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Introduction

Over a hundred years of history have been given to the general problem of perturba-

tions of shear flows in fluid mechanics. In principle, the problem is well posed. Given a

specific flow, an initial disturbance is introduced in a prescribed manner and the subse-

o,at_iit dynamics is sought subject to satisfying pertinent boundary conditions. In effect, it
i

i is the Navier-Stokes equations themselves that dictate this formulation since local immedi-

:} ate changes in any i_itial designation can be directly calculated by using these equations.

Still, even today and with the use of high speed modern computers, significant results

• have been limited. Direct numerical calculations are not yet able to incorporate full three-

dimensional effec'.s and, strictly speaking, computing time is limited. At the other extreme,

the linear mathematical problem is complex and does not lend itself well to solution. As a

result, determination of the long-time stability of any flow has been taken as the hallmark

and it is more than obtainable for almost ali flows that have been investigated. Indeed,

experiments-most notably those dealing with the boundary layer (Schubauer and Skram-

stad 1947) - have confirmed that the basic means of the approach is valid and does lead to

correct physical output. From a theoretical basis, this means that the asymptotic fate of

the flow subject to a small disturbance can be predicted by the weil-known normal mode

(travelling waves) form of solution to the analytical problem. In short, only one unstable

eigenvalue is sufficient to make this assessment (Lin 1955; Betchov and Criminale 1967;

Drazin and Reid 1981).

Computational fluid mechanical schemes actually rely on the output of the linear

eigenvalue problem. For example, even though a real flow will be naturally unstable and

a transition process will evolve, machine restrictions dictate that it is better to excite a

flow with the most unstable eigenmode, thereby guaranting that the dynamics will rapidly



occur. This strategy merely replaces one difficulty with another. True initial-value prob-

lems require detailed information fax beyond the meager output that has been obtained

by classical stability theory. Even with the linear problem, this fact has been well demon-

strated by both Criminale and Kovasznay (1962) and Gaster (1968) where both of these

works sought to do such a problem for the case of tl,e laminar boundary layer. The initial

transient period was impossible because very few of the eigenvalues (and the corresponding

eigenfunctions) of the discrete spectrum were known. Extreme approximations had to be

made in order to make any calculations and it was (and still is) clear that no arbitrary

disturbance could be initially represented in this manner. Thus, although, the numerical

treatment does use directly the Navier-Stokes equations, there is a considerable bias the

certainly nothing is known about the transient dynamics. The analytical treatment omis-

sions, on the other hand, are due completcly to the complexity of the mathematics - non

self-adjoint operators, singular perturbation needs - and not in the formulation. The early

period has remained unknown throughout.

The importance in understandirg the transient period has gained even more impor-

tance over and above the fact that the laminar flow problem continues unresolved. Turbu-

lent flows are now known to depend upon the origin of the breakdown of the flow and ar-

guments can be made to support the premise that the generation of large-scale oscillations

that axe found in turbulent shear flows (coherent structure as reported by experiments)

can be synthesized using this form of modelling, that is, solving an initial-value problem.

(cf. Jimenez 1981; Criminale 1987). Add to this the numerous facts of many laminar

flows that are unexplained (such as the point that three-dimensionality occurs long before

nonlinearity in laminar boundary layers, for example) resolution can only be made if the

initial period of the dynamics is known explicity.

It has long been known that the early period can be dominated by other aspects of

the problem. First, even if there are no growing eigen modes, the early period is easily

controlled by the least damped modes. Second, most physical problems will possess a

i11 continuous eigen spectrum as well as the discrete set of modes. This aspect has been
! discussed by several authors (cf. Case 1960, 1961; Lin 1961) but actually little of the

1 implications have been given. But, again, a complete knowledge of this information must ..3
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be had in order to arbitrarily represent any initial disturbance.

Recent exact solutions found for shear flows have provided a means whereby a complete

a_aalysis of an initial-value problem is possible (Craik and Criminale 1986) and Criminale

and Drazin (1990) have investigated various prototypical shear flows using the strategy. In

a very general manner, exact solutions of the Navier-Stokes equations were presented for

three-dimensional, time-dependent and nonparallel mean flows. The only restriction was

that the spatial variation of the mean velocity be limited to constant shear. The result

is that a set of basic solutions can be found for the linear perturbation problem that are

(i) of closed from; (ii) contain both the discrete and continuous spectra allowing for arbi-

trary initial disturbances; (iii) the complications of critical layers or singular perturbation

analysis are no longer required; (iv) even the near and far fields can be determined as

well as the early and asymptotic temporal behaviors; (v) Lagrangian descriptions can also

be persued using the solutions obtained, allowing for more insight into the mixing and

. vorticity physics. The solutions stem from earlier work of Kelvin (1887) and Orr (1907)

• and, unlike familiar normal mode solutions, these solutions are non separable in some of

. the independent variables. It will later be seen that his very property leads to pseudo

nonlinear behavior denoted by a shortening of scales in certain directions and, if the a.m-

i plitude grows as weil, then an increase is coupled with the scale change. In essence, it will

be shown that the asymptotic status can be a very moot point because, during the early
I

transient period, the system can become completely nonlinear.

It is the plan of this presentat:on of outline three major topics of the novel analysis.

(1) Use of exact solutions in solving initial-value problems; (2) detailed linear example that

illustrates the relevant features of the early period and possible instability; (3) Lagrangian

li mechanics and the link to computational fluid dynamics.
h

,:

General considerations

Although it is not a requirement, attention will be limited to flows of constant density

and in the absence of body forces. Thus, the dependent variables are the three components

° of the velocity and the pressure. It will be assumed that ali of these can be decomposed
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into a mean motion and a fluctuation, that is,

u=U+u'

(1)
P/Po = P +pl

With p0 a constant density. The perturbations are not necessarily small and therefore the

governing Navier-Stokes equations are

V.u' =0 (2)

OU l

+ U" Vu' + u'. Vu' = -Vp' + vV2u ' (3)cot .....

where U satisfies its own equation and v is tile kinematic viscosity.

In the special case for which the perturbation velocity is of the form

u'(x,t) = f(x,t)_(t) (4) "

it follows that
,2. Vf - V. u'
~ ~ (5)

=0

The consequence of this result is strongly evident because it implies that the nonlinear

terms in the Navier-Stokes equations due to the fluctuations are identically zero for smooth

functions f, _. Therefore. the perturbation problem can be solved by use of linear quations

which are:

V. u'= 0 (6)

OU t

---%_-F U" V'u' + u' . VU = -rp' + uV2u ' (7)
c.gt .... ~

These equations are valid without approximation. Hence, if the velocity field is initially

in the same direction everywhere so that u'(x,O)= f(x, 0)_(0) then a lineaxized problem

can be solved to find the exact solution of the full governing equations. In terms of the

new variables this means

_.Vf-0 (8)
I

4
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d_ Of
' f-_ + _ + (U" Vf)_ + fT. VU = -rp' + v(V2f)_ (9)

For a stready basic flow it has been customary to solve the linearized problem by

using the method of normM modes. This form of solution is actually one that is assumed

separable in the dependent variables and represents travelling waves and cam be written as

f(x,t)- F((),

~ = xp(fdt) (101

:' with _ = a..,,..,z+ /a.,dt.
For some wave number with vector a, frequency co, and relative growth (or decay) rate a.

For U independent of t, ali of these parameters become constants; more generally they are

' functions of t. Use of this form of solution leads to

' a._=O (11)

aF + • x + w + a _ + F_ • VU = + v_ 2 u. (12_

This problem, along with the appropriate boundary conditions, may be solved in principle

as an eigenvalue problem where w, a, a satisfy some eigencalue relation. When U is not

a function of t, and the parameters are constants, then F is the exponential function and

the eigenvalue relation will be the type traditional in the theory of hydrodynamic stability.

Of course, in this case, it is expedient to use complex variables with s = a + iw etc.

This formulation can be seen at once to allow a superposition of normal modes provided

u _ has the form taken in (4). Then, for example,

n

cxexp(a.t) (13/

where (, = a,. x + co, and w,, a,, a, satisfy the same eigenvalue relation for all n for

" a steady U. Indeed, to solve an initial-value problem for u_(x,O) in the same direction
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everywhere, there will be a general need for a complete set of eigenfunctions {Fn } in order

to expand specified distributions, lt should also be noted that all an lie in the plane

perpendicular to _.

The Linear Problem

a. Background

Normal mode solutions axe not the only solutions to the linear poblem. This point

can be noted if it is recognized that the eigenvalue problem is one that produces a discrete

spectrum. The continuous spectrum, if it exists, remains to be determined.

Craik and Criminale (1986) obtained that most general solutions for the linear problem

(12) when the main flow was of the form Ui = aij(t)xj + U[°)(t). It appears that this

approach can be used for other profiles as well, for example, plane Poiseuille flow (Drazin

and Criminale 1991), but it is sufficient to discuss the basic linear shear flow to illustrate

the general needs. As was noted, the steady problem can have normal mode solution and

ali parameters are constants. The more implicit form is

u'i = fii(t)exp[ic_j(t)zj + i6(t)] (14)

when the mean flow has linear shear. At time t = 0, (14) becomes a Fourier expansion. If

the mean flow is infinite in extent then the solutions are bounded. In fact, these axe the

only solutions for such a flow that meets the required boundary conditions.

Problems that are prescribed with one or more solid boundaries in the flow require

alteration to meet boundary conditions. A sum of (14) is still valid for initial values but

cannot be adapted to fit physical constraints at one or more boundaries for ali time. In

order to made this _ask tractable, unsteady irrotional disturbances must be introduced

together with the solutions to the set of equations that have been developed. In short,

Laplace's equation must now be employed as well as the vortical perturbations described

by the modes; such additional solutions do no_ exist when the boundaries are removed.

This fact was overlooked by both Kelvin (1887) and Orr (1907), but was recognized later

by Marcus and Press (1977) when investigating plane bounded Couette flow in these terms

for two-dimensional distrubances.

4
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The modal approach is strongly similar to the classical travelling wave (normal modes)

assumption used in stability theory, but differences should be noted. For example, the fact

that the wave numbers are time-dependent implies that these solutions are nonseparable,

at least in this coordinate system. Normal modes for the linearly varying basic shear

do constitute a separable solution if the perturbation vorticity is taken as the dependent

variable. For basic shear flows with curvature in the velocity profile, the linear equations are

not separable, even in terms of the vorticity. This topic is discussed somewhat by Marcus

and Press with the central suggestion being that a change of corrdinates can be made that

does render the problem again separable. More specifically, the shift is from an Eulerian

to a moving frame of reference and, as well be shown, this step has advantages with plane

bounded Couette flow as considered by 5Iarcus and Press being but one reducible case of

a more general transformation.

A stronger difference between the two approaches is that the travelling wave assump-

tion leads to a boundary-value problem with a differential equation that is not of standard

• form, i.e. a non self-adjoint differential equation. Considered with viscosity, this route also

requires treatment of a singular perturbation problem. Even with the computer, success is

restricted to determining a stability boundary in terms of the most dangerous eigenvalue.

Eigenfunctions are few and the important continuous eigen spectrum is essentially nonex-

istent. Most, if not all, of these complications are completely resolved with a generalized

model approach and initial-value problems can be solved completely.

As suggested, Marcus and Press outlined a routine for making the necessary calcu-

lations for plane bounded Couette flow. With the addition of the unsteady irrotational

velocity field, the method of images was employed to meet boundary conditions. Unfor-

tunately, no significant output was generated but rather conclusions were left in the form

of determinant that not evaluated. The alternative allows forproposeda was expounding
t*

, such details in the investigation with the result being the understanding of a vast amounti:
J_ of physics of the early period of dynamical evolution.
i

The salient points to be noted a priori are:
.I

t (i) The system is linear;

I " (ii) the fundamental nature of the problem- as shown by (14) - is different because
i

i
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the Fourier amplitudes are functions of time rather than spatial variable as is

common with normal mdoes;

(iii) since the strict requirement of boundary conditions for the disturbances in the

fully infinite shear flow is boundedness at infinity such solutions can be incorpo-

rated into the more general problem without alteration; and

(iv) in less exacting terms, it would greatly facilitate the results if an infinite sum

could be replaced with a closed form solution.

The first two points leads to the suggestion that (a) a transformation of the distrubance

equations can be found that results in a set of linear partial differential equations whose

coefficients are functions of time only and, subsequently, (b) Fourier transforms can then

be used to derive a set of ordinary coupled differcntial equations for the Fourier amplitudes.

This step insures the boundedness at infinity as well. The culmination of all steps does

provide closed form solutions.

b. Coordinate transformation ,
a

It is sufficient to find a transforamtion of the independent variables (xi,t) to a moving

set (_i, T) in order that the new set of linear partial differential equations depends only on

T or are constants. Applying this chain rule to equations (6) to (7) gives

c)_kOui OT Oui
+ -o (15)Ozi O_i Oxi OT

Ot O(k + Ot OT + Uj Oxj O(k + Ozj OT

f O(k Op Or OpX
+ = - + Ox, (16)

+ Ozj O(k Oxj O(_ _ Oxj 02" + VOx--_O---TOz_O_, t Oz_ OT

where Ui --" o'ijxj lt- U 0 has been used for the basic gradients respectively. Inspection of

(15) to (16) shows that the transformation is achieved if

OT OT "

0---_+ Us Ozj - F(T) (17)
O_k O_k

+ bS--_x_ = qk(T) (18)0--/" J
$

8
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a&
az--7= (19)
OT
Ox7 = Si(T) (20)

where F, Qk, aki and Si are all arbitrary functions of T.

Further determination is best made by recognizing that the new variables should be

independent and the realization that it is most useful to have T = t. Thus, Si = 0 in (20)

and F - 1 in (17) to satisfy these demands. And, immediately from (19)

_ =aki(t)zi. (21)

Certainly, by requiring _k = Xk at time t = T = 0, then

aki(O) = t_ki. (22)

Substitution of Ui, (21), and (22) into the final equation (18) gives the set of differential

- equations for the transformation matrix or

' daki

" "_xi + [ai_z_ + U°]aki = Qk(t) (23)

which can only be satisfied if
daki

+ O'isaki -" 0 (24)dt

and

Qk(t) =akiU °. (25)

The relations (24), (25) are closely aligned to the discussions already given by Craik and

Criminale.

Defining A - {aii(t)}, S = {ali(t)}, and U° = {U°(t), U°(t), U°(t)}, this new prob-

lem results from the following: A linear transform, given by

= Ax, (26)

can be found that will result in changing the set of linear partial differential equation_ ((6)

to (7)) to a set whose coefficients are functions of time (t :- T) only. The matrix A is time

dependent and must satisfy the ordinary differential equation

dA
" -- + AS = 0 (27)dt

- 9
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with the initial condition

A(0) = Z. (28)

The new set of equations then become

Oui

. ,-g-g= o (291

Oai Op 02ui (30)
"_ -t- O'ijUj -- --aki_k -t- uaejakj O_aO_t

for the disturbance variables.

c. Solution by Fourier transforms

The set of equations (29) to (30) is now in a form that can admit separable solutions,

regardless of the dependent variable. In view of the fact that the conditions at infinity

are boundedness, it is more expedient to employ Fourier transforms for each of the (i

spatial variables and thus, if tile transforms are defined, the far field conditions are met.

Accordingly, define

"_i( ks ; T) -" tt i( Es ; T )e it_* (q dE 1d_2d_3 , (31)

and for ff as weil.

Performing the transformations of the equations results in the new set

_kaki_i = 0 (32)

^ " (33)
d-'-T"+ O'sj'Uj "-- +inkaks_-- untatj_kakjus

Unlike the case where the wave numbers were time-dependent, this system of equations

is one of conventional form. In addition, closed form solutions can be anticipated (rather

than an infinite sum) subject to initial input. In short, the dynamics can be ascertained

including the important questions dealing with discrete and continuous spectra as long as

the initial disturbances have Fourier transforms that are defined.

The set of ordinary differential equations for the Fourier amplitudes is tantamount

to the one presented by Craik and Criminale except that the time dependent coefficients

10
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reflect the coordinate transformations rather than the wave numbers. Other similarities

have already been noted for (24) and ('2_5) that determine the coordinate changes proper.

It is important to recognize that solutions to this sytem of equations will yield the most

general time dependence and, if only the infinite extent shear flow problcm is considered,

the solutions will be exact.

general strategy can be developed for solving the perturbation equations. First, by

virtue of the incompressibility condition, the pressure can be written as

i

_" = - _-_2_lalqag_ (34)

with

_2 = _t_ma_iami = (_iail) '2+ (_iai2) 2 + (_iaia) 2. (35)

As a result of (34), the resulting equations become

d_, 2

d---T+ O'sj;Uj -- _.2 _rnamsglaeq_qrUr - Vg2U's (36)

- Proceeding beyond this point is best left to specific problem cases.

Specific example: The mixing layer

Under the formulation given, four Dototypical shear flows were examed by Criminale

and Drazin (1990). Basically, ali of these cases were parallel mean flows where U =

(ay, 0, 0) in the x-direction only. Without solid boundaries, the perturbation problem for

the mixing layer can be done inviscidly. Using the moving coordinate transformation it

can be seen _hat, for such a parallel flow,

T= at,

= x --ayt,

q = y, (37)

and _ = z.

This problem immediately reduces to

(3S)
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whe,'e
-boo

--//v((,Tl,(,T)e+_'_e+"r(d_d(, (39)
_OO

and

/X_" --- 02_- _ _2T2
+i2T - + (4O)0q---_

with _2 = a2 + 72

for the vertical disturbance velocity component by eliminating the pressure and using in

compressibility. Only two-dimensional Fourier transforms have been used here in view of

the particular flow model under consideration. In short, since a piece-wise linear mean

velocity is used - as shown in Figure 1 - matching conditions at the interfaces will be

needed as well as boundedness as q _ :toe.

Solving (38) in each of the regions is the central issue to the problem but it does

net complete the needs. The other velocity components and pressure still must be found.

Introducing the transformation of the planar velocity components _', _ (Fourier transforms

of u, w as by use of (39)) as

(41)

thentheequation
0_

0--T= sin ?V (42)

where sin_ = 7/_ can be found. Systematically, (38) is solved for _, (42) for t_. Incom-

pressibility shows that
0-_

_"- -(-_--_q+ ic_T'O'). (43)

Thus (43)can be combinedwiththesolutionsand theinversionof(41)provides_',_'.The

pressurefollowsina similarmanner.

Thisproblemhas been solvedfullyby Bun (1991)where IAn'IT=0was consideredas

a combinationofan obliquewave inthexz planeand a pulse(Diracdeltafunction)iny

intheinnershearzone.Such an initialinputeasilyallowsfortheinverseo£(39)togive

v(_,r], _, v) or v(x, y, z, t ). The extelior non-shear regions are straight forward as well and

have zero initial values.

i1!!
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1.

The mechanics of the problem construction allows for the complete closed form solu-

tion for the dynamics and spatial variation. Define Vi to be the solution obtained for U in

the inner shear zero. Let T0 be the equivalent solution in the outer region. The conditions

Vi = v-0 and Pi = P0 must be met at the corners. Since

__2-p = i O_70T + io_T--_ + i2aU (43)

and irrotational solutions must be added, that is, those solutions that satisfy A_" = 0,

the calculations involve U0 = UoZ; Vi = FiR + ViZ where I and R refer to the irrotational

mud rotational parts of the velocity. The irrotational solutions are all proportional to

F(a, _f; T)e ±_'-i_'T and consequently the matching problem is tantamount to solving the

linear system
O

x = Ax + f (44)

where x are the coefficients of the irrotational components and f is due to the initial

vorticity input.
m

Clearly, (44) has two solutions. Tile first are those of the homogeneous problem

and the eigenvalues of A are the normal modes. The second are the forced solutions

and, at least for this problem, give rise to algebraic bchavior in T which is due to the

continuous spectrum. Because the problem can be taken as symmetric and there axe only

two corners present in the modelled flow, there are either two discrete or one eigenfrequency.

Schematically, Figure 1 shows the variation. Alt!_ough not shown in the figure, the inviscid

problem has a damped mode for every growing one for 0 _< _ _< _ where _, is the cutoff

vELlue o

The initial-value problem is complete then when the following synthesis is made: Outer

region, U = v-0 and [V0]T=0 = 0. Inner shear zone, V = Vi = FiR + Vii and [ViX]T=0 = 0.

This combination translates to x(0) = 0 for (44). In effect, no normal modes are used at

T = 0 but, of course, as time goes on, these modes will play a role and, asymptotically, any

exponential growth from any normal mode will dominate. The transient period, on the

other hand, is a different matter implying that there will be a change from one dominence

to the other as time increases.

11"
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Figures 2 and 3 illustrate several aspects of the dynamics. In Figure 2, the combination

of the most amplified normal made is used; in Figure 3, the neutual normal mode is

combined with the continuous spectrum. Effects of three-dimensionality are pronounced.

Even though there is an eventual exponential growth, the early period is controlled by

the algebraic variation. And, as Criminale and Drazin have reported, the proper three-

dimensionality can lead to complete nonlinearlity betbre a normal mode will be influential.

The neutual normal mode makes the consequences even stronger.

Lagrangian mechanics

A large benefit comes from the means of solution employed here, namely the veloctiy

components can be written in explicit closed form as functions of x, y, z,t. This means

it is possible to deal directly with the Lagrangian representation where x,y,z axe the

coordinates of a fluid particle and

dz

d-"-[ = U + _,' = f(x,y,z,t),
dy
d--[ = v' = g(x,y,z,t), (41) •
dz

d---[= a,' = h(x, y, z, t ).

The solutions obtained here were used in such a manner and the coupled nonlineax equa-

tions were integrated in time. Figures 4 and 5 show one set of possibilities for the initial

most amplified normal mode and the neutual mode respectively. The classic roll up pro-

cess is clearly more robust under algebraic dynamics. In addition, other features known

from experiments for this problem, such as the cross-ribing, are directly due to the three-

dimensionality. For the first time. the complete early period dynamics is known and, if

desired, can be controlled.

Conclusions

The bases for use of exact solutions in shear flows has been presented in terms of initial-

value problems. By use of piece-wise continuous mean velocity profiles, shear flows can

be modelled and tt._ perturbation problem can be solved arbitrarily and in closed form.

Both the Eulerian and the Langranian problems can be analyzed. The early transient
I
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period does indeed set the scene for future development of a flow and three-dimensionality

is strongly influential.

Although not reported here, investigations with viscous effects has also been done

(cf. Easthope and Criminale 1991) where the boundary layer has considered. Here, it was

found that the near field dynamics is akin to a quadrapole field and the wave packet has

double maxima and develops a streaky pattern, increasing in the downstream direction in

addition to the strong three-dimensionality that is characteristic throughout all such flows.

Finally, two other uses of this approach should be cited. First, there is the obvious

need to link this form of input to computational fluid dynamic shemes. Second, it turns

out that it is possible to find basic fundamental solutions if only the infinite shear flow

problem is considered. In other words, just as the source-sink is fundamental to solutions

of Laplace's equation, these solutions can be used for constructing other boundary-value,

initial-value problems in the case of flow with constant shear. Such analysis has been made

by Criminale and Smith (1991).

a
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