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ABSTRACT

This report describes the formulation, results and conclusions of a

series of numerical studies performed to support the Idaho National

Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study.

These studies were designed to explore some of the questions related to the

dominant physical phenomena associated with the coupled electric field, heat

transfer, and fluid flow processes. The work examines the case of a 3-D

axisymmetric problem with a central electrode. Such issues as the form of an

electric heating model, choice of boundary conditions, latent heat effects,

and conductive and convective transport are considered. Some important

conclusions and recommendations are made in relation to the convective

effects, determination of property parameters, and the issue of a valid

electrical heating model.
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I. INTRODUClION

ISV involves coupled electric field, heat transfer, and fluid flow

processes. The work reported here is directed towards the treatment of

buoyancy-driven fluid flow in this context. Fluid motion influences heat

transfer in the melt zone and may play an important role in determining the

melt shape and its extent. Clearly this issue is of special significance in

the ISV problem.

The following report is organized mainly as a set of numerical studies

designed to gui(e the ISV modeling work at INEL. I'2 These numerical studies

were performed using the finite element model described in reference 3. The

basic format of this report is divided into several distinct pieces covering

individual studies and topics. The main issues are listed below by section

number"

(2) Coupled viscous flow and heat transfer. The focus here is to

obtain a qualitative understanding of flow effects in the process. The finite

element type, basic grid, and solution procedure are briefly indicated.

Recommendations related to the algorithms are also included. A list of

material properties for the calculations is given and, unless otherwise stated

in the subsequent sections, the grid, domain, and material types are fixed at

these values.

(3) The joule heating model is briefly formulated. This model leads to

the important issue of correct heating models in the next section.

(4) The heating models tested include the heating model defined in (2),

the heating model applied in the conduction studies 4, and a hybrid model

incorporating some effects of both forms. The question of a valid heating

model is a central issue, as became clear during the course of the numerical

studies. The main difficulties arise from two coupled effects" first the

electrical conductivity is a strong function of the material temperature and

secondly, the electrical conductivity determines, in turn, the strength and

distribution of the heat source for the thermal problem. The difficulties are

I



furthercomplicatedby the buoyancyeffects in the flow field since these also

will be strongestin reglons of high thermalgradientsand will tend to form

cell structures. As indicatedabove, differentmodels were appliedand

supportingnumericalcalculationswere made. These calculationsservedto

emphasizethe importanceof bouyancydriven flow and the strongrecommendation

that further studiesof this coupledeffect be made. If the goal of a

simplifiedheatingmodel in a conductionanalysiscan be realized (and this is

not yet known) then the practicalityof 3-D simulationand designstudies

would be greatly enhanced.

(5) Coupledfluid-solidheat transfer is considerednext with conduction

alone in the solid and both conductionand convectionin the melt zone. The

nature of the heatingmodel is such that the meltrate is accelerated. This

enables us to examinethe fluid flow effects in a "contractedtime frame",

portrayingflow cells that will develop in practiceonly in a longer time

frame. This approachpermits the calculationsto be made more efficientlyand

yet still lends insightinto local effectsthat may be importantearly in the

processand during startup. Later some long term studieswithout the

acceleratedprocess are examined. The surfaceboundary conditionincludes

free surfaceradiationand the far field boundaryconditionsare of convective

heat transfer type.

(6) This section deals with the relative importance of latent heat

effects, lt is shown that for the material in the ISV problem the Stefan

l_umber is of the order of one to ten so latent heat cannot be neglected.

Numerical experiments for a ID problem with a moving melt boundary show that

ignoring latent heat will over-predict the boundary location by approximately

2O%.

(7-9) The final set of numericalexperimentsincludethe effect of an

initiallyheated "frit" zone at the surface. Both conductive solid and

fluid-solidsituationsare tested. Finally,the heatingmodel is such that

the time scale now is of the same order as in the ISV process. Multipleflow

cells form in the "frit"zone and the melt extendsdownward. There is strong

convectivemixing associatedwith these flow cells and as a result the

2



isotheYmsare strongly influenced. This effect appearsto be important.

Propertiesand heating model details are summarized in associatedtables.
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2. COUPLFDVISCOUSFLOWANDHEATTRANSFER

The first phase of calculations was designed to examine coupled fluid

flow and heat transfer in a simplified test problem" electrical heating of a

fluid domain. The problem corresponds to an axisymmetric domain with a

central heating electrode and a remote far field. The finite element

discretization for the viscous flow and heat transfer problem is given in

Figure 2.1. Since the problem is axisymmetric it can be discretized as a

two-dimensional domain with annular elements of quadrilateral section as

indicated in the figure. Thus, the problem reduces to a quasi two-dimensional

calculation.

The potential field is solved analytically by assuming a simple form for

the spatially varying electrical conductivity. The main objective is to

investigate the coupled flow and heat transfer aspects of the ISV problem in

these numerical studies. In more complete calculations this problem would be

solved as a fully coupled problem where the electric field putential and

electrical conductivity are updated at each time step. In this study it is

assumed that the entire domain is a liquid with constant electrical

conductivity. Given the potential solution and the form of the conductivity,

the volumetric heat source can be determined from the current.

Note that if one assumes the conductivity is constant, then the potential

in the annulus is easily obtained. Let a be the inner radius and b the outer

radius with applied potential V. Then the solution is

@. Vln(r/b) (2.1)
In(a/b)

which implies that

Q -o eE • E - oe (V/[In(a/b)r])2 (2.2)



As a "worst case" estimate, setting o = 20 (ohms-m)"I (at T = 2273'K), V =

1000 volts, a : 0.15m, b = lm and r = 0.15m, w_. get Q = 2.48 x I0 B W/m3. The

actual peak value will be less and in the numerical experiment the limit value

Q < 107W/m3 is set.

The problemthen reduces to solvingfor the coupled viscous flow and heat

transfer in the axisymmetricdomain. This problem is solved by iteratively

decouplingthe viscous flow equationsand heat transfer equaticnswithin each

time step (for furtherdetails see McLay and Carey3). Again the principal

objective is to obtain a qualitativeunderstandingof the behavior and the

dominant effects in the process and to gain insightinto appropriatenumerical

techniquesand limitationsof the numericalmethodswith _espect to grid size,

; convectiveeffects, and time st_p behavior.

The volumetricheat sourcegeneratesa buoyancy force in the Navier

Stokes equations (with the Boussinesqapproximations). This force induces

motion of the fluid. In the presentcalculationsthe fluid flow is solved

using an implicittechnique,as is the decoupledheat transfer equation in

each time step. Neumann boundaryconditionsapply at the electrode (symmetry)

and the far field. The conditionsat the surfaceare modelled using a mixed

(convective)boundarycondition. Materialproperties are taken to be those

correspondingto Hanford soil. Boundary col,ditionsand material properties

are specifiedin Table 2.1. Beginningwith an initiallystationarydomain

with fixed temperature,the solution is integratedin time implicitly. A

convectivecell forms with the dominant flow in a vertical region adjacent to

the electrode and then reducingoutward across the top surface as indicatedin

Figure 2.2.

The velocity vector arrows in the figuresare normalizedby the maximum

velocity at each time step. Little fluid motion occurs away from the

electrode. Velocitiesat time t = 1000s near the electrodeare of the order

of millimetersper second. The associatedheat transfer field is indicatedby

the plot of isothermsin Figure 2.3. Notice that, although the velocity is

not large near the surface, the isothermsextend for some distance radially

out across the top surface. There is essentiallya thermal layer near the

5
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electrodeand a partiallayer near the surface. Even though the velocityof

the flow is not significant,the high thermalcapacityfor the material scales

the convectiveterm in the heat transferequation. Hence, convectioncannot

be completely ignoredin the heat transferprocess. This conclusionappears

to be one of the importantresultsthat has come out of these studies. The

velocity field at a later time t = 2000s is shown in Figure 2.4 and the

correspondingisothermsin Figure 2.5.

In interpretingthe precedingresults,one should keep in mind the

importantrole that the material propertiesplay in the heat transferprocess.

In particularthere is a strong depender,ce of material propertieson

temperature. This dependenceis shown in the graphs in Figures2.6 and 2.7,

which depict the variationin Prandtlnumber and Grashofnumber a_ functionof

temperature, the Prandtlnumber drops precipitouslyas the temoerature

increases. If the Rayleighnumber is examinedas a functiontemperature(see

Figure 2.8), a dramaticincrease in the operatingrange from 1800 to 2200

degrees K occurs. This increaseexplainsthe behavior at t = 2000s in the

previous figures. As the domain heats up the transportbehaviorchanges.

Note that since the Rayleighnumber is very large at high temperaturethe flow

does have some convectivecharacter,particularlyin the time period

consideredhere.

Remarks: ihe electricalconductivityvarieswith temperature(and this

actuallywill affect the electricpotential). As far as heating is concerned,

initially,the greatest heatingwill be near the electrode. However, as the

temperaturerises in this region the potentialdrop across this region falls.

The lower the potentialdrop, the less heating. This effect will tend to

reduce the heatingnear the electrodeand promoteheating away from the

electrode. This featureis importantto the successof the process. In some

sense the currentnumericalexperimentprovidesa conservativeor perhaps

"worst case" situationto guide the furtheranalysisand experiments.

The present numericalexperimentsuggeststhat the followingpoints will

be importantin developinga 3-D simulation:



1. The present calculationsemploy a fully implicitsolutionwith constant

time step of 10 secs. (That is, 200 steps to t = 20QOs.) lt may be

importantto use small time steps during the beginningof the heating

process and increasethe time steps as time increases. Similarly, a

combinationof implicitand explicitmethods may be useful.

2. Some mesh refinement studieswith refinementin regionsof large

gradientsmay be useful prior to developing a state-of-the-artcode with

great efficiency. One could refine near the electrodeand then

adaptivelyrefine as the solutiongradients change with the melt.

3. Note that the early time behaviorand the late time behavior are quite

distinct as indicatedin the previous figuresand this will be more

importantfor the fluid-solidproblemwith a large domain.



Table 2.1 Materialproperties and boundaryconditionsused in all calculations

PropertiesUsed (HanfordSoil)

• Density (kg/m3) # : 2170.0 kg/m3

0.5 T>2400K

::!IViscosity (Pa s) # . I0̂ 0.91 --104 IO00K>T>2400K,g - T

m I

105T<I000K

• Heat Capacity (J/kg K) Cp = 1046 J/kgK

• - - k"Conductivity(W/m2 K) k m'(T T') +

m*-2.13 x 10-3;T*- 293K

k*- 0.13 T < 1173K

where m'-25.5 x 10-3 T*- 1173K

k'- 2.0 T > 1173K

• VolumetricExpansion (I/K) _ = 10.4 Tref = 1428K

• Melt Temperature (K) T,mLt = 1428K (1160°C)

• ElectricalConductivity(I/_m)

-- - Xo T > 1428K

0 E ,, ]

I0 ^ _ 1 4 ,'-- + b + c T < 1428K

m = -I/1.9 Xo = 6.9
a = -8.28 x 10.2 b = 0.61 c = -0.288



Table 2.1 (continued)

Bou_daryConditions

• Top Surface (W/m2) q = h(T - Tm)

where _ h 42W/m2K
, _[®'843K

• Bottom and Side q = 3200 w/m2

• Centerline q = 0

9



I I
[ !
i ..... Ii ! ..... 0 , i

Fig. 2.1 Finite element
- _..... dlscretization for ISV calculations.

Graded mesh of quadratic elements,,

surface corner coordinates

(.15,0),(I,0).*

,'4',._',d'--4,.._.-J.e.O .e-.e -,O -.D ,,,,41,-e

,jr ,e,_ ..... .- .- -
P._P_ ..o.,o.,o,.o..e-dm..O 4' .,4, --O "Q "

p.m_ .4P .0 ._

Fig. 2•2 Velocity vector field for _'te.rtP,,,,..."" " " ...." " ,'

Problem 1 at t-lOOOs. (Fluid material _* f_r, , , , • . . . ,

only, constant electrical conductivity, _ T_r r , , .... _

volumetric heat source dependent on _ . _ J' _' , [ ,the current•) Max velocity _ _'T_ t _ , ,

4;•O046m/s at ( 2, 57). _,. # _ , ....
,_ t_,,, ,.........

, . .......
.

*Here and in ali subsequent Figures the domain units are in metrics, time in seconds, velocities in

metr@s/sec., _ temperatures in degrees celcius unless expressly stated otherwise.
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Fig. 2.3 Temperature isotherms for

Problem i (see velocity field in

Fig. 1 2) Max. temperature 1674o• . , at

top left corner (.15,-i). Min.

temperature 1402 o at top right corner

(i,0). Contour spacing approximately
13°. Note the extent of the "hor:;ontal

contour loops" near the surface.

.,pttPrttps_ p P P" ._ _p.A ..-._ .., .d, -4 ._ . _IT t P p t p p p _ ., |
,,,tttttt P t r V I ,' .• P I P ,e p p .,, .. .. . .

Fig. 2.4 Velocity vector field for ,t _ t t _ p _ _ _ , . .

Problem 1 at t=2000. Max. veloc _ty ,t t t t t t _ t t . , . .

.O048m/s at surface near right corner ,,,tttt_t_tt t t _ _ _ _ _ , .... _
at (8,0) There is a small secondary ,t_ _ _ _ _ _ _ _ , . .

cell at the bottom lef_ corner and a t t _ _ _ _ _ _ , . . .
major cell at the top right corner. ,,,_,_, _ _ _ _ _ _ _ _ r , " "

t ' t 1 I q q _ A _ • . .

I

t ' I t _ _ t I I q . , ,

,ttTtf t t * _ e e o t t t t t t _ . o ° . t

,'_Tt_r,o,, , , o , .........

f _ _ _ .........

,,TT_t, ,................
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Fig. 2.5 Temperature isotherms at t=200_

for Problem I. Max. temperature is 18241

at (.15,-.05). Min. temperature is 15981

at (.8,-i). Contour spacing is

j approximately i0.70 .

.J"

PRANDTL NUMBER FOR HANFORD SOIL

iw I i_ T i

1o_oo.o

Fig. 2.6 Variation of Prandtl

Number with temperature for Hansford ! *s°°°'°Soil.

_lO000_O

_o0o.o

J I I I _
_4o ,o _6oo.o lloo.o jooo.o a;oo.o

TtMP I_ZLVll)
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GRASHOF NUMBEK FOK HANFOKD SOIL

l 1 1 I I

4000000.0

,oooooo.o Fig. Z.7 Variation of Grashof Number

with temperature for Hansford Soil.

4000000.0 ' t

!
m

I000000,0

o IDO0_O0.O ,,

_000000.0

0,0
i 1 1 _ I

_400.0 IIO0.O llO0.O 3000.0 2200.0

Y_ltlt (laLVIU)

RAYLEIGH NUMBER FOR HANFORD SOIL
._1, ? 5OtIOE, Oe ¢' r '

/

+I.SOOOOZ.OII / .

/• 1 ._SOOOE_Oi

Fig. 2.8 Variation of Rayleigh

Number with temperature for |**.00000,,,
Hansford _Soil. -" '

"_ +7 . SO000ir.+@?

M

• _. O0000Z.O:

• Z, &OOOOZ*O'
a

+0.00000[_00 / I
i_ ,, I ..... I I ,. I. ]

,.,4

1409, O 1| O0,0 1I00,0 2000.0 ,1] O0.0
?EMP {All;LVZII)
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3. JOULEHEATING

The heatingfrom the electrodeis joule heating. In a pointwi_e sense,

this is J'E where J is the electric currentdensityvector and the electric

field E is the gradient of the electricpotential. Now,

J - o E + Jv (3.1)

where Jv is the electricalcurrentdue to motion of the material with free

charge.

The conservationof freecharge (pf= density of free charge) implies

apf
+ V • J - 0 (3.2)

at

Using (3.1), (3.2) can be rewritten

apf
V • oF +R/ • Jv + -0 (3,3)at

- - -- z E° -- c°E° and o OoONondimensionalizing,let E- EoE,u . _Iu,Jv. _° Jv,Pf - _mpl, - ,r T 1

where Eo is the permittivity,l is the referencelength and T is the time

scale of interest. Using these variablesin the above equationand

simplifying

-re __ Opf (3 4)
V • o E +-- • Jv + _ -0

T at

where Te : £0/Oo. If the ground has the permittivityof free space - this is

reasonableif there is no significantdielectricmaterial in the ground then

14



co --8.854 x 10"12. When the ground is melted,the electric conductivityoo

_"angesfrom I to 100/_]mand letting T be 1/60 second impliesre/T " 0(10"11).

Even for any large dielectricmaterial,the second term in equation (3.4)

can be neglectedso that

V • o E -0 (3.5)

Using the fact that the heating is J • E and the electric currentdue to

motion can be neglected,the joule heatingis

Q - oE • E or oIIEll (36)

This result impliesthat the directionof the electric field is not important.

15



4. HEATINGMODELS

In the previoussections flow and temperaturesolutionsfor the test

problemwere presented. One of the primaryfeaturesof the ISV problemhas

been demonstratedto be the nature of volumetricheating due to the E field.

As noted earlier,the electricalconductivityo 'isa strong functionof

temperatureand the temperaturevaries significantlyover the domain and with

respect to time. In the present report alternativeforms of heat models are

consideredto providefurther insightinto the modellingproblem and coupled

ISV processes.

lt i3 clear that the heat source behaviorplays a dominant role and that

reliablepredictivesimulationrequires that the joule heating be treated

correctly. This fact, in turn, impliesthat o(T) should be computed as part

of the nonlinearcoupledE-field, heat transferand fluid flow problem.

Nevertheless,heat source models can be very useful in preliminaryanalyses

and can enhance our understandingof the interaction's.Moreover,a full

analysis togetherwith laboratoryexperimentsmay yield imp_'ovedsimulations.

More work is needed in this directionand the present investigationis

directed towardsthis objective.

Recall that the E field satisfies

V • oE -0 in domain_l (4.1)

with

E - -V@ (4.2)

for potential@, so that

V • (o V @) - 0 in I_ (4.3)

where o = o(T), temperatureT.

In addition,the Joule heating is

16
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Q -J.E -oE.E (4.4)

or, equivalently,

Q - J.J/o (4.5)

As temperatureT rises so doesthe electricalconductivity_. Hence, as the

temperaturechanges locallyduring the ISV process so will the current

density. As inferredfrom the form of (4.5), a low o (high-electrical

resistance)will tend to promoteheating. This reciprocalproperty with

respectto temperatureis an importantfeatureof the ISV process. Here

simple (but incomplete)models are consideredto furtherexplore the coupled

processes, lt should be emphasizedalso that our principalcharter in these

studiesconcerns the issuesof convectiveheat transferdue to fluid motion

and some of these questions can be addressed,at least qualitatively,by the

presentapproach.

lt is instructiveto considerthe 'followingtwo simplemodels to

illustrateseveralpoints.

Model i. Assumea is constantaE (whichclearly is not the case). For

the axisymmetricproblemof interest,the solution of (4.1)with a constant

can be obtained analyticallyfor voltage V and radii a, b as

@ . Vln(r/b) (4.6)
In (a/b)

so that

= OEv
E- V J- (4 7)

rln(a/b) rln(a/b)

and
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Q-J.E-OE I V 12 (4.8)rln(a/b) .

Remarks: Note that as r increases(movingout from the electrodethe

heat source Q decreasesas I/r2 and the current densitydecreasesas I/r so

that the correctqualitativespatialdependence (volumetriceffect for

increasingr) is obtained. However, in reality, as the domain heats up o

increaseswith E and this model impliesthe volumetricheat source increases

accordingly- which is not correct,since we know that as o increases,the

amount of heat generatedshould decrease. This contradictionleads us to

examine the second "simplifiedcase", Model II.

Model II. Assume currentdensityJ is constant.Then

Q - IJ 12/_ (4.9)

Since IJl is assumedconstant,then as a rises with increasingtemperatureT,

Q decreasescorrespondingly. This model circumventsthe difficultynoted for

Model I but other problemsarise. In particular,the assumptionthat current

density is constant violatesthe expectedspatialdependenceon r for a

cylindricallysymmetricproblem. At rLarge the current density here is assumed

the same as for rsmLt but at rtarge the volume toroid elementAV = 2_rLargedrdz

is larger and hence the volumetricheating will be larger. Some other related

points concerningthe early behaviorwith this model also warrant comment.

First, the actual cu_rentJ will be less than a reasonableassumptionsince

the conductionpath is poor in the early time behavior. Secondly,the

conductivityis low at low temperaturesand this exacerbatesthe problem. One

can propose alternativeheatingmodels to try to circumventthese issues. For

example

.2
J -Jo/r or Q -jo/(r2o) (4.10)

but again the importantfeaturesrelatedto the couplingof the temperature,

E-fieldand fluid flow are suspect.
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In the accompanyingnumericalstudiesthe standardaxisymmetrictest

problemwith the above heatingmodel (4.10)isconsidered. The resultscan

then be comparedwith those obtained previously. Here Jo = 1500A/m2and Q

limitedto 10.7. That is,

2 , 07Q - min(Jo/Gr2 I )

Figure 4.1 shows a thermal boundarylayer near the top surfaceat t = 100s

with Tmx = 1395K and Tmin = 1162K. The interiortemperatureis approximately

constant. By t= 210s interiorheatinghas increasedT_x to 1835K,Tmin is

1231K and the isothermsare spread in the interiorwith again a surface layer

due to the surfaceboundary condition. The velocity vector field is given in

Figure 4.3 with Vmx = .019m/s. At t = 310s the effect of the high

capacitanceon convectiveheat transfer is apparent and T_x = 2159K, Tmin =

1239K. This behavioris repeatedat t = 410s, 510s, 610s, in Figures4.5 to

4.10, with correspondingvelocityplots and V_x -.015m/s. By t = 2010s a

_urfacelayer structureand large central "core" at near uniformtemperature

has formed as shown in Figure 4.11, which in some respectsconformsto the

known behavior.

Future work and recommendationsinclude"

I. Probablythe most significantissue is the resolutionof questions

associatedwith the heating and electricfield. Follow-onwork should include

solvingfor the E field includingthe couplingo(T) to the temperaturefield.

One approach would be to iterativelydecouplethe field solutionswithin each

time step. Also, with the aid of supportinganalysis,periodic E-field

updates should be considered;tilatis, not every step.

2. Resultsfor heat transfer alone (in the absenceof fluid flow) can

then be analyzedand comparedwith the earlier "simplified"heat models.

Various possiblenew models may arise from this analysis.
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3. Next the fully coupledproblem can be analyzed includingfluid flow.

4. The influenceof the coupled electric-fieldand heat transfer

behavior on the numericalalgorithmscan be examined. That is, nonlinear

stability,accuracy,grid size and time step issues.

5. Analyze the problemwith buriedmetal inclusions,etc.

Remark: Although the axisymmetrictest case does differ from the field

problem, it does embody the importantfeaturesof the problem and hence these

studieswill be quite useful. Moreover,these benchmarkcalculationscan be

used as comparisonstudies for the 3-D code validationat INEL.
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5. FLUID-SOLIDHEATING

In this numerical study the previous annular domain and discretization in

previous problems is considered. Initially there is heat conduction in the

solid domain and, as melting proceeds, fluid motion in the melt zone occurs

with heat transfer by conduction and convection. The buoyancy coefficient is

assumed to vary as a function of temperature as follows: lt is 0 below the

melt temperature T : 1428K and increases linearly until T : 1528K; beyond T =

1528K it is constant at 10"_ K"I, At the surface a convective boundary

condition applies (heat transfer coefficient is defined as in the previous

study).

As heating occurs, the thermal layer near the electrode advances into the

interior of the domain with heat transfer initially by conduction alone (and

the electrical heat source as before). At a later time the domain begins to

melt and heat transfer occurs by convection and conduction in the molten zone,

with conduction in the solid. In the attached figures we show the evolution

of the temperature isotherms during this process at 100 second intervals. The

maximumand minimum temperatures and their location are indicated on the

figures. The contours indicate the thermal boundary layer adjacent to the

left (electrode) boundary and the upper surface boundary where the convective

heat transfer boundary condition applies. There are also some effects at the

far field boundary due to the domain approximation.

Conduction occurs through the solid domain to time 810 seconds at which

stage melting has been initiated. At t = 910 seconds we see a slight

convective roll in the bottom left corner with maximumvelocity .04 meters per

second. The corresponding isotherms show the effect of the convective

velocity on heat transfer in the bottom left corner. By t : i010s the

convective velocity is present along the electrode but the maximumvelocity is

now at the top left corner. The isotherm plot reflects the influence of the

convective heat transfer in both these regions. A similar behavior is evident

at t : 1110s with the maximumvelocity now .O04m/s. (lt is important to note

that the velocity vectors in each figure are scaled and normalized by the

maximumvelocity so direct comparison of the figures for velocities can be
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misleadingas to their magnitude.) At t - 1210s the maximum velocity again

occurs in the lower left cell and the magnitudeof the maximum velocity is

.O07m/s.

Subsequentplots show that the velocitypeak appearsto oscillatebetween

the lower left and top right corners in an interestingquasi periodic

behavior. The melt zones in the associatedcornersgrow, as indicatedin the

isothermplots until at t : 1810s a second cell has formed in the top left

corner due to the effect of the heat source and the associatedbuoyancy. At

this stage the isothermsindicatenumerousoscillationsand irregularitiesdue

to the inabilityof the grid to accommodatethe convectiveeffect.
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6. LATENTHEAT

The Stefan condition describes the motion of the boundary as _

where L is volumetric heat of fusion. To non-dimensionalize our problem, let

e = k#cp; t o = _2/_; t = t/to; = T/(T m - Tl); x : X/k; = _/{ so that the
Ste_an condition (6.1) becomes

a[____]..l._;St St- #cp(Tm-TI)L (6.2)

Here, Tm is the melt temp, Ti is the initial temperature and St is the Stefan

number. In particular let us take soil with the following properties:

p : 2170kg/m3

cp : 1046J/kg°Ki

T m ': 1428°K

Tt : 300°K

= 2.37 x 105 J/kg

L = p_ = 5.14 x I0 B j/m 3

Then

f

St - (2170kg/m 2) (1046J/kg°K) (1428 - 300°K) I- Im_
L5.14 x I08J

so St - 5.

When St is small, as in an ice-water system (St = 102), most of the

thermal energy travelling across the melt interface goes into converting
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materlal from solid to liquid, HoweVer, in the present,case where St is in

the range of I to 10, the,thermalenergy is balancedbetween latent heat and

heat capacity effects.

An estimate of how importantthe latent heat is to the position of the

melt surface can be estimatedas follows. Consider a one-dimensionalproblem

on (0 I). Linearly interpolatethe temperaturebetween 1522°K at × = 0 and T

= 300°K at × : 1.0 as initialdata. These temperaturesare chosen so that the

melt temperatureof 1400°K is initiallyat × = 0.1. At time t : O, the left

boundary is raised to 2200°K. The temperatureis then computed and the melt

boundaryposition is followedas a function_f time using a moving boundary

finite element technique.

To estimate the relative importanceof latent heat, the position of the

melt boundary is trackedwith and Without latent heat (see Figure 6.1).

Results show that if latent heat is ignoredthe boundaryposition is

overestimatedby about 20%.
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7. CONDUCTIONIN A LARGERDOMAIN

In this section the problem of conduction (only) is considered in a

larger domain (5m radius and 5m deep) with a .3m x .25m subregion _2 at the

top left corner initially heated at T = 1428°K. The remainder of the region

is initially assumed to be at T = 300°K . Part of the purpose of the present

study is to provide a qualitative check on these calculations and to verify

numerical accuracy and algorithm reliability.

A radiativeboundaryconditionapplies at the top surface for .15 < r <

O.5m with E = 0.9, T = 843°K, and a convectiveboundary conditionfor 0.5 < r

< lm, with heat transfer coefficienth = 0.1 and T = 300°K (simulatingthe

exterior to a cover). At the inner radius, r = 0.15, symmetryimplies flux q

= O. At the remote sides and bottom a convectiveboundary conditionwith h =

0.1 and T = 300°K is appliedas before. The material propertiesfor #, #,

Cp, k, # are given previously. The electricalconductivity(I/_m)is given by

1.0 T<T mOE " m(T _Tta) + I T > Tm

with m : 19/850 and Tm = 1428°K. The heating model is taken to be

J2/oE, T > TmQ" O, T<T m

where J = 774.6A/m. Note that in this model Q : 0 in the solid region,where

T < Tm. In particular,initially[II is solid with Q = O. This model then

diF'fersfrom previousmodels that tend to provide a large bulk source of heat

in the solid region which acceleratesglobal heatingand melting. Therefore,

the resultsmay be quite different,with local heat generation in the molten

regions and heat transfer by conductionin the solid due to the presence of

the molten pool.
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The grid for this extendeddomain is graded towards the electrodeon the

left (at r = 0.15m) and towards the top surfaceas shown in Figure 7.1.

Temperaturecontours are labeled in the plots with a minimum temperature

contour being A and the maximum contourJ. The contours at t = 1000 seconds

are shown in Figure 7.2 along with a stronggradient from the melt isotherm

into the solid region. By t = 29000 secondsthe heat zone has grown slightly

and the effects of the radiativesurfaceconditionare evident in the crowding

of contours at the top innermostregion as well as the "lobe" to the right at

the surface in Figure 7.3. By time 1.16 x I0"ssecondsthe zone has grown

furtherbut has the same qualitativeform. The effects of the far field

boundaryconditionsclearly are negligible.
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8. CONDUCTIONAND CONVECTION

In the next case both conductionand convectionwere includedand the

initialmelt zone _2 was taken to be a melted "frit" type region extending

across the top of a lm X lm domain. This zone extend';down to 0.13m and is at

1428°K initially. The radiativeboundaryconditionapplies across the top

surface and the previousheat flux conditionis applied at the other

boundaries. The time step for the calculationsis At = 1500 seconds. Since

the hot region extendsto the far right boundarythere will be an interaction

with a convectiveouter wall boundary condition.

The grid is given in Figure 8.1 and the isothermsin Figure8.2, at t =

9000 seconds, indicatethat conductionis dominant in the early time period.

Note the Clusteringof contours near the surfaceand in the solid region due

to the radiativeboundarycondition and high capacitanceof the solid,

respectively. At t = 54000 secondsthe convectiveeffects in the melt zone

are becoming apparentas seen in the isothermcontours of Figure 8.3. The

associatedconvectiverolls in Figure 8.4 contain a primary roll and two

secondarycounter rotatingrolls. The trend continues in Figures8.5 and 8.6

at t = 61500 secondsand by t = 99000 secondsa large melt zone with strong

convectiveeffectsoccurs due to a singleconvectivecell havingmaximum

velocity of .01Sm/s,at (.5,-.37). The effect of convectionis to producea

well mixed approximatelyuniformtemperaturezone. Some minor effects

associatedwith the boundary conditionsat the right boundary are apparent.
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9. CORNERINITIAL MELT

Since the boundaries in Section 7 were remote and seen to be of

negligible importance, a similar initial configuration, but for the smaller lm

x lm domain, is considered. The initial melt zone is .27m x .13m at the top

left corner with radiative condition for .15m < r < .3m. We take c = 0.09

rather than 0.9 in the radiative boundary condition. This lower value will

allow the region to heat up more rapidly. The convective heat transfer

conditions on the other boundaries at r : I and at z : I are as before. The

time step is At : 3000 seconds. Effectively we have brought the far field

boundary conditions of Section 7 into lm and now will include convection.

The grid is given in Figure 9.1 and by t = 33000 seconds a strong

convective cell has formed in the melt zone (Figure 9.2). The isotherms are

presented in Figure 9.3 and range from 426°K to 1566°K. At t = 108000 seconds

we have the pair of counter rotating cells in Figure 9.4 and the isotherms in

Figure 9.5. The number of flow cells and shape of the isotherms at later
i

times vary as indicated in the figures. Note the uniform temperature zone

associated with the well-mixed flow.

After about two days of the ISV process we see the cells begin to

intersect with the imposed outer radius, so boundary condition effects perturb

the results. From this study we also see that convective effects are

important in producing a well mixed thermal region in the melt zone. The flow

velocities nonetheless are quite small, being of the order of I to 10

millimeters per second or equivalently a Reynolds number 0(I), so Stokes flow

, is appropriate.

Remarks' Even with a higher heat transfer rate at the top surface, the

effects will be similar. Here we have also used # = 10.4. If # : 0(10 "s) the

strength of the cells is weaker but qualitatively similar behavior is seen in

the final set of Figures (9.20 - 9.39).
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