presence of the see that ZI is actually a finite renormalization, lt

Wilson vertex terms, the self-energy correction does can be shown that violations of current conservation

generate a mass for the type .3 electron, so it is nec- associated with contributions to tile proper electron-

essary to tune a mass counterterm in order to keep two-photon vertex for type 1 and type 2 electrons are

the type 3 electron massless. For the type I and suppressed by at least one power of a.

type 2 electrons, we can avoid the generation of a Thus far, we have argued that, at fixed elec-

mass by dropping Swz, the gauge interactions asso., tron momentum, violations of current conservation

ciated with the Wilson term. 6 associated with radiative corrections to type 1 and

For the type i and type 2 electrons, the Ward type 2 electrons can be removed by finite tenor-

identity relating the proper vertex and proper self- malizationoftheelectron-one-photon proper vertex.

energy contains a term that violates current conser- We have ignored violations of current conservation

vation" that are suppressed by powers of a. These are poten-

tially important when the electron-loop momentum

d,(1)F_,(p,l) = _(p + t) - x_(p) -I-.]'_(p,l). (2) itself is of order 7r/a. However, it can be shown,

u by proving a variant of the Adler-Bardeen anomaly-

Here [ is the photon momentum; dr([ ) = no-renormalization theorem, 8thatsuch violations of

sin( I ._/_a), p is the external electron momentum; current conservation do not, in fact, arise. Specifi-
l_ is the proper vertex; _ is the proper self-energy; cally, we have proven that, if the renormalized radia-

and F is a proper vertex obtained by replacing the tive corrections do not violate current conservation
]

electron-photon vertex in F by ][(l-Ts)M(i/+l)- in the limit a _ 0 for fixed electron momentum,

(I -_-7s)M(p')], where p' is the electron momentum and there are no violations of current conservation

flowing into the elementary vertex. ])violates current in type 1 and type 2 loops without radiative correc-

conservation, and, because it arises from the Wilson tions (physical species cancellation of the anomaly),

mass term, it contributes in O(a °) only for loop mo- then there are no violations of current conservation

menta of order 7ri/a. That is, to leading order in a, in the limit a ---, 0, to all orders in perturbation the-

I'_ behaves like a counterterm" it is a polynomial in ory.

I(I "75)the external momenta, namely, _,/_%,_ - .
Hence, F can be removed by a renormalization of 3. SIMULATIONS

the electron-photon vertex. Thecounterterm is Let. us summarize the novel requirements that

arise in carrying out a simulation using the lattice

_,_{ 1 (1) ig chiral-fermion method we have presented. First, one
(Z_ - 1)a4 _(x)%,_-[l - V,s 7"_ ]_ must simulate a theory in which the physical fermion

species satisfy the anomaly cancellation condition.I
[A.(z),_(xX . a_) + A_,(x

-a,)]_, One must fix to a renormalizable gauge. For ex-
(3) ternal legs, one can use the ordinary Wilson-Dirac
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