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A wide variety of physical phenomena arising within many scientific dis-

ciplines can be described by systems of coupled partial differential equations

(PDEs). The numerical approximation of these PDEs often involves the solu-

tion of a system of algebraic equations (possibly nonlinear) which are typically

large, sparse and nonsymmetric. The increasing computational demands re-

quired by the solution of such complex scientific applications has motivated the

current direction toward large-scale parallel computers. We, therefore, consider

solution techniques of representative systems of equations on large scale IvIIMD

machines.

Our primary emphasis in this study is the evaluation of iterative meth-

ods for the solution of nonsymmetric systems. In particular, we discuss two

Krylov subspace methods, the conjugate gradient squared algorithm (CGS) and

the generalized minimum residual method (GMRES), along with the multi-

grid algorithm (MG) on massively parallel MIMD architectures. The focus of
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this evaluation considers the performance of various algorithm and implementa-

tion variations over a broad selection of problems using a parallel machine. In

conjunction with the Krylov subspace methods, a number of classical precon-

ditioners are considered including Gauss-Seidel, Jacobi, and polynomial based

methods as well as the more recent multilevel preconditioners such as multigrid

and multilevel filtering. In conjunction with the multigrid method a number

of relaxation schemes are considered including Jacobi, and Gauss-Seidel (point,

line, and block). Additionally, the parallelization tradeoffs associated between

the full multigrid variant and the standard 'V' cycle method will be discussed.

Some of the key issues that are considered in tile context of both the Krylov

subspace and multigrid methods include tradeoffs between inner product, ma,

trix multiplication and approximate factorization operations (such as ILU or

line relaxation) and their effects on numerical performance, load balancing, and

communication overhead.

An important aspect of this work is the application of these algorithms to

relatively complex phenomena. To facilitate the p cogramming and implementa-

tion of the various methods for a relatively wide range of problems, a distributed

sparse matrix format is used. In particular, the format considered is similar to

other sparse matrix specifications proposed for serial/vector machines. The pri-

mary difference is that the matrix data structure is distributed over all the

processors in such a way that each processor contains a local discretization of

the PDE problem within a specific _ubdomain. In this fashion, the different

solution algorithms can be designed relatively independently of the specific ap-

plication. This implies that many of the low level parallelization routines (e.g.

cornmunication, data shuffling and preconditioners) need not be redesigned for

each new application.

Timing results and comparisons between the methods are given based on

implementations on an NCUBE/6400 1024 processor hypercube. A wide vari-

ety of PDE applications are considered in making these evaluations including

a nonlinear system of equations arising from a CFD application. Emphasis is



placed on issues and results specific to nonsymmetric systems (such as the role

and effect of preconditioners as well as the explicit orthogonalization issues in

Krylov subspace methods). In addition_ we offer observations regarding the ro-

bustness of each algorithm and the corresponding programming effort (serial and

parallel) required to apply them to complex problems. Based on the NCUBE

results a timing model is developed for the majority of these algorithms which

describes the execution time and efficiency of each method as a function of the

number of processors, size of the grid, computation speed and communication

costs. Using this model, general conclusions are made corresponding to other

. parallel machines (including more massively parallel systems).
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