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Abstract

We introduce a'conceptual framework which allow us to-treat charge
and spin fluctuations about the Local density Approximation (LDA) =~ -
to the Density Functional Theory (DFT). We. illustrate the approach -
by explicit study of the Disordered Local Moment (DLMY state in Fe -
above the Curie Temperature T, and the Mott insulating state in MnO.

1 Fluctuations and Density Functional Theories

Fluctuations are strangers to Density Functional Theories, whether quan-
tum [1] or classical [2]. In what follows we shall analyze the burden of this
remark and argue that-the lack of formal provision for including fluctuations
into such theories ién/}landicap worth overcoming.

1.1 Two free energy paradigms of many body theory

In fig. 1 we list side by side the principal, well known, formulae of the
Landau-Ginzburg-Wilson (LGW) and the Kohn-Sham (KS) type of ap-
proaches [3, 1] to problems with many interacting degrees of freedom.
Evidently, Landau’s advice [4] is to make up a free energy functional
FMF[o] of some variable field, order parameter, ¢(f) and minimize it. This
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is the mean field approximation. If this is not good enough one is to expo-
nentiate FF[z). Namely, make all predictions of the theory be functional
averages with respect to the probability distribution —é—e“’:"}:‘h’F["’]. When
evaluating the functional integrals, as in finding the partition function Z,
one often proceeds using the saddle point method. This requires the ex-
pansion of F¥ 5] about its minimum, at ¢\, in powers of the deviations
6p(7) = ¢(7) = ¢emrp(F) and then performing the functional integral.

Evidently, this approach to the problem is a theory of fluctuations par
ezcellence. It is a particularly powerful method when the most significant
fluctuations can be identified by physical intuition. Although statistical
mechanics problems are the most {requent examples of this approach the
many-electron problem is often cast into the above form using the Hubbard-
Stratanovich transformation [5].

By contrast in density functional theories there are no fluctuations of
the field ¢(Z) about the mean, $(7), or some other standard ppp (7). It is
always the average field 3(7) that occurs. Even in an exact theory one is to
minimize the exact functional Q[p). Unlike the previous approach in which
FMF[] remains of the same form (usually a simple polynomial in ¢ and
6(,0) as progressively better approximations are sought, density functional
theories require more and more complicated functionals, Q[®], as the level
of approximation is improved. On the other hand the mathematxcal task of
minimizing Q[p] remains the same. Indeed, it is the relative simplicity of
the minimization procedure compared with domg functional integrals, and
the availability of a vast arsenal of numerical techniques for doing it that
are the principal virtues of this approach [1].

Our purpose in this talk is to suggest a way of including fluctuations,
in the above sense, into the density functional theory approach to the inho-
mogeneous many electron problem and thereby bring physical intuition to
bear on the problem of going beyond the Local Density Approximation.

1.2 The method of summing over constraints

Recalling the conventional density functional argument, summarized in
fig. 1, we note that the spectacular achievernent of replacing the immense
complexity of fluctuations in Fock Space by a minimization problem has
been bought about at the price of introducing an effective potential func-
tional v*//(, [n]) which is, to say the least, difficult to fathom beyond the
Hartree approximation.

Our proposal is to let v(7,[n]) fluctuate in accordance with our physical
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intuition and identify the predictions of the theory with averages over an
appropriate ensemble of such fluctuations.

To lay the formal foundations for such a scheme we must return to the
origin of the Gibb distribution function p = Z~'exp{—=3H}. Asis well
known it may be obtained by minimizing the generalized grand potential [6]

a[f] = tx (4 (A - kaTIn ) (1)

with respect to arbitrary variations in the density matrix p defined in an
appropriate many-body Hilbert space. We shall now present an alternative
to the above procedure which will turn out to be useful. Although we shall
make no effort to be rigorous we hope that our arguments are persuasive.

Let us look for a density matrix p({g;}) such that an arbitrarily selected
set of operators {o;} have a prescribed expectation value

tr (A({p:})oi) = wa. (2)

Clearly, such density matrix can be found by minimizing Q[4] in eq. 1 subject
to the constraints in eq. 2. Then the grand potential associated with the
prescribed set of averages {i;} is

T a{en=0lkdm)) (3)

and the probabihiy that the systém takes on a particular set {u;} is

P({w)) = %e-ﬁn({m}) (4)

where

. Z= H/dp,- e~A0({u}) (5)

and fdu; is a generalized symbol for summation or integration as follows
from the nature of the averages {u;}.

Evidently, the above procedure should be exact. It merely breaks up the
full tack on the left hand side of fig. 1 into two parts: solving the problem
with constraints and then summing over the constraints with appropriate
weights.

The next miove in our derivation is now clear: we should deploy the den-
sity functional argument for converting the many body problem defined by
the density matrix 4({¢;}) to an effective, self consistent one electron prob-
lem in place of the conversion depicted in fig. 2. Naturally, such reasoning



leads to a Kohn-Sham type of Euler-Lagrange equation for the constrained
problem:

GW+N“MMMUMm%Mﬂ=%%m (6)
7 {i}) Z]‘r’ﬂ 7 {wi} ' f(en({m:})) , (7)

where it is assumed that the averages {ui} are unique functionals of n(7),
and hence it makes sense to search-for a infimum of [n) among functions
n(7{pi}) which correspond to the set of prescribed averages [7]. Of course,
technically such problems would be solved by the method of Lagrange mul-
tipliers. Moreover, one may wish to consider the spin polarized version of
the above theory where Q depends on n1(7) and n|(7) separately. However,
we leave such details to the next section where particular instances of our
scheme will be discussed. What matters here is that the gedanken calcu-
lation prescribed by eqs. 6, 7, and the recipe that after each iteration the
calculated charge density n.q (7 {#i}) has to be projected back into that
part of function space which is consistent with the constraints, may have a
solution. Clearly, if it does, the grand potential defined in eq. 3 is given by

~ () = 20 {m))] (8)

and hence we hav—e reco{’ered the statistical description of eqgs. 4, 5.
~ _In short-we have arrived at the following sensible prescription for includ-’
ing fluctuations into the density functional theories: -

i. Carry out density functional calculations for a system with a selection of
constraints;

ii. Calculate averages over the ensemble of constraints, in other words fluc-
tuations, using Gibbsian weights defined eqs. 4, 5 and 8.

Consequently, to introduce fluctuations about the Local Density or Lo-
cal Spin Density Approximation we should carry out the step in i.) using
the LDA or LSDA. Clearly, this is a very flexible scheme whose power de-
pends on finding the constraints which correspond to the physically relevant
fluctuations. In what follows we present explicit examples of how it works.

2 The Hubbard Alloy Analogy Approximation

Although our aim is to carry out the above program on the bases of first
principles calculations, as a first primitive example we wish to consider a



simple model. It is defined by the one orbital per site Hubbard Hamilto
nian [8):

T t‘JC|acJU+gv Iaciacj—ach—a ) (9)

(,J 1,0

where 7 and j refer to lattice sites, o the projection of the electronic spin

along the z-axis, cf-‘a ¢; e are the usual creation and annihilation operators,

t;; is a hopping integral and U is an on-site repulsive interaction parameter.
A way of tackling this problem is to define the Greens function:

Goo(ifit) = —i(T{ci o (t)c},(0)}) (10)

where T is the usual time ordering operator, derive its equation of motion
and solve it by decoupling the two particle average which appears in such
an equation as an inhomogeneous term. Namely, we make the following
approximation

(T{Ca —o(t )c,-._,(t)c,-‘,(t)c;'a(O)}) & N0 (t)Goo (ij51). (11)

If we further assume that

T i) = (e One ) | (2)

we are dealing with the usual Hartree-Fock approximation [8] The semma.l
suggestion of Hubbard [9, 10, 11] was that one should not set n;_,(t) equal
to the average occupation number but allow it to fluctuate between the
values 0 and 1. Although such classical fluctuation can not make up for the
error introduced by the decoupling in eq. 12 it turns out that they represent
a considerable improvement on the Hartree-Fock approximation which, like
the Density Functional theories of the previous section, does not allow for
any fluctuation in the potential an electron sees. Briefly, Hubbards alloy
analogy prescription was to solve the Greens function equation:

> (e = €0+ Uni—o) bt + tit) Goo (75 €) = 6i; (13)
z

which follow from eq. 12 [8], for a fixed set of occupation numbers {n;,}
and consider the average of G,,(ij;¢) over an ensemble of configurations
{ni,} as the approximation for the one particle Greens function defined in
eq. 10 e.g.:

Goo(ijie) = <G‘aa (i7;{nis }; €)). (14)



This recipe was completed by the assumption that the occupation num-
bers {n; o} are independent random variables and hence it is sufficient to
carry out the average in eq, 14 within the well tried Coherent Potential
Approximation (CPA) [12].

As is well known the above scheme leads to a splitting of the Hartree-
Fock band for U > zt, where z is the number of nearest neighbours and
" hence zt is the bandwidth. As a consequence, for a half filled band and
large enough U; there will be & gap at ¢ as shown in fig. 3. This state is
widely regarded as a good description of a Mott insulator (9, 10, 11, 13].

Clearly, we have recalled the above example to illustrate how including
charge fluctuation about the Hartree-Fock solution can lead to qualitatively
new results and dramatically new insights. The remainder of this contri-
bution will be devoted to discussing the first tentative steps towards imple-
mentation of the above scheme for describing charge and spin ﬂuctuatlons
about the LDA [13].

3 Fluctuations about the Local Spin Density Ap-
-proximation within the SCF-KKR-CPA

- Let us consider a simple explicit version of the fluctuations discussed in-

Sec.'1. To begin with let-us constrain each site to be in one of four pos-

- sible states: excess charge with overall spin up (41), excess charge with )

overall spin down (+}), charge deficit with overall spin up (~1) and char—ge
deficit with overall spin down (-|). This means that at a site i and for spin
projection o there will be four possible charge densities

Ay, (7) = n (7_")7 (;)v (’.")’ ) ("_'j (15)‘

As for as the statistical sum over constraints (see eqs. 4 and 5) are
concerned we shall work in the mean field approximation and hence assume
that each site 7 is in one of the four states with probabilities:

 P(v) = P(+1), P(+1), P(-1), P(-) (16)

independent from the states of the other sites. This implies that the ef-
fective potential at R; for an electron with spin ¢ will be a functional
of ¥ (), and, through the non-local Hartree contribution, the average

Nie = 3, P(v) A%, (F) e.g.
vl () = b ( - R;; [ﬁm 57 'T’"i]) | (17)
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We now seek to solve for the electronic structure for each complete set
of constraints {n¥,(7)} and average the energy and other observables over
all constraints using the mean field theoretic weight

{1/ HP U, ! (18)

As is well known from the theory of disordered systems a useful general
quantity to average is the electronic Greens function. In our case this is the
Greens function which satisfies the Kohn-Sham equation:

v2+§j—‘“ ~ B)| Goo (7€) = 6(F — ) (19)

for particular configuration {n¥ (7)} and potential functional defined in
eq. 17. The quantity of general interest from which many useful proper-
ties like the averaged total energy [14] can be calculated is the averaged
Greens function:

Goo(Fy75€) = (Goul(F, 7 €)) (20)
where (...) stands for average with respect to the distribution given in eq. 18.
. A well tried method for dealing with electrons in a random crystal poten-
 tial for which the potential wells on different sites fluctuate independently
is the Coherent Potential Approximation [14). Fortunately, this method has
" been implemented for such muffin tin type, crystal potentials as one usualy
studies in connection with density functional theory. The procedure is called
the KKR-CPA method (15, 16, 17). It was developed for dealing with the
electronic structure of substitutional metallic alloys but it turns out that its
numerical techniques for implementing the Self Consistent Field Korringa
Kohn Rostoker Coherent Potential Approximation (SCF-KKR-CPA) algc-
rithm are ideally suited for describing the internal, many body, fluctuations
we are concerned with here.

Note that according to our recipe, so far, eq. 19 has to be solved self-
consistently before averaging. Of course the KKR-CPA proper, being a
strictly one electron theory, is not designed to deal with this complex prob-
lem. However, within the spirit of the mean field theory implied by eq. 18
the order of averaging and self consistency can be interchanged. The result-
ing theory is the SCF-KKR-CPA algorithm. As we shall illustrate presently
it facilitates the practical consideration of a large class of problems we care

to pose within the general framework in Sec. 1. In particular the following
procedure is fully tractable:



AW

1. start with a set of charge distributions 7y, ] and the corresponding
probabilities P(v) listed in eq. 16;

[ 3%

. calculate the effective potentials 5¢/7*(7) using the Local Density pre-
scription indicated in eq. 17;

3. placing the above potential on a lattice according to the probability
distribution in eq. 19 solve for the partially averaged Greens functions
(Goo(7,7";€))i, using the KKR-CPA scheme;

4. from the partially averaged Greens functions in 3.) calculate the local
charge densities

n3(7) = - [ de f()Im(Gao (7, 75 i (21)
for v = +1,+1],~1 and-J; |
5. repeat the procedure until convergence in 7Y, (7).

Note that during the above self contained part of the calculation the
probabilities P(v) are given and not changing. To complete the theory one

" must specify them by returning to egs. 4, 5 and 18 for inspiration.

. For_example one could determine them by requiring that the free en-

_ergy F'= (H) — ST is'at a minimum with respect to variations in the set

{P(v)}. We hasten to add that most of the possibilities remain unexplored.
In the explicit examples we shall treat in the next section all four states
v=++T1,4+1,~T,—| are taken to occur with the same probability. Evi-
dently this correspond to a high temperature state which is fully disordered
with respect to the fluctuations considered.

To summarize the arguments in this section we note that we have set
out perhaps the simplest version of our program of introducing fluctuations
about the LDA by considering LDA states with constrains and summing
over, albeit in an approximate - mean field theoretic -~ fashion over these

constraints. The question is what can we expect tolearn fr. m this particular
scheme.

In general one of the poscible outcomes of the above self consistent proce-

dure with P(v) = } for all v is that all four charge densities 71, () converge
to the same one ,. In this case we learned very little. This circumstance
is entirely analogous to the case of spin polarized calculations where the self
consistency procedure converges to a symmetric, paramagnetic, state. We
have allowed the system freedom to fluctuate, for times long compared with



the inverse bandwidth (W) but such fluctuations turned out to be unstable
and in the ergodic limit disappeared.
A more interesting possibility is the case where n}T goes to n; 1 (: ﬁl)

but @] # 7@l. Now, the spin symmetry, on the time scale of -‘-’,’—,, is broken.
Of course it is restored in the ergodic limit as is evidenced by the fact that
P =P = % Namely, there are as many up sites as down sites and hence
the system is paramagnetic. This is the Disordered Local Moment (DLM)
state to be discussed in the next section.

An other interesting possibility is that n} " converges to n}! (In}) and
n; T converges to n; ! (1n;). In this state the local charge fluctuates between
at =Y, nr and A~ = T, A;. We shall refer to it as the Disordered Local
Charge (DLC) state. Clearly, the Mott-Hubbard state in Sec 2 is an example
of this interesting circumstance.

Naturally further cases could be considered but given the explicit exam-
ples to be discussed in the next section these two will suffice.

4 The Disordered Local Moment states of Iron

.V’Vhﬂe the Density-Functional theory in the Local Spin Density Approxi-

T

mation (LSDA) gives a good account of the magnetic ground state of most
metallic magnets[lS] it fails miserably in predicting the Curie temperature
Tr As is well known this is because in- LSDA at finite temperature the
local magnetization does not fluctuate in its direction, as it would in the
Heisenberg Model, and hence the entropv is only that associated with the
thermal excitation of electron-hole pairs. The scheme outlined in the previ-
ous section ideally suited for incorporating the missing fluctuation into the
theory. ~

The principles of introducing Heisenberg Model like fluctuations into an
electronic theory based on the Hubbard Model were discovered by Hub-
bard [19, 20] and independently by Hasegawa [21]. The way these notions
can be implemented into the Density Functional Theory, along the lines of
our arguments in this paper, are due to Pindor et al [22], Oguchi et al [23]
and Gyorffy et al [24]). In short one constrains the magnetization in each
unit cell to lie along a set of selected directions {é;} where é; is a unit vector
associated with the *» unit cell:

/d;!r m ()] .

my = é




Then, density matrix is given by

n(7) = no(Ma + (M - & _ (23)

where 0%, 0¥ and o? are the usual Pauli spin matrices and 1 is the unit
matrix. Moreover, the local effective potential has the form

1 1 ~ .
v = s(urtopa+S(u - )& (24)

where vy, v| are the potentials seen by T and | spin electrons respectively in
the frame of reference where the axis of spin quantization is along the local
direction vector é;. For reasons of symmetry it turns out to be the case that
in the disordered state it is sufficient to consider only directions which are
up and down with respect to a common axis of quantization é,. Namely,

é = +é, (25)

and hence the potential for an electron with’ spin pro_]ectxon along é; is vy
and vy with equal probabilities, P; = Py = 1 and the same is true for a spin

down electron. Thus we neglect the charge ﬁuctuatxons and study the simple -

bmary case of two states per site only. Averaging over all orientational con-.
“figurations using the SCF-KKR-CPA we find the partially averaged Greens
“functions (Goo(F,7;€))i1 and from this we ca.lculate the local charge den-

sities B} () and 7}(7). From these we recalculate effective potential v‘”
and v'” and proceed to self consistency. At the end we calculate the local

moment 1 .
pr=-s / de £(e) /n e o Im(Goo (7 )iy (26)

with a similar expression for p;. Clearly on account of symmetry u; =
p; = @. If the above procedure converges to a finite & there is a local
moment in the paramagnetic state. Otherwise, there is no moment in the
above sense and the paramagnetic state is a Stoner state [18, 19, 20, 21).
In Fe, Ce and Ni we found a moment in the DLM state in agreement with
experiments. In fig. 4 we show p for these three metals as a function of
temperature. The temperature dependence is due to the Fermi factors in
eq. 26 and in the formulae for calculating the various partially averaged
charge densities. Namely, it is the consequence of thermally excited electron-
hole pairs. Thus the temperature where the calculation converges to i = 0
is Ts the Stoner temperature. As expected it is very much larger than
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T.. Gyorfly et al [24] aiso investigated the stability of this DLM state to
symunetry breaking changes in P; and P). They found a Curie temperature
T. of 1250K. For a mean field theory this is in very qamsfactory agreement
with the experimental value of 1044K.

75 Toivards a theory of Mo'tt-Hubbard Insulators

~ Asis well known LDA predicts that the 39 transition metal oxides MnOQ, FeO
etc are paramagnetic metals in sharp contrast with the experimental facts,
according to which they are antiferromagnetic insulators. A w1y out of this
dilemuma is suggested by the fact that the spin polarized LSDA calculations
based on the observed, type I, antiferromagnetic structure gives a gap at the
Fermi energy (25]. However, this exchange gap is too small and in any case
these systems are insulators ahove the Neel temperature T. Evidently, to
land credence to the suggestion one must investigate the DLM state, which
should describe these systems above Ty, to see whether the gap survives the
loss of magnetic long range order.

Terakura et al [25) have performed the first DLM calculation for MnO
within the first principles framework of a non-self consistent KKR-CPA cal-

culation. They used vy and vy potential functions from their” a.nt1ferromag---» -
. netic ground state calculation. The density of states they found for the DLM.

state is shown in fig. 5. Clearly, there is a hint of a gap but it is hardly con-
vincing. We have repeated their calculation and found roughly the same
result (shown in fig. 6). In fact we have investigated the Bloch Spectral
Function, 4*(Kk, ¢), and found a smeared but nevertheless well defined Fermi
Surface surrounding the T point. Thus, we conclude that, for the set of non
self consistent potentials we used, the DLM state appears to be a metal.
On the other hand Hubbards suggestion, in his original paper, was that
the insulating gap is due to charge fluctuations. That both charge and spin

fluctuations may play a role was stressed by Cyrot [13). In short the above

first principles attempts do not exhaust even the readily tractable possibil-
ities offered by our treatment of fluctuations within LDA. We are currently

engaged on including charge fluctuations. Such procedures may be regarded

as first principles versions of Hubbards original model calculations [9, 10, 11).
They will easily accommodate such charge transfer gaps as favored by Zaa-

nen et al [26] and Anisimov et al [27) and will not be limited by the relative
weakness of exchange splitting in these systems.

Our hope is that through the 90's the possibilities of including fluctuation

11



into the Density Functional Theory to improve on the LDA will be fully
explored.
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Figure Captions
Figure 1. Two energy paradigms.
Figure 2. The conventicnal Density Functional Method.

Figure 3. The Hartree Fock and the split Hubbard bands for one band Hub-
bard model. ' '

Figure 4. The magnetic moment x in the DLM state as a function of tem-
perature found in Fe, Co and Ni,

Figure 5. (a) Total state densities of MnO (in states/Ry/MnO) in the fer-
romagnetic state, (b) in the antiferromagnetic states of the first kind, AF I,
(c) of the second kind, AF II, and (d) in the paramagnetic state. The vertical
lines denote the Fermi level. (after Terakura et al [25]).

Figure 6. The Density of States of MnO. The vertical line denotes the Fermi
level. (our DLM calculations).
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Landau-Ginzburg-Wilson
Functional Integral representation

Kohn-Sham
Density Functional Theory

§FMF(] = 0

Z = [dpePFMly)

F=-kgTIlnZ

difficult functional integrals
but simple FMF[p] =

= Jd%2[|Vef + aleof? + Blol* + ..

]

5FMF[(,D] =0

JFEXACT[,p] =0

simple minimization but
hard to find corrections to LSD

Figure 1: Two energy paradigms.
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W 6Q[n] =
= l.-8A
= (-‘.—2_1_vr!fr;n' N——
Z-tr{e-m?} DFT (71 ]))+ | o
. n9(7) = 3, [@n (P2 (€n)
Q=-kpgTIn2
Q = Q[no)

] ..— ‘F'ig_g:e. 2: The conventional Density Functional Method.
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