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ABSTRACT

Double-Pomeron processes have been shown to be an important and
novel source of hadron production at moderate energies at the ISR.!=S
These processes are expected to provide glue-rich hadrons from 1 GeV
to 10 GeV or more, encompassing the states consisting of u, d, s and b
quarks. The double-pomeron cross sections”8 for central hadroproduction
are calculated for p x p and 4u x Au at RHIC.

Two-photon production of hadrons in the central region begins to dom-
inate or at least become comparable to the double-Pomeron processes as
the Z of the beams increases from p to Au. Since photons couple to charge,
these hadroproductions involve mainly quarkonia and multiquark states.
Therefore, a comparative study of these processes is expected to provide
new insights into the constituents of hadronic matter. The two-photon
processes are calculated following the recipe given by Cahn and Jackson®.

The paper starts out out with a thorough discussion of the relevant

kinematics, phase space and Regge amplitudes.
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1. Kinematics

In this section are collected relevant kinem=tical variables for double-P’omeron exchange
(DPE) reactions. This represents a concise update of an Internal Report by S. U. Chung!®.
Many of the approximations introduced in this note are checked against a mode of run at
RHIC of p x p at 100 GeV/c, as an example. It can be shown that all the approximate
formulas hold also for heavy-ion collisions, e.g. Au X Au at 100 GeV/u (per nucleon).

Consider a reaction

a+b—1+4+3+2 (1)

where a, b, 1 and 2 are initial and final protons and 3 represents the central hadronic

system (see Fig. 1). The four-momenta may be expressed as

Pa = (E,G, k)
oy = (E,()‘, —k) (2)
pi = (Ei, gi ki), 1=1,2,3

where the second and the third elements are 2-dimensional transverse and 1-dimensional
Jongitudinal components, respectively. Whenever possible, subscripts a and b will be
dropped from the initial protons. Thus, the magnitude of the initial proton momenta will
be written p, = p, = p and E; = Ey = E.

These variables are given simple expressions in terms of the rapidity y and the trans-

verse mass n,

E = mcoshy
k = msinhy, y>0
E; =m;coshy;, 1=1,2,3

ki = misinhy;, y1 >0, y2<0 (3)

m; = \/q?+1n2, 1=1,2
m3 = \/qg—l—m.%



where m is the mass of the beam particles and mj3 is the effective mass of the central

system. The rapidity of the central system can be expressed as
_ ll By + ks
Y3 = E3 ~ ks
Es +k3\ m3
_ln( ™3 >—ln<E3 ks)
= tanh™ ( ZZ)

and similar formulas hold for y, y; and y;.

The four-momentum conservation is expressed by

O=q+q+a
0=k + ks +k;
= mny sinhy; + mg sinhyz + m3sinhys
V3 =2E = E|+ Ey + E;
= 2mcoshy

= mmj coshy; + my coshy; + m3 coshy;
where s is the square of the CM energy. Eq. (5¢) implies that
mye¥! + moe¥? + mze¥® = mie Y 4 moe Y2 4 e Y3
which can be used to write energy conservation as

2m coshy = mie¥t + mae¥? + mje¥?

= ie Y + e V2 4 hje V3

(7)

In the DPE region, one must have y, y; and —y; large and positive. For example, at RHIC

with p x p at 100 GeV/c, the rapidities are approximately y ~ y; ~ —y3

~ 5.3, while y;

and m3 of the central system must remain at moderate values, e.g. m3 ~ 1 -» 10 GeV and

lys| < 1.5 (which ‘defines’ the central systcm).

Energy conservation may thus be expressed as

Vs >~ me¥ >~ mye¥l ~ rhge V2



Let ¢ be equal to 1 — zp where zp is the Feynmann z, i.e.

pn=(1-e)p
p=(1—-e)p (9)

In the DPE region, the €’'s are very small; in general it is necessary to retain only the
first order in ¢’s for most relationships. One notable exception occurs for those involving

four-momentum transfers. They are defined as follows

h = (Pa - pl)z
ta = (pp — p2)* (10)

which are given by

—t; = —2m? 4+ 2(E,E; — pap1 cos ay)
~ —2m? + 2(EE; - pp1) + 2p(p1 — |k1])
—ty = —2m? + 2 (EyEg — pyp3 cos o)
~ —2m? + 2(EE; — pp2) + 2p (p2 ~ |ka|) (11)

where a) is the scattering angle (assumed to be small). The energies above can be approx-

imated by

2

m
E ~ —

2
m
E,:p(l—-el)+—§;(1+el+e§) (12)

and similarly for E;. Note that terms up to second order in ¢; have been retained in the

expression above. Substituting Eq. (12) into Eq. (11), one obtains

—t; ~ (em)? + (1 + e1) ¢

—tg ~ (z=2m)2 + (1 +€2) g3 (13)

where one has used approximate relationships



2p

b (- a)r- (e (2)

~k2~(1-e)p—(1+¢€) (g) (14)

Note that k2 is negative in our definition corresponding to y2 < 0. Note also that the
minimum values for —¢; and —#3 involve second order terms in the €’s and hence can be
ignored for most applications. However, photon exchanges involve ¢! propagators in the
amplitude, and the minimum values for —t prevent two-photon exchange amplitudes from

‘blowing up.’

Substituting Eq. (14) and Eq. (12) into Eqgs. (5b) and (5d), one obtains

2

2
a1 — 92
—_ ~ha — | 222
(&1 = e2)p ks ( 2p )
(1 + €2)p ~Es

which can be added and subtracted to give

2 _ 2
2pe; ~ E3 — k3 + <u)
2p

4 — g
2pey >~ E3 + k3 — (__._____) 15
= (15)

By multiplying the two relationships above, one obtains
~2 . 2 k3 2 2
my =~ (2p)” €162 — ;‘ (91 - Q2) (16)
Or‘, dropping the second-order terms, one gets the familiar result
rhg ~ s€1€ (17)

which shows that the transverse mass of the central system is relatcd to the product of

two €’s. One may introduce a unitless quantity 7 = m?%/s. Then one has
T3 2 €€ (18)
From Eq. (5a), the effective mass of the central system is given by

7n§ ~ S€E1€y — |lfl + (fg|2 (19)



The second term above can be ignored as long as the ¢’s are sufficiently small

q1 € V561
g < Vse (20)

For double-Pomeron processes, these conditions are met when the slopes of the —t dis-
tributions are sufficiently large; two-photon productions involve photon propagators, so
that the ¢ terms can always be ignored. For p x p at 100 GeV/c, for example, one has
typically ¢ ~ 0.03 for m3; ~ 5 GeV. Suppose further that the slope of the —¢ distribution
is b ~ 10 GeV~2; then —t ~ 0.1 (GeV/c)? and ¢ ~ 0.33 GeV/c. Note that the minimum
of —t as given in Eq. (13) is small indeed and can be ignored in this approximation. It is
seen that in this case Eq. (20) is satisfied, so that in most applications the transverse mass
in Eq. (17) can be replaced by the mass itself.

_The relationships Eq. (15) can be used to recast the rapidity of the central system [see

Eq. (4)] 1
€)
Y3 Zln <62> (21)

In the DPE region, the €’s cannot be arbitrarily large; their upper limits are in fact given
by the maximum allowed effective mass m3 = mz(~ 10 GeV) of the central system, as
follows

fz=\/€=7—g (22)

For a given m3 the minimum ¢ is then given by, from Eq. (18),

2
T3 - m3
== = — 3
60 ez \/:’:z (m:) (2 )

Therefore the absolute minimum of €y occurs for the minimum allowed effective mass
m3 = mo(~ 1 GeV) in the above expression, corresponding to the minimum of 3, i.e.
10 = mi/s. For /s ~ 200 GeV, the maximum and minimum values of ¢ are 0.05 and
5 x 10~4, respectively. For a given m;, the minimum and maximum values of y3 are given

by, from Eqs. (17), (21) and (22),

_ mg\ 1 Tz
yo=-In{—)=--In{—=
ms3 2 T3

/mat 1 Te
z — lll p - = = —_— .
Yz = + \ 1m3 } 5 In T3 (24)



Note that yo > —2.3 and y, < 2.3 for all m;.
In practice, the rapidity y3 of the central system may not be arbitrarily as large or small
as given above, as its decay products then escape detection in a finite detector. Suppose,

for example, that
lysl <1 | (25)

for a detector to have 90% or better accertance for the decay products. Then, from Eq. (4),

one finds

e? ~ 1Y . -
k3| < % m3 ~ 1.18m3 (26)

which shows that the maximum allowed longitudinal momentum of the central system is
proportional to its mass—a sensible result. The allowed region of y; is illustrated in Fig.
2. The constraint of Eq. (25) implies that the difference between ¢’s cannot be arbitrarily
large; indeed, from Eq. (21), one obtains
Sl _ *2 (27)
€2
A more systematic approach to delineating the allowed DPE region requires introduc-

tion of ‘rapidity gaps.’ Define them as follows

M=y1—-y3
D2 =y3 —y2 (28)

To progress further, approximate forms of the rapidity are necessary. Substituting Eq. (15)

s () n(3)
e -ta (L) 11 (2) )

The ky and kg as given by Eq. (14) can be used in the definitions of y; and y,, identical
to those of Eq. (4), to find

into Eq. (4), one obtains

y2 > —In (30)

=

1

5
TN TN
=‘|.

— N
~

D
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These relationships show that the rapidity gaps assume elegantly simple forms, as follows

A] ~In (l)
€

Az ~In (é) (31)

They are related, through Eq. (18),

A+ Ay ~1n (—1—> (32)
T3
Note also, from Eq. (21),
Aqg — Ay ~ 2y; (33)

From these, one can draw the allowed DPE region as shown in Fig. 3. Also shown in the

figure is the region for good detector acceptance, e.g. |y3| < 1.

2. Phase Space

Consider production of n particles in Reaction (1). The invariant phase-space element

may be defined by

dp(n) =[] <Z£') §t4) (Z Pi — Pa - Ph) (34)

i—1
which can be broken up into two pieces with an intermediate system 3 of mass mj, as

follows

dp(123;3 — f) = dp(123) dm? dp(3 — f) (35)

where the central system 3 couples to f = n — 2 particles. It can be shown easily that

integration over the four variables
d’ps
2E;
eliminates the §-function contained in dp(3 — f) and Eq. (35) reduces to Eq. (34). The

2
dm;j

second phase-space element dp(3 — f) in Eq. (35) is appropriate for the sub-processes
initiated by two Pomerons and two photons; as such it is absorbed into the cross sections

for these sub-processes, and therefore it is dropped in what follows.



The phase-space element can now be written, in terms of the rapidity variables,

1 - — ~—
dp = 3 d*qy d*qy d*gs dyy dyz dy; dm}
x 6 (g1 + & + @)
x §(my sinhy; + g sinhy; + 3 sinhys)

x § (my coshy; + Thg cosh yz + ™3 coshysz — 2m cosh y) (36)

Integrating over d243, one eliminates the first §-function. Integrating over the dy, takes

care of the second é-function but brings in a factor in the denominator
1'77.2 cosh Y2

and the third é-function is eliminated by integrating over dy; but with y; fixed. For the

purpose, one needs, from Eq. (5¢c),

d
) coshy; + ™2 cosh yz [—y-z—} =0
dy va

Oune obtains, finally,

dp = d’qy d2q; dy; dm§

= 0" 37
81y sinh (y; — y2) (37)

In the DPE region, the factor in the denominator is nearly constant [see Eq. (8)),

I 1. R
mymgsinh (y1 — y2) >~ Emleylmge V2 ~

N ®»

so that
1
dp >~ Zdzq-‘] dz(fz dy;; dry (38)

In certain applications, it is more convenient to re-express the last two variables in terins

of the €’s [see Eq. (18) and Eq. (21))],
dy:; dT3 >~ del d€2 (39)

Note that the Jacobian is equal to one. Integrating over the azimuths for §; and ¢ and

noting the relationships Eq. (13),

71.2
dp ~ (T) dty dty dy; dry
7r2 )
~ (Z) dty dty dey dey (40)
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It is seen that double-exchange processes involve four variables, provided that the phase
space for decay of the central system is iutegrated over, except its mass. They may either
be two —t’s and two €’s or two —t’s and the y and 7 of the central system. In both cases,
the invariant phase-space element has a constant and the same weighting factor. Note that
the two —t’s range from (e3m)? or (eam)? [see Eq. (13)] to co. Allowed DPE regions in

the space of y3 vs T3 or of €1 Vs €3 are succinctly given in Figs. 2 and 3.

3. Elastic and Total Cross sections

This section is due mainly to F. Paige. The elastic and total cross sections for p x p are
given in the context of the Regge phenomenology, and a prescription is given for going over -
to heavy-ion collisions. The signature factors are neglected in this and the next sections.

The t distribution of p x p elastic scattering is given by, in the high energy limit,

do,;
dt

~ IR0 (41)

where F(t) is the invariant amplitude

Fu(t) =iv (¢) (i)"m (42)

S0
with
o (t) = Be/* (43)

and a(t) is the Pomeron trajectory (a(t) ~ 1) and b is the usual slope of the ¢ distribution
(b ~ 15 GeV~2 for /s= 200 GeV). Note that sy is the usual constant of Regge theory
(v/30=1 GeV), and § is the p-p-Pomeron coupling constant independent of ¢ and is a
unitless quantity. Integrating over ¢, one obtains

4

Tal ~ %— (44)

The optical theorem relates the total cross section to the imaginary part of the elastic

scattering amplitude, which takes on the form, in the high energy limit,

oy~ %Im[Fe[(O)] (45)
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so that

o ~ 3° (46)

Both the total and elastic scattering cross sectious represent areas; it is therefore reasonable
to assume that both increase as A%/3, when p x p is replaced with 4 x A where A is the

nucleon numbez of a.ny heavy-ion species. This implies that

,32 o A2/3
b o A3 (47)

This result follows only if the factorization holds for A x A elastic scattering. As Pomerons
are supposed to couple to individual nucleii, multiple Pomeron exchanges should be sig-
nificant, which breaks the factorization. However, the slope parameter is thought to be
proportional to the area, and the the A dependence given above should be correct even if
the facorization fails. -

The cross sections o(4A4) for A X A may now be written, in terms of o(pp) for p x p,

o (AA) = f(A) A*Pa, (pp)
oot (AA) = f(A) A* 30, (pp)
bet (AA) = f(A4) A¥3b, (pp) (48)

The coefficient f(A) allows for an additional slowly varying A dcpendence. It may be set
arbitrarily,

f(4)=1+1n(A) (49)

so that f(A) = 2.4 for a(A = 4) and f(A) = 6.3 for Au(4 = 197). The following formnlas

7

are useful; according to Goulianos', one may write

ou(pp) ~ 38.5 mb, /5 =8 — 20 GeV
~ 26.3 mb + (2.33 mb)In (—’—) V5> 20 GeV
2m

Oet (pp) = 0.1750, + (29 mb) <.2_’.’i>

S

b=by~79+07n (i) (GeV~2) (50)

m
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where (/s and m are both given in GeV. The cross sections are for a x « [see Ref. 11]
at /s = 126 GeV: o¢(a,a) = (250 + 50) mb, og(a,a) = (45 £ 15) mb and by(a,a) =
(100 + 10) GeV~2, According to the prescription Eq. (48), they are estimated to be 287
mb, 50 mb and 86 GeV~3, respectively. It is seen that the slope parameter is somewhat
under-estimated by Eq. (48).

At /3=200 GeV, one has oy(pp) ~ 50 mb, oo(pp) =~ 8.7 mb and by =~ 15 GeV~2.
Then, for Au x Au at 100 GeV/u, the cross sectiors are, from Eq. (48),

ot(Au,Au) > 11b, oq(Au,du)~1.9b, by(Au,Au)~3.2x10° GeV™?  (51)

These cross sections are not known experimentally; the actual values when available may

very well deviate by a factor of 2 or 3. One sometimes assumes, in the high energy limit,
ot (Au, Au) = arR? (52)

where
R~ (1.2 fm) 4'/? (53)

This gives o¢(Au,Au) = 6.1 b, to be compared to 11 b in Eq. (51).

4. Double-Pomeron Exchange Processes

The aouble-Pomeron (DP) exchange am:plitude can be written
Fpp (ab — 123) ~ 75 (t1) [21]*V) 7 (t2) [22]"**) Fpp (3 = ) (54)

where the invariant amplitude Fpp(3 — f) refers to a process Pomeron+ Pomeron (PP) —
f for the central system 3. The residue functions 7, are as given in Eq. (43), and z; (i = 1, 2)
is the cosine of the t-channel scattering angle, which is given by [see Ref. 12]

t? + ¢ (2.9 - 3m? - .sg)

|A (ti,m, m) A (4, /35, m)] 12

A(ti,m,m) =t; (t.' - 4111,2)

A(tiy/9i,m) = [t,' — (/i 4 m)z] [ti —(Vsi — m)z] (55)

zi =
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The sub-energies s; are given by

s1=(p+p) =s+m?—2/5E
~m? 4+ s€1
s2=(ps+p)? =s+m!—2/5E;
~m? + se (56)

It is seen that, neglecting a t; dependence (which is ‘absorbed’ into v,),

1
S N (57
§; —mM €s

With this, the amplitude assumes a simple form, using Eq. (43),

Fpp(ab — 123) ~ BZexp [b(ts + t2) /4] ( ! ) Fpp (3 — f) (58)

€1€2
The total cross section for the sub-process Pomeron4-Pomeron (PP) — f is expressed

as follows [see Eq. (35)]

Tpp (m) ~ ,—nlg— [1Fer@ =P do(3 - p) (59)

where the flux factor is evaluated ia the limit of zero mass. The differential cross section

for the double-Pomeron exchange process now takes on the form

d4"DP 4 ma \ 2 2
~ b t t 2 — 60
dt; dt; de; deq B exP[ ( 1+ 2)/ ] <€1€2) Opp (m;) ( )

It is seen that the slope of the t; distribution is one half that of the elastic scattering.
Integrating over ¢; and ¢z and noting Eq. (17) and Eq. (39), one obtains
dzﬂ'DP ﬂ4 1 2
—br — m 61
dm§ dys b2 mg Opp ( 3) (61)
The total PP cross section is thought to be nearly constant and is given by, according to

Streng!?,
Tpp = 140 ub (62)

This shows that the DP cross section has roughly a m3"2 dependence.
It is important to compare the DP cross section Eq. (61) to the elastic cross section

Eq. (44). Because of independence of ¢} and t3, the D P cross section has a =2 dependence
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instead of a simple 5~! behavior for the elastic cross section. From Eq. (47), one may now

estimate the DP cross section in heavy-ion collisions

opp (AA) = f(A) opp (PP) (63)

Therefore, the DP cross section should remain constant to first order in A. The DP cross
section for heavy ions is not known experimentally. For a x a it is measured!? that o, ~
(131 £ 25) pub for two ‘central’ tracks (|n| < 1), to be compared with o,, ~ (11.7+3.0) ub
for p x p collisions’®. It appears that f(A) as given in Eq. (49) may not provide enough
‘boost.” However, one must be cautious in extrapolating cross sections from a to heavy
ions such as Au. It may be safe to assume, in any event, that there exists a factor of 3 or
4 uncertainty in Eq. (63).

As pointed out in the previous section, the factorization may fail for Pomeron exchanges
in heavy-ion collisions. If so, the relationship Eq. (63) is clearly not correct. According to
J. Bjorken and A. Mueller (private communications), the D P cross sections should increase

slowly, dependent only on the circumference of the involved nucleii, so that
opp (AA) o AV/? (64)

According to this, the DP cross section for Au X Au should increase approximately by a
factor of 6 over that for p x p.

For an absolute estimate of the D P cross section, one must turn to an entirely different
technique. Here one follows the steps carried out by Belforte and Goulianos®. Under the

assumption of factorization in DP processes, Chew!® pointed out

1

Opp = —0p, O 65
pp = b1 Tp2 (65)
where o, is the pp single-diffraction-dissociation cross section and is given by®
gp 1
=ab b t| | - 66
dt de D exp[ D ] (6) ( )

where @ = 0.68 mb and b, is the slope of the ¢ distribution. The formula Eq. (60) suggests

that b, = bei/2; however, a more realistic experimental valued is b, = b,/1.5, so that
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b, = 10 GeV~2 if b = 15 GeV~? for /s = 200 GeV. From Eq. (65) and Eq. (66), one

obtains ; )
dopp (aby) 1
= b, (t t —_ 67
dt; dty de; deg ot exp [bp (t1 + 2)] €1€2 (67)
which can be integrated over ¢; and ¢ and recast with the aid of Eq. (39)
d’o,, _ a_z) (_1_> (68)
dm? dy; ot/ \m3

Note the similarity of this formula with Eq. (61).
Assume now that mj is allowed to range from mg = 1 GeV to m; = 10 GeV and that
in addition one imposes the condition |y3| < 1 (see Fig.2). Then, one obtains integrating

over y3

2
dUD;=(0>(2>, 1fn,0<m3<—7—n-gi (690.)

o) \m2
dmj oy m5

2
_ (a_) (“22) In (—m”), T < my < m. (69b)
ot m3 m3 e

The mass dependence of the DP cross section is displayed in Fig. 4. The total DP cross

section is given by, upon integrating over msj,
opp ~ 85 ub (70)

The DPE region of Fig. 2 results from certain conditions on mj3 and y;3; however, the
DPE region is in practice not so clearly defined, depending in particular on the shape and
nature of tLe detector and the decay product of the central system 3. Suppose now that the
condition |y3| < 1 prevails throughout the mass region mg = 1 GeV < m3 < m, = 10 GeV
under study. In this case, there exists a ‘cut-off’ mass mc = e m; & 27 GeV [see Eq. (69a)).
Correspondingly, there follows a ‘cut-off’ on ¢; it is seen that, from Eq. (22), one finds

€c & 0.14. Under this condition the total DP cross section becomes, from Eq. (69a),

opp = 109 ub (71)
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5. Two-Photon Processes

The heavy-ion collisions represent a potential, prolific source of v processes as the
cross section varies as (Za)*. For Au x Au at RHIC, one has (Za)* ~ 0.1 with Z = 79.
Therefore, the yv processes should be, in principle, comparable to the DP processes and
in general the two reactions should interfere substantially.

Cahn and Jackson? have recently calculated the v+ cross section in heavy-ion collisions
within the framework of the Weizsicker-Williams (WW) approximation. The photon
number distribution with energy E, = ep, carrying off a fraction of the initial beam
momentum p, and an impact parameter b (defined in a plane perpendicular to the beam

direction), is given by,!®

d’N. Z%a 1 =
- d:g = (7) (e—ﬁ) g(embd) = F, (e, b) (72)

where m is the mass of the beam. Let R be the radius of the nucleus [see Eq. (53)]. Then

one has b > R. The function g(z) is related to the modified Bessel function K;(z) through
9(2) = [¢K) (2)]’ (73)
Integration over the impact parameter can be done in a closed form, using the formulas!?

:EZ
[ oK2(@) do =5 (K2 (@) = Koo (2) Kt (2)]
eKnt1(z) = cKn_1(z) + 2nK, () (74)

where n is an integer. The following formulas are also useful

z—0, Ko(z)— In (%) — (75a)
z — 0, I{,.(z)——rF—(zl)<§)n, n>0 (75b)

r — 0o, Kp(z)— 1/(27;)e_m (75¢)

where v >~ 0.5772 is the Euler constant and I'(2) = I'(1) = 1. From these it follows that

* dz a?
/ —(i— g(z) = aky(a) Ky (a) — 5 [I{lz(a) - I&’g (u,)] =g(a) (76)
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The photon number distribution as a function of € can thus be written

an _ (ZZ:") §(emR) (77)

“de

Let Fy,(e€1,€2) be the joint number distribution function of two photons carrying frac-
tions €; and €3 of the total momentum of each nucleus. It is given by integrating over the

impact-parameter space a product of two Eq. (72)’s times a step function which ensures

the the two beams do not ‘overlap’
P, (e1,6) = / dz?,/ dby Fy (e1,51) Fy (e2.52) 0 (151 — B2l - 2R) (78)

The above step function can be recast as follows: one of the two azimuths for b’s can be
integrated over immediately; the second one can be set to be the angle between b’s. Then

the resulting ©-function, which ranges from 0 to 1, assumes the form

O (u1,uz) =1, [uy —uz| > 1

1 -1
=1- ;arccos( ), [up —ug| <1 (79)

where u; = b;/(2R) and uy = b;/(2R).

The effective differential luminosity to produce a central systein of mj is, from Eq. (18),

dC

== / dey deaFoyy (€1,€2) 6 (73 — €1€2) (80)
T3

In their paper they have performed integration over the entire kinematically allowed region
* of phase space; however, one must in practice restrict the region of integration to that of
the DPE region. For this purpose it is better to recast the variables into mass mj3 and

rapidity y3 of the central system. From Eq. (39), one may write, dropping the é-function,

d—m:/ dy3 Fyy (e1,€2) (81)

The €’s are expressed, from Eq. (18) and Eq. (21),

&1 =M e¥, e =T3¢ (82)

An example of the allowed DPE region in the space of 73 and y3 is given in Fig. 2.
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They point out that the differential luminosity function can be expressed in terms of

a single universal function £(2). It involves a single variable z given by

z =2m3Rm/\/s = 2Rm./73 (83)
The function is defined via
dC :
o= Lo €(2) (84)
T3

where 4 2

16Z°%a
Lo = 32 (85)

The universal function may be written
3
£ =7 [ dn Glae) (86a)
© dby [ db by b
61, 62 / l / 2 elmbl) g (€2mb2) C] <—2-%2-, E;-i) (866)

It is seen, from Eqgs. (82) and (83), that the arguements of the g-functions may be expressed
in terms of the variables u and z, so that the G(e€;,¢2) function then depends on just two

variables z and y3 through
(e1,€2) / du1 / du2 g(uize®®) g (ugze"ys) O (uy,uz) (87)

Therefore, the function {(z) as defined in Eq. (86a) depends indeed only on z if the inte-
gration over y3 in Eq. (86) is performed over the limits [see Eq. (24)]

—ln(zz)<y3<+ln(z) (88)

where z; is the.z with m3 = m,. Note that the limits on y3 themselves depend on z. Of
course, the function £(z) depends also on z,; however, its dependence turns out to be small
for a sufficiently large value of z,, i.e. z; > 10.

If the © function in Eq. (86b) is dropped from Eq. (87), then one can perform the

required integrations separately. One obtains, from Eq. (76),

£ (z) = Z—/ dys (%y) j Gze‘”a) (89)
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so that the function £(z) is conveniently given through a single integration over y3. Cahn
and Jackson point out the effect of including the © function in Eq. (86b) is roughly
equivalent to increasing the lower limit on b’s in Eq. (86b) by R — 1.15.R.

For small z it is seen from Eq. (87) that the integrand consists only of the the ©-
function, as the g-function approaches one. Without the damping factor in the g-function,
the upper limits tend to infinity, making £(z) blow up at z = 0; with the area of integration
increasing in the plane of uy vs uz in the limit of small z, the ©-function can now be replaced
by ‘unity.” If z is small, one has, from Egs. (75a), (75b) and (76),

i) —1a (2) (90)

2z

where 2)A = 1.362. Performing the required integration over |y3| < y; on the factorized

form Eq. (89), one finds
1 2\
£(2) = 5ve [slnz (—) - yz} (91)

Setting y, = 1, one obtains, trivially,

£(2) ~ % [31112 (3’3) - 1] (92)

z

-valid for z S 0.05 (£(z) = 15.4 at z = 0.05). If one sets the limits of the y; integration to
those of Eq. (88), the formula Eq. (91) is a badly behaved function of z, for moderately
small values of z; for example, £(z) becomes negative if z;, > 15 for z = 0.05, while it
reaches its maximum if z; = 2X for z = 0.05. Instead, one needs to expand Eq. (91) in

powers of In(c/z) for an arbitrary constant ¢ and retain only the highest power termn, to

obtain the result
c

£(2) ~1a® (-) (93)

z
which j5 very similar to that given by Cahn and Jackson and valid for small values of z.
The value of ¢ = 1.418 in Eq. (93) matches £{(z) = 37.4 at z = 0.05.

The £(z) as a function of z is given in Fig. 5 for Au x Au at 100 GeV per nucleon [z =
m3/(2.83 GeV) and z; ~ 3.54|, after integrating over y3 in the DPE region as delineated
in Fig. 2. The drop-off of £(z) for z > 1.3 reflects diminishing phase space for y3 for high
m3. Also shown in the figure is the curve obtained by Cahn and Jackson integrating over

the entire kinematically allowed region of phase space (z; = 10 or larger).
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The cross section for the two-photon process in heavy-ion collisions is, by definition, a

product of the luminosity function Eq. (81) and the v crose section

doyw _ ii_['_
drs T3 7T (m3) (94)

or, in terms of the mass mj3, from Eq. (84),

doy _ Oy (m3)
T =Leg(s) TLFY (95)

The 4+ cross section is measured in the ete™ storage rings; it is small (a factor of a? is

involved) and has a slow mass dependence as given below!®

270
Ty (ms) ~ [300 + m nb (96)

where the constant term has been chosen to approximate the data points for m3 from 1 to
6 GeV.

The WW cross section as a function of mj is given in Fig. 6 for Au x Au at 100 GeV/u
(per nucleon). Also shown in the figure is the curve corresponding to the DP cross section.
Integrating Eq. (95) over m3 from 1 to 10 GeV in the region of phase space of Fig.2, one
finds

OCww =~ 1.14 mb (97)

to be compared to 85 ub [see Eq. (70)] for the DP process. Suppose now that the limits
on rapidity |y3| < 1 are independent of mass for mj from 1 to 10 GeV, corresponding to
the ‘cut-off’ values m, & 27 GeV and ¢; & 0.14. The WW cross section changes little; it
is still approximately 1.15 mb (see the upper solid curve for m3 > 5 GeV in Fig. 6), to be
compared to 109 ub for the DP cross section. If the original £(z) of Cahn and Jackson
is used in Eq. (95), the WW cross section is found to be 1.56 mb when integrated over
1 to 10 GeV for ms3; this then is the ‘theoretical’ maximum cross section for two-photon
processes in this mass range. It is seen that v events should drop off much sharper in m3
than the double-Pomeron events, indicating that they are useful maiunly for study of low
masses involving u, d and s quarks.

It is of some interest to know how RHIC compares to LEP for two-photon physics. To

this end, a short description is given here for two-photon processes appropriate for e'e”
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colliders. The corresponding luminosity function L. was first worked out by Low!® some
thirty years ago. The photon number distribution from a single beam is given by, in the
farniliar WW approximation,

d—lv"’=(3)‘“(ﬁ)1+(1_‘)25Fv(e> (98)

de T 2m, €

where ¢ is once again the fractional energy loss of the beam being carried off by the photon.

The luminosity function is then given, from Eq. (81),

dr;

:/ dy; F.,(EI)F-Y(G')) (99)

where the ¢’s are given in Eq. (82).

One obtains the luminosity function derived by Low if the maximum of mj is set equal
to its kinematical limit m3 = /s, so that the rapidity y3 now has the limits, from Eq. (22)
and Eq. (24),

~In (—1\/;;3-) <y3<4ln (%) ' (100)

The integration can be performed readily, and the result is

1'3(;5: =Ly h(r3) (101)
where oo v )
Ly =2 (;}' [ln <2me>] (102)
and
h(r3) = (2+73)%Iln (%) -3+ 7m)(1-m) (103)

A more realistic luminosity results if one limits the range of the rapidity to |y3| < 1 or

Yz = 1. Let h1(73) be the new h-function. It is given by

e

hi(m)=(2+73) + <e2 —:—2> 73—z<e— 1)(err;,)\/E (104)

This is valid as long as mj is less than %\/5, for mj3 above that, the Ay is to be replaced
by the h of Eq. (103), as the limit y; on |y3| becomes smaller than 1 and is given instcad
by Eq. (100).
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The two-photon cross section for ete™ collisions may now be written

doee

— Tvy ("_‘12 105
- Ly hy(ms) m3 (105)

where 0. is given in Eq. (96). The cross section o. is shown in Fig. 7. Assume /s =
100 GeV at LEP; then the total cross section with y, = 1 is, integrated over m3 from 1 to
10 GeV with y, =1,

Tee ~ 9.85 nb (106)

to be compared to oy, =~ 1.15 mb for RHIC. If the h-function Eq. (103) of Low is used
to calculate the cross section, one finds o, >~ 30.1 nb. The luminosity at LEP is approxi-
mately 103! cm~2? sec™! at /s = 100 GeV, whereas it is 1026 cm~2 sec~! for Au x Au at
100 GeV/u at RHIC. This shows that the two-photon event rate for the two machines is
approximately the same for a period of run of equal time. Fig. 7 shows the RHIC cross
section scaled down by the luminosity ratio, which demonstrates that the event rate is

higher at RHIC for mass less than 2 GeV.
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Figure 1. Double-Pomeron exchange diagram for production of a central system
with mass m3. The center-of-mass scattering angles are denoted a1 and a3. The four-

momentum transfers ¢; and ¢, are defined for particles a to 1 and for particles b to 2.
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Figure 2. Allowed double-Pomeron exchange region for the central system with

mass M3, given in the space of its rapidity y3 and z3 = In(m./m3) = (1/2)In(1z/73).
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Figure 3.  Allowed double-Pomeron exchange region for the central system with

mass m3, given in the space of rapidity gaps A; and Aj.
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Figure 4. The cross section for the double-Pomeron exchange (DPE) process at
RHIC (p x p at 100 GeV/c) as a funtion of mass m3 of the central system for the DPE
region as given in Fig. 2 (the dashed curve for m3 > 3.7 GeV). The upper solid curve

results from setting y; = 1 for m3 from 1 to ' GeV, i.e. m¢ > 27 GeV.



27

100.0000 E E
F\ 1
- -
10.0000 - E
- E
N .
1.0000 E- 3
N i ]
N—r’
A, 0.1000 =
- 5
: T
0.0100 - 3
: 5
0.0010
0.0001
0 1 2 3

Figure 5. The universal function £(z) for the region of phase space as given in Fig.
2. The upper solid curve for z > 1.3 corresponds to setting y, = 1 up to z = 3. The

dashed curve is the original £(z) as given in Cahn and Jackson®.
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Figure 8. The cross section for the two-photon process at RHIC (Au x Au at 100
GeV/u) as a function of mass m3 of the central system for the region of phase space as
given in Fig. 2. The upper solid curve for m3 > 3.7 GeV corresponds to setting y, = 1
up to m3 = 10 GeV. For comparison the double-Pomeron cross section is also shown as a

dotted curve.
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