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ABSTRACT ‘

~ This report describes the formulation, results and conclusions of a
series of numerical studies performed to support the Idaho National
Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study.
These studies were designed to explore some of the questions related to the
dominant physical phenomena associated with the coupled electric field, heat
transfer, and fluid flow processes. The work examines the case of a 3-D
axisymmetric problem with a central electrode. Such issues as the form of an
electric heating model, choice of boundary conditions, latent heat effects,
and conductive and convective transport are considered. Some important
conclusions and recommendations are made in relation to the convective
effects, determination of property parameters, and the issue of a valid
electrical heating model.



1. INTRODUCTION

ISV involves coupled electric field, heat transfer, and fluid flow
processes. The work reported here is directed towards the treatment of
buoyancy-driven fluid flow in this context. Fluid motion influences heat
transfer in the melt zone and may play an important role in determining the
melt shape and its extent. Clearly this issue is of special significance in
the ISV problenm.

The following report is organized mainly as a set of numerical studies
designed to guice the ISV modeling work at INEL.''? These numerical studies
were performed using the finite element model described in reference 3. The
basic format of this report is divided into several distinct pieces covering
individual studies and topics. The main issues are listed below by section
number:

(2) Coupled viscous flow and heat transfer. The focus here is to
obtain a qualitative understanding of flow effects in the process. The finite
element type, basic grid, and solution procedure are briefly indicated.
Recommendations related to the algorithms are also included. A list of
material proberties for the calculations is given and, unless otherwise stated
in the subsequent sections, the grid, domain, and material types are fixed at
these values.

(3) The joule heating model is briefly formulated. This model leads to
the important issue of correct heating models in the next section.

(4) The heating models tested include the heating model defined in (2),
the heating model applied in the conduction studies®, and a hybrid model
incorporating some effects of both forms. The question of a valid heating
model is a central issue, as became clear during the course of the numerical
studies. The main difficulties arise from two coupled effects: first the
electrical conductivity is a strong functicn of the material temperature and
secondly, the electrical conductivity determines, in turn, the strength and
distribution of the heat source for the thermal problem. The difficulties are
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further complicated by the buoyancy effects in the flow field since these also
will be strongest in regions of high thermal gradients and will tend to form
cell structures. As indicated above, different models were applied and
supportiné numerical.calculations were made. These calculations served to
emphasize the importance of bouyancy driven flow and the strong recommendation
that further studies of this coupled effect be made. If the goal of a
simplified heating model in a conduction analysis can be realized (and this is
not yet known) then the practicality of 3-D simulation and design studies
would be greatly enhanced.

(5) Coupled fluid-solid heat transfer is considered next with conduction
alone in the solid and both conduction and convection in the melt zone. The
nature of the heating model is such that the melt rate is accelerated. This
enables us to examine the fluid flow effects in a "contracted time frame",
portraying flow cells that will develop in practice only in a longer time
frame. This approach permits the calculations to be made more efficiently and

yet still lends insight into local effects that may be important early in the
process and during startup. Later some long term studies without the
accelerated process are examined. The surface boundary condition includes
free surface radiation and the far field boundary conditions are of convective
heat transfer type.

(6) This section deals with the relative importance of latent heat
effects. It is shown that for the material in the ISV problem the Stefan
humber is of the order of one to ten so latent heat cannot be neglected.
Numerical experiments for a 1D problem with a moving melt boundary show that
ignoring latent heat will over-predict the boundary location by approximately
20%.

(7-9) The final set of numerical experiments include the effect of an
initially heated "frit" zone at the surface. Both conductive solid and
fluid-solid situations are tested. Finally, the heating model is such that
the time scale now is of the same order as in the ISV process. Multiple flow
-cells form in the "frit" zone and the melt extends downward. There is strong
convective mixing associated with these flow cells and as a result the
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isotherms are strongly influenced. This effect appears to be important.
Properties and heating model details are summarized in associated tables.



2. COUPL¥D VISCOUS FLOW AND HEAT TRANSFER

The first phase of calculations was designed to examine coupled fluid
flow and heat transfer in a simplified test probTem: electrical heating of a
fluid domain. The problem corresponds to an axisymmetric domain with a
central heating electrode and a remote far field. The finite element
discretization for the viscous flow and heat transfer problem is given in
Figure 2.1. Since the problem is axisymmetric it can be discretized as a
two-dimensional domain with annular elements of quadrilateral section as |
indicated in the figure. Thus, the problem reduces to a quasi two-dimensional
calculation. '

The potential field is solved analytically by assuming a simple form for
the spatially varying electrical conductivity. The main objective is to
investigate the coupled flow and heat transfer aspects of the ISV problem in
these numerical studies. In more complete calculations this problem would be
solved as a fully coupled problem where the electric field potential and
electrical conductivity are updated at each time step. In this study it is
assumed that the entire domain is a liquid with constant electrical
conductivity. Given the potential solution and the form of the conductivity,
the volumetric heat source can be determined from the current.

Note that if one assdmes the conductivity is constant, then the potential
in the annulus is easily obtained. Let a be the inner radius and b the outer
radius with appiied potential V. Then the solution is

_ Vin(r/b)
In(a/b) (2.1)
which implies that
Q=0,E«E=0, (V[In(a/b)r])? (2.2)



As a "worst case" estimate, setting o = 20 (ohms-m)™' (at T = 2273°K), V =
1000 volts, a = 0.15m, b = Tm and r = 0.15m, w2 get Q = 2.48 X 108 W/m3. The
actual peak value will be less and in the numerical experiment the 1limit value
Q < 10°W/m® is set.

The probiem then reduces to solving for the coupled viscous flow and heat
transfer in the axisymmetric domain. This problem is solved by iteratively
decoupling the viscous flow equations and heat transfer equaticns within each
time step (for further details see McLay and CareyS). Again the principal
objective is to obtain a qualitative understanding of the behavior and the
dominant effects in the process and to gain insight into appropriate numerical
techniques and limitations of the numerical methods with r2spect to grid size,
convective effects, and time step behavior.

The volumetric heat source generates a buoyancy force in the Navier
Stokes equations (with the Boussinesq approximations). This force induces
motion of the tluid. In the present calculations the fluid flow is solved
using an implicit technique, as is the decoupled heat transfer equation in
each time step. Neumann boundary conditions apply at the electrode (symmetry)
and the far field. The conditions at the surface are modelled using a mixed
(convective) boundary condition. Material properties are taken tn be those
corresponding to Hanford soil. Boundary conditions and material properties
are specified in Table 2.1. Beginning with an initially stationary domain
with fixed temperature, the solution is integrated in time impiicitly. A
convective cell forms with the dominant flow in a vertical region adjacent to
the electrode and then reducing outward across the top surface as indicated in
Figure 2.2.

The velocity vector arrows in the figures are normalized by the maximum
velocity at each time step. Little fluid motion occurs away from the
electrode. Velocities at time t = 1000s near the electrode are of the order
of millimeters per second. The associated heat transfer field is indicated by
the plot of isotherms in Figure 2.3. Notice that, although the velocity is
not large near the surface, the isotherms extend for some distance radially
out across the top surface. There is essentially a thermal layer near the
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electrode and a partial layer near the surface. Even though the velocity of
the flow is not significant, the high thermal capacity for the material scales
the convective term in the heat transfer equation. Hence, convection cannot
be completely ignored in the heat transfer process. This conclusion appears
to be one of the important results that has come out of these studies. The
velocity field at a later time t = 2000s is shown in Figure 2.4 and the
corresponding isotherms in Figure 2.5.

In interpreting the preceding results, one should keep in mind the
important role that the material properties play in the heat transfer process.
In particular there is a strong dependerce of material properties on
temperature. This dependence is shown in the graphs in Figures 2.6 and 2.7,
which depict the variation in Prandtl number and Grashof number as function of
temperature. 1The Prandtl number drops precipitously as the temperature
increases. If the Rayleigh number is examined as a function temperature (see
Figure 2.8), a dramatic increase in the operating range from 1800 to 2200
degrees K occurs. This increase explains the behavior at t = 2000s in the
previous figures. As the domain heats up the transport behavior changes.

Note that since the Rayleigh number is very large at high temperature the flow
does have some convective character, particularly in the time period
considered here.

Remarks: The electrical conductivity varies with temperature (and this
actually will affect the electiric potential). As far as heating is concerned,
initially, the greatest heating will be near the electrode. However, as the
temperature rises in this region the potential drop across this region falls.
The Tower the potential drop, the less heating. This effect will tend to
reduce the heating near the electrode and promote heating away from the
electrode. This feature is important to the success of the process. In some
sense the current numerical experiment provides a conservative or perhaps
"worst case" situation to guide the further analysis and experiments.

The present numerical experiment suggests that the following points will
be important in developing a 3-D simulation:



The present calcuiations employ a fully implicit solution with constant
time step of 10 secs. (That is, 200 steps to t = 20Q0s.) It may be
important to use small time steps during the beginning of the heating
process and increase the time steps as time increases. Similarly, a
combination of implicit and explicit methods may be useful.

Some mesh refinement studies with refinement in regions of large
gradients may be useful prior to developing a state-of-the-art code with
great efficiency. One could refine near the electrode and then
adaptively refine as the solution gradients change with the melt.

Note that the early time behavior and the late time behavior are quite
distinct as indicated in the previous figures and this will be more
important for the fluid-solid problem with a large domain.



Table 2.1 Material properties and boundary conditions used in all calculations

Properties Used (Hanford Soil)
e Density (kg/ms)

o Viscosity (Pa-s)

o Heat Capacity (J/kg K)
e Conduciivity (W/m® K)

¢ Volumetric Expansion (1/K)

o Melt Temperature (K)

e Electrical Conductivity (1/0m)

p = 2170.0 kg/m’

(0.5 T>2400K

4
s {100 [0.91 [% - 4.5] 1000K > T > 2400K,

m=20.91

L105 T<1000K

c, = 1046 J/kgK
k=m(T-T) +K

m* = 2.13 x 1073; T* = 293K

" k* = 0.13 T < 1173K
where | °, 3 e
m* = 25.5 x 103 T* - 1173K
k* = 2.0 T > 1173K

B =10 T . =1428K

T.oe = 1428K (1160°C)
R 104
10~ |m - - X, T > 1428K
o L
e ( 4 2 4 v
100 Ja [ 2] 4 b 129 4 cf T < 1928K
\ L T T
m=-1/1.9 Xy = 6.9
a=-8.28x102% b=20.6]1 c=-0.288



Table 2.1 (continued)

Boundary Conditions

Top Surface (W/m?)

Bottom and Side

Centerline

q = h(T - Tw)
h = 42W/m%K
where {Tw - 843K
q = 3200 w/m?
qg=20




Fig. 2.1 Finite element
discretization for ISV calculations.
Graded mesh of quadratic elements,
surface corner coordinates

(.15,0), (1,0).*
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Fig. 2.4 Velocity vector field for
Problem 1 at t=2000. Max. veloc'ty
.0048m/s at surface near right corner
at (.8,0). There is a small secondary
cell at the bottom lei: corner and a
major cell at the top right corner.
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Fig. 2.3 Temperature isotherms for
Problem | (see velocity field in

Fig. 1.2). Max. temperature 1674°, at
top left corner (.15,-1). Min.
temperature 1402° at top right corner
(1,0). Contour spacing approximately
139, Note the extent of the "horiontal
contour loops'" near the surface.
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Fig.2.5 Temperature isotherms at t=200
for Problem 1. Max. temperature 1s 1824
at (.15,-.05), Min. temperature is 1598
at (.8,-1). Contour spacing is
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3. JOULE HEATING

The heating from the electrode is joule heating. In a pointwi.e sense,
this is J'E where J is the electric current density vector and the electric
field E is the gradient of the electric potential. Now,

J-0E+J, (3.1)

where J, is‘the electrical current due to motion of the material with free
charge.
The conservation of free charge (p; = density of free charge) implies
a4

— 1 +v.Jd=0 \ - (3.2)
at |

Using (3.1), (3.2) can be rewritten
dp4

Veob +V ., +
ot

-0 (3.3)

. N o = - 1 — gfE . — gk -
Nondimensionalizing, let E = E;E, u = —u, J, = Jys 04 = ~i_-pf, and 0 = 0,0,
T

-

where g, is the permittivity, 1 is the reference length and 7 is the time
scale of interest. Using these variables in the above equation and
simplifying

T

T . dp,
v-oE+e[v.J+_fi]-o (3.4)

where 7, = £,/0,. If the ground has the permittivity of free space - this is
reasonable if there is no significant dielectric material in the ground then
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i

g, = 8.854 x 107", When the ground is melted, the electric conductivity 0o
vanges from 1 to 100/0m and letting 7 be 1/60 second implies 7./7 - 0(10'”).

Even for any large dielectric material, the second term in equation (3.4)
can be neglected so that ‘

V.oE=D0 (3.5)

Using the fact that the heating is J « E and the electric current due to
motion can be neglected, the joule heating is

Q-0E.E or o[ (3.6)

This result implies that the direction of the electric field is not important.
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4. HEATING MODELS

In the previous sections flow and temperature solutions for the test
problem were presented. One of the primary features of the ISV problem has
been demonstrated to be the nature of vo]umetrié heating due to the E field.
As noted earlier, the electrical conductivity o is a strong function of
temperature and the temperature varies significantly over the domain and with
respect to time. In the present report alternative forms of heat models are
considered to provide further insight into the modelling problem and coupled
ISV prdcesses.

It i3 clear that the heat source behavior plays a dominant role and that
reliable predictive simulation requires that the joule heating be treated
| correctly. This fact, in turn, implies that o(T) should be computed as part
of the nonlinear coupled E-field, heat transfer and fluid flow problem.
Nevertheless, heat source models can be very useful in preliminary analyses
and can enhance our understanding of the interactions. Moreover, a full
-analysis together with laboratory experiments may yield improved simulations.
More work is needed in this direction and the present investigation is
directed towards this objective.

Recall that the E field satisfies

V.0FE =0 in domain Q (4.1)
with

E--V¢ (4.2)

for potential ¢, so that

V.(@Vé) =0 inQ (4.3)

where 0 = o(T), temperature T.
In addition, the Joule heating is

16
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Q=J-FE=cE-E | | (4.4)

or, equivalently,

Q =J.Jd/0o (4.5)

As temperature T rises so does the electrical conductivity o. Hence, as the
temperature changes locally during the ISV process so will the current
density. As inferred from the form of (4.5), a low o (high-electrical
resistance) will tend to promote heating. This reciprocal property with
respect to tempérafure is an important feature of the ISV process. Here
simple (but incomplete) models are considered to further explore the coupled
processes. It should be emphasized also that our principal charter in these
studies concerns the issues of convective heat transfer due to fluid motion
and some of these questions can be addressed, at least qualitatively, by the
present approach.

It is instructive to consider the following two simple models to
illustrate several points.

Model I. Assume ¢ is constant o, (which clearly is not the case). For
the axisymmetric problem of interest, the solution of (4.1) with o constant
can be obtained analytically for voltage V and radii a, b as

§ - Vin(r/b)

n (a/b) (4-6)
so that
S A LA (4.7)
rin(a/b) rin(a/b)

and
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Q ; JEwo. |V : B (4.8)
g [r]n(a/b)] i

Remarks: Note that as r increases (moving out from the electrode the
heat source Q decreases as 1/r® and the current density decreases as 1/r so
that the correct qua1itatiVe spatial dependence (volumetric effect for
increasing r) is obtained. However, in reality, as the domain heats up o
increases with E and this model implies the volumetric heat source increases
accordingly - which is not correct, since we know that as o increases, the
amount of heat generated should decrease. This contradiction leads us to
examine the second "simplified case", Model II.

Model II. Assume current density J is constant. Then

Q= 1d|%0 o (4.9)

Since |J| is assumed constant, then as o rises with increasing temperature T,
Q decreases correspondingly. This model circumvents the difficulty noted for
Model I but other problems arise. In particular, the assumption that current
density is constant violates the expected spatial dependence on r for a
cylindrically symmetric problem. At Flarge the current density here is assumed
the same as for rg,, but at r, .. the volume toroid element AV = 2lr . .drdz
is larger and hence the volumetric heating will be larger. Some other related
points concerning the early behavior with this model also warrant comment.
First, the actual current J will be less than a reasonable ASsumption since
the conduction path is poor in the early time behavior. Secondly, the
conductivity is low at Tow temperatures and this exacerbates the problem. One
can propose alternative heating models to try to circumvent these issues. For
example

J = Jdy/r or Q= jZ/(r) (4.10)

but again the important features related to the coupling of the temperature,
E-field and fluid flow are suspect.
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In the accompanying numerical studies the standard axisymmetric test
problem with the above heating model (4.10)is considered. The results can
then be compared with those obtained previously. Here J, = 1500A/m2 and Q
Timited to 1077. That is,

Q = min (J;/or2, 107)

Figure 4.1 shows a thermal boundary layer near the top surface at t = 100s
with T, = 1395K and T, = 1162K. The interior temperature is approximately
constant. By t= 210s interior heating has increased T, to 1835K, T . is
1231K and the isotherms are spread in the interior with again a surface layer
due to the surface boundary condition. The velocity vector field is given in
Figure 4.3 with V= .019m/s. At t = 310s the effect of the high
capacitance on convective heat transfer is apparent and T, = 2159K, T . =
1239K. This behavior is repeated at t = 410s, 510s, 610s, in Figures 4.5 to
4.10, with corresponding velocity plots and V_,, ~.015m/s. By t = 2010s a
surface layer structure and large central "core" at near uniform temperature
has formed as shown in Figure 4.11, which in some respects conforms to the
known behavior.

Future work and recommendations include:

1. Probably the most significant issue is the resolution of questions
associated with the heating and electric field. Follow-on work should include
solving for the E field including the coupling o(T) to the temperature field.
Cne approach would be to iteratively decouple the field solutions within each
time step. Also, with the aid of supporting analysis, periodic E-field
updates should be considered; that is, not every step.

2. Results for heat transfer alone (in the absence of fluid flow) can

then be analyzed and compared with the earlier "simplified" heat models.
Various possibie new models may arise from this analysis.
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3. Next the fully coupied problem can be analyzed including fluid flow.

4. The influence of the coupled electric-field and heat transfer
behavior on the numerical algorithms can be examined. That is, nonlinear
stability, accuracy, grid size and time step issues.

5. Analyze the problem with buried metal inclusions, etc.

Remark: Although the axisymmetric test case does differ from the field
problem, it does embody the important features of the problem and hence these
studies will be quite useful. Moreover, these benchmark calculations can be
used as comparison studies for the 3-D code validation at INEL.
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Fig. 4.1 TIsotherms

TIME= 110.00

Fig. 4.2 Isotherms 210s

Timk= 20000
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Fig. 4.3
Velocity Vector Plot 310s
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5. FLUID-SOLID HEATING

In this numerical study the previous annular domain and discretization in
previous problems is considered. Initially there is heat conduction in the
solid domain and, as melting proceeds, fluid motion in the melt zone occurs
with heai transfer by conduction and convection. The buoyancy coefficient is
assumed to vary as a function of temperature as follows: It is O below the
melt temperature T = 1428K and increases linearly until T = 1528K; beyond T =
1528K it is constant at 107 K™'. At the surface a convective boundary
condition applies (heat transfer coefficient is defined as in the previous
study).

As heating occurs, the thermal layer near the electrode advances into the
interior of the domain with heat transfer initially by conduction alone (and
the electrical heat source as before). At a later time the domain begins to
melt and heat transfer occurs by convection and conduction in the molten zone,
with conduction in the solid. In the attached figures we show the evolution
of the temperature isotherms during this process at 100 second intervals. The
maximum and minimum temperatures and their location are indicated on the
figures. The contours indicate the thermal boundary layer adjacent to the
left (electrode) boundary and the upper surface boundary where the convective
heat transfer boundary condition applies. There are also some effects at the

far field boundary due to the domain approximation.

Conduction occurs through the solid domain to time 810 seconds at which
stage melting has been initiated. At t = 910 seconds we see a slight
convective roll in the bottom left corner with maximum velocity .04 meters per
second. The corresponding isotherms show the effect of the convective
velocity on heat transfer in the bottom left corner. By t = 1010s the
convective velocity is present along the electrode but the maximum velocity is
now at the top left corner. The isotherm plot reflects the influence of the
convective heat transfer in both these regions. A similar behavior is evident
at t = 1110s with the maximum velocity now .004m/s. (It is important to note
that the velocity vectors in each figure are scaled and normalized by the
maximum velocity so direct comparison of the figures for velocities can be
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misleading as to their magnitude.) At t = 1210s the maximum velocity again
occurs in the lower left cell and the magnitude of the maximum velocity is
.007m/s.

Subsequent plots show that the velocity peak appears to oscillate between
the lower left and top right corners in an interesting quasi periodic
behavior. The melt zones in the associated corners grow, as indicated in the
isotherm piots until at t = 1810s a second cell has formed in the top Teft
corner due to the effect of the heat source and the associated buoyancy. At
this stage the isotherms indicate numerous oscillations and irregularities due
to the inability of the grid to accommodate the convective effect.
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Fig. 5.5
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6. LATENT HEAT

The Stefan condition describes the motion of the boundary as 3

- aT
LS = E ?;ﬁ} (6.1)

where L is volumetric heat of fusion. To non-dimensionalize our problem, let
@ = kpe; b, = ef/a b= /b = T/(T, - T)5 x = X/t = 8/t so that the
Stefan condition (6.1) becomes

9] dggp .ttt A (6.2)
5% | St C |

Here, T, is the melt temp, T, is the initial temperature and St is the Stefan
number. In particular let us take soil with the following properties:

= 2170kg/m°
¢, = 1046J3/kg°K
o= 1428°K
T, = 300°K
) = 2.37 x 10° J/kg

= p) = 5.14 x 10% j/m’

Then

' . 3
St = (2170kg/m?) (1046J/kg°K) (1428 - 300°K) |- _m
5.14 x 1089

so St ~ 5.

When St is small, as in an ice-water system (St = 10'2), most of the
thermal energy travelling across the melt interface goes into converting
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material from solid to liqqid, However, in the present case where St is in
the range of 1 to 10, the thermal energy is balanced between latent heat and
heat capacity effects.

An estimate of how important the latent heat is to the position of the
melt surface can be estimated as follows. Consider a one-dimensional problem
on (0,1). Linearly interpolate the temperature between 1522°K at x = 0 and T
= 300°K at X = 1.0 as initial data. These temperatures are chosen so that the
melt temperature of 1400°K is initially at x = 0.1. At time t = 0, the left
boundary is raised to 2200°K. The temperature is then computed and the melt
boundary position is followed as a function of time using a moving boundary .
finite element technique.

To estimate the relative importance of latent heat, the position of the
melt boundary is tracked with and without latent heat (see Figure 6.1).
Results show that if latent heat is ignored the boundary position is
overestimated by about 20%.
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7. CONDUCTION IN A LARGER DOMAIN

In this section the problem of conduction (only) is considered in a
Targer domain (5m radius and 5m deep) with a .3m x .25m subregion Q, at the
top left corner initially heated at T = 1428°K. The remainder of the region
is initially assumed to be at T = 300°K . Part of the purpose of the present
study is to provide a qualitative check on these calculations and to verify
numerical accuracy and algorithm reliability.

A radiative boundary condition applies at the top surface for .15 < r <
0.5m with € = 0.9, T_ = 843°K, and a convective boundary condition for 0.5 < r
< Im, with heat transfer coefficient h = 0.1 and T = 300°K (simulating the
exterior to a cover). At the inner radius, r = 0.15, symmetry implies flux g
= 0. At the remote sides and bottom a convective boundary condition with h =
0.1 and T_ = 300°K is applied as before. The material properties for p, 4,

Cos k, B are given previously. The electrical conductivity (1/Q;) is given by

1.0 T<T,
%" Im(T-T)+1 T>T,

with m = 19/850 and T = 1428°K. The heating model is taken to be

/o, T>T
0, T<T,

where J = 774.6A/m. Note that in this model Q = 0 in the solid region, where
T < T, Inparticular, initially @, is solid with Q = 0. This model then
dirfers from previous models that tend to provide a large bulk source of heat
in the solid region which accelerates global heating and melting. Therefore,
the results may be quite different, with lTocal heat generation in the molten
regions and heat transfer by conduction in the solid due to the presence of
the molten pool.
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The grid for this extended domain is graded towards the electrode on the
Teft (at r = 0.15m) and towards the top surface as shown in Figure 7.1.
Temperature contours are labeled in the plots with a minimum temperature
contour being A and the maximum contour J. The contours at t = 1000 seconds
are shown in Figure 7.2 along with a strong gradient from the melt isotherm
into the solid region. By t = 29000 seconds the heat zone has grown slightly
and the effects of the radiative surface condition are evident in the crowding
of contours at the top innermost region as well as the "lobe" to the right at
the surface in Figure 7.3. By time 1.16 x 107 seconds the zone has grown
further but has the same qualitative form. The effects of the far field
boundary conditions clearly are negligible.
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8. CONDUCTION AND CONVECTION

In the next case both conduction and convection were included and the
initial melt zone Q, was taken to be a melted "frit" type region extending
across the top of a Im X Im domain. This zone extends down to 0.13m and is at
1428°K initially. The radiative boundary condition applies across the top
surface and the previous heat flux condition is applied at the other
boundaries. The time step for the calculations is At = 1500 seconds. Since
the hot region extends to the far right boundary there will be an interaction
with a convective outer wall boundary condition.

The grid is given in Figure 8.1 and the isotherms in Figure 8.2, at t =
9000 seconds, indicate that conduction is dominant in the early time period.
Note the clustering of contours near the surface and in the solid region due
to the radiative boundary condition and high capacitance of the solid,
respectively. At t = 54000 seconds the convective effects in the melt zone
are becoming apparent as seen in the isotherm contours of Figure 8.3. The
associated convective rolls in Figure 8.4 contain a primary roll and two
secondary counter rotating rolls. The trend continues in Figures 8.5 and 8.6
at t = 61500 seconds and by t = 99000 seconds a large melt zone with strong
convective effects occurs due to a single convective cell having maximum
velocity of .015m/s, at (.5,-.37). The effect of convection is to produce a
well mixed approximately uniform temperature zone. Some minor effects
associated with the boundary conditions at the right boundary are apparent.
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Fig. 8.3
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Fig. 8.7
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9. CORNER INITIAL MELT

Since the boundaries in Section 7 were remote and seen to be of
negligible importance, a similar initial configuration, but for the smaller 1m
x 1m domain, is considered. The initial melt zone is .27m x .13m at the top
Jeft corner with radiative condition for .15m < r < .3m. We take &€ = 0.09
rather than 0.9 in the radiative boundary condition. This Tower value will
“allow the region to heat up more rapidly. The convective heat transfer
conditions on the other boundaries at r = 1 and at z = 1 are as before. The
time step is At = 3000 seconds. Effectively we have brought the far field
boundary conditions of Section 7 into Im and now will include convection.

The grid is given in Figure 9.1 and by t = 33000 seconds a strong
convective cell has formed in the melt zone (Figure 9.2). The isotherms are
presented in Figure 9.3 and range from 426°K to 1566°K. At t = 108000 seconds
we have the pair of counter rotating cells in Figure 9.4 and the isotherms in
Figure 9.5. The number of flow cells and shape of the isotherms at later
times vary as indicated in the figures. Note the uniform temperature zone
associated with the well-mixed flow.

After about two days of the ISV process we see the cells begin to
intersect with the imposed outer radius, so boundary condition effects perturb
the results. From this study we also see that convective effects are
important in producing a well mixed thermal region in the melt zone. The flow
velocities nonetheless are quite small, being of the order of 1 to 10
millimeters per second or equivalently a Reynolds number 0(1), so Stokes flow
is appropriate.

Remarks: Even with a higher heat transfer rate at the top surface, the
effects will be similar. Here we have also used g = 1074, If B = 0(10'5) the
strength of the cells is weaker but qualitatively similar behavior is seen in
the final set of Figures (9.20 - 9.39).
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Fig. 9.9
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Fig. 9.13
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Fig. 9.35
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