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Abstract

We intzoducea'coneeptuaifrarhewvrkwhichallowus'to-rrc_atcharge _
and spififluctuationsabouttheLocaldensityApproximation(LDA) " -
totheDensityFunctionaITheory(DFT)..We-illustr_tetheapproach -
by explicitstudyoftl_eDisorderedLocalMoment (DLM)_stateinFe
abovetheCurieTemperatureTcandtheMottinsulatingstateinMnO.

1 Fluctuations and Density Functional Theories

Fluctuations are strangers to Density Fmactional Theories, whether quan-
tum [1] or classical [2]. In what follows we shall analyze the burden of this

remark and argue tha_.the lack of formal provision for including fluctuations

' into ueh, eorioif
1.1 Two free energy paradigms of many body theory

In fig. 1 we list side by side the principal, well known, formulae of the

Landau-Ginzburg-Wilson (LGW) and the Kohn.Sham (KS) type of ap-
proaches [3, 1] to problems with many interacting degrees of freedom.

Evidently, Landau's advice [,1] is to make up a free energy functional
FMF[_] of some variable field, order parameter, _(i) and minimize it. This
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is themean fieldapproximation.Ifthisisnot good enopgh one istoexpo-
tnentiateF'uF[_].Namel._,make a11predictionsofthe theory be functional

_y,^fF[_] \\:henaverages with respect to the probability distribution ½e-
evaluating the functional integrals, as in finding the partition function Z,
one often proceeds using the saddle point method. This requires the ex-

pansion of FMF[_] about its minimum, at eMS, in powers of the deviations
6_(_ = _(_ - _-'MF(_')and then performing the functional integral.

Evidently, this approach to the problem is a theory of fluctuations par

ezcellence. It is a particularly powerful method when the most significant
fluctuations can be identified by physical intuition. Although statistical

mechanics problems are the most frequent examples of this approach the
many-electron problem is often cast into the above form using the Hubbard-

Stratanovich transformation [5].
By contrast in density functional theories there are no fluctuations of

the field _(_') about the mean, _(r"), or some other standard _MF(_. It is
always the average field _(r-"j that occurs. Even in an exact theory one is to
minimize the exact functional fl[_]. Unlike the previous approach in which

FMF[_] remains of the same form (usually a simple polynomial in _ and
V_) a,s progressively better approximations are sought, density ftmctional

_ theories require more and more complicatedfunctiortal_s, fl[_], as the level .
of approximation is improved: On theother hand the matl_ematical tgsk of
minimizing fl[_] remains thes_ane. Indeed, it is the relative simpncity of
the minimization procedure compared with doing functiongI integrals, and

the availability of a vast arsenal of numerical techniques for doing it that
are the principal virtues of this approach [1].

Our purpose in this talk is to suggesl; a way of including fluctuations,
in the above sense, into the density functional theory approach to the inho-

mogeneous many electron problem and thereby bring physical intuition to
bear on the problem of going beyond the Local Density Approximation.

1.2 The method of summing over constraints

Recalling the conventional density functional argument, summarized in
fig. 1, we note that the spectacular achievement of replacing the immense

complexity of fluctuations in Fock Space by a minimization problem has
been bought about at the price oi" introducing an effective potential func-

tional v_/l(F',[n]) which is, to say the least, difficult to fathom beyond the
Hartree approximat ion.

Our proposal is lo let v(F', In]) fluctuate in ac.cordance with our physical
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intuition and identify the predictions of the theory with averages over an

appropriate ensemble of such fluctuations.

To lay the formal foundations for such a scheme we must return to the

origin of the Gibb distribution function /_ = Z -1 exp{-/3H}, As is well

known it may be obtained by minimizing the generalized grand potential [6]

with respect to arbitrary variations in the density matrix ,6 defined in an

appropriate many-body Hilbert space. We shall now present an alternative

to the above procedure which will turn out to be useful. Although we shall

make no effort to be rigorous we hope that our arguments are persuasive.

Let us look for a density matrix p({#i}) such that an arbitrarily selected

set of operators {_} have a prescribed expectation value

tr (_((pl})a;) -/.Li. (2)

Clearly, such density matrix can be found by minimizing f)[_] in eq. 1 subject

to the constraints in eq. 2. Then the grand potential associated with the

prescribed set of averages {p_} is

- _ - - --- (3) :

- _ld the probability tha't the system takes on a partic_,dar set (.pi} is -

1

P = (4)
where

" Z = II.. f dpl e -zn({u'}) (5)
I

and f dp; is a generalized symbol for summation or integration as follows

from the nature of the averages {pi}.

Evidently, the above procedure should be exact. It merely breaks up the

ful_ task on the left hand side of fig. 1 into two parts: solving the problem

with constraints and then surm'aing over the constraints with appropriate
we.ight s.

The next move in our derivation is now clear: we should deploy the den-

sity functional argument for converting the many body problem d_fined by

the density matrix _({pi}) to an effective, self consistent one electron prob-

lem in place of the conversion depicted in fig. 2. Naturally, such reasoning
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leads to a }_ohn-Sham type of Eu]er-Lagrange equation for the constrained

problem:

(-V _ + v_]/(_; [n(_; {_})])) _.(r') = ,._.(_ (G)

n

where it is assumed that the averages {#;} are unique functionals of n(_,
and hence it makes sense to search-for a infumurn of ft[ni among functions
n(F; {#d}) which correspond to the set of prescribed averages [7]. Of co_rse,

technically such problems would be solved by the method of Lagrange mul-
tipliers. Moreover, one may wish to consider the spin polarized version of

the above theory where Q depends on ni( _ and ni( _ separately. However,
we leave such details to the next section where particular instances of our

scheme will be discussed. What matters here is that the gedanken calcu-
lation prescribed by eqs. 6, 7, and the recipe that after each iteration the

calculated charge density n,,2t(_';{tti}) has to be projected back into that
part of function space which is consistent with the constraints, may have a

solution. Clearly, if it does, the grand potential defined in eq. 3 is given by

= CS)

- - - and hence we have recovered the statistical description of eqs. 4_ 5.
. - In short-we have arrived at the following sensible prescription for includ-

- ing fluctuations_ntothedensityfunctionaltheories:

i.Carryout densityfunctionalcalculationsfora systemwith a selectionof
constraints;

il.Calculateaveragesovertheensembleofconstraints,inotherwordsfluc-
tuations,usingGibbsianweightsdefinedeqs.4,5 and 8.

Consequently,to introducefluctuationsabout theLocal DensityorLo-

calSpin Density Approximation we should carry out the step in L) using
the LDA or LSDA. Clearly, this is a very flexible scheme whose power de-

pends on finding the constraints which correspond to the physically relevant
fluctuations. In what follows we present explicit examples of how it works.

2 The Hubbard Alloy Analogy Approximation

Although our aim is to carry out the above program on the bases of first

principles calculations, as a first primitive example we wish to consider a
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simple model, lit is defined by the one orbital per site Hubbard Hanfilto-

nianIS]:

U c! ci,,c_,__,_, (9)H: - E _,J4,_._J,_+-i.E ,,o °
<ii),,, i,_

where i and j refer to lattice sites, a the projection of the electronic spin
1

along the z-a.x_is, cl,_ cLc, are the usual creation and annihilation operators,
tij is a hopping integral and U is an on-site repulsive interaction parameter.

A way of tackling this problem is to define the Greens function:

G,,(ij;t)= -i<T{ci,¢(t)c_,¢(O)}) (10)

where T isthe usualtime orderingoperator,deriveitsequationofmotion

and solveit by decouplingthe two particleaveragewhichappearsin such

an equationas an inhomogeneous term. Namely, we make the following
approximation

<T(_L.(t)_,_.(t)_.(t)_},_(0))>__,_.(t)o..(ij;t). (11)
Ifwe furtherassume that

.o _ -.

: - - -- - ._,.__(t)= <4_.Ct)cq.-.(t)> (12) := -
.... -- - w .--

.o

_- .xearedeal.{ngwiththe usualHartree-Fockapproximation[8].The seminal, _._ -

suggestionofHubbard [9,10,11]was thatone shouldnotsetn___(t)equal
to the averageoccupationnumber but allowitto fluctuatebetween the

values0 and 1. Althoughsuch classicalfluctuationcannotmake up forthe

errorintroducedby thedecouplingineq.12 itturnsoutthattheyrepresent
a considerableimprovement on theHartree-Fockapproximationwhich,like
theDensity_'h.mctionaltheoriesof theprevioussection,doesnot allowfor

any fluctuationin the potentialan electronsees.Briefly,Hubbards alloy
analogyprescriptionwas to solvetheGreens functionequation:j.

Z[(,-,0+u_,_.)6.+t.]Q°.(l/;d=6q (13)
I

which followfrom eq.12 IS],fora fixedsetof occupationnumbers {ni.,}
and considerthe averageof Gc,c,(ij;_)over an ensembleof configurations
{ni,_} as the approximation for the one particle Greens function defined in
eq. 10 e.g.:

G_,,(ij;¢) = (O_.(ij;{ni,.};¢)). (14)
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This recipe was completed by the assumption that the occupation num-

bets {n;,_,} are independent random variables and hence it is sufficient to
carry out the average in eq° 14 within the well tried Coherent Potential

Approximation (CP.&)[12].
As is well known the above scheme leads to a splitting of the Hartree-

Fock band for U > zt, where z is the number of nearest neighbours and
hence zt is the bandwidth. As a consequence, for a half filled band and

large enough U; there will be a gap at eF as shown in fig. 3. This state is
widely regarded as a good description of a Mott insulator [9, 10, 11, 13].

Clearly, we have recalled the above example to illustrate how including

charge fluctuation about the Hartree-Fock solution can lead to qualitatively
new results and dramatically new insights. The remainder of this contri-

bution will be devoted to discussing the first tentative steps towards imple-
mentation of the above scheme for describing charge and spin fluctuations

about the LDA [13].

3 Fluctuations about the Local Spin Density Ap-
proximation within the SCF-KKI:L-CP.&

.-

- ._- - - _- Let "as consider a "simple explicit version of the fluctuations discussed in _ _:: _ --

- -. Sec.:l' To begin with let us constrain each site to be in one of foltr pos- -:_ _
:- slblestates:excesschargewith9verallspinup (-k-T),excesschargewith -_ -

overallspindown (+I),chargedeficitwith overallspinup (-I)and char-ge
deficitwithoverallspindown (-£).Thismeans thatata sitei and forspin
projectiona therewi_ be fourpossiblechargedensities

_,_(_=_,+_(_,_,+_(_,_-J('-'),_2(_. (15)
As foras the statisticalsum over constraints(seeeqs.4 and 5) are

concernedwe shallwork in themean fieldapproximationand henceassume
thateachsiteiisinone ofthefourstateswithprobabilities:

v(_)= P(+T),P(+I),P(-T),e(-I) (16)

independentfrom the statesof the othersites.This impliesthattheef-

fectivepotentialat /_ for an electronwith spin a willbe a functional

of fi_'o(r"),and, through the non-localHartree contribution,the average

_ = 2_P(_)%(_ e.g.:

_.JJ,_=vLb( [-_-__ ])
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\Ve now seek to solve for the electronic structure for each complete set

of constraints {n}'e(r-')} and average the energy and other observables over
all constraints using the mean field theoretic weight

P ({"'}) = II P;(_). ' (18)
i

As is well known from the theory of disordered systems a useful general
quantity to average is the electronic Greens function. In our case this is the
Greens function which satisfies the Kohn-Sham equation:

[ V2 +Z_,.]'t'''- d t_ _r-/_)] 6"_:,(_',,'-';_)6(g'- r3) (19)

for partic darcormg ation and potentialrunctionaade ed in
eq. 17. The quantity of general interest from which many useful proper-

ties like the averaged total energy [14] can be calculated is the averaged
Greens function:

where (...) stands for average with respect to the distribution given in eq. 18. -._

_ _ A.well tried method for dealing with electrons in a random crystal poten- - - _ .
- _ - tim for Wh.ich the potential wells on different sites fluctuate independently -- "

• -: - is the Coherent Potential Approximation [14]. Fortunately, this method has - - - -r .....

-- been implemented for such mu/fm tin type, crystal potentials as one usuatly -_
studies in connection with density functional theory. The procedure is called

the KK1K-CPA method [15, 16, 17]. It was developed for dealing with the
electronic structure of substitutional metallic alloys but it turns out that its

numerical techniques for implementing the Self Consistent Field Korringa
Kohn Ro_toker Coherent Potential Approximation (SCF-KKI:bCPA)algo.
rithm are ideally suited for describing the internal, many body, fluctuations
we are concerned with here.

- Note that according to our recipe, so far, eq. 19 has to be solved _eLf-

consistently before averaging. Of course the KK1L.CPA proper, being a

strictly one electron theory, is not designed to deal with this complex prob-
lem. However, within the spirit of the mean field theory implied by eq. 18

the order of averaging and self consistency can be interchanged. The result-

ing theory is the SCF-KK1K-CPA algorithm. As we shall illustrate presently
it facilitates the practical consideration of a large class of problems we care

to pose within the general framework in Sec. 1. In particular the following
procedure is fully tractable:

7
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1. start with a set of charge distributions _', _' and the corresponding
probabilities P(v) listed in eq. 16;

2. calculate the effective potentials --elv;_,]'V(r-')using the Local Density pre-
scription indicated in eq. 17;

3. placing the al:,ove potential on a lattice according to the probability
distribution in eq: 19 solve for the partially averaged Greens functions

(G_,o(F, _; e)>_,_,using the KKft-CPA scheme;

4. from the partially averaged Greens functions in 3.) calculate the local
charge densities

n_(_ = - f d_ f(e) m_<G_(e, _'; _)),,_ (21)

for v = +T,+_,-T and- _;
t_

5. repeat the procedure until convergence in -v

Note that during the above self contained part of the calculation the

probabilities P(v) are given and not changing. To complete the theory one

_ _ _ must specify them by returning to eqs. 4, 5 and 18 for inspiration. _ - ... _
- - F_r example one coulddeterminethem by requiringthat the freeen- -'- "

: - .ergyF-- IHi - ST isat a minimum with respectto'variationsin th.eSet .. -
-- - {P(v)}.We hastento add thatmost oftheposs_ilitiesremain unexplored. --- "- -

In theexplicitexampleswe shalltreatin the next sectionallfourstates
v = + T,+ I,-T,-_ are takento occur with the same probability.Evi-

dentlythiscorrespondtoa hightemperaturestatewhich isfullydisordered
withrespecttothe fluctuationsconsidered.

To su_rm-narlzethe argumentsin thissectionwe note that we have set
outperhapsthesimplestversionofourprogram ofintroducingfluctuations

about theLDA by consideringLDA stateswith constrainsand summing
over,albeitinan approximate- mean fieldtheoretic- fas_donoverthese

constraints.The questioniswhat canwe expecttolearnfr_m thisparticular
scheme.

IngeneraloneoftheposAbleoutcomesoftheaboveselfconsistentproce-

durewith P(v) = ¼ for all v is that all four charge densities _'.(r')converge
to the same one _,. In this case we learned very little. This circumstance

is entirely analogous to the case of spin polarized calculations where the self

consistency procedure converges to a sym_metric, paramagnetic, state. \Ve
have allowed the system freedom to fluctuate, for .times long compared with
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the in_,'erse bandwidth (_), but such fluctuations turned out to be unstable
and in the ergodic limit disappeared.

( )A more interesting possibility is the case where n +l goes to ng T = 7i_

but g_ 7_ g_. Now, the spin syrr_netry, on the time scale of _, is broken.
Of course it is restored in the ergodic limit as is evidenced by the fact that

1 Namely, there are as many up sites as down sites and hence

the system is paramagnet.ic. This is the Disordered Local Moment (DLM)
state to be discussed in the next section.

• l
An other interesting possibility is that n + converges to n_+1 (_n +) and

ng Tconverges to n_"1 (½n_'). _ this state the local charge fluctuates between
g+ = _, g+ and g- = _ g_'. We shall refer to it as the Disordered Local

Charge (DLC) state. Clearly, the Mott-Hubbard state in See 2 is an example
of this interesting circumstance.

Naturally further cases could be considered but given the explicit exam-

ples to be discussed in the next section these two will suffice.

4 The Disordered Local Moment states of Iron
-

_ _ .While the Denslty-Functio.n_ theory in the Local Spin Density Approxi- -

_ - _rn-atibn (L.S_A)-g_ive.s a good account of the magnetic ground state of most -_:....

- metallic magnets-[18] it fMls-mlserably in predicting the Curie temperature _ -
T_ A's is well known this is because in-LSDA at finite'temperature the - --

local magnetization does not fluctuate in its direction, as it would in the
Heisenberg Model, and hence the entrop,, is only that associated with the

- thermal excitation of electron-hole pairs. The scheme outlined in the prev].,
ous section ideally suited for incorporating the missing fluctuation into the
theory. "

The principles of introducing Heisenberg Model like fluctuations into an
electronic theory based on the Hubbard Model were discovered by Hub-

, bard [19, 20] and independently by Hasegawa [21]. The way these notions

can be implemented into the Density Functional Theory, along the lines of

our arguments in this paper, are due to Pindor et al [22], Oguchi et al [23]
and GySrffy et al [24]. In short one constrains the magnetization in each
unit cell to lie along a set of selected directions {_} where _ is a unit vector
associated with the ith unit cell:

,_'z,= e'l/d3r '_'(r-)l ' (._2)



Then, densitymatrix Jsgivenby ,,

= + (23)

where _=, _ru and _rx are the usual Pauli spin matrices and a is the unit

matrix. Moreover, the local effective potential has the form

vej! 1 ,'1
- _(vT + vi)' + _(v_ - v_)_. _, (24)

where vT, v I are the potentials seen by T and I spin electrons respectively in
the frame of reference where the axis of spin quantization is along the local
direction vector _. For reasons of syrm'netry it turns out to be the case that
in the disordered state it is sufficient to consider only directions which are

up and down with respect to a common axis of quantization ez. Namely,
[

_ = ±_, (25)

and hence the potential for an electron with spin projection along _ is vT
and v I with equal probabilities, PT = Pl = 12and the same is true for a spin
down electron. Thus we neglect the charge fluctuations and study the simple . -. -

_ - binary case of two states per site only. Averaging over all orientational con-. -: ....
_ . figurations using the SCF-KKlt-CPA we find the partially averaged Gree_:( _ ....

= " ._ • functions/Ga_,(_',e; e)>_Tand from this we calculate the local c_ar-ge den- -- - " -

-- sities _(_ and-_l(O. :_'_.'omthese we recalculate effective pot'entlal v_If ....

and v_I! and proceed to self consistency. At the end we calculate the local
moment

,T e',i: e; ¢26)
with a similarexpressionfor#I. Clearlyon accountof symmetry #I =
#1 = 3. If the above procedure converges to a finite _ there is a local
moment in the paramagnetic state. Otherwise, there is no moment in the

above sense and the paramagnetic state ]s a Stoner state [18, 19, 20,21].
In Fe, Co and Ni we found a moment in the DLM state in agreement with
experiments. In fig. 4 we show /_ for these three metals as a function of
temperature. The temperature dependence is due to the Fermi factors in

eq. 0.6 and in the formulae for calculating the various partially averaged
charge densities. Namely, it is the consequence of thermally excited electron.

hole pairs. Thus the temperature where the calculation converges to _ = 0
is Ts the Stoner temperature. As expected it .is very much larger than

l0



Tc. GySrffy et al [24] aiso investigated the stability of this DLhi state to

synunetry breaking changes in PT and Pl. They found a Curie temperature

Tc of 1250K. For a mean field theory this is in very satisfactory agreement
with the experimental value of 1044K.

5 Towards a theory of Mott-Hubbard Insulators

As is well known LD A predicts that the 3_ttransition metal oxides hInO, FeO

etc are paramagnetic metals in sharp contrast with the experimental facts,
accord_ing to which they are antiferromagnetic insulators. A w_y out of this
dilen_na is suggested by the fact that the spin polarized LSDA calculations

based on the observed, type II, antiferromagnetic structure gives a gap at the

Fermi energy [25]. However, this exchange gap is too small and in any case
these systems are in._alators above :he Neeltemperature TN. Evidently, to
land cre.'lence to the suggestion one must investigate the DLbl state, which

should describe these systems above TN, to see whether the gap survives the
loss of magnetic long range order.

Terakura et al [25] have performed the first DLM calculation for MnO
within the first principles framework of a non-self consistent KKP,.-CPA: Cal-

- _ culation. They used vT and v i potential functions from their'antife_rromag ......
- netic ground state calculation. The density of states they found forthe.DLM

state is shown in fig. 5. Clearly, there is a hint of a gap but-it is hardly ¢0n- -_ - --
.... vincing. We have repeated their calculation and founcl roughly the same - -

result (shown in fig. 6). In fact we have investigated the Bloch Spectral
Function, A/'(k, e), and found a smeared but nevertheless well defined Fermi

Surface surrounding the F point. Thus, we conclude that, for the set of non

self consistent potentials we used, the DLM state appears to be a metal.
On the other hand Hubbards suggestion, in his original paper, was that

the insulating gap is due to :harg_ fluctuations, That both charge and spin
fluctuations may play a role was stressed by Cyrot [13]. In short the above

• first principles attempts do not exhaust even the readily tractable possibil-
ities offered by our treatment of fluctuations within LDA. We are currently

engaged on including charge fluctuations. Such procedures may be regarded
as first principles versions of Hubbards original model calculations [9, 10, 11].
They will easily accormnodate such charge transfer gaps as favored by Zaa-
nen et al [26] and Anisimov et al [27] and will not be lixrfited by the relative
weakness of exchange splitting in these systems.

Our hope is that through the 90's the possibilities of including fluctuation

ll
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into the Density Functional Theory to improve on the LDA will be fully
explored.
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Figure Captions

Figure 1. Two energy paradigms.

Figure 2. The conventicnal Density _mctional Method.

Figure 3. The Hartree Fock and the split Hubbard bands for one band Hub-
bard model.

Figure 4. The magnetic moment # in the DLM state as a function of tem-
perature found in Fe, Co and :Ni.

Figure 5. (a) Total state densities of MnO (in states/Ry/MnO) in the fer-

romagnetic state, (b) in the antiferromagnetic states of the first kind, AF I,
(c) ofthe second kind, AF II, and (d) in the paramagnetic state. The vertical

lines denote the Fermi level. (after Terakura et al [25]).

Figure 6. The Density of States of MnO. The vertical line denotes the Fermi

level. (our DLM calculations).
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Landau- (Slnzburg-_Vilson Kohn-Sham

Functional Integral representation Density Functional Theory

6FMF[_] = 0 6FMF[_] -- 0

Z = f d_ e-_rMr[_]

6FZXACr[_]= 0
F = -ksTln Z

difficultfunctionalintegrals simpleminimizationbut

but simpleFMF[_] = hard to findcorrectionsto LSD

= f dd_[IV_l=+ _J_l"+ _1_14+..,]
-.

-

- - .

Figure 1: Two energy paxadigrns.
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1
6n[.)= o

• = _c-:_
_2

Z-tr

f_ = -kBTln Z
= f_[no]

Fi.g_'e2: The conventionalDensityb'hnctionalMethod.-
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