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ABSTRACT

Double-Pomeron processes have been shown to be an important and

novel source of hadron production at moderate energies at the ISR. 1-6

These processes are expected to provide glue-rich hadrons from 1 GeV

to 10 GeV or more, encompassing the states consisting of u, d, s and b

quarks. The double-pomeron cross sections 7-8 for central hadroproduction

are calculated for p x p and Au x Au at RHIC.

Two-photon production of hadrons in the central region begins to dom-

inate or at least become comparable to _he double-Pomeron processes as

the Z of the beams increases from p to Au. Since photons couple to charge,

these hadroproductions involve mainly quarkonia and multiquark states.

Therefore, a comparative study of these processes is expected to provide

new insights into the constituents of hadronic matter. The two-photon

processes are calculated following the recipe given by Cahn and Jackson 9.

The paper starts out out with a thorough discussion of the relevant

kinematics, phase space and Regge amplitudes.
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1. Kinematics

In this section are collected relevant kinematical variables for double-Pomeron exchange

(DPE) reactions• This represents a concise update of an Internal Report by S. U. Chung ]°.

Many of the approximations introduced in this note are checked against a mode of run at

RHIC of p x p at 100 GeV/c, as an example. It can be shown that all the approximate

formulas hold also for heavy-ion collisions, e.g. Au × Au at 100 GeV/u (per nucleon).

Consider a reaction

a+b--,1+3+2 (1)

where a, b, 1 and 2 are initial and final protons and 3 represents tile central hadronic

system (see Fig. 1). The four-momenta may be expressed as

Pl = (Ei,_i,ki), i = 1,2,3

where the second and the third elements are 2-dimensional transverse and 1-dimensional

longitudinal components, respectively. Whenever possible, subscripts a and b will be

dropped from the initial protons. Thus, the magnitude of the initial proton momenta will

be written Pa --Pb = P and Ea = Eb -" E.

These variables are given simple expressions in terms of the rapidity y and the trans-

verse mass ,_,

E = m cosh y

k=msinhy, y>0

Bi=_icoshyi, i=1,2,3

ki = fftisinhyi, Yl > 0, Y2 < 0 (3)

rhi= v/q 2+m 2, i =1,2
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where m is the mass of the beam particles artd ms is the effective mass of the central

system. The rapidity of the central system can be expressed as

1 (E3-{" ]¢3)Y3 -" _ln E3- k3

-- tanh -1 g (4)

a_d similar formulas hold for y, yl and y2.

The four-momentum conservation is expressed by

0=4"

O=kl +k2+k3 (5b)

= _hl sinhyl + rh2 sinhy2 + rh3 sinh y3 (5c)

v/_ = 2E = E1 + E2 + E3 (5d)

= 2m cosh y (5e)

= rh1 cosh yl + rh2 cosh V2 + rh3 cosh Y3 ( 5 f)

where s is the square of the CM energy• Eq. (5c) implies that

rhle yl + rh2e y2 + Cn3ey_ = rhle -gr + rh2e -y2 + rn3e -y3 (6)

which can be used to write energy conservation as

2mcoshy = rhle y_ + rh2e y2 + rh3e y3

= rnle -yt + m2e -y2 + rn,3e-ya (7)

In the DPE region, one must have y, yl and -y2 large and positive. For example, at RHIC

with p × p at 100 GeV/c, the rapidities are approximately y __ yl _- -y2 _- 5.3, while y3

and rh3 of the central system must remain at moderate values, e.g. rh3 __ 1 _ 10 GeV and

y3[ < 1.5 (which 'defines' the central systcm).

Energy conservation may thus be expressed as

v/s _- rue y _- rh_e yt --_ r_z2e-_/2 (8)
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Let e be equal to 1 - XF where xF is the Feynmann x, i.e.

p2= (1- _2)p (9)

In the DPE region, the e's are very small; in general it is necessary to retain only the

first order in e's for most relationships. One notable exception occurs for those involving

four-momentum transfers. They are defined as foUows

t2 -- (Ph -- P2) 2 (10)

which are given by

-tl = -2m 2 + 2(EaE1 - PaP1 cos al)

--_ --2m 2 + 2(EEl - PP1) -b 2p(pl --Ik]l)

-t2 = -2m 2 + 2 (EbE2 - PbP2 cos a2)

-2rn 2 + 2(EE2 -- PP2) + 2p(p2 --[k21) (11)

where al is the scattering angle (assumed to be small). The energies above can be approx-

imated by

Tn 2

E__p+ _
2p

vtz2

E_= r(1 - _l)+ _ (1+ _ + _) (12)

and similarly for E2. Note that terms up to second order in el have been retained in the

expression above. Substituting Eq. (12) into Eq. (il), one obtains

-_1-_(_m): + (1+_)q_

-_ _ (_._)2+ (1+_)q_ (13)

where one has used approximate relationships
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k] __ (1 -el)p-(1 -l- el) \_p]

(141
Note that k2 is negative in our definition corresponding to y2 < 0. Note also that the

minimum values for -tl and -tz involve second order terms in the e's and hence can be

ignored for most applications. However, photon exchanges involve t -1 propagators in the

amplitude, and the minimum values for -t prevent two-pho*.on exchange amplitudes from

'blowing tlp.'

Substituting Eq. (14) and Eq. (12)into Eqs. (55) and (5d), one obtains

(¢1-e2)p_k3- ( q_ - q_ )2p

which can be added and subtracted to give

2Pe1_- E3 - k3 + ( q_ - q_ )2p

2pe2 _ E3 + k3 - ( q_ 2p-q_ ) (15)

By multiplying the two relationships above, one obtains

rh_ (2p)21,12 - (kp) (q___ q_)
(16)

Or: dropping the second-order terms, one gets the farrriliar result

rh_ __sele2 (17)

which shows that the transverse mass of the central system is rela'_cd to the product of

two e's. One may introduce a unitless quantity v = rh2/s. Then one has

7-3_'__,¢2 (18)

From Eq. (51), the effective mass of the central system is given 1,y

7n___se,¢2-I'[,+ 612 (19)
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The second term above can be ignored as long as the q's are sufficiently small

ql << v/_el

a2 << v/se2 (20)

For double-Pomeron processes, these conditions are met when the slopes of the -t dis-

tributions are sufficiently large; two-photon productions involve photon propagators, so s

that the q terms can always be ignored. For p × iv at 100 GeV/c, for example, one has

typically e _ 0.03 for _._ _- 5 GeV. Suppose further that the slope of the -t distributio._

is b __ 10 GEV-2; then -t --- 0.1 (GeV/c) 2 and q _ 0.33 GeV/'c. Note that the minimum

of -t as given in Eq. (13_ is small indeed and can be ignored in this approximation. It is

seen that in this case Eq. (20) is satisfied, so that in most applications the transverse mass

in Eq. (17) can be replaced by the mass itself.

The relationships Eq. (15) can be used to recast the rapidity of the central system [see

Eq. (4)]

l ln (e_21) (21)
D

Y3"_ 2

In the DPE region, the e's cannot be arbitrarily large; their upper limits are in fact given

by the maximum allowed effective mass m3 = mz(_ 10 GeV) of the central system, as

follows

vq (22)
For a given m3 the minimum e is then given by, from Eq. (18),

7"3 m3
¢0 = -- = V/v_ (23)

ez

Therefore the absolute minimum of e0 occurs for the minimum allowed effective mass

m3 = m0(--_ 1 GeV) in the above expression, corresponding to the minimum of 7"3,i.e.

ro = m2/s. For v/s __ 200 GeV, the maximum and milfimum values of e are 0.05 and

5 × 10 -4, respectively. For a given m3, the minimum and maximum values of y3 are given

by, from Eqs. (17), (21) and (22),

= .... f- In -- (24)
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Note that y0 > -2.3 and yz < 2.3 for ali m3.

In practice, the rapidity y_ of the central system may not be arbitrarily as large or small

as given above, as its decay products then escape detection in a finite detector. Suppose,

for example, that

ly l<I (25)

fora detectorto have 90% or betteracceptanceforthe decay products.Then, from Eq. (4),

one finds

(e2-1) r_:__1.18_3 (26)131< 2e

which shows that _he maximum allowedlongitudinalmomentum of the centralsystem is

proportionalto itsmass--a sensibleresult.The allowedregionof y3 isillustratedin Fis.

2. The constraintof Eq. (25) impliesthat the differencebetween e'scannot be arbitrarily

large;indeed,from Eq. (21),one obtains

e_i = e± 2 (27)
_2

A more systematic approach to delineating the allowed DPE region requires introduc-

tion of 'rapidity gaps. _ Define them as follows

AI --Yl --Y3

&2 = y3 - Z/2 (28)

To progress further, approximate forms of the rapidity are necessary. Substituting Eq. (15)

into Eq. (4), one obtains

The kl and/c2 as given by Eq. (14) can be used in the definitions of y_ and y2, identical

to those of Et I. (4), to find
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These relationships show that the rapidity gaps assume elegantly simple forms, as fol!ows

They are related, through Eq. (18),

Note Mso, from Eq. (21),

z_2 - zX___2y3 (33)

From these, one can draw the allowed DPE region as shown in Fig. 3. Also shown in the

figure is the region for good detector acceptance, e.g. 1931< 1.

2. Phase Space

Consider production of n particles in Reaction (1). The invariant phase-space element

may be defined by

dp(n) = \-_i / Pi-Pa - P_, (34)"= i=1

which can be broken up into two pieces with an intermediate system 3 of mass rrt3, as

follows

dp(123;3 _ f)= dp(123) dm_ dp(3 _ f) (35)

where the central system 3 couples to f = n - 2 particles. It can be shown easily that

integration over the four variables

d3 p3 dm_
2E3

eliminates the 5-function contained in dp(3 --, f) and Eq. (35) reduces to Eq. (34). The

second phase-space element dp(3 _ f) in Eq. (35) is appropriate for the sub-processes

initiated by two Pomerons and two photons; as such it is absorbed into tl,e cr,,ss sccti,,ns

for these sub-processes, and therefore it is dropped in what follows.
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The phase-space element can now be written, in terms of the rapidity variables,

1 d2 dm_dp = -_ d2_1 d2_ _ dyl dy2 dy3

× + +

x g (rh1 siah Yl + rh2 sinh y2 + rh3 siah ys)

x 6 (rh] cosh yl + rb,2 cosh y2 + rh_ cosh y3 - 2m cosh y) (36)
s

Integrating over d2_'3, one eliminates the first _-function. Integrating over the dy2 takes

care of the second 6-function but brings in a factor in the denominator

Th2 cosh y2

and the third 6-fimction is eliminated by integrating over dyl but with y3 fixed. For the

purpose, one needs, from Eq. (5c),

rh1 cosh yl + rh2 cosh y2 [ dyl J ya

One obtains, finally,

d2q'l d2q'2 gy3 dm23 (37)
dp = 8Thlrh2 sinh(yi - y2)

In the DPE region, the factor in the denominator is near_.y constant [see Eq. (8)],

1 s

_lrh2 sinh(yl - y2 ) _- -_I eY_Th2e-_'_ "" -2

so that
1

dp " -_d2ql d 2q2 dy3 dr3 (38)

In certain applications, it is more convenient to re-express the last two variables in terms

of the e's [see Eq. (18) and Eq. (21)],

dy3 d7"3_ del de.2 (39)

Note that the Jacobian is equal to one. Integrating; over the a,zimuths for q'l and q2 and

noting the relationships Eq. (13),

dp _ _ dtl dr2 dy3 dr3

_- -ii- dt_ dt_ del de_ (40)
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It is seen that double-exchange processes involve four variables, provided that the phase

space for decay of the central system is integrated over, except its mass. They may either

be two -t's and two e's or two -t's and the y and _"of the central system. In both cases,

the invariant phase-space element has a constant and the same weighting factor• Note that

the two -t's range from (elm) 2 or (e2m) 2 [see Eq. (13)] to oo. Allowed DPE regions in

the space of y3 vs _ or of el vs e2 axe succinctly given in Figs. 2 and 3. t

3. Elastic and Total Cross sections

This section is due mainly to F. Paige. The elastic and total cross sections for p × p are

given in the context of the Regge phenomenology, end a prescription is given for going over

to hearT-ion collisions. The signature factors are neglected in this and the next sections.

The t distribution of p × p elastic scattering is _ven by, in the high energy limit,

~ !iF,(t)I (41)dt s2

where Fet(t) is the invariant amplitude

s (42)

with

"lp(t) -- t_ebt/4 (43)

and ct(t) is the Pomeron trajectory (a(t) _ 1) and b is the usual slope of the t distribution

(b "_ 15 GeV -z for v/_= 200 GEV). Note that so is the usual constant of Regge theory

(v/_=l GEV), and _/ is the p-p-Pomeron coupling constant independent of t and is a

unitless quantity. Integrating over t, one obtains

cret "_ _ (44)

The optical theorem relates the total cross section to the imaginary part of the elastic

scattering amplitude, which takes on the form, in the high energy limit,

_t _ !h,l[F_t (0)1 (45)
$
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so that

~ (4o)

Both the total and elastic scattering cross sections represent areas; it is therefore reasonable

to assume that both increase as A 2/3, when p x p is replaced with A x A where A is the

nucleon number of any heavy-ion species. This implies that

_2 cx A 2/3

b _ A 2/3 (47)

This resultfollowsonly ifthefactorizationholdsforA × A elasticscattering.As Pomerons

are supposed to couple to individualnucleii,multiplePomeron exchanges should be sig-

nificant,which breaks the factorization.However, the slope parameter isthought to bc

proportionalto the area,and the the A dependence given above should bc correctcvcn if

the facorizationfails.

The cross sections o'(AA) for A x A may now be written, in terms of ¢(pp) for p x p,

ct (AA) = f (A)A2/3¢t (pp)

o'd (AA) = f (A)A2/3¢ d (pp)

bcl (AA) = f (A) A2/3bel (pp) (48)

The coefficient f(A) allows for an additional slowly varying A dependence. It may be set

arbitrarily,

.f(A) = 1 + ln(A) (49)

so that f(A) = 2.4 for ct(A = 4) and f(A) = 6.3 for Au(A = 197). The following form,.das

are useful; according to Goulianos 7, one may write

o't (pp) _--38.5 mb, v/_ = 8 --, 20 GeV

_26.3mbq-(2.33mb)ln(2_n), v/s> 20GEV
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where _/s and rn are both given in GeV. The cross sections are for a × a [see Ref. 11]

at V_ = 126 GeV: <rt(a,a)= (250 + 50) mb, ¢rel(a,c_)= (45 + 15) mb and b,/(a,a)=

(100 -t- 10) GeV -2. According to the prescription Eq. (48), they are estimated to be 287

mb, 50 mb and 86 GeV -2, respectively. It is seen that the slope parameter is somewhat

under-estimated by Eq. (48).

At v/_=200 GeV, one has err(pp) _- 50 mb, _rel(pp) _- 8.7 mb and bd "_ 15 GeV -2. +

Then, for Au x Au at 100 GeV/u, the cross sectior_s are, from Eq. (48),

<rr(Au, Au) __ 11 b, ad(Au, Au ) __ 1.9 b, bcl(Au, Au) _- 3.2 x 103 GeV -2 (51)

These cross sections are not known experimentally; the actual values when available may

very well deviate by a factor of 2 or 3. One sometimes assumes, in the high energy limit,

trr (Au, Au) = 47rR 2 (52)

where

R __ (1.2 fm)Al 3 (53)

This gives err(Au, Au) = 6.1 b, to be compared to 11 b in Eq. (51).

4. Double-Pomeron Exchange Processes

The ctout)le-Pomeron (DP) exchange arr:plitude can be written

FDp (ab --+ 123) _ _[p(tl) [Zl]a(:t) Tp (t2) [z2] _(t2) Fpp (3 --+ f) (54)

where the invariant amplitude Fpp(3 --, f) refers to a process Pomeron+Pomeron (PP)

f for the central system 3. The residue functions "rp are as given in Eq. (43), and zi (i = 1,2)

is the cosine of the t-channel scattering angle, which is given by [see Ref. 12]

+ - -
Zi --

[,\ m)A m)]
A(ti,m,m) = ti (ti -4,n 2)
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The sub-energies si are given by

sl = (p2+ p3)2 = s + m2- 2vGE1

"_ m 2 + Sel

s2 = (P3 +Pl) 2 = 8 +m 2 -- 2V/_E2

-_m2 + se2 (56)
)

It is seen that, neglecting a tl dependence (which is 'absorbed' into 3'p),

s 1
zi _ -__- (57)

si --rrt 2 _i

With this, the amplitude _szumes a simple form, using Eq. (43),

FDp(ab _ 123) ,-_/32exp[b(tl + ta)/41 _ Fpp(3 _ f) (58)

The total cross section for the sub-process Pomeronq-Pomeron (PP) --+ f is expressed

fonow Zq.(35)1
z

f IFPe (3 _ f)12 dp(3 _ f) (59)

where the flux factor is evaluated in the limit of zero mass. The differential cross section

for the double-Pomeron exchange process now takes on the form

( )' (60)
d4crD" ".,fl4exp[b(ti +t2)/2] _ crpedr1 dr2 del de2

lt is seen that the slope of the tl distribution is one half that of the elastic scattering.

Integrating over tl and t2 and noting Eq. (17) and Eq. (39), one obtains

dm] dy3 _ _ o'pv (mi) (61)

The totM PP cross section is thought to be nearly constant and is given by, according to

Streng 13,

crpp __ 140 itb (62)

This shows that the DP cross section has roughly a m32 dependcl:ce.

It is important to compare the DP cross section Eq. (61) to the elastic cross secti,m

Eq. (44). Because of independence of tl and t2, the DP cross section has a b -2 (lepcndcnce
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instead of a simple b -1 behavior for the elastic cross section. From Eq. (47), one may now

estimate the DP cross section in heavy-ion collisions

(aa) = /(a)%, (pp) (63)

Therefore, the DP cross section should remain constant to first order in A. The DP cross

section for heavy ions is not known experimentally. For c_ × a it is measured 14 that _Dp "_

(131 4-25)/_b for two 'central' tracks (]771< 1), to be compared with crop _ (11.7 4- 3.0)/_b

for p x p coUisions 14. It appears that f(A) as given in Eq. (49) may not provide enough

'boost.' However, one must be cautious in extrapolating cross sections from c_ to heavy

ions such as Au. It may be safe to assume, in any event, that there exists a factor of 3 or

4 uncertainty in Eq. (63).

As pointed out in the previous section, the factorization may fail for Pomeron exchanges

in heavy-ion collisions. If so, the relationship Eq. (63) is clearly not correct. According to

J. Bjorken and A. Mueller (private communications), the D_P cross sections should increase

slowly, dependent only on the circumference of the involved nucleii, so that

a'op (AA) _ A 1/3 (64)

According to this, the DP cross section for Au × Au should increase approximately by a

factor of 6 over that for p × p.

For an absolute estimate of the DP cross section, one must turn to an entirely different

technique. Here one follows the steps carried out by Belforte and Goulianos s. Under the

assumption of factorization in DP processes, Chew 15 pointed out

1
%P = -- (65)

where crD_is the pp single-dii_raction-dissociation cross section and is given by s

o°
where a = 0.68 mb and bo is the slope of the t distribution. The formula Eq. (60) sltggests

that bo = b_l/2; however, a more realistic experimental value s is bo = b_t/1.5, s,) that
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bD = 10 GeV -2 if bet = 15 GeV -2 for v_ : 200 GeV. From Eq. (65) and Eq. (66), one

obtains

d'O'D,,, (abD) 2 _ 1 _

= + \ } (67)
dr1 dr2 del de2 crt

which can be integrated over tl mad t2 and recast with the aid of Eq. (39)

d 2cr_p

Note the similarityof thisformula with Eq. (61).

Assume now that ml isallowed to range from mo --I GeV to mt --10 GeV and that

in additionone imposes the conditionIV3[< 1 (seeFig.2).Then, one obtainsintegrating

over y3

dm] - , mo <m3 < e (69a)

= In , _ < m3 < mz (69b)e

The mass dependence of the DP cross section is displayed in Fig. 4. The total DP cross

section is given by, upon integrating over m3,

a.p __85/_b (70)

The DPE region of Fig. 2 results from certain conditions on m3 and y3; however, the

DPE region is in practice not so clearly defined, depending in particular on the shape and

nature of the detector and the decay product of the central system 3. Suppose now that the

condition [Y31 < 1 prevails throughout the mass region mo = I GeV < rn3 < rnz = 10 GeV

under study. In this case, there exists a 'cut-off' mass mc : e m_ _ 27 GeV [see Eq. (69a)].

Correspondingly, there follows a 'cut-off' on e; it is seen that, from Eq. (22), one finds

ec _ 0.14. Under this condition the total DP cross section becomes, from Eq. (69a),

crDp __ 109 lzb (71)
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5. Two-Photon Processes

The heavy-ion collisions represent a potential, prolific source of _,'y processes as the

cross section varies as (Za) 4. For Au × Au at RHIC, one has (Za) 4 __ 0.1 with Z : 79.

Therefore, the 77 processes should be, in principle, comparable to the DP processes and

in general the two reactions should interfere substantially.

Cahn and Jackson 9 have recently calculated the 7_' cross section in heavy-lon collisions

within the framework of the Weizs/icker-WiUiams (WW) approximation. The photon

number distribution with energy Ev = ep, carrying off a fraction of the initial beam

momentum p, and an impact parameter b (defined in a plane perpendicular to the bcam

direction), is given by, 16

g (emb ) F_ (72)j
where rn is the mass of the beam. Let R be the radius of the nucleus [see Eq. (53)]. Then

one has b > R. The function g(z) is related to the modified Bessel function K_(x) through

g(x) = [xgl (x)]2 (73)

Integration over the impact parameter can be done in a closed form, using the formulas 17

•g_ (_) d_= -2 [g_(_)- K.-I (_)K.+, (_)]

where n is an integer. The following formulas are Mso useful

z---,0, g0(_)_ln( 2)-7 (75a)% f

• --,o, g. (_)--,_ 2 ' _ > 0 (7_b)

where 7 -_ 0.5772 is the Euler constant and r(2) = r(_) = 1. From these it 5_lh.,ws that

Ofa°° d x a 2-- g(x) = ago (a)I( 1 (ct) -- -_- [gl 2 (rg) -- Ii.'02 (Ct)] _ g(_) (76)
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The photon number distributionas a functionof e can thus be written
• .

-- - # (era.R) (77)

Let F_.T(el , e2) be the joint number distribution function of two photons carrying frac-

tions el and e2 of the total momentum of each nucleus. It is given by integrating over the

impact-parameter space a product of two Eq. (72)'s times a step function which ensures

the the two beams do not 'overlap'

The above step function can be recast as follows: one of the two azimuths for b's can be

integrated over immediately; the second one can be set to be the angle between b's. Then

the resulting O-function, which ranges from 0 to 1, assumes the form

o = 1, - > 1

1 (u12 +u]-- 1)
=l--arccos , lUl-U21<l (79)

vr 2UlU2

=b/(2R) and = b2/(2R).
The effective differential luminosity to produce a central system of ma is, from Eq. (18),

, _dE = f del de2F..t,t (el , e2) _ (ra - e, e2) (80)

In their paper they have performed integration over the entire kinematically allowed region

' of ph£se space; however, one must in practice restrict the region of integration to that of

the DPE region. For this purpose it is better to recast the variables into mass m._ and

rapidity y3 of the central system. From Eq. (39), one may write, dropping the 6-flmction,

d_____£
= / dy3 F77(el,e2 ) (81)d7"3

The e's are expressed, from Eq. (18) and Eq. (21),

¢] = v/_ ey'_, ¢2 = _ c-ya (82)

An example of the allowed DPE region in the space of r3 and y3 is given in Fig. 2.



0

18

They point out that the differential luminosity function can be expressed in terms of
• .

a single universal function _(z). It involves a single variable z given by

= 2._3R_/vr;= 2R_v_ (83)

The function is defined via
di;

_-_ = _o _(_) (84) ,
where

16Z4a 2

Lo= 3_2 (8s)

The universal function may be written

f? f? ab, ( b,) (S6b)G(el,e2) = b--_ b-T g(elrrtbl) g(e2mb2)(B 2/l' 2R

It is seen, from Eqs. (82) and (83), that the arguements of the g-functions may be expressed

in terms of the variables u and z, so that the G(el, e2) function then depends on just two

variables z and y3 through

G(el,e.2) = [°° dull °° du2--- g(ulze_3) g(u2ze-Y')O(ul u2), (87)
til _2

Therefore, the function _(z) as defined in Eq. (86a) depends indeed 0nly on z if the inte-

gration over Y3 in Eq. (86) is performed over the limits [see Eq. (24)]

-1_ (_) < _ < +_o (_) (ss)

where z_ is the z with m3 = m.. Note that the limits on y3 themselves depend on z. Of

course, the function _(z) depends also on zz; however, its dependence turns out to be small

for a sufficiently large value of zz, i.e. zz > 10.

If the _ function in Eq. (86b) is dropped from Eq. (87), then one can perform the

required integrations separately. One obtains, from Eq. (76),

3 lzey3)[l(_ze-Y'a) (89)_(z) = _/ dyz_(2
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SO that the function_(z)isconvenientlygiven through a singleintegrationover yJ. Cahn

and Jackson point out the effectof including the ® functionin Eq. (86b) is roughly

equivalentto increasingthe lowerlimiton 5'sin Eq. (86b) by R _ 1.15,R.

For small z itis seen from Eq. (87) that the integrandconsistsonly of the the ®-

function,as the #-functionapproaches one. Without the damping factorin the g-function,

the upper limits tend to infinity, making _(z) blow up at z = 0; with the area of integration

increasing in the plane of Ul vs uz in the limit of small z, the G-function can now be replaced

by 'unity.' If z is small, one has, from Eqs. (75a), (75b) and (76),

(00)

where 2A = 1.362. Performing the required integration over lyal < yz on the factorized

form Eq. (89), one finds

_'(z)__ _y, aln 2 - yz (91)

Settingy, : 1, one obtains,trivially,

]
- 1j (o2)

.valid for z _ 0.05 (_(z) = 15.4 at z = 0.05). If one sets the limits of the y3 integration to

those of Eq. (88), the formula Eq. (91) is a badly behaved function of zz for moderately

small values of z; for example, _(z) becomes negative if zz > 15 for z = 0.05, while it

reaches its maximum if z_ = 2A for z = 0.05. Instead, one needs to expand Eq. (91) irt

powers of ln(c/z) for sn arbitrary constant c and retain only the highest power term, to

obtain the result

which i_ very similar to that given by Cahn and Jackson and valid for small values of z.

The value of c = 1.418 in Eq. (93) matches _(z) = 37.4 at z = 0.05.

The _(z) as a function of z is given in Fig. 5 for Au × Au at 100 GeV per nucleon [z =

m3/(2.83 GeV) and zz _- 3.54], after integrating over y3 in the DPE region a.s delineated

in Fig. 2. The drop-off of _(z) for z > 1.3 reflects diminishing phase space fi)r _/3 f(,r high

mj. Also shown in the figure is the curve obtained by Cahn and Jackson integrating ()ver

the entire kinematically allowed region ,f phase space (z_ = 10 ,,r larger).
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The cross section for the two-photon process in heavy-ion collisions is, by definition, a

product of the luminosity function Eqo (81) and the 73' cross section

da'ww dE

n - (94)

or, in terms of the mass mj, from Eq. (84),

(m3)
a.q =L:o (95)

The 73' cross section is measured in the e +e- storage rings; it is small (a factor of a z is

involved) and has a slow mass dependence as given below is

_,.r.r(rh3) _ 300+ nb (96)
m3(eeV)

where the constant term has been chosen to approximate the data points for m3 from 1 to

6 GeV.

The WW cross section as a function of m3 is given in Fig. 6 for Au × Au at 100 GcV/u

(per nucleon). Also shown in the figure is the curve corresponding to the DP cross section.

Integrating Eq. (95) over m3 from 1 to 10 GeV in the region oi" phase space of Fig.2, one

finds

O'ww _-- 1.14 mb (97)

to be compared to 85/_b [see Eq. (70)] for the DP process. Suppose now that the limits

on rapidity [YJI < 1 are independent of mass for m3 from 1 to 10 GeV, corrcsponding to

the 'cut-off' values mc _ 27 GeV and ec _ 0.14. The WW cross section changes little; it

is still approximately 1.15 mb (see the upper solid curve for m3 > 5 GeV in Fig. 6), to be

compared to 109 #b for the DP cross section. If the original _(z) of Cahn and Jackson

is used in Eq. (95), the WW cross section is found to be 1.56 mb when integrated over

1 to 10 GeV for mj; this then is the 'theoretical' maximum cross section for two-photon

processes in this mass range. It is seen that 3"3"events should drop off"much sharper in m3

than the double-Pomeron events, indicating that they are useful mainly for st_ldy of low

masses involving u, d and s quarks.

It is of some interest to know how RHIC compares to LEP for two-photon physics. To

this end, a short description is givcn here for two-photon processes appropriate for e tc -
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colliders. The corresponding luminosity function £:_ was first worked out by Low a9 some

thirty years ago. The photon number distribution from a single beam is given by, in the

familiar WW approximation,

a--V= _ ¢ -F_(_) (gs)

where eisonce again thefractionalenergy lossofthe beam being carriedoffby the photon.

The luminosityfunctionisthen given,from Eq. (81),

d£,e /= dy3 FT (e,) F7 (e2) (99)

where the e's are given in Eq. (82).

One obtains the luminosity function derived by Low if the maximum of m3 is set equal

to its kinematical limit m_ = VG, so that the rapidity y3 now has the limits, from Eq. (22)

and Eq. (24),

- < Y3 < -_ la (100)

The integration can be performed readily, and the result is

d£_

r3 dr3 - £I h(r3) (101)

where

c_ = 2t,_/ 1_ (102)
and

h (7"3)= (2 + .)2 In (_3)- (3 +.)(1 -- r3) (103)

A more realistic luminosity results if one limits the range of the rapidity to ]y3[ < 1 or

y. = 1. Let hl(r3) be the new h-function. It is given by

. hl(r3)=(2+r3)2+ (e2 1) ( 1)- _ _3- 2 _ (2+T3)v_5 (104)e

This is valid as long as m3 is less than 1-x/_; for 71/,3 above that, the hl is to be replacede

by the h of Eq. (103), as the limit y_ on lY3t becomes smaller than 1 and is givcn instcad

by Eq. (100).
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The two-photon cross section for e+e - collisions may now be written

where cr-r.t is given in Eq. (96). The cross section O'eeis shown in Fig. 7. Assume V/_ =

100 GeV at LEP; then the total cross section with y, = 1 is, integrated over m3 from 1 to

10 GeV with y® : 1,

_ree___9.85 nb (106)

to be compared to _rww __ 1.15 mb for RHIC. If the h-function Eq. (103) of Low is used

to calculate the cross section, one finds _ree_" 30.1 nb. The luminosity at LEP is approxi-

mately 1031 cm -_ sec -1 at v/s = 100 GeV, whereas it is !026 cm -2 sec -I for Au x Au at

100 GeV/u at RHIC. This shows that the two-photon event rate for the two machines is

approximately the same for a period of run of equal time. Fig. 7 shows the RHIC cross

section scaled down by the luminosity ratio, which demonstrates that the event rate is

higher at RHIC for mass less than 2 GeV.
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Figure 1. Double-Pomeron exchange diagram for production of a central system

with mass m3. The center-of-mass scattering angles are denoted al and a2. The four-

momentum transfers tl and t2 are defined for paxticles a to 1 and for particles b to 2.
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Figure 2. Allowed double-Pomeron exchange region for the central system with
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Figure 4. The cross section for the double-Pomeron exchange (DPE) process at

RHIC (p x p at 100 GeV/c) as a funtion of mass m3 of the central system for the DPE

region as given in Fig. 2 (the dashed curve for ma > 3.7 GEV). The upper solid curve

results from setting Yz : 1 for rna from 1 to 1,-.GeV, i.e. mc > 27 GeV.
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I

Figure 6. The cross section for the two-photon process at RHIC (Au x Au at 100

GeV/u) as a function of mass ms of the central system for the region of phase space as

given in Fig. 2. The upper solid curve for rrts> 3.7 GeV corresponds to setting y_ = 1

up to rrts = 10 GeV. For comparison tile double-Pomeron cross section is also shown as a

(lotted curve.
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Figure 7. The two-photon cross section at LEP as a function of ms for x/s =

100 GeV with y= = 1. Also shown is the cross section for RHIC scaled down by 10-5, the

ratio of the luminosity at RHIC to that at LEP.
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