
i . °

t

t

DOE/ER/25052-- 3

DE92 003456

ULTRACOMPUTER RESEARCH PROJECT

Progress Report

for Period January i, 1991 - December 31, 1991

Allan Gottlieb, Principal Investigator

New York University
Courant Institute of Mathematical Sciences

251 Mercer Street

New York, N.Y. 10012

October 1991

Prepared for

THE U.S. DEPARTMENT OF ENERGY
GRANT DE-FGO2-88ER25052

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or _ ,_ _ ,_._ ,_. _'_

process disclose.d, or represents that its use would not infringe privately owned rights. Refer- [_ _I '_''" _ _ _'_tlcnc.,¢herein to any specific commercial product, process, or service by trade name, trademark, [__ _ _: "_imj .
manufacturer, or otherwise dots not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

qlli_ I V I ! I I II'_' IV I III _-_" l I I I _l,,_ i,=,IdP _lll,,_tV I I I,w- l _111 I_w 0 _ I _1 ll-_l I V I I I ll_llll,_

I i. ,

. NYU Ultracomputer I992 Renewal

Overview

The NYU Ultracomputer project continues to pioneer the study of architecture and software

for large-scale, shared-memory parallel computers. During this past year, we have

achieved several very signfficant milestones, most notably we fabricated and used the first-

ever combining switches and we increased our industrial involvement. Other important

accomplishments include porting our Symunix operating system to the Ultra III prototypes;

further developing a very high quality, portable C compiler (GCC version 2), needed for our

prototypes, that has attracted considerable commercial attention; producing a fast solver

for Laplace's equation on multiply connected domains; and furthering the analysis of buf-

fered interconnection networks and parallel random number generators.

In addition to further developments in the areas mentioned above, we plan two new

activities for next year. First, we will obtain extensive measurements of the effect of com-

bining on scientific and other application software using both the Ultra III hardware proto-

types and a new simulation environment that we are presently constructing. Our success-

ful VLSI development of combining switches has already demonstrated that the additional

cost for combining (measured in interchip wires) is about 100% using modest packaging

(208 pins), 50% with 300 pins, and zero given next generation densities and 400 pins.

(Note that it will continue to be the wires and not the gates that dominate the cost of an

interconnection network.) Hopefully, these chips will refute the often-quoted claim that

combining increases the cost of the network by a factor of between 6 and 30.

Second, we will port our operating system to the new NCR series of Intel 486-based

multiprocessors. NCR has agreed to donate a machine during the first quarter of 92 for

this effort, which will strengthen the ties between our project and NCR.

More detailed descriptions of our recent contributions and future plans are given in

subsequent sections.

Page 1

, NYU Ultracomputer I992 Renewal

Industrial Contacts

During 1991, we have continued our relationships with AMD (Advanced Micro Devices) and

MCC (Microelectronics and Computer Technology Corporation)• Due to the ongoing rela-

tionship between NCR and Allan Gottlieb, the principal investigator, NCR has become

interested in our project and will be contributing substantially next year. As discussed

below, we have also become involved with many other commercial organizations.

The principal investigator is a charter member of two NCR committees• The Parallel

Processing Academic Advisory Council assists NCR in the development of their large-scale

parallel processors; Gottlieb has worked specifically with the architecture and hardware

development team. The Science Advisory Committee visits various NCR plants, reviewing

their operation for upper management, and provides technical and other recommendations

for improved operation.

As a result of these contacts, NCR has offered to fabricate higher density versions of

our combining switches within the next year. The technology used will most likely be 1-

micron CMOS in 208-pin packages. In addition, NCR will provide one of their new series of

multiprocessors in the first quarter of 1992. We will port our Symunix operating system to

this new host.

We have had extensive contacts with many members of the 29000 development organi-

zation within AMD. The company continues to support our work financially and techni-

cally. We have received a grant from AMD for our GCC work. They have contributed all

the microprocessors we have required, most recently the new 29050s, and several in-circuit

emulators. In addition, they will provide at no charge the 29000 series processors needed

for a 256-processor Ultracomputer. MCC plans to join us in a proposal, probably to

DARPA, to construct that machine.

Our GCC compiler development has attracted considerable commercial attention. We

have had frequent technical contacts with compiler developers at Shell Oil, Data General,

IBM, SRC, NEXT, Dell, NCD, and Cygnus as well as with numerous academic compiler

developers world wide. To support our GCC effort, IBM is placing an RS/6000 workstation

in our laboratory and Data General has sent an AViiON multiprocessor containing two

Motorola MC88000s. (GCC is the compiler shipped with AViiON and NeXT workstations;

Page 2

t

m

, NYU Ultracomputer I992 Renewal

NeXT is considering supplying a workstation for our use). Finally, Hewlett-Packard has

given us a model 9000/720 "Snake" workstation, an X-terminal, and a high-speed laser

printer to support our compiler work.

BBN has provided us with time on one of their Butterfly multiprocessors so that we

could evaluate the performance of parallel algorithms. In addition, we have had numerous

iechnical discussions with their OS group.

We have also spoken with Astronautics concerning the use of ultra-like networks in

packet routers and with Bell Laboratories on the same issue and on VLSI design.

VLSI Research

During the present reporting period, work continued towards the goal of constructing a

VLSI network that combines requests directed at the same memory location. We expect to

have a sample combining network running in early 1992. Combining chips themselves are

available now and have been extensively tested, both with an IMS VLSI tester and in a

running system. Decombining chips have been submitted to MOSIS after having been

simulated extensively. The hardware needed to test our VLSI chips and to construct Ultra

III is supported by NSF.

Recent Accomplishments

Using MOSIS 132-pinpackages,a 2×2 switchnodeiscomposedoffoureachoftwo typesof

chips:forwardpath and returnpath components.We fabricatedourfirstversionofthefor-

ward pathcombiningchipinearly1990and have testeditextensively.Initialtestingwas

done inan IMS testerand verifiedthe fullfunctionalityofthe chipat speedsofup to

15MHz.

Subsequently, we built a single-board, 2-input/2-output non-combining network com-

posed of eight of these chips with their "don't combine" signal held asserted. This board

has been rigorously tested in 2-PE/2-MM systems, using both our old MC68010-based FEs

and our new Am29000-based PEs. It functions correctly at all speeds at which the memory

and processors work reliably (up to 15MHz) and is now in routine use in a 2-processor Ultra

III prototype.

Page3

NYU Ultracomputer 1992 Renewal

The return path component design was recently completed and submitted to MOSIS,

which expects to deliver the chips in mid-November. At that time we will initiate testing in

the IMS tester and construct a single-board, 2-input/2-output combining network.

To ensure that the return path components function correctly in the system, we

adopted a sophisticated simulation methodology. Simulations were done at three levels. At

the highest level, we wrote a behavioral simulation specifying how each switch component

should perform. Next was a structural level simulator containing a register transfer

language description in C for each cell in the design. At the lowest level we used a switch-

level simulation of the circuit extracted from the VLSI layout.

We simulated a 16-PE/16-MM system with a 16x16 combining network (the size of the

full Ultra III prototype). This simulation ran both the behavioral and structural models of

the switch simultaneously and compared their results. A random stimulus was given to the

system to verify expected operation. We simulated only a single component at the switch-

level since running the switch-level simulation on a full network would be prohibitively

expensive.

To assist in the layout verification process, gate-level schematics of each cell were done

using DASH, a commercial schematic-capture system• A series of small programs were

written that allowed extraction of transistor connections from both the schematic and lay-

out in identical format. The resulting text files were then compared to validate each layout;

a correct layout would produce identical files.

The development of these simulation and comparison techniques resulted in a longer

development cycle for the return path component than we originally expected, but we now

have an extremely high level of confidence that the part will work correctly in the system•

Thissimulationinfrastructurerepresentsan investmentforgreaterefficiencyinourfuture

designwork asnotedbelow.

While developingthereturnpathcomponent,we discovereda genericprobleminour

use ofthe NORA VI_I methodologythataffectstheforwardpathcomponentspreviously

fabricated(itmakes them more sensitivetonoise,which setsrelativelytightrequirements

on clockwaveforms),thoughthesecomponentscurrentlyareperformingwithouterror.We

plantosubmita revisedforwardpathcomponenttoMOSIS inOctober.

Page 4

• NYU Ultracomputer I992 Renewal

Finally, we modified the Magic technology files and CIF generation code to allow the

construction of geometry that meets the design rules of NCR's state-of-the-art CMOS pro-

cess. This included developing, in consultation with Bell Laboratories, a "gap-filling" algo-

rithm to ensure that generated layers, such as wells, meet all applicable design rules. We

expect NCR to fabricate chips for us during the next year.

Future Plans

VLSI research in the upcoming year will be concentrated in two areas. First, we will exten-

sively test the return path chips that are due back from MOSIS in late 1991. In addition to

using our IMS tester, we plan to construct first a 2×2 and later a 4x4 combining network for

use in our Ultra III prototype (a full 16x16 network will be constructed once the smaller

networks have been verified to be working correctly).

The second major area will involve making extensive use of the simulation technology

developed this past year to investigate the alternative combining structures presented in

our original proposal, as well as a new, more complex structure that can process 4 input

requests simultaneously. Due to the validation procedure we have developed this year, it

will be easy to generate a correct layout for the basic cells of any promising scheme in order

to estimate area and performance.

Operating Systems

Our work in this area focuses on the development of Symunix, an operating system

designed primarily for machines like the Ultracomputer (i.e., MIMD, shared memory, hun-

dreds or thousands of processors, Fetch-and-Add, and hardware combining of memory refer-

ences). The goal of this effort is to provide efficient execution of application programs. We

use two techniques to accomplish this goal. F_rst, we avoid, whenever possible, serial

bottlenecks in the operating system and language runt,me system. Second, we provide the

necessary hooks in the operating system that permit a user-mode runtime system to per-

form tasks traditionally done by expensive traps into the kernel. Portability to architec-

tures significantly different from ours is secondary

Page 5

p

. NYU Ultracomputer 1992 Renewal

Recent Accomplishments

During the past year we ported our stable version of Symunix from the 1985-vintage

Ultra II prototype to the Ultra III prototype (currently under development with NSF fund-

ing). The porting process was valuable because it provided a stable component (the

machine-independent bulk of the OS) to aid in ironing out problems with our software tools

and the new hardware itself. We significantly upgraded o_" set of cross-development tools

(compiler, linker, debugger), developed a deeper understanding of Ultra III machine depen-

dencies, and helped to debug the hardware as new functionality was introduced.

We have nearly completed re-implementation of the process management and memory

management portions of the kernel, consistent with the design presented in our 1991 propo-

sal. The chief motivating factor is the need to provide more flexible and efficient support for

programs with relatively fine grained parallelism. To that end, the new system provides

asynchronous system calls and page faults, support for diverse memory sharing patterns,

and provision for improved user/kernel cooperation in scheduling.

We have revised and expanded our collection of highly-parallel synchronization algo-

rithms and data structures. They have been implemented with a very keen eye to efficiency

(especially in the absence of contention) and memory usage. This is part of our campaign to

at_ack the constants that limit the practicality of much highly-parallel computing research.

One result of this effort is the evolution of families of algorithms for certain problems. Each

algorithm has distinct semantic properties that set it apart from the others. For example,

our newest kernel code incorporates algorithms for 9 different kinds of lists, differing in

concurrency (serial, parallel), ordering discipline (FIFO, starvation free, starvation prone),

memory consumption (constant, proportional to machine size), and support for special

operations (interior removal, multi-insert). These distinctions are crucial for both correct-

ness and performance.

One of the major questions we hope to answer through this research is, "at what size

machine do Fetch-and-Add based algorithms such as readers/writers locks and highly-

parallel queues begin to pay off?." Figure 1 shows some measurements that suggest the

pay-off point may be lower than had been previously suspected. Four curves are presented

to compare the performance of the Symunix spawn system call under three different kernel

configurations. (Spawn is an extension of the traditional UNIX fork; it creates m new

Page 6

• NYU Ultracomputer 1992 Renewal

- Normal 7

600 - Reduced / .t

J ..

......... Uniproceaaor .I .,""

500 - Uniproceaaor fork extrapolation / ...,"
o

_ .i"

o,°"

Time per 400- / ..."
spawn _ / .,..

(ms) 300 - /.•"" I- -

/." ___
200 - ./..,

100 - j___

f I l I I I I I I i I t
1 2 3 4 5 6 7 8 9 10 11 12

Multiplicity

Figure 1: Cost of Spawn on Ultra II

processes. For the measurements shown in the figure, creation of a child includes copying

20K bytes of private data. The time for the parent to wait for the children's termination is

also included.) In the "normal" case, highly-parallel synchronization algorithms and

queues are used extensively. In the "reduced" case, the kernel was rebuilt to use only

binary semaphores and lock-protected linked hsts. In the "uniprocessor" case, further

simplifications were performed to eliminate ali multiprocessor synchronization; this version

runs only on a single processor. Ir_ the "uniprocessor fork extrapolation" case, we simply

show the expected cost of naively emulating spawn with fork (only the data for multiph-
city=l is real).

The graph shows a clear advantage for highly-parallel algorithms when the spawn

multiplicity is 5 or more, except 7, where excessive swapping was caused by a weakness in

the memory allocator (this will be addressed in the future). Of course, drawing conclusions

at this point would be premature, as there are still some important questions: What is the

effect of machine dependencies (e.g., Ultra II's small size, bus structure, and lack of combin-

ing)? How much does the "reduced" system's performance suffer, compared to an

Page 7

. NYU Ultracomputer 1992Renewal

implementation designed specifically for machines of Ultra II's scale? In practice, how

significant are the constants affecting performance of highly-parallel algorithms?

Future Plans

In the next year we will build on our software development accomplishments, and concen-

trate on bringing Symunix to a level where significant application development and experi-

mentation can be performed. Central to this will be integrating the new process and

memory management structures into the rest of the kernel.

We will also test the Symunix approach to portability by addressing a second imple-

mentation target, the new series of NCR multiprocessors. Our approach to portability is

based on a clear notion of the primary target architecture, combined with simple modular-

ity. Conceptually, this works by starting with a design for a serial machine, and then

adapting it to the Ultracomputer architecture; changes made are isolated by setting up sim-

ple modules with well-defined interfaces whenever possible. This strategy also facilitates

experimentation, providing the opportunity to evaluate the significance of alternative

module implementations. This was illustrated in the experiment of Figure 1.

The distinction between this approach and that of most other contemporary OS pro-

jects, is that we emphasize portability by modularity, instead of portable modules. For

example, most other projects regard list structures as objects with portable implementa-

tions, or even as incidental ad hoc structures without any "object" or module status at all.

In Symunix, we explicitly define many such module interfaces, with the intent that they be

implemented differently on some machines. In addition, Symunix is an architecture-

oriented system, clearly favoring a narrow class of machines. Nevertheless, many of the

module implementations tailored to the Ultracomputer are still quite portable, in the sense

that they will work correctly on a variety of other machines, even if performance suffers.

Consequently, our effort to port to the NCR multiprocessor will proceed in stages. In the

first stage, we re-implement only the minimum required modules. The second stage can be

thought of as tuning, identifying and altering other modules to take advantage of the

specific machine. It remains to be seen how effective this strategy will be at achieving good

performance with a limited amount of module re-implementation. We plan to answer these

questions next year.

Page 8

!

NYU Ultracomputer 1992Renewal

One of the chief goals for Symunix is the flexible and efficient support of parallel pro-

gram runtime support systems implemented primarily in user mode. This idea has also

been recently expressed by Anderson et al. [1] and Marsh et al. [11]. The primary difference

between these designs and ours (slightly extended from that presented in Edler et al. [6]) is

our emphasis on avoiding serial bottlenecks. During 1992 we plan to prototype our

approach by implementing a C-callable user-mode threads package, comparable in func-

tionality to PCR [19], FastThreads [2], or CThreads [5]. Ultimately, we predict that the use

of such packages will be limited sharply by the availability of programming languages with

runtime environments tailored specifically to both language and architecture, but in the

meantime a C-callable package can be an effective research tool.

As our hardware and software implementations begin to stabilize, we will be able to

start collecting performance data. As already suggested, we will concentrate on evaluating

the effectiveness of the highly-parallel soRware structm-es we employ, and also the impact

of the combining network in the Ultra III prototype. These studies will be undertaken in

concert with the simulation efforts to be begun next year.

The GNU C Compiler

Our efforts on the GNU C compiler over the past year have drawn the attention of a

number of companies, several of whom have provided equipment for our use in this effort.

Due tothisinterest,our work has expandedfrompro_ddingthebasicsupportforGCC that

isrequiredforour UltraIIIprototypetoproducingcommercialqualitycompilersforthe

IBM RS6000 and olderPC RT aswellas the 29000 (ouroriginaltarget).In addition,we

arenow theprincipaldevelopersand maintainersofthebackend ofGCC.

Effortsoverthe pastyearincludeexpandingoptimizationstobettermeet theneedsof

modern RISC processors.These efforts,alongwith improvementstootheroptimizations,

now resultinGCC producingfastercodeforboththeSparcand Motorola88000 thanany

otherknown C compiler,asmeasured usingtheSPEC benchmark.

We have worked withCygnus Support,a commercialorganizationfoundedtosupport

GNU software,indevelopingan instructionschedulerthattriestoremove datadependen-

ciesbetween instructionsthat causepipelinestalls.This schedulerseparatesmemory

Page 9

NYU Ultracomputer I992 Renewal

loads from uses of the register loaded, which increases the latency tolerance of the system.

Tolerating memory latency is particularly important for shared-memory multiprocessors.

Efforts in subsequent years will be similar: we will continue improving the optimiza-

tion abilities of GCC in addition to supporting the compiler for both local and external

users. For use with our prototypes, we plan to include support for a shared keyword and to

allow selected optimizations on volatile variables. It is likely that coordination variables

will be declared volatile. We are also enhancing the backend of GCC to support the GNU

FORTRAN effort. The result will be a freely available, high quality FORTRAN compiler

that we will provide to users of our prototypes.

The high quality of GCC has attracted the attention of the Ada language community.

The NYU Ada group is seeking support for their effort to produce a GNU Ada compiler.

Simulation

Recent Accomplishments

Sincetheproject'sinception,we have continuallybuiltand usedsimulatorstostudymul-

tiprocessorperformance.Simulationsdrivenby syntheticreferencestreamshave been

usedextensivelyby ourgroupand byothersforstudyingtheperformanceofmultiprocessor

networks.In contrasttothesesimulators,we alsobuiltan addresstracedrivensimulator

tostudytheperformanceofmultiprocessorTLBs.

Resultsofourtrace-drivensimulationsallowedustocomparetheperformanceofmul-

tiprocessorTLBs located(unconventionally)atmemory,withthatofTLBs locatedatproces-

sors.As describedinTellerand Gottlieb[18],forthesystemsand workloadsstudied,TLBs

locatedatmemory performbetterthanTLBs locatedatprocessors,providedthatmemory

isorganizeda_multipleclustersofmemory modules,where themapping ofa pageisfixed

toa particularclusterand the page isinterleaved:_crossthe cluster'smemory modules.

The costofa processor-basedTLB reloadisatlea._tl,_gNbecauseofnetworktransittime.

The costofa memory-basedTLB reloadcanbe made ._rnallerthanthatofa processor-ba_ed

TLB reloadsincenetworktransitsarenotrequired.Furthermore,withmultipleclustersof

memory modules,the number ofreloadsissmallerwith memory-basedTLBs than with

processor-basedTLBs. For memory-basedTLBs tocontinuetooutperformprocessor-based

Page10

J

o NYU Ultracomputer I992 Renewal

TLBs for large N, it is likely that the number of clusters must grow with N.

Due to limitations in our simulation environment, we were able to collect address

traces for only applications with a fixed and restricted problem size. The problem size res-

triction limited the maximum available parallelism and, thus, the number of processors

that could cooperate in program execution, i.e., the effective size of a multiprocessor system.

in addition, it did not allow us to increase the size of the problem with the size of the scal-

able multiprocessor, as we would have liked to.

Without being able to simulate larger systems, we were not able to determine if the

number of TLB reloads for the workloads studied grows linearly with N. We plan to study

these and other workloads in our new simulation environment, described below, that will

allow us to run larger problem sizes with higher levels of paraUelism.

The programs used in our study proved to be poor candidates for demand paging.

Even when the number of frames allocated permitted us to store half of the shared read-

write pages, many page faults occurred and performance was significantly degraded. We

are pursuing how prevalent this phenomenon is in other "dusty deck" scientific progu'ams.

We intend to continue our study of TLB reload and other overheads since a large

reload overhead that grows strongly with N will have a deleterious effect on speedups

attained for programs executed on highly-parallel multiprocessors.

Future Plans

To continue this research and to perform new research that depends on simulations, we are

currently in the process of building a flexible multiprocessor simulation environment, simi-

lar in some ways to Tango [3], that will allow us to perform either execution- or trace-

driven simulations. This environment will allow us to simulate a multiprocessor in detail

or to simulate specific subsystems in detail, while others merely are modeled. The

instruction-level simulator for the AMD 29000, the multilevel network simulator men-

tioned in the VLSI section, and the trace-driven simulator mentioned above all will be

included in this environment.

Such a simulation environment will allow us to study the performance of components

and subsystems of multiprocessors, in addition to continuing our study of network and TLB

performance. In particular, we would like to study the performance of different size

Page 11

. NYU Ultracomputer 1992 Renewal

Ultracomputers and the effect of combining, to characterize parallel programs, to compare

different parallel algorithms and different methods of ensuring cache consistency, and

investigate the feasibility of demand paging.

Coordination Algorithms

Recent Accomplishments

One hne of recent study has been the usefulness of Fetch-and-Increment and Fetch-and-

Decrement. To our surprise, we discovered that these two primitives can be utilized to

implement many coordination algorithms (most notably reader-writer locks) with asymp-

totic complexity comparable to that achievable with the more general Fetch-and-Add.

These results were presented at ASPLOS-IV (Freudenthal and Gottlieb [7]).

Although equal in asymptotic complexity, Fetch-and-Increment algorithms require

more accesses to shared memory than their Fetch-and-Add counterparts for the majority of

problems we have examined. This observation is part of our overall program to "attack the

" constants", i.e. to improve performance by lowering the constants that are often swept

under the asymptotic rug. The choice between a machine with Fetch-and-Add, the architec-

, ture we still favor, or the simpler Fetch-and-Increment is more complex than we first
.a

believed.

Recently, we have experimented with efficient mutual exclusion algorithms that

guarantee requests are satisfied in first-come first-served (i.e. fair) order. One such algo-

rithm requires only a single access to shared memory in order to request ur release a sema-

phore in the absence of contention. Polling, which would otherwise occur in the presence of

contention, can be avoided by utilizing the Ultracomputer reflect operation, which allows a

processor to send a trigger to any other processor.

Future Plans

Extending the work accomplisl=ed this past year, we will explore algoI_ithms for efficient,

fair mutual exclusion for processes with priorities. Such algorithms require the develop-

ment of an efficient priority queue mechanism, which is also being investigated.

Page 12

NYU Ultracomputer 1992Renewal

BBN permitted us to use one of their TC2000s to evaluate the comparative perfor-

mance of our many parallel queue algorithms in an environment with significantly more

than eight processors. These tests were inconclusive since Fetch-and-Add on the TC2000

requires an expensive system call, making the results hard to interpret. We will perform

these experiments again in 1992 on the 16-processor Ultra III prototype and on the Ultra-

computer simulator described in the simulation section.

We will also evaluate the performance of several of our new coordination algorithms

via simulation and execution on prototype hardware. In particular, our broadcast trees (for

asynchronous signal delivery) and prefix multiqueues are nearly ready for execution and

evaluation.

We have been following the recent work of Mellor-Crummey and Scott [13] emphasiz-

ing that contention due to spin-waiting on synchronization variables in remote memory can

cause substantial performance degradation on several of the shared-memory computers

currently available. For that reason, they advocate constructing machines with shared,

processor-local memory and using algorithms that poll shared local variables.

We believe that this degradation will be minimized by the combining and buffering

features of the Ultracomputer's network that are not present on the machines they exam-

ined. In addition, as mentioned above, the reflect operation can be used to replace polling

of a shared variable. We intend to quantify, using simulation, the algorithmic tradeoffs

involved in hardware vs. software combining and in local polling vs. remote polling vs.

reflect.

Mellor-Crummey and Scott studied semaphores and barriers, the latter requiring trees

similar to those used in software combining. We plan to study how widely applicable these

techniques are and what additional data structures they require when applied to other

problems. It is as easy to support shared local memory in the Ultracomputer as in any

other shared-memory architecture; for all such architectures, the cost of dual porting the

memories must be considered.

Page 13

J

NYU Ultracomputer 1992Renewal

Applications

The applications work reported is supported jointly by our program and by the DOE

Mathematics program at NYU, supervised by Peter Lax.

Recent Accomplishments

During the past year, we worked with L. Greengard of CIMS and G. B. McFadden of NIST

to develop a fast solver for Laplace's equation on multiply connected domains. The method

uses a well-conditioned second kind Fredholm integral equation to represent the solution.

This equation is discretized using the Nystrom method with the trapezoid rule, resulting in

a dense, nonsymmetric system of linear equations to solve. Fortunately, most of the eigen-

values of this linear system are tightly clustered around one, making it amenable to fast

solution by iterative methods. We used the GMRES method (generalized minimum resi-

dual method), which is most suitable for problems of this sort. A preconditioner was also

developed that enabled fast convergence even when the GMRES method is restarted. The

bulk of the work at each iteration is in applying the dense matrix to a vector. This was

accomplished using the adaptive fast multipole method, a procedure for computing the pro-

duct of an n by n Cauchy matrix with a given vector in time O(n). The combination of

these numerical methods brings computations on extremely complex domains within practi-

cal reach. Figure 2 shows a region with 200 holes, on which we solved the infinite exterior

Dirichlet problem:

Au =0, outside the holes

u =curvature, on the boundaries.

This computation required 13 GMRES iterations to achieve 6 decimal digit accuracy in the

linear system solve and was completed in under an hour on a Sparcstation 1. Had the

same algorithm been used without the fast multipole method (using a standard dense

matrix vector multiply procedure), the time required would have been about 17 hours. If

one attempted to solve the dense 20200 by 20200 linear system (generated using 100

discretization points per boundary) using Gaussian elimination (assuming this matrix actu-

ally could be stored in memory), the time required would have been about 3.6 months!

Thus, the combination of all of these techniques is required ff computations (especially time

dependent ones, as will be described later) are to be feasible on such domains.

Page 14

J

• h

, NYU Ultracomputer 1992 Renewal

].2 . , i i , , ,

0-202 ' o' ' ' ' '• 0 .2 0.4 {).6 0.8 1 1.2

Figure 2: Region with 200 Holes

The computational methods developed here and similar ideas are applicable to a wider

range of problems than simply Laplace's equation. We have also worked with A. Mayo, of

IBM T. J. Watson Research Center, and with L. Greengard in applying similar techniques

to solve the biharmonic equation. This is a more difficult equation to solve, and early work

indicates that iterative methods such as GMRES require significantly more iterations to

converge• Work on this problem is continuing.

Other work over the past year has been of a m_re general nature, trying to understand

the reasons iterative methods behave as they do on these types of problems and developing
techniques to improve that behavior.

Future Plans

The development of an efficient method for solving Laplace's equation on multiply con-

nected domains, described previously, is a necessary first step in solving time dependent

problems modeling particle coarsening during Ostwald ripening (McFadden [12]). In the

Page 15

NYU Ultracomputer I992 RenewalJ

next year, we plan to incorporate our fast Laplace solver into a 2-D time dependent simula-

tion of this process. This phenomenon occurs when bodies of one material are embedded in

another material of different thermodynamic phase. Material diffuses from one body

through the surrounding medium to another body in such a way as to minimize the area of

the interface. The motion of a point z on the interface boundary is described by an ordinary

differential equation in time:

=Un "fi(z,t)

where fitis the unit outward normal at the point z, and u satisfies

Au =0, outside the bodies

u =curvature, on the boundaries.

The techniques developed over the past year will be used to evaluate the right-hand side of

this ordinary differential equation.

It is not clear what the best method is for solving this system of ordinary differential

equations. Explicit methods are limited to time steps of order h 3, where h is the mirSmum

distance between spatial discretization points (McFadden [12]). Implicit methods require

solution of a linear system with the Jacobian matrix at each iteration of a Newton-like pro-

cedure. The Jacobian matrix is dense and should be solved with an iterative method, but a

good preconditioner will be required. It is unknown how to derive such a preconditioner.

Other issues include regridding and removal of bodies when they become too small. It is an

open analytic question to determine the effect of the removal of a small body on the system

as a whole. It is also not clear ff tracking boundary points is the best way to do the numeri-

cal simulation. Other ideas have been proposed (e.g., Osher [14]), and these methods are

being considered as well.

The application of similar techniques in other areas is also being planned for the com-

ing year. As mentioned previously, work on the biharmonic equation has begun. We also

plan to apply these ideas to problems in conformal mapping. Capacitance calculations are

another area of interest requiring similar techniques. Finally, we are studying the proper-

ties required of a nonsymmetric linear system solver to perform efficiently on this class of

problems. We believe a variant of the restarted GMRES method can be made to perform

efficiently on problems with just a few outlying eigenvalues, which is characteristic of the

matrices arising from second kind integral equations.

Page16

J

o

NYU Ultracomputer 1992Renewal

Applied Probabilistic Analysis

Our work in applied probabilistic analysis involves two areas:

• Constructing and solving carefully chosen models to illuminate the behavior of the

clock-regulated queues and switches in the Ultracomputer interconnection network.

.o Designing and testing pseudo-random number generators for current and future paral-

lel processors.

Recent Accomplishments

We have refined our analysis of the single-stage behavior of two practical models for a 2x2

switch and verified it with simulations [4]. Each of these models represents a switch design

using queues that can accept only one input at a time. One, which models the switch chip

we have fabricated, uses four queues, one for each input/output pair; the other models a

design using only two queues, one at each input. The analysis substantiates the intuition

that the four-queue design has much better performance under moderate and heavy loads.

A number of authors have investigated parallel computations that use the same linear

congruential generator on each processor but with widely spaced seeds, apparently without

realizing that, in achieving good short range independence, such linear congruential gen-

erators are designed with long range dependencies (Marsaglia [10], Percus and Percus

[15]). We have recently shown [16] two different general relationships that exist among

terms of the linear congruential generator

x(i+l)=axi+b rood 28

that are separated by powers of two. These two relationships are not equivalent except in

one special case which turns out to be Marsaglia's result.

Future Plans

In the area of interconnection network modeling we are currently considering the following

problems:

• Extending the results in Percus and Percus [17] to a characterization of queueing

behavior in network stages beyond the second stage.

Page 17

NYU Ultracomputer 1992Renewal

• Using difference equations we have developed to compute the time-dependent queue

length and output rate probabilities for switches with 2-way and unlimited combining,
and verifying this with simulations.

• Analyzing the queueing behavior and time series transformations in 4x4 and higher

degree switches with clock-regulated queues.

• Exploring the conditioning of the traffic by the forward interconnection network from

processors to memories that, according to simulations by Liu [9], appears to result in

less queueing delay on the return network from memories to processors.

Our study of pseudo-random number generators represents a continuing investigation of a

fairly broad topic. There are a number of threads that can and will be considered in parallel

with the expectation that each thread will cast light upon the others. In general, the

research will fall into the following three categories:

• The development of tests specifically geared to the problems inherent in parallel com-

putations. When many realizations of a simulation are run in parallel, it is imperative

that the sequence of pseudo-random numbers on each processor be independent.

Ideally, there should be no correlation between the sequences on different processors.

An amalgamated sequence made by combining the sequences of ali n processors must

be tested by suitably devised new single sequence tests.

• Continued investigation of linear congruential generators for parallel processors with

different values of the multiplicative constant a. Previously we have investigated

linear congruential generators with different additive constants b [8]. Variants of

parallel generators with different a's instead of or in addition to different b's may have
superior statistical properties.

• Extension of theoretical investigations to other types of generators for use in parallel

environments. We will attempt to generalize the analysis of sequential generators

beyond that of the linear congruential generators, e.g. to the generalized feedback shift

register and lagged Fibonacci generators.

Page 18

NYU Ultracomputer 1992 Rene wal

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy,

"Scheduler Activations: Effective Kernel Support for the User-Level Management of

Parallelism," Proc. 13th A CM Symp. on Operating Systems Principles

(SOSP) (October, 1991).

[2] Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy, "The Performance

' Implications of Thread Management Alternatives for Shared Memory Multiproces-

sors," IEEE Trans. on Comp. 38 (12) pp. 1631-1644 (December, 1989).

[3] Helen Davis, Stephen R. Goldschmidt, and John Hennessy, "Multiprocessor Simula-

tion and Tracing using Tango," Proc. 1991 Inter. Conf. on Parallel Processing, pp.

H-99-H-107 (August, 1991).

[4] Susan R. Dickey and Ora E. Percus, "Performance Analysis of Clock-regulated

Queues with Output Multiplexing in Three Different 2 by 2 Crossbar Switch Archi-

tectures," J. of Parallel and Distributed Comp. (to appear).

[5] R. Draves and E. Cooper, "C Threads," Technical Report CMU-CS-88-154, School of

Computer Science, Carnegie-Mellon University (June, 1988).

[6] Jan Edler, Jim Lipkis, and Edith Schonberg, "Process Management for Highly

Parallel UNIX Systems," Proc. USEN1X Workshop on UNIX and

Supercomputers (September, 1988).

[7] Eric Freudenthal and Allan Gottlieb, "Process Coordination with Fetch-and-

Increment," Proc. 4th Inter. Conf. on Architectural Support for Programming

Languages and Systems (ASPLOS-IV), pp. 260-268 (April, 1991).

[8] Malvin H. Kalos and Ora E. Percus, "Random Number Generators for MIMD Paral-

lel Processors," J. of Parallel and Distributed Comp. 6 pp. 477-497 (1989).

[9] Yue-sheng Li u, Architecture and Performance of Processor-Memory Interconnection

Networks for MIMD Shared Memory Parallel Processing Systems, Ph. D. Disserta-

tion, New York University (May 1991).

Page 19

. NYU Ultracomputer 1992 Renewal

[10] G. Marsaglia, "The Structure of Linear Congruential Sequences," pp. 249 in Appli-

cation of Number Theory to Numerical Analysis, ed. S. K. Zaremba, Academic Press

(1972).

[11] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P. Markatos,

"First-Class User-Level Threads," Proc. 13th ACM Syrup. on Operating Systems

Principles (SOSP) (October, 1991).

[].2] G. McFadden, P. Voorhees, R. Boisvert, and D. Meiron, "A Boundary Integral

Method for the Simulation of Two Dimensional Particle Coarsening," J. Sci. Comp.

1 (2) pp. 117-144 (1986).

[13] John M. Mellor-Crummey and Michael Scott, "Algorithms for Scalable Synchroniza-

tion on Shared Memory Multiprocessors," ACM Trans. on Comp. Systems 9 (1) pp.

21-65 (February, 1991).

[14] S. Osher and J. Sethian, "Fronts Propagating with Curvature Dependent Speed:

Algorithms Based on Hamilton-Jacobi Formulations," J. Comp. Phys. 79 (1) pp. 12-

49 (1988).

[15] Ora E. Percus and J. K. Percus, "Long Range Correlations in Linear Congruential

Generators," J. Comp. Phys. 77 pp. 267-270 (1988).

[16] Ora E. Percus and J. K. Percus, "Intrinsic Relations in the Structure of Linear

Congruential Generators modulo 28, " Ultracomputer Note #172 (January, 1991).

[17] Ora E. Percus and J. K. Percus, "Time Series Transformations in Clocked Queueing

Networks," Comm. Pure Appl. Math. (1991).

[18] PatriciaJ.Tellerand AllanGottlieb,"rLB PerformanceinMultiprocessors,"NYU

UltracomputerNote #173, New York University(September,1991).Submittedfor

publicationinspecialissueoftheJ.ofPar_zll_'land DistributedComp. on Memory

SystemArchitecturesforScalableMultiprrct,s._(_rs.

[19] Mark Weiser,Alan Demers, and Carl [{:lus_,r."The PortableCommon Runtime

ApproachtoInteroperability,"Proc.12thA('M ._(vmp.on OperatingSystemsPrinci-

ples(SOSP),pp.114-122(December,1989,

Page 20

