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Functional Self-organization in Complex Systems
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Los Alamos, NM 87545 USA

and

Santa Fe Institute
1120 Canyon Road

Santa Fe, NM 87501 USA

ABSTRACT

A novel approach to functional self-organization is presented. It consists of a universe gen-
erated by a formal language that defines objects (=programs), their meaning (=functions),
and their interactions (=composition). Results obtained so far are briefly discussed.

1 INTRODUCTION

Nonlinear dynamical systems give rise to many phenomena characterized by a highly complex
organization of phase space, e.g. turbulence, chaos, and pattern formation. The structure
of the interactions among tl:e objects described by the variables in these systems is usually
fixed at the outset. Changes in the pl,ase portrait occur a,s coefficients vary, but neither the
basic qualitative relationships among the variables, nor their number is subject to change.

The class of systems I will be concerned with in this contribution is, in some sense, com-
plementary. It contains systems that are :'inherently constructive". By "constructive" I
mean that the elementary interaction among objects includes the possibility of building new
objects. By "inherently constructive" I want to emphasize that the generation of new ob-
jects from available ores is an intrinsic, specific, non-random property of the objects under
consideration. It is not ,)rimarily caused by noise.

A prime example of such a system is chemistry. Molecules undergo reactions that lead to
the production of new molecules. The formation of the product object is instructed by the
interacting reactants. This is to be distinguished from a situation in which new objects are
generated by chance events, as is the case with copying errors during the replication process
of a DNA string (mutations).

Examples for complex systems belonging to the constructive category are chemistry, biolog-
ical systems like organisms or ecosystems, as well as economies. Clearly, nonlinearities and
noise occur all over the place. In this note I will be primarily concerned with the implica-
tions following from the constructive properties. An example of a dynamical system built
on top of these properties will be given, bu_ the formulation of a general theory (if it exists)
that combines nonlinear dynamical and constructive aspects of complex systems is a major
problem for the future.
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The "manipulation" of objects through other objects, as it occurs with molecules, might
in principle be reduced to the behavior of the fundamental physical forces relevant for the
particular objects. Quantum mechanics is a "classical" example with respect to chemistrv.
At the same time, however, the very phenomenon of manipulation introduces a new level of
description: it generates the notion of "functionality". Objects can be put into functional
relations with each other. Such relations express which object produces which object under
which conditions.

The main assumption of the present work is' The action of an object upon other objects
can be viewed as the application of a computable function to arguments from the fiznc-
tions' domain of definition (which can be other functions). Functional relations can then be
considered in complete independence from their particular physical realization.

There is no doubt that this is a very strong assumption, but such an abstraction is useful
if we want to focus on a classification of functional relations in analogy to a classification of
attractors in dynamical systems theory. It is also useful in defining toy models that capture
the feed-back loop between objects and the functions acting on them defined by these very
objects. It is such a loop that identifies complex constructive systems.

"Function" is a concept that - in some mathematical sense - is irreducible. Mathematics
provides since 1936, through the works of Church and Kleene (1932-34), GSdel and Herbrand
(1934), and Turing (1936), a formalization of the intuitive notion of "effective procedure"
in terms of a complete theory of particular functions on the natural numbers: the partial
recursive functions.

The following is a very brief attempt to explore the possibility of establishing a useful descrip-
tive level of at least some aspects of constructive complex systems by viewing their objects
as being machines = computers = algorithms = functions. For a more detailed exposition
see 8.9.

2 WHAT IS A FUNCTION?

A function, f, can be viewed (roughly) in two ways:

• A function as an applicative rule refers to the process - coded by a definition - of going
from argument to value.

• A function as a graph, refers to aset of ordered pairs such that if (x, y) E f and if (x, z) E
f, then y = z. Such a function is essentially a look-up table.

The first view stresses the computat'onal aspect, and is at the basis of Church's A-calculus
(see for example 2). The theory A is a formalization of the notion of computability in precisely
the same sense as the Turing machine and the theory of general recursiveness. Though its
equivalence with Turing machines, A is a very different and much more abstract approach.

Stated informally, A defines inductively expressions consisting of variables. A variable is
an expression, and every combination of expressions, wrapped in parentheses, is again an
expression. Furthermore, a variable can be substituted by any other expression that follows
the expression to which the variable belongs. An elegant notational (syntactic) structure
provides a means for tagging the variables in an expression such as to define their scope.
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In an "everyday" informal notation this means that if f[x] and g[x] are expressions, then
(I[z]g[x]) is also an expression, and (f[x]9[x])is equivalent to (f[x '= g[,r]]), where the
latter denotes the expression that arises if every occurrence of z in f[x] is replaced by the
expression g[.r].

,,

Intuitively, what is captured here is just the notion of "evaluating" a function by "applying" it
to the argument. That is' consider f[z] as denoting a function, then the value of that function
when applied to the argument expression a is obtained by literally substituting a for z in
f[z] and performing :tll further substitutions that might become possible as a consequence
of that action. If all substitutions have been executed, then an expression denoting the value
of a under f has been obtained. In this way functions that can be identified with the natural
numbers (numerals) as _vellas ali computable operations on them, for example addition and
multiplication, can be defined.

Three features of functions in A are important for the following:

• Functions are defined recursively in terms of other functions' imagine functions as being
represented by trees with variables at the leaf levels. This makes explicit that functions
are "modular" objects, whose building blocks are again functions. This combinatorial
representation, in which functions can be freely recombined to yield new functions, is
crucial.

• Objects in A can serve both as arguments or as functions to be applied to these argu-
ments.

• There is no reference to any "machine" architecture.

Although the wh,Ae story is much more subtle, the preceeding paragraphs should convey the
idea of "function" that will be used in the framework described in the following sections.
The point is that under suitable mathematical conditions A-objects and composition give
rise to a reflexive algebraic structure.

Turing's completely different, but equivalent, approach to computability worked with the
machine concept, lt was this "hardware" approach that succeeded in convincing people that
a formalization of "effective procedure" had been achieved. The existence of a universal
Turing machine implies the logical interchangeability of hard- and software. Church's world
of _ is entirely "software" oriented. Indeed, in spite of its paradigmatic simplicity it contains
already many features of high-level programming languages. For a detailed account see 17.

3 THE MODEL

To set up a model that also provides a workbench for experimentation a representation of
functions along the lines of the h-calculus is needed. I have implemented a representation
that is a somewhat modified and extremely stripped-down version of a toy-model of pure
LISP as defined by Gregory Chaitin a. In pure LISP a couple of functions are pre-defined (6
in the present case). They represent primitive operations on trees (expressions); for example,
joining trees or deleting subtrees. This speeds up and simplifies matters as compared to the
,i-calculus in which one starts from "absolute zero" using only application and substitution.
Moreover, I consider for the sake of simplicity only functions in one variable. The way func-
tions act on each other thereby producing new ones is essentially identical to the formalism
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sketched for A in the previous section.

I completely dispense with a detailed presentation of the language (which I refer to as
"AlChemy"" a contraction of Algorithmic Chemistry). Figure 1 and its caption give a
simple example for an evaluation that should depict what it is all about. The interested
reader is referred to 9.

The model is then built as follows.

1. Universe
A universe is defined through the A-like language. The language specifies rules for build-
ing syntactically legal ("well-formed") objects and rules for interpreting these structures
as functions. In this sense the language represents the "physics". Let the set of all ob-
jects be denoted by .T'.

2. Interaction
Interaction among two objects, f(x) and g(x) is naturally induced by the language
through function composition, f(g(x)). The evaluation of f(g(x)) results in a (possibly)
new object h(z). Interaction is clearly asymmetric. This can easily be repaired by
symmetrizing. However, many objects like biological species or cell types (neurons, for
example) interact in an asymmetric fashion. I chose to keep asymmetry,

Note that "interaction" is just the name of a binary function ¢(s,t) that sends any
ordered pair of objects f and g into an object h = ¢(f,g) representing the value of
f(g) (see figure 2 for an example). More generally, ¢(_, t) ' jr x Y _ 9r could be any
computable function, not necessarily composition, although composition is the most
natural choice. The point is that whatever the "interaction"-function is chosen to be, it is
itself evaluated according to the semantics of the language. Stated in terms of chemistry:
it is the same chemistry that determines the properties of individual molecules and at
the same time determines how two molecules interact.

3. Collision rule
While "interaction" is intrinsic to the universe as defined above, the collision rule is not.
The collision rule specifies essentially three arbitrary aspects:

(a) what happens with f and g once they have interacted. These objects could be "used
up", or they could be kept (information is not destroyed by its usage).

(b) what happens with the interaction product h. Some interactions produce objects
that are bound to be inactive no matter with whom they collide. The so called
NIL-function is such an object: it consists of an empty expression. Several other
constructs have the same effect, like function expressions that happen to lack any
occurrence of the variable. In general such products are ignored, and the collision
among f and g is then termed "elastic", otherwise it is termed "reactive".

(c) computational limits. Function evaluation need not halt. The computation, of a
value could lead to infinite recursions. To avoid this, recursion limits, as well as
memory and real time limitations have to be imposed. A collision has to terminate
within some pre-specified limits, otherwise the "value" consists in whatever has
been computed until the limits have been hit.



The collision rule is very useful for introducing boundary conditions. For example,
every collision resulting in the copy of one of the collision partners might be ignored.
The definition of the language is not changed at all, but identity functions would have
now been prevented from appearing in the universe.

In the following I will imply that the interaction among two objects has been "filtered"
by the collision rule. That is, the collision of f and g i_ represented by _(f,g) that
returns h -- ¢(f,g) ifr the collision rule accepts h (see item (b) above), otherwise the
pair (f, g) is not in the domain of _.

4. System
To investigate what happens once an ensemble of interacting function "particles" is
generated, a "system" has to be defined. The remaining sections will briefly consider
two systems:

• An iterated map acting on sets of functions.
Let P be the power set, 2y', of the set of all functions _'. Note that f" is countable
infinite, but P is uncountable. Let As denote subsets of f', and let _[A] denote the
set of functions obtained by ali IAI "_pair-interactions (i.e. pair-collisions) _(i, k) in
A, _[A] = {j : j = _(i, k),(i, k)E A x A}. The map M is defined as

M:_ _ P, Ai+: = _[Ai]. (1)

Function composition induces a dynamics in the space of functions. This dynamics
is captured by the above map M. An equivalent representation in terms of an
interaction graph will be given in the next section.

• A Turing gas.
The Turing gas is a stochastic process that induces an additional dynamics over the
nodes of an interaction graph. Stated informally, individual objects now acquire
"concentrations" much like molecules in a test-tube mixture. However, the graph
on which this process lives changes as reactive collisions occur. Section 5 will give
a brief survey on experiments with the Turing gas.

4 AN ITERATED MAP AND INTERACTION GRAPHS

_.L'heinteractions between functions in a set A can be represented as a directed graph G. A
graph G is defined by a set V(G) of vertices, a set E(G) of edges, and a relation of incidence,
which associates with each edge two vertices (i,j). A directed graph, or digraph, has a
direction associated with each edge. A labelled graph has in addition a label k assigned to
each edge (i, j). The labelled edge is denoted by (i, j, k).

The action of function k E A on function i E A resulting in function j E A is represented
by a directed labelled edge (i,j, k):

k
(i,j,k). i _ j i,j, kE A. (2)

Note that the labels k are in A. The relationships among functions in a set are then described
by a graph G with vertex set V(G) = .;4 and edge set E(G) = {(i,j,k): j = k(i)}.
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A useful alternative representation of an interaction is in terms of a "double-edge",

(i,j,k): i(i,j.])j _k i,j,k'EA, (3)

' where the function k acting on i and producing j has now been connected to j by an
additional directededge. The edges are still labelled, but no longer with an element of
the vertex set. The labels (i, k) are required to uniquely reconstruct the edge set from a
drawing of the graph. The graph corresponding to a given edge set is obviously uniquely
specified. Suppose, however, that a function j is produced by two different interactions. The
corresponding vertex j in the graph then has four inward edges. Uniquely reconstructing the
edge set, or modifying the graph, for example by deleting a vertex, requires information about
which pair of edges results from the same interaction. Some properties of the interaction
graph can be obtained while ignoring the' information provided by the edge labels. The
representation in terms of double-edges (i, j, k) has the advantage to be meaningful for
any interaction function _ mapping a pair of functions (i,k) to j, and not only for the
particular _ representing chaining. The double-edge suggests that both, i as well as k, are
needed to produce j. In addition, the asymmetry of the interaction is relegated to the label:
(i, k) implies an interaction _(i, k) as opposed to _(k,i). This representation is naturally
extendable to n-dry interactions _(il,i2,...,in). In the binary case considered here every
node in G must therefore have zero or an even numk_er of incoming edges.

The following gives a precise definition of an interaction graph G. As in equation (1) let
¢_[A] denote the set of functions obtained by all possible pair-collisions _(i, k) in A, _[A] =
{j : j = _(i, k), (i, k) E .4 x .4}. The interaction graph G of set .4 is defined by the vertex
set

v(c) = ..4u (4)
and the edge set

E(G) = {(i,j,k) : i, k E ,4, j = _(i,k)} (5)

The graph G is a function of A and ¢, G[A, _]. The action of the map

M : .4i+1 = ¢[.4i] (6)

on a vertex set Ai leads to a graph representation of M. Let

G(i)[-4, OI := C[(I)l[-4], ,._1 (7)

denote the i-th iteration of the graph G starting with vertex set ,4; G (°) = G.

A graph G and its vertex set V(G) are closed with respect to interaction, when

cir(a)] c v(c;), (s)
otherwise G and V(G) are termed innovative.

Consider again the map M, equation (6). What are the fixed points of @[.]? -4 = ¢[A] is
equivalent to (1) .,4 is closed with respect to interaction, and (2) the set -4 reproduces itself
under interaction. That is,

Vj E .4, 3 i, k e .4 such that j = ¢(i, k). (9)

Condition (9) states that all vertices of the interaction graph G have at least one inward
edge (in fact, two or any even number). Such a self-maintaining set will also be termed
"autocatalytic", following M.Eigen 5 and S.A.Kauffman 11 who recognized the relevance of
such sets with respect to the self-organization of biological macromolecules.
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Consider a set Fi for which (9) is still valid, but which is not closed with respect to inter-
action..T'i+l obviously contains _i, because of (9), and in addition it contains the set of
new interaction products _[_i] \ Yi. These are obviously generated by interactions within
Yi E _[_'i]. 3 herefore (9) also holds for the set _[Yi], implying that the set .Ti+l is auto-
catalytic. Therefore, if A is autocatalytic, it follows that

C;[A, ¢] __G(I}[A, ¢] 2 GC2)[A,¢'] __.. __C(')[A, ¢] __.... (10)

In the case of strict inclusion let such a set be termed "autocatalytically self-extending".
Such a set is a special case of innovation, in which

_[V(G)] _DV(G) (lk)

holds, with equality applying only at closure of the set.

An interesting concept arises in the context of finite, closed graphs. Consider, for example,
the autocatalytic graph G in figure 3b, and assume that G is closed. The autocatalytic
subset of vertices V1 = {A, B,D} induces an interaction graph GI[V1, _]. Clearly, G[V, _] =

G_2)[V1, _], which means that the autocatalytic setV1 regenerates the set V in two iterations.
This is not the case for the autocatalytic graph shown in figure 33. More precisely, let G be
a finite interaction graph, and let Ga c_ G be termed a "seeding set" of G, if

3 i, such that G C_G_ ), (12)

where equality must hold if ,7 is closed. Seeding sets turn out to be interesting for several
reasons. For insta_ce, in the next section a stochastic dynamics (Turing gas) will be induced
over an interaction graph. If a system is described by a graph that contains a small seeding
set, the system becomes less vulnerable to the accidental removal of functions. In particular
cases a seeding set can even turn the set it seeds into a limit set of t}le process. Such a case
arises when every individual function fi in ,4 is a seeding set of A:

fi+l = _(f,,f,) i- 1,2,...,n- 1

fl - ¢(fn,f.). (13)

Furthermore, suppose that G is finite, closed and autocatalytic. It follows from the above
that ali seeding sets Ga must be autocatalytically self-extending, as for example in figure
3b. If G is finite, closed, but not autocatalytic, there can be no seeding set. Being closed
and not autocatalytic implies V(G (2)) C V(G). The vertices of G that have no inward edges
are lost irreversibly at each iteration. Therefore, for some i either G (i) = 0, or G(i) becomes
an autocataiytic subset of G.

In the case of innovative, not autocatalytic sets, i.e. sets for which

O[A] _. ft. A ¢[.A] _ .,4 (14)

holds, no precise statement can be made at present.

A digraph is called connected if for every pair of vertices i and j there exists at least one
directed path from i to j and at least one from j to i. An interaction graph G that is
connected not only implies an autocatalytic vertex set, but in addition depicts a situation
in which there are :no "parasitic" subsets. A parasitic subset is a collection of vertices that
has only incoming ,edges, like the single vertices C and E in figure 3b, or the set {C, E} in
figure 33. As the name suggests, a parasitic subset is not cooperative, in the sense that it
does not contribute to generate any functions outside of itself.
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Ali the properties discussed in this section are independent of the information provided by the
edge labels (in the double-edge representation). Note furthermore, that the above discussion
is independent of any particular model of "function". It never refers to the implementation in
the LISP-like AlChemy, The representation of function in terms of this particular language
is used in the simulations reported briefly in the next section.

5 A TuftING GAS

The interaction graph, and, equivalently, the iterated map, describe a dynamical system
induced by the language on the power set of functions. This graph dynamics is now supple-
mented by a mass action kinetics leading to a density distribution on the set of functions in
a graph. The kinetics is induced through a stochastic process termed "Turing gas".

A Turing gas consists of a fixed number of function particles that are randomly chosen for
pairwise collisions. In the present scheme a reactive collision keeps the interaction partners in
addition to the reaction product. When a collision was reactive the total number of particles
increases by one. To keep the number constant, one particle is chosen at random and erased
from the system. This mimics a stochastic unspecific dilution flux. The whole system can
be compared to a well stirred chemical flow-reactor.

Three versions of the Turing gas have been studied. In°na version the time evolution of
the gas is observed after its initialization with N (typically N = !000) randomly generated
functions. In the second version the collision rule is changed to forbid reactions resulting in
a copy of one of the collision partners. In the third version the gas is allowed to settle into
a quasi-stationary state, where it is perturbed by injecting new random functions.

The following summarizes very briefly some of the results.

(1) plain Turing gas

Ensembles of initially random functions self-organize into ensembles of specific functions sus-
taining cooperative interaction pathways. Self-replicatr s (functions that copy themselves,
but not the others present in the system), parasites (see section 4), general copy functions
(identity functions), as well as partial copiers (functions that copy some, but not ali func-
tions they interact with) shape the dynamics of the system. The "innovation rate", i.e.
the frequency of collisions _that result in functions not present in the system, decreases with
time indicating a steady closure with respect to interactions. If the stochastic process is
left to itself after injecting the initial functions, fluctuations will eventually drivo it into an
absorbing barrier characterized by either a single replicator type, or by a possibt, heterge-
neous mixture of non-reactive functions ("dead system"), or by a self-maintaining set where
each individual function species is a seeding set (section 4). The system typically exhibits
etremely long transients characterized by mutually stabilizing interaction patterns. Figure 4
shows an interaction graph (in a slightly different representation than described in section 4;
see caption) of a very stable self-maintaining set that evolved during the first 3.105 collisions
starting from 1000 random functions. All functions present in the system differ from that
initial set. The numbers refer to the function expressions (not shown) as they rank in lexico-
graphic order. Func'cion 17 is an identity function, although - for the sake of a less congested
picture - only the self-copying interaction is displayed. Patterns like those in figure 4 often
include a multitude of interacting self-maintaining sets. In figure 4, for example, deleting
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group I on the upper left still leaves a self-maintaining system (group II). Several other parts
can be deleted while not destroying the cooperative structure. Sometimes these subsets are
disconnected from each other with respect to interconversion pathways (solid arrows), but
connected with respect to functional couplings (dotted lines). Figure 4 shows two groups of
functions (indicated by I and II) that are not connected by transformation pathways (solid
arrows). That is' no function of I is acted upon by any other function in the system such
that it is converted into a function of group II - and vice versa. Group I, however, depends
on group II for survival. The introduction of a "boundary" between I and II, cutting off all
functional couplings among them, would destroy group I, but not group II.

(2) Turing gas without copy reactions

Copy reactions, i.e. interactions of the type f(f/) = g or f, strongly influence the patterns
that evolve in the Turing gas as described above. Forbidding copy reactions (by changing
the collision rule, section 3) results into a rather different type of cooperative organization
as compared to the case in which copy reactions and therefore self-replicators were allowed.
The system switches to functions based on a "polymeric" architecture that entertain a closed
web of mutual synthesis and degradation reactions. The individual functions are usually
organized into disjoint subsets of polymer families based on distinct monomers. As in the
case of copy reactions these subsets interact along specific functional pathways leading to a
cooperativity at the set level. Figure 5a and 5b shows an example of two interacting polymer
families. Neither family could survive without the other. Due to the polymeric structure of
the functions the Turing gas remains highly innovative. A much higher degree of diversity
and stability is achieved than in systems that are dominated by individual self-replicators.
The high stability of the system is due to very small seeding sets. For example, everything
in the system shown in figure 5a and .Sb follows from the presence t_f monomer 1 of type A
(fig. 5a) and monomer 1 of type B (fig. 5b). Almost the whole system can be erased, but as
long as there is one monomer A1 and one monomer B1 left, the system will be regenerated.

(3) Turing gas with perturbations

The experiments described so far kept the system "closed" in the sense that at any time
instant the system's population can be described by series of compositions expressed in
terms of the initially present functions. An open system is modeled by introducing new
random functions that perturb a well established ecology. In the case without copy reactions
the system underwent transitions among several new quasi-stationary states (metastable
transients) each characterized by an access to higher diversity. Systems with copy reactions
were more vulnerable to perturbations and lost in the long run much of their structure.

A detailed analysis is found in 9.

6 CONCLUSIONS

The main conclusions are:

1. A formal computational language captures basic qualitative features of complex adaptive
systems. It does this because of

(a) a powerful, abstract and consistent description of a system at the "functional" level,
due to an unambiguous mathematical notion of function.

9



(b) a finite description of an infinite (countable) set of functions, therefore providing a
potential for functional open-endedness.

(c) a natural way of enabling the construction of new functions through a consistent
definition of interaction between functions.

2. Populations of individuals that are both, an object at the syntactic level and a function
at the semantic level, give rise to the spontaneous emergence of complex, stable, and
adaptive interactions among their members.

7 QUESTIONS AND FUTURE WORK

The main questions and directions for the future can be summarized as follows.

1. Is there an equivalent of a "dynamical systems theory" for functional interactions? Can
the dynamical behavior of the iterated map, eq.(1), be characterized? Can examples be
found that exhibit attractors other than fixed points? C_n a classification of all finite
self-maintaining sets of unary functions be made?

2. What is beyond replicator (Lotka-Volterra) equations? The standard replicator equation
10,6 on the simplex .5'n= {x = (xl,x2,...,xn) E :lRn ' _ xi = 1, xi > 0},

xi=xi(Eaijxj-Eat,lxkxl) i = 1,...,n, (15)
j k,t

considers objects i that are individual self-replicators. The Turing gas deals with finite
populations, and represents a stochastic version of its deterministic, infinite population
counterpart 14

j,k k,l,m

where in the present case the entry aij k -- 1 if[ function k acting on function j produces
function i, and aij k -- 0 otherwise, and xi, 0 <_ xi _ 1, represents the frequency of
function i in the system.
What can be said abo,lt the behavior of equation (16)? What can be deduced from it for
the finite population Turing gas? Note that the use of a formal language, like A, allows
a finite description of a particular instance of an infinite matrix aijk, i, j, k -- 1,2, ....

3. An obvious extension of the present work is the multivariable case. The restriction to
unary functions implied that only binary collisions could be considered, n-ary functions
lead to (n + 1)-body interactions. Suppose the interaction is still given by function
composition. A two variable function f(x,y) then interacts with functions g and h (in
this order) by producing i = f(g, h). f acts with respect to any pair g and h precisely
like a binary interaction law expression (I). However, f can now be modified through
interactions with other components of the same system. This might have significant
consequences for the architecture of organizational patterns that are likely to evolve.
The extension to n variables is currently in preparation.

4. F_lture work includes a systematic investigation of the system's response to noise (section
5, item 3), either in form of a supply of random functions, or in form of a "noisy

10
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evaluation of functions. What are the adaptive properties of the Turing gas'?

5. If some of the questions above are settled, then an extension to more sophisticated,
typed languages .(distinction among various object/data "types") that enable a compact
codification of more complicated - e_,'en numerical- processes could be envisioned;
always keeping in mind that processes should be able to construct new processes by way
of. interaction. The combination with a spatial extension or location of these processes
then leads to Chris Langton's 12 vision of a "process gas". I leave it to the reader to
further speculate where such intriguing tools might lead.

8 RELATED WORK

The coupling of a dynamics governing the topology of an interaction graph with a dynamics
governing a frequency distribution over its vertices is a common situation in biological sys-
tems. The immune system 4, development (ontogenesis) 15,and prebiotic molecular evolution
1 are but a few areas in which some modeling haz been done.

The approach sketched here is related in particular to the pioneering work of D.Farmer et
al. 7 R.Bagley et al. 1 S.Rasmussen et al. 16and J.McCaskill la, , .

Farmer and Bagley consider a system of polymers, intended to be polynucleotides or polypep-
tides, each of which specifically instructs (and catalyzes) the condensation of two polymers
into one or the splitting of one into two. This sets up the constructive part of the system and
the related dynamics of interaction graphs. Farmer and Bagley then describe the production
rate of individual polymers in terms of enzyme kinetics by differential equations, providing
a (nonlinear) dynamical system living on the interaction graphs. This approach represents
one of the most advanced attempts to model a specific stage in prebiotic evolution.

Rasmussen and McCaskill made a first step towards abstraction, and the approach described
here was prompted by their investigations. Rasmussen's system cop :sts of generalized as-
sembler code instructions that interact in parallel inside a controt,,._d computer memory
giving rise to cooperative phenomena. This intriguing system lacks, however, a clear cut
and stable notion of functionality, except at the individual instruction level. McCaskill uses
binary strings to encode transition-table machines of the Turing type that read and modify
bit strings.

A model like the present Turing gas cannot provide much detailed information about a
particular real complex system whose dynamics will highly depend on the physical realization
of the objects as well as on the scheme by which the functions or interactions are encoded
into these objects. Nevertheless, many phenomena that emerge, for example, in Farmer's
and Bagley's polymer soup appear again within the approach described here. The hope
then is that an abstraction cast purely in terms of functions might enable a quite general
mathematical classification of cooperative organization. The question is if such an abstract
level of description still can capture principles of complex physical systems. How much - in
the case of complex systems - can we abstract from the "hardware" until a thcory looses
any explanatory power? I think the fair answer at present is: we don't know.

ACKN OWLE D G E ME NTS

11



This work is ultimately the result of many "reactive collisions" wi'_h John McCaskill. David
Cai, Steen Rasmussen, Wojciech Zurek, Doyne Farmer, Norman Packard, Chris Langton,
Jeff Davitz, Richard Bagley, Stephanie Forrest, David Lane, and Stuart Kauffman. Thanks
to ali of theml

12



'4

REFERENCES

1. R.J. Bagley, J.D. Farmer, S.A. Kauffman, N.H. Packard, A.S. Perelson, and Stadnyk. I.XI.
BioSystems. 23:113-138, 1989.

'2. H.P. Barendregt. The Lambda Calculus. Studies in Logic and the Foundations of _Iathe-
matics, volume 103. North-Holland, Amsterdam, 1984.

:], G.J. Chaitin. Algorithmic Information Theory: Cambridge University Press, Cambridge,
1987.

4. R. deBoer and A. Perelson. J. Theor. Biol., in press, 1990.

5. M. Eigen..Va_.urwissenschaften, 10, 1971.

6. XI. Eigen and P. Schuster. The Hypercycle. Springer, Berlin, 1979.

7. ,I.D. Farmer, S.A. Kauffman, and N.H. Packard. Physica D, 22:50-67, 1986.

$. W. Fontana. Algorithmic Chemistry. Technical Report LA-UR 90.-1959, Los Alamos Na-
tional Laboratory, 1990. to appear in Artificial Life II, Proceedings of the second Artificial

Life Workshop, editor C.G.Langton, Addison-Wesley.

9. W. Fontana. Turing Gas: A New Approach to Functional Self.organization. Technical
Report LA-UR 90-3431, Los Alamos National Laboratory, 1990. submitted to Physica D.

10. J. Hot'bauer' and K. Sigmund. The Theory of Evolution and Dynamical Systems. Cambridge
University Press, LMSST 7, Cambridge, 1988.

II. S.A. Kauffman. J. Theor. Biol., 119:1-24, 1986.

12. C.G. Langton. 1990. personal communication.

13. J.S. _IcCaskill. 1990. in preparation.

II..I.H. XIiller, W. Fontana, and P. Schuster. Towards a mathematics of a Turing gas. 1990. in
preparation.

15. E. Mjolsness, D.H. Sharp, and J. Reinitz. A Connectionist Model of Development. Technical
Report YALEU/DCS/RR-796, Yale University, 1990.

16. S. Rasmussen, C. Knudsen, R. Feldberg, and NI. Hindsholm. Physica D, 42:111-134, ',990.

17. B.A. Trakhtenbrot. Comparing the Church and Turing approaches: two prophetical mes-
sag_. In R.Herken, editor, The Universal Turing Machine: A Half-Century Survey, pp. 603-
63O, Oxford University Press, 1988.

13



FIGURE CAPTIONS

Fig. 1. Evaluation example.
The value of the expression ( ( + a) (-a)) is computed when the variable a takes
on the value ( ( * an) (+ a) ) . The interpretation process follows the tree structure
until it reaches an atom (leaf). In this case it happens at depth 2. Tile atoms are
evaluated: the operators "+" and "-" remain unchanged, while the value of a is given
by ((*an) (+a)). The interpreter backs up to compute the values of the nodes
at the next higher level using the values of their children. The value of the left node
at depth 1 is obtained by applying the unary "+"-operator to its sibling (which has
been evaluated in the previous step). The "+" operatiou returns the first subtree of
the argument, ( * an) in this case. Similarly, the value at the right depth 1 node is
obtained by applying the unary "- "-operator to its argument ( ( * a a ) ( + a ) ) . The
"-" operation deletes the first subtree of its argument returning the remainder, ( + a ) .
The interpreter has now to assign a value to the top node. The left child's value is an
expression representing again a function. This function, ( * a a ), is labelled as f in the
figure. Its o.rgument is the right neighbor sibling, ( + a ) , labelled as g. Evaluating the
top node means applying f to g. This is done by evaluating f while assigning to its
variable a the value g. The procedure then recurs along a similar path as above, shown
in the box. The result off(g) is the expression ((+a) (+a)). This is the value of
the root (level 0) of the original expression tree, and therefore the value of the whole
expression, given the initial assignment. The example can be interpreted as "function
((+a) (-a)) applied to function ((*an) (+a))'.

Fig. 2. Interaction between functions.
Two algorithmic strings (top) represented as trees interact by forming a new algorithmic
string (middle) that corresponds to a function composition. The new root with its two
branches and _-operators is the algorithmic notation for composing the functions. The
action of the unary _-operator ("quote" -operator) consists in preventing the evaluation
of its argument. The interaction expression is evaluated according to the semantics of
the language and produces an expression (bottom) that represents a new function.

Fig. 3. Interaction graph and seeding set.
Two self-maintaining (autocatalytic) graphs. As outlined in section 4, a particular
function, say D, is produced through interaction between A and B. Therefore D has two
incoming edges from A and B. The edge labels are omitted° The dotted line indicates
that B is applied to the argument A (solid line). The graphs are self-maintaining because
every vertex has incoming edges. The lower graph, (b), can be regenerated from the
vertex subset {A,B,D}, in contrast to the upper graph, (a). Both contain parasitic
subsets: {E,C} in (a), and {C}, {E} in (b).

Fig. 4. Interaction graphof a metastable Turing gas transient.
The interaction graph of the functions present in the system after 3. 10s collisions
is shown. The system started with 1000 random functions, and conserves the total
number of particles (1000). The numbers denote the individual functions according
to their lexicographic ordering (not shown). Capital letters denote sets, where A =
{1,2,3,4}, B = {5,6,7,8}, C = {9,10}, E = {12,13,14,15,16}, and E1 = {12,13} e
E. Solid arrows indicate transformations, dotted lines functional couplings. A dotted
line originates in a function, say k, and connects (filled circle) to a solid arrow, whose
head is j and whose tail is i. This is to be interpreted as j = k(i). Large filled circles
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indicate membership in a particular set. Function 17 is an identity function. Note: all
dotted lines and solid arrows that result from 17 copying everything else in addition to
itself have been omitted. The function set is closed with respect to interaction.

Fig. 5. Interaction graph of a metastable Turing gas state without copy-reactions.
The figures show the interaction pathways among two polymer families established after
5. 10_ collisions starting from random initial conditions. The tree structure of the
functions is displayed. The leaves are "monomers" representing the functional group
indicated at the bottom of each graph. Solid arrows indicate transformations operated
by function(s) belonging to the family denoted by the arrow label(s). Stars in the
transformation pathways represent functions that were not present in the system at
the time of the snapshot ("innovative reactions"). Due to the polymeric architecture
of the functions, the system remains highly innovative. There are always (at least)
two functions in the system that a polymerizing function (like the monomer 1 in 5a)
can combine in order to produce a third one not in the system. The "space limit"
tag in figure 5b indicates that the corresponding reaction product would hit the length
limitation imposed on each individual function expression (300 characters in the present
case).
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