PNL--7614

DE91 007595

ENVIRONMENTAL EVALUATIONS FOR DEEPENING OF RICHMOND HARBOR AND SANTA FE CHANNELS

TASK 4: CHEMISTRY PROGRAM

B. Brown N. P. Kohn E. A. Crecelius

.

- J. A. Ward B. N. Bjornstad

Battelle/Marine Sciences Laboratory Sequim, Washington

September 1990

Prepared for the U.S. Army Corps of Engineers San Francisco District under a Related Services Agreement with the U.S. Department of Energy Contract DE-ACO6-76RLO 1830

Pacific Northwest Laboratory Richland, Washington 99352

SUMMARY

Richmond, California is an important commercial port in San Francisco Bay. The Richmond Harbor waterways are currently maintained at a depth of -35 ft relative to mean lower low water (MLLW). The San Francisco District of the U.S. Army Corps of Engineers (USACE) plans to increase the depth of Richmond Harbor and Santa Fe Channels to -38 feet MLLW to accommodate deepdraft commercial vessels. This dredging project also includes widening the junction between the channels and adding a turning basin in Richmond Harbor Channel. The total volume of dredged material is expected to be approximately 1.4 million cubic yards. The options for disposal of the dredged material are aquatic disposal and upland disposal. The purpose of this study was to develop a database on chemical compounds in the dredged material to assist with determination of disposal methods and the need for additional testing. This purpose was accomplished through an extensive field sampling program followed by chemical analysis of samples.

Field sampling involved collection of core samples from Santa Fe and Richmond Harbor Channels. Cores were shipped to Battelle/Marine Sciences Laboratory, where they were subsampled for chemical analysis and/or archived by freezing. Samples that were analyzed included 49 bulk sediment samples from Richmond Harbor Channel, 6 bulk sediment samples from Santa Fe Channel, 3 interstitial water samples from Santa Fe Channel, and 3 elutriate samples from Santa Fe Channel. All sediment and water samples were analyzed for priority pollutants, including metals, organotins, base/neutral semivolatile organic compounds, chlorinated pesticides and PCBs, herbicide acids, and acidic phenols. Sediment samples were also analyzed for oil and grease and total organic carbon. Organophosphorus pesticides and dioxins and furans were measured in selected sediment samples from Richmond Harbor Channel and from both sediment and water samples from Santa Fe Channel.

iii

CONTENTS

SUM	1 ARY	········ iii	
1.0	INTR	ODUCTION	
	1.1	Overview of the Program 1.1	
	1.2	Objectives of the Chemistry Program 1.4	
	1.3	Site Background 1.4	
2.0	FIEL	D SAMPLING	
	2.1	Introduction and Objectives	
	2.2	Vessels and Navigation	
	2.3	Sampling Equipment and Procedures	1
		2.3.1 Sediment Samples	1
		2.3.2 Water Sampling 2.1	4
	2.4	Field Sampling Results	5
		2.4.1 Short Cores: Richmond Harbor Channel and	
		Santa Fe Channel	5
		2.4.2 Long Cores (Undredged Areas)	6
		2.4.3 Water Samples 2.1	7
3.0	LABC	RATORY PREPARATION	
	3.1	Introduction and Objectives	
	3.2	Laboratory Glassware and Equipment Preparation 3.2	•
	3.3	Sample Storage and Chain-of-Custody	,
	3.4	Sediment Sample Preparation	
		3.4.1 Core Cutting and Archiving	, •
		3.4.2 Mixing of Sediment Samples	i
		3.4.3 Richmond Harbor Long Cores	•
		3.4.4 Richmond Harbor Channel Short Cores 3.5)
		3.4.5 Santa Fe Channel Composite Preparation 3.5)
	3.5	Water Sample Preparation)
		3.5.1 Interstitial Water Preparation)
		3.5.2 Elutriate Water Preparation	

<u>CONTENTS</u> (contd)

	3.6	Geological Analysis of Long Cores	8
		3.6.1 Geology	8
		3.6.2 Apparent Core Loss 3.	14
		3.6.3 Core Summary Descriptions	16
4.0	ANALY	YTICAL CHEMISTRY	1
	4.1	Introduction and Objectives	1
	4.2	Methods	1
		4.2.1 Metals in Sediment and Water 4.	1
		4.2.2 Organotins in Sediment and Water 4.	8
		4.2.3 Organic Compounds in Sediment and Water 4.	9
		4.2.4 Oil and Grease in Sediment 4.	14
		4.2.5 Total Organic Carbon (TOC) in Sediment 4.	15
	4.3	Quality Control	5
		4.3.1 Metals	6
		4.3.2 Organotins 4.1	7
		4.3.3 Organic Compounds 4.1	8
		4.3.4 Total Organic Carbon	0
		4.3.5 Oil and Grease	0
5.0	RESU	LTS	
	5.1	Sediments	
		5.1.1 Metals	
		5.1.2 Organotins	
		5.1.3 Organic Compounds	3
		5.1.4 TOC and Oil and Grease	8
	5.2	Water	8
		5.2.1 Metals	8
		5.2.2 Organotins	1
		5.2.3 Organic Compounds	1
6.0	QUAL	ITY ASSURANCE	-
7.0	PROJ	ECT PERSONNEL	
8.0	REFE	RENCES	
APPE	NDIX /	ACHAIN-OF-CUSTODY AND SAMPLE PREPARATION FORMS	
APPE	NDIX I	BGEOLOGICAL DESCRIPTION METHODS AND DETAILED RESULTS	

FIGURES

1	Location of Richmond Harbor, Richmond, California	1.2
2	Location of Santa Fe and Richmond Harbor Channels	1.3
3	Location of Sampling Stations in Richmond Harbor Channel	2.2
4	Location of Sampling Stations in Santa Fe Channel	2.3
5	Gravity Corer Used to Collect Richmond Harbor Sediment	2.12
6	General Geologic Cross-Section of Proposed Turning Basin, Not Corrected for Core Loss	3.9
7	Detailed Geologic Cross-Section of Proposed Turning Basin, Not Corrected for Core Loss	3.11
8	Detailed Geologic Cross-Section of Proposed Turning Basin, Corrected for Core Loss	3.12
9	Relationship of Aprarent Core Loss to Thickness of Younger Bay Mud Unit	3.15
10	Project Organization	7.3

45

TABLES

1	Sample Collection Information	2.5
2	Types and Numbers of Samples for Chemical Analyses	4.2
3	Proposed Detection Limits for Metals, Organotins, Total Organic Carbon, and Oil and Grease	4.3
4	Proposed Detection Limits for Organic Compounds	4.4
5	Quality Control for Metals in Sediments	5.2
6	Metals in Sediments from Richmond Harbor Long Cores	5.5
7	Metals in Sediments from Richmond Harbor Channel Short Cores	5.6
8	Metals in Sediments from Santa Fe Channel	5.7
9	Quality Control for Organotins in Sediments	5.8
10	Organotins in Sediments from Richmond Harbor Channel Long Cores	5.10
11	Organotins in Sediments from Richmond Harbor Channel	
	Short Cores	5.11
12	Organotins in Sediments from Santa Fe Channel	5.12
13	Quality Control for Base/Neutral Semivolatiles in Sediments	5.14
14	Surrogate Recoveries for Base/Neutral Semivolatiles in Sediments	5.26
15	Base/Neutral Semivolatiles in Sediments from Richmond Harbor Channel Long Cores	5.28
16	Base/Neutral Semivolatiles in Sediments from Richmond Harbor Channel Short Cores	5.34
17	Base/Neutral Semivolatiles in Sediments from Santa Fe Channel	5.40
18	Quality Control for Chlorinated Pesticides and PCBs in Sediments	5.43
19	Chlorinated Pesticides and PCBs in Sediments from Richmond Harbor Channel Long Cores	5.46
20	Chlorinated Pesticides and PCBs in Sediments from Richmond Harbor Channel Short Cores	5.49
21	Chlorinated Pesticides and PCBs in Sediments From Santa	5.52
22	Quality Control for Chlorinated Pesticides and PCBs in Sediments Reanalyzed from Selected Cores	5.53

TABLES (contd)

23	Chlorinated Pesticides and PCBs in Reanalyzed Sediments	5.56
24	Quality Control for Herbicide Acids and Acidic Phenols in Sediments	5.57
25	Herbicide Acids and Acidic Phenols in Sediments from Long Cores	5.58
26	Herbicide Acids and Acidic Phenols in Sediments from Richmond Harbor Channel Short Cores	5.59
27	Herbicide Acids and Acidic Phenols in Sediments from Santa Fe Channel	5.60
28	Quality Control for Organophosphorus Pesticides in Sediments	5.61
29	Organophosphorus Pesticides in Sediments from Long Cores	5.62
30	Organophosphorus Pesticides in Sediments from Richmond Harbor Channel Short Cores	5.63
31	Organophosphorus Pesticides in Sediments from Santa Fe Channel	5.64
32	Quality Control for Dioxins and Furans in Sediments: Blank and Spike	5.65
33	Quality Control for Dioxins and Furans in Sediments: Surrogate Reocoveries	5.66
34	Dioxins and Furans in Reanalyzed Sediments	5.67
35	Quality Control for Original Analyses of Dioxins in Sediments	5.69
36	Quality Control for Original Analyses of Furans in Sediments	5.70
37	Original Analyses of Dioxins in Sediments	5.71
38	Original Analyses of Furans in Sediments	5.72
39	Quality Control for Total Organic Carbon and Oil and Grease in Sediments	5.73
40	Total Organic Carbon and Oil and Grease in Sediments from Long Cores	5.76
41	Total Organic Carbon and Oil and Grease in Sediments from Richmond Harbor Channel Short Cores	5.77
42	Total Organic Carbon and Oil and Grease in Santa Fe Channel Sediments	5.78

TABLES (contd)

43	Concentrations of Oil and Grease in Sediments Analyzed in Three Samples Using Several Techniques	5.79
44	Quality Control for Metals in Water	5.80
45	Metals in Interstitial Water	5.82
46	Metals in Elutriate Water	5.83
47	Quality Control for Organotins in Water	5.84
48	Organotins in Interstitial Water from Santa Fe Channel 🛛	5.85
49	Organotins in Elutriate Water from Santa Fe Channel	5.86
50	Quality Control for Base/Neutral Semivolatiles in Water	5.87
51	Semivolatile Compounds in Water	5.90
52	Quality Control for Chlorinated Pesticides and PCBs in Water	5.93
53	Chlorinated Pesticides and PCBs in Water	5.95
54	Quality Control for Herbicide Acids and Acidic Phenols	
	in Water	5.97
55	Herbicide Acids and Acidic Phenols in Water	5.99
56	Quality Control for Organophosphorus Pesticides	5 100
57	Organophosphorus Pesticides in Water	5 101
58	Ouality Control for Dioxins and Furans in Water	5 102
59	Dioxins and Furans in Water	5.102
60	Field Sampling Team	7 2

1.0 INTRODUCTION

1.1 OVERVIEW OF THE PROGRAM

The San Francisco District of the U.S. Army Corps of Engineers (USACE) is currently planning to deepen the navigation channels of Richmond Harbor and Santa Fe Channels in Richmond, California (Figures 1 and 2), to allow access to deep-draft vessels. For the purposes of this report, Richmond Harbor Channel includes the Harbor Entrance Channel, Potrero Channel, and the Inner Harbor Channel. This work is consistent with USACE dredging regulations in 33#CFR Parts 208 and 220-227, the Clean Water Act 404(b)(1) guidelines, and the Ocean Dumping Act. According to this plan, both channels would be deepened to -38 ft mean lower low water (MLLW) from the presently authorized depth of -35 ft MLLW.

Battelle/Marine Sciences Laboratory (MSL) in Sequim, Washington, is assisting the USACE with sedimentary and chemical evaluations in Richmond related to determination of dredged-material disposal options. The two main options under consideration are aquatic disposal and upland disposal. The first step in making decisions regarding disposal options was to develop a chemical database on compounds in the sediments. The purpose of this MSL program was to develop that database for the USACE.

To date, the program has been divided into four tasks, as follows:

Task 1: Background Data Collection Task 2: Program Planning Task 3: Preliminary Cruise Preparations Task 4: Chemistry Program

Task 1 entailed identification of sampling sites and preparation of a list of detection limits for analytes that might be required for analysis in the program. Program Planning was conducted under Task 2 and entailed preparation of several plans, including a field sampling plan, a work plan, a safety plan, and a quality assurance (QA) plan. Task 3 encompassed early preparation for the field sampling that had to be started prior to initiation of Task 4.

This report covers Task 4 of the program "Environmental Evaluations for Deepening of Richmond Harbor and Santa Fe Channels."

1.2 OBJECTIVES OF THE CHEMISTRY PROGRAM

The objectives of the Chemistry Program (Task 4) were as follows:

- 1. <u>Field Sampling</u>: To collect field samples appropriate for characterization of the spatial and vertical distribution of contaminants in the sediments and for analysis of elutriate samples. Samples were collected for both analysis and archiving.
- 2. <u>Laboratory Preparation</u>: To geologically characterize selected cores; to prepare bulk sediment, elutriate water, and interstitial water samples for analytical chemistry from the core samples to be analyzed; and to archive by freezing the remainder of analyzed cores and whole cores.
- 3. <u>Analytical Chemistry</u>: To analyze the sediment, elutriate water, and interstitial water samples for numerous compounds including base/neutral semivolatile organic compounds, chlorinated and organophosphorus pesticides, polychlorinated biphenyls (PCBs), herbicide acids and phenols, metals, butyltins, oil and grease, and total organic carbon. In addition, organophosphorus pesticides and dioxins and furans were analyzed for selected sites.
- 4. <u>Reporting</u>: To present the results for field sampling, laboratory preparation, and analytical chemistry. At the request of the USACE, no data analysis has been provided.

1.3 SITE BACKGROUND

Richmond Harbor is located on the eastern shore of San Francisco Bay, north of Oakland and northeast across the bay from San Francisco (Figure 1). Most of the commerce and industry in Richmond Harbor is in petroleum, chemical products, and bulk cargo handling. Development of the harbor began in the early 1930s, with major development occurring in the early 1940s, when four World War II shipyards and a fabrication yard were built on much of the land adjacent to Santa Fe and Richmond Harbor Channels. Since the end of the wartime ship-building boom, the sites adjacent to the channels have housed a succession of industrial operations.

2.0 FIELD SAMPLING

2.1 INTRODUCTION AND OBJECTIVES

The goal of the field sampling was to collect samples appropriate for determination of the horizontal and vertical distribution of chemicals in the sediments. Specific objectives were as follows:

- To collect sediment cores from 42 sites in Richmond Harbor Channel to project depth of -38 ft MLLW plus 1 ft of overdraft plus 1 ft of exposed sediment (Figure 3). Sediment from 26 of these cores was to undergo bulk sediment analysis only; sediment from the remaining 16 was to be archived for possible future analysis.
- 2. To collect five cores from the proposed turning basin in Richmond Harbor Channel and one core from the proposed widening area at the junction of Richmond Harbor and Santa Fe Channels (Figure 3). These areas have not been previously dredged, and the cores from these areas were expected to be 20 to 35 ft long. Samples prepared from these sediment cores will undergo bulk sediment analyses only.
- 3. To collect sediment cores from 60 sites in Santa Fe Channel to project depth of -38 ft plus 1 ft of overdraft and 1 ft of exposed sediment to a total depth of -40 ft MLLW. The 60 sites, divided into 18 sites in Reach A, 18 in Reach B, and 24 in Reach C (Figure 4), were chosen by USACE's Waterways Experiment Station (WES) in Vicksburg, Mississippi. Following a compositing scheme designed by WES, sediments from these cores were to undergo bulk sediment, interstitial water, and elutriate chemistry analyses.
- 4. To collect 10 gallons of water from the center of Santa Fe Channel for use in elutriate-sample preparation.

Field sampling operations were initiated on April 3, 1989, and completed on April 12, 1989. Of the 108 sediment stations planned for sampling, 96 sites were actually sampled (Figures 3 and 4). Twelve sediment samples in Santa Fe Channel were not collected because the sediment surface was already below the project depth (-38 ft MLLW plus 1 ft overdraft and 1 ft exposed surface) (Figure 4). The 48 sampling sites in Richmond Harbor Channel (Figure 3) were chosen by USACE and the MSL following completion of Task 1 (Background Data Collection).

The 42 cores from Richmond Harbor Channel (Objective 1) and the 60 from Santa Fe Channel (Objective 3) will be referred to as short cores, as most

ł

FIGURE 4. LOCATION OF SAMPLING STATIONS IN SANTA FE CHANNEL.

were expected to be less than 10 ft long. The six cores from the undredged areas (Objective 2) are referred to as long cores. In Richmond Harbor Channel, 13 stations were successfully sampled with the gravity corer. The six long-core stations (Stations RI-1-W-1 and RI-1-TC-1 through RI-1-TC-5) were sampled with the vibratory corer, as were the remaining 29 short-core stations. In Santa Fe Channel, 48 stations were successfully cored with the vibratory corer, and 12 sites were not attempted because the sediment surface was already below project depth. Approximately 10 gallons of water was collected from the center of Santa Fe Channel for laboratory preparation of elutriate samples. Sample collection information is summarized in Table 1.

2.2 VESSELS AND NAVIGATION

A total of four vessels were used to complete the field sampling: two tugboats, a derrick barge, and an inflatable boat. Different vessels were required for the operation of each of the two types of core samplers, a gravity corer and vibratory corer. The core samplers are described in the Section 2.3.1. The 40-ft tugboat <u>California Eagle</u>, operated by Tom Decker of Slackwater Towboat Company of Richmond, California, was used for gravity coring. Vibratory-coring operations took place aboard a derrick barge provided by Manson Pacific Construction and Engineering Company of Richmond. The derrick barge, <u>DB-17</u>, was a 112 x 52-ft platform with a 130-ft crane. The barge was maneuvered by the tugboat <u>Bearcat</u>, operated by skipper Joe Wirth and Bill Hanmond of Westar Marine Services.

Navigation, or positioning on the sampling sites, was provided by a team of two licensed surveyors from Land and Sea Surveys of Ventura, California. The fourth vessel, a small inflatable boat, was operated by one surveyor, while the second surveyor worked from a survey control point on shore. Sampling sites were located using a Geodometer laser/range azimuth positioning system and were marked by a retrievable buoy. The surveyors recorded the actual water depth at the station, then applied a tidal correction for the time to obtain a corrected depth relative to MLLW. Portable radios were used to communicate information between surveyors, scientists, and vessel crews. If the corrected depth at the sampling station was too deep to collect

Sample Collection Information for Santa Fe and Richmond Harbor Channels TABLE 1.

2nd attempt; 2 gravity core tries 4/5 2nd attempt; 1 gravity core try 4/5 Middle sediment lost: analyze lower 2 attempts with gravity core 4/6 Archive core: no lower section 1 gravity corer attempt 4/5 1 gravity corer attempt 4/5 1 gravity corer attempt 4/5 lst 2 attempts too short Coments **3 Attempts** Upper (FT) Lover (FT) Length 2.0 2.4 2.0 2.1 2.8 1.0 1.2 1.7 1.4 2.0 ¥. 4.0 9.8 1.4 0.3 1.3 2.8 0.7 3.8 2.9 2.9 0.7 1.0 1.0 1 Length 4.3 2.3 6.2 2.9 3.2 7.0 8.3 6.0 8.4 0.4 5.0 5.9 6.0 6.5 2.0 7.4 5.4 5.3 3.5 4.3 **9**.4 4.7 7.8 4.7 0.9 9 5.4 **Collected** Core (FT) 7.7* 6.4 6.3* 5.8* 6.0 5.5 4.8 6.1 5.0 8.0 6.0 7.0 7.3 0.1 6. 0 4.7 7.2 6.0 8.3 6.2 **6**.5 8.5 10.7 **6**.0 4.0 2.6 Core (FT) Required 3.3 4.2 8.0 **6**.5 6.3 6.2 3.9 9.3 6. Û 5.8 6.0 6.0 6.9 7.3 3.6 *****. * 8.8 9.1 6.3 5.8 8.8 8 6.7 8.0 Depth (MLW) Corrected -33.5 -33.8 -35.8 -32.0 -34.2 -34.0 -31.8 -34.2 -34.7 -36.7 -35.1 -30.7 -34.0 -34.4 -33.1 -36.4 -33.6 -33.4 -35.5 -34.7 -34.3 -33.6 -32.7 -31.2 -34.3 -34.0 VIBRATORY /IBRATORY VIBRATORY /IBRATORY **VTIVAD** GRAVITY YTIVS. GRAVITY GRAVITY GRAVITY GRAVITY GRAVITY GRAVITY GRAVITY Corer GRAVITY GRAVITY GRAVITY Type Start 11:30 12:40 10:39 16:15 08:49 11:12 13:00 10:50 12:05 90:60 09:44 15:59 14:53 15:22 08:30 12:02 17:50 13:42 13:22 14:03 Time 16:21 14:39 14:19 14:37 16:04 14:52 Sampled Date 10 APR 6 APR 5 APR 10 APR **10 APR** 5 APR 5 APR 5 APR 6 APR 5 APR 5 APR 5 APR 6 APR 10 APR 10 APR 10 APR 5 APR 10 APR 10 APR 10 APR 10 APR 5 APR 5 APR 10 APR 9 APR APR 10 Zone III Coordinates East (X) North (Y) 521,122 520,332 619,762 518,112 617,915 617,824 617,589 617,500 617,248 618, 190 517,006 616,945 616,529 518,371 617,257 518,087 518,034 616,752 516, 595 516,018 617,209 516,701 516,074 516,421 617,426 617,807 California State Short Cores: Richmond Harbor 1,454,128 1,454,907 1,455,139 1,458,126 1,463,473 1,449,413 450, 533 1,451,525 1,452,380 1,453,063 1,455,788 1,46-1,433 1,457,319 1,459,054 1,459,933 1,460,752 1,461,753 1,432,462 1,461,516 1,462,784 1,455,577 1,456,101 1,463,294 1,462,866 1,449,601 1,462,787 East (X) RI-1-C-12 RI-1-C-14 RI-1-C-15 RI-1-C-16 RI-1-C-19 RI-1-C-20 RI-1-C-13 RI-1-C-18 RI-1-C-22 RI-1-C-23 RI-1-C-24 RI-1-C-25 RI-1-C-26 RI-1-C-10 RI-1-C-11 RI-1-C-17 RI-1-C-21 RI-1-C-1 RI-1-C-2 RI-1-C-3 RI-1-C-5 RI-1-C-6 RI-1-C-8 RI-1-C-9 RI-1-C-4 RI-1-C-7 Station

and ** -- See text for explanation of results

2.5

· #

Califorr Zone III (East (X)	ia State <u>Coordinates</u> North (Y)	Date Sampled	Start Tiae	Corer Type	Corrected Depth (MLLW)	Required Core (ft)	Collected Core (ft)	Length Upper (FT)	Length Lower (FT)	Coments
Richmond	Harbor (con	t i nued)								
1,463,492	518,015	9 APR	15:44	VIBRATORY	-35.0	6.0	4.8*	4 .0	8.0	
1,462,712	518,361	10 APR	15:15	VIBRATORY	-34.1	6.9	5.4*	4.9	0.5	
1,463,334	518,493	9 APR	15:20	VIBRATORY	-34.2	5.8	6.5	4.8	1.7	
1,462,644	518,942	10 APR	15:48	VIBRATORY	-33.6	6.3	6.2*	6.3	0.8	
1,462,965	618,810	10 APR	15:30	VIBRATORY	-34.4	5.6	7.2	4.6	2.6	
1,463,212	519,097	9 APR	15:50	VIBRATORY	-35.4	4.6	1.0	3.6	3.4	
1,462,560	619,576	10 APR	16:10	VIBRATORY	-33.6	6.4	6.1	5.4	0.7	
1,463,157	519,634	9 APR	14:40	VIBRATORY	-37.1	2.9	5.0	1.9	3.1	
1,462,805	520,010	10 APR	16:29	VIBRATORY	-35.5	4.6	7.5	3.6	4.0	
1.463.138	520,209	9 APR	14:25	VIBRATORY	-35.4	4.6	6.3	3.6	2.7	
1.462.460	520,379	10 APR	16:46	VIBRATORY	-36.9	3.1	4.6	2.1	2.5	
1,463,116	520,636	9 APR	13:64	VIBRATORY	-36.1	3.9	6.6	2.9	3.7	2nd attempt
1,462,418	520,728	10 APR	17:00	VIBRATORY	-33.8	6.2	6.2	5.2	1.0	
1,462,743	520,946	10 APR	17:10	VIBRATORY	-37.0	3.0	3.1	2.0	1.1	
1,462,403	521,508	10 APR	17:32	VIBRATORY	-35.3	4.7	6.3	3.7	2.6	
1,463,032	521,346	9 APR	13:28	VIBRATORY	-34.1	6.3	1.9	4.8	3.0	2nd attempt
: Santa Fe	Channel									
1.460.913	522,916	7 APR	13:16	VIBRATORY	-36.0	4.0	>4.0	3.0	1.0	2 gravity corer attempts 4/6
1,460,870	522,865	7 APR	12:52	VIBRATORY	-37.3	2.7	7.0	LOST	LOST	Archived -40 to -44 ft section
1,460,870	522,865	7 APR	13:40	VIBRATORY	-37.3	2.7	>4.0	1.7	1.0	2 gravity corer attempts 4/5
1,460,827	522,814	9 APR	08:40	VIBRATORY	-36.7	3.3	74.0	2.3	1.0	2 gravity corer attempts 4/6
1,460,990	522,851	7 APR	14:09	VIBRATORY	-37.1	2.9	>4. 0	1.9	1.0	
1,460,946	522,800	7 APR	14:22	VIBRATORY	-37.2	2.8	2.6*	1.8	0.7	
1,460,903	522,749	9 APR	08:54	VIBRATORY	-36.2	3.8	24.0	2.8	1.0	
See text fo	or explanatic	on of res	ults.						·	
										,
	Califorr Zone III (East (X) Richmond 1,463,492 1,463,334 1,462,660 1,462,660 1,462,660 1,462,660 1,462,613 1,462,403 1,462,403 1,462,403 1,462,403 1,460,913 1,460,913 1,460,913 1,460,913 1,460,900 1	California State Zone III Coordinates East (X) North (Y) Fast (A) North (Y) I,463,492 518,015 I,463,334 518,942 I,463,334 518,942 I,463,560 519,576 I,463,115 519,634 I,463,560 519,576 I,463,116 520,636 I,463,116 520,636 I,463,116 520,636 I,463,116 520,946 I,463,116 520,946 I,463,116 520,946 I,463,116 520,946 I,463,032 521,346 I,460,913 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,916 I,460,903 522,749 See text for explanati	California State Zone III Coordinates Date Zone III Coordinates Date East (X) North (Y) Sampled 1,463,492 518,015 9 APR 1,463,334 518,493 9 APR 1,463,334 518,493 9 APR 1,463,334 518,610 10 APR 1,463,157 519,697 9 APR 1,463,157 519,634 9 APR 1,463,157 519,634 9 APR 1,463,157 519,634 9 APR 1,463,157 519,634 9 APR 1,463,157 519,636 9 APR 1,463,138 520,946 10 APR 1,463,116 520,946 10 APR 1,463,116 520,946 10 APR 1,463,138 521,508 10 APR 1,463,138 521,508 10 APR 1,463,136 521,546 9 APR 1,463,138 521,546 9 APR 1,463,138 521,546 7 APR 1,460,913 522,916 7 APR 1,460,920	California State Zone III Coordinates Date Start Zone III Coordinates Date Start Start East (X) North (Y) Sampled Tiae 1,463,492 518,015 9 APR 15:41 1,462,712 518,334 518,403 9 APR 15:15 1,462,560 519,631 9 APR 15:16 14:40 1,463,115 519,634 9 APR 15:16 14:40 1,463,116 519,634 9 APR 14:26 14:26 1,463,116 520,010 10 APR 16:10 14:26 1,463,116 520,010 10 APR 17:30 14:26 1,463,116 520,010 10 APR 17:32 14:36 1,463,116 520,010 10 APR 17:32 14:36 1,463,116 520,946 10 APR 17:30 14:36 1,463,138 520,946 10 APR 17:30 14:46 1,463,138 520,946 10 APR 17:30 14:60 1,460,913	California State Zone III Coordinates Date Start Corer Zone III Coordinates Date Start Corer Zone III Coordinates Date Start Corer I (42) North (Y) Sampled Fiat Type I,483,492 518,015 9 APR 15:40 VIBRATORY I,482,712 519,631 10 APR 15:20 VIBRATORY I,483,334 519,942 10 APR 15:30 VIBRATORY I,483,334 519,631 10 APR 15:30 VIBRATORY I,483,212 519,631 10 APR 15:30 VIBRATORY I,483,138 520,010 10 APR 15:30 VIBRATORY I,483,138 520,209 9 APR 14:40 VIBRATORY I,483,138 520,209 9 APR 14:40 VIBRATORY I,483,138 520,346 10 APR 16:40 VIBRATORY I,483,138 520,346 10 APR 16:40 VIBRATORY <	California State Date Start Corrected Zone IIII Coordinates Date Start Correct Depth Currected East (X) North (Y) Saapled Tise Type Depth MLIN 1 itchaond Harbor Continued) Est (Y) North (Y) Saapled Tise Type Depth MLIN 1 ites, 492 Els, 610 0 APR 15:16 VIBRATORY -34.1 1 1 ites, 212 Els, 910 10 APR 15:20 VIBRATORY -34.2 2 1 1 24.3 3.6 1 1 24.4 1 24.4 1 24.4 2 26.4 24.4 1 24.4 24.4 2 26.4 24.4 24.4 24.4 24.4 24.4 26.4 26.4 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6	California State Start Corrected Required Zone III Coordinates Data Start Corrected Required East (X) Morth (Y) Sampled Tag Type Dopth (MLT) Corrected Required Itast (X) Morth (Y) Sampled Tise Type Dopth (MLT) Corrected Required Itast (X) Morth (Y) Sampled Tise VIBRATORY -34.1 E.0 1,403,402 E18,910 10 APR 15.16 VIBRATORY -34.2 E.0 E.0 1,403,402 E18,910 10 APR 15.50 VIBRATORY -34.2 E.0 E.0 1,403,402 E19,910 10 APR 15.50 VIBRATORY -34.2 E.0 E.0 1,403,115 E19,921 10 APR 14:50 VIBRATORY -34.2 E.0 E.0 1,403,116 E00 APR 14:50 VIBRATORY -34.2 E.0 1.1 E.0	California State Corrected Required Collected Table Table Zene III Coordinates Table Table Table To North (Y) Sampled Time Type Depth (ML1W) Corrected Required Collected Table Table Table Table To Table Table Table To Table Table Table To Table Table To Table Table Table Table Table To Table T	Califfernia State Cane III Coordinates Data Sart Long Corrected Required Collected Length East (D) Morth (Y) Sampled Tase Daph Corrected Required Collected Length East (D) Morth (Y) Sampled Tase Daph Currected Required Collected Length 1,463,345 E18,01 0 APR E5:16 VIBANDNY -34.1 E9 6.4 4.0 1,462,965 E18,801 10 APR E5:20 VIBANDNY -34.1 E9 6.2 4.6 7.2 4.6 1,462,965 E18,901 0 APR E5:20 VIBANDNY -35.4 4.6 7.1 2.9 6.2 4.6 7.2 4.6 1,462,965 E18,901 0 APR E5:20 VIBANDNY -35.4 4.6 7.2 4.6 7.2 4.6 7.1 5.4 4.6 7.2 4.6 7.1 5.4 4.6 7.1 5.4 4.6	California State Incontinue State Start Constructional State Start Constructional State Start Constructional State Image Length Length <thlength< th=""> <t< td=""></t<></thlength<>

Comments												•		ravity corer attempts 4/6	attempt								t 1 ft for lower only			ow project depth
Length Lowsr (FT)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0 29	1.0 2nd	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0 Kepi	1.0	1.0	Belo
Length Upper (ft)		0.5	1.5	3.3	0.3	1.1	3.3	2.9	2.9	2.2	1.6	1.5	4.0	0.9	1.9	3.0	6.1	1.5	2.6	2.3	2.0	3.1	!	1.4	2.4	
Collected Core (ft)		74.0	74.0	24.3	>2.0	0.¥	>4.3	74.0		>3.2	>10.0	74.0	>5.0	74.0	74.0	74.0	y8.0)3.0)3.6)3.3)3.0	¥.1)5.0	>5.0	74.0	
Required Core (ft)		1.5	2.5	4.3	1.3	2.1	4.3	3.9	3.9	3.2	2.5	2.5	5.0	1.9	2.9	4.0	6.1	2.5	3.6	3.3	3.0	4.1	0.9	2.4	3.4	-
Corrected Depth (MLLW)		-38.5	-37.5	-35.7	-38.7	-37.9	-35.7	-36.1	-36.1	-36.8	-37.6	-37.5	-35.0	-38.1	-37.1	-36.0	-33.9	-37.5	-36.4	-36.7	-37.0	-35.9	-39.1	-37.6	-36.6	0 1 -<
Corer Type		VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	VIBRATORY	
Start Time		15:55	16:25	09:25	16:25	16:13	09:43	17:15	16:45	09:51	17:51	17:20	10:12	09:12	09:27	10:28	10:00	09:43	10:42	10:30	10:16	10:57	10:54	10:45	11:58	
Date Sampled	nt i nued)	7 APR	7 APR	9 APR	7 APR	7 APR	9 APR	7 APR	7 APR	9 APR	7 APR	7 APR	9 APR	8 APR	8 APR	9 APR	8 APR	8 APR	9 APR	8 APR	8 APR	9 APR	8 APR	8 APR	9 APR	8 APR
ia State pordinates North (Y)	Channel (co	522,787	522,736	522,684	522,722	522.671	522,620	522,657	522,606	522, 555	522, 592	522, 541	522,490	622,528	522,477	522,426	622,463	522,412	522, 361	622,398	522,347	522,298	522,348	522,282	622,231	522, 284
Californ <u>Zone III C</u> East (X)	is: Santa Fe	1,461,066	1,461,022	1,460,979	1,481,142	1,461,099	1,481,055	1,461,218	1,461,175	1,461,132	1,461,295	1,461,251	1,461,209	1,461,370	1,461,327	1,481,284	1,461,447	1,461,404	i,461,360	1,461,523	1,461,480	1,461,435	1,481,616	1,461,556	1,461,513	1,461,693
Station	Short Core	SA-7	SA-8	SA-9	SA-10	SA-11	SA-12	SA-13	SA-14	SA-15	SA-16	SA-17	SA-18	SB-19	SB-20	SB-21	SB-22	SB-23	SB-24	SB-11	SB-26	SB-27	SB-28	SB-29	SB-30	SB-31

TABLE 1. (continued)

-	
a)	
_	
_	
=	
_	
•	
_	
-	
0	
C .)	
\sim	
•	
-	
1.	
E 1.	
E 1.	
LE 1.	
LE 1.	
<u>BLE 1</u> .	
BLE 1.	
ABLE 1.	
ABLE 1.	
TABLE 1.	

Below project depth Coments Lower (ft) Length 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 1.0 1 1 1 Upper (ft) Length 1.9 0.9 2.1 0.6 0.5 2.8 2.1 0.8 1.6 2.7 2.7 2.7 0.7 0.2 1 1 1 1 Collected Core (ft) >1.9 74.0 24.0 >3.1 >2.9 >1.8 >1.7 7.0 74.0 24.0 24.0 7.0 >3.7 7.0 Core (ft) Required 3.6 2.9 1.8 1.9 1.7 3.1 2.6 1.6 3.7 1.6 3.1 1.2 3.7 3.7 1 1 1 1 ł Depth (MLW) Corrected -36.3 >-40 -36.9)-40 -38.8 -37.4)-40 -38.5 -36.3 -36.4 -36.9 -37.1 -38.2 -38.1 -38.3 -38.4 -36.3 -40 -40 -40 -40 4 9-4-4 VIBRATORY **VIBRATORY** Corer Type Start 11:44 14:40 13:15 14:47 15:09 14:02 15:25 15:55 15:40 16:25 16:16 16:42 12:55 13:34 Time i Sampled Short Cores: Santa Fe Channel (continued) 8 APR 8 APR 8 APR 9 APR 8 APR 6 APR 8 APR B APR 8 APR B APR Date Zone III Coordinates 522,220 522,088 522,092 522,024 521,973 522,028 521,959 521,908 521,964 521,894 521,843 521,900 521,829 521,778 521,836 521,772 East (X) North (Y) 522,231 522, 167 522,134 522,102 522, 156 522,037 521,783 521,714 California State 1,462,013 1,461,970 1,462,154 1,462,900 1,461,924 1,461,937 1,461,894 1,462,231 1,462,187 1,481,701 1,461,785 1,461,818 1,462,001 1,482,048 1,461,649 1,461,589 1,461,770 1,462,078 1,462,123 1,461,665 1,461,847 1,461,861 1,461,741 1,462,308 Station SC-43 SB-32 SB-33 SB-34 SB-35 SB-36 SC-37 SC-38 SC-39 SC-40 SC-41 SC-42 SC-44 SC-45 SC-46 SC-47 SC-48 SC-49 SC-50 SC-51 SC-52 SC-53 SC-54 SC-55 TABLE 1. (continued)

÷

۲

Comments			Below project depth 2 gravity corer attempts 4/6	2 gravity corer attempts 4/6		Corer penetrated to 25 ft, but ras plugged with clay and gravel. Sediment was not kept.	Corer penetrated 13 ft, again plugged with clay, gravel. All material saved as sample.	loo short, not kept. Corer penatrated 39 ft of mud. Gecovered core kept (6 sections)	corer penetrated 41 ft of ∎ud. Accovered core kept (5 sections)	orer penetrated 40 ft of ∎ud. Gecovered core kept (5 sections)
Length Lower (ft)		1.0 1.0	1.0	1.0				N/N	V/N	N/N
Length Upper (ft)		1.1 3.2	1.8	a.a				(e)	N/N	V/N
Collected Core (ft)		>4.0 >4.2	>2.8	74.3		- 2	1.6	25**	26**	22**
Required Core (ft)		2.1 4.2	2.8	4.3		23.0	13.8	29.3 34.8	34.8	33.1
Corrected Depth (MLLW)		-37.9 -36.8)-40 -37.2	-35.7		-17.0	-26.2	-10.7 -5.2	-5.2	6.9-
Corer Type		VIBRATORY VIBRATORY	 VIBRATORY	VIBRATORY		VIBRATORY	VIBRATORY	VIBRATORY VIBRATORY	VIBRATORY	VIBRATORY
Start Time	ļ	15:17 17:08	17:48	17:34		16:45	17:55	18:10 08:26	09:16	10:15
Date Sampled	t inued)	8 APR 8 APR	6 APR 8 APR	8 APR		9 APR	9 APR	10 APR 11 APR	11 APR	LI APR
a State ordinates North (Y)	hannel (con	521,700 521 ,649	521,708 521,635	621, 584	rbor Channe	621, 548	521, 667	518,865 516,865	617,295	517,608
Californi Zone III Co East (X)	Santa Fe C	1,462,242 1,462,199	1,462,385 1,462,318	1,462,275	Richmond Ha	1,462,151	1,462,204	1,463,673 1,463,673	1,463,772	1,463,731
Station	Short Cores:	SC-56 SC-67	SC-58 SC-59	SC-60	Long Cores:	RI-1- W -1	RI-1- V -1A	RI-1-TC-1 RI-1-TC-1	RI-1-TC-2	RI-1-TC-3A

* and ** -- See text for explanation of results.

I

		н. 1917 — 1917				TABLE 1.	(continu	led)			
tation	Califor Zone III East (X)	nia State Coordinates North (Y)	Date Sampled	Start Time	Corer Type	Corrected Depth (MLW)	Required Core (ft)	Collected Core (ft)	Length Upper (ft)	Length Lower (ft)	Comments
ong Cores:	Richmond	Harbor Chann	el (conti	(penu							
I-1-TC-4	1,463,680	517,851	11 APR	10:53	VIBRATORY	-8.2	33.8	24**	N/N	V/N	Corer penetrated 38 ft of ∎ud. Recovered core kept (6 sections)
I-1-TC-5 ater sample	1,463,561 e: Santa	518,187 Fe Channel	11 APR	13:05	VIBRATORY	-20.1	19.9	17.0**	V/N	V/N	Corer penetrated 25 ft of mud. Recovered core kept (4 sections)
B-35	1,481,701	622,134	B APR	12:20	THREE WATER	I SAMPLES COLL	ECTED - SFC	# 1, # 2, # 3			
and ** a) Cores	See text were not d	for explanati ivided into u	on of res pper and	ults. Iower se	ctions in th	e field. Sec	tions for cl	hemical anal	lysis will b	e deternined	in laboratory.
						• .					

sufficient sediment for analysis and/or archiving, the station was relocated as closely as possible to the original location. The surveyor in the small boat would circle the station while watching the fathometer until an appropriate depth was found. The buoy would then be reset and the revised coordinates and new depth recorded. In Richmond Harbor Channel, revised locations were generally closer to the edge of the channel. In Santa Fe Channel, if a station could not be relocated within a 25-ft radius of the original station, the entire grid square was assumed to be too deep and therefore was not sampled.

2.3 SAMPLING EQUIPMENT AND PROCEDURES

2.3.1 <u>Sediment Samples</u>

Introduction

Sediment core samples from Richmond Harbor and Santa Fe Channels were collected with one of two types of coring devices. Because most core lengths were not expected to exceed 10 feet (short cores), it was planned that sampling at most sites would be attempted with a gravity corer. At sites in previously undredged areas (long cores) and where the gravity corer was unsuccessful, a vibratory-hammer corer was to be used. Both the gravity corer and the vibratory corer accommodate a 3.625-in. ID core liner of polycarbonate Lexan. All core liners were steam-cleaned prior to use. The procedures for collecting cores with these two types of corers are detailed in the following sections.

Gravity Coring

The gravity coring device was designed to drop through the water column and penetrate sediments under its own weight and momentum. The device consisted of a 10-ft core barrel with a 4-in. inner diameter capable of collecting an 8-ft core (Figure 5). The lower end of the barrel was threaded to accommodate a cutter head designed to collect a relatively undisturbed sample. Three fins were welded to the top end of the core barrel to prevent deflection as it dropped. A bolt through the core barrel held the top of the core liner in place, and a bail welded over the top of the barrel connected it to the haul cable.

FIGURE 5. GRAVITY CORER USED TO COLLECT RICHMOND HARBOR SEDIMENT.

To collect a gravity core, a 10-ft section of Lexan core liner was loaded into the core barrel. One or more core retainers were inserted into the lower end of the core liner, after which the cutter head was screwed on to secure the core liner in the barrel. The gravity corer was deployed from a 20-ft jib mounted on the stern of the tugboat <u>California Eagle</u>. When the vessel was on-site, the corer was lowered to the water surface and allowed to free-fall through the water column and penetrate the sediment. A winch powered by compressed air was used to retrieve the corer onto the deck. The full core liner was removed from the barrel and measured from the mud line to the bottom of the core. If the attempt was successful (i.e., the full required core depth was collected), the core was capped, labeled, cut into sections, and stored as described later in this section. If the attempt was unsuccessful and the required length was not collected, additional attempts were made. If these also proved unsuccessful, the site was revisited with the vibratory corer.

Vibratory-Hammer Coring

The vibratory coring apparatus, operated by Manson Pacific, consists of a 50-ft long, 4-in. ID core barrel. Depending on the length of core required, the barrel can be loaded with 10-, 20-, 30-, or 40-ft sections of Lexan core liner. The core-retainer and cutter-head assemblage is the same as that used on the gravity corer. The outside of the barrel is marked at 1-ft intervals to measure the depth of penetration as the corer descends. The top end of the vibracore barrel connects to a 6-ton electric vibrating hammer suspended from the 150-ft boom of the crane aboard the derrick barge <u>DB-17</u>.

To collect a vibracore sample, the barge was maneuvered into position by the tugboat <u>Bearcat</u> and then two stern anchors and one bow anchor were set. To save time in anchoring, the barge was usually positioned where several sites could be sampled without re-anchoring. The crane was used to lift the vibratory hammer and core barrel off the barge deck and suspend them over the water. The hammer was then coupled to the barrel and the apparatus slowly lowered through the water at the sampling site. If the weight of the vibratory hammer alone was not sufficient to push the core barrel to sufficient depth, the hammer was switched on to vibrate the corer through the

sediment until the necessary depth was achieved. The crane then raised the core barrel out of the water and lowered it onto the deck. The sediment-filled core liner was pulled from the barrel and measured. Additional attempts were made at the site if an insufficient amount of sediment was collected on the first try. If the core sample was long enough, the core was capped, labeled, cut into sections, and stored in a freezer at 4°C on board the sampling vessel.

Core Sample Handling

Once a core was collected, it was measured to see if sufficient sediment was recovered. Successful core samples were then capped, labeled, and cut into sections. Short cores from Richmond Harbor Channel were cut into upper (shallower than -39 ft MLLW) and lower (deeper than -39 ft MLLW) sections. The upper section represents the material to be dredged from the channel, while the lower section represents material that would be exposed as a result of dredging. Cores of the material to be exposed (deeper than -39 ft MLLW) from each reach (A, B, and C) of Santa Fe Channel were cut to 1 ft in length (-39 to -40 ft MLLW). The lower sections of all short cores and the upper sections of 16 of the short cores from Richmond Harbor Channel were to be archived intact for possible future analyses. These sections were flagged with fluorescent tape and labeled for ease in sample tracking. Any sections that exceeded 5 ft in length were cut into two shorter pieces to facilitate handling and storage. Long cores from the proposed widening and turning areas (Station RI-1-W and RI-1-TC stations) were also cut into 5-ft sections. The sealed core sections were stored in a freezer at 4°C aboard the sampling vessel until the end of the day, when they were transferred to a refrigerated truck. Sediment sample chain-of-custody records were kept up to date daily as cores were loaded onto the truck.

2.3.2 Water Sampling

A vacuum pump was used to collect water samples from Santa Fe Channel. Water from 18 in. below the surface was pumped through acid-cleaned, solventrinsed Teflon tubing into clean, labeled 5-gal glass carboys. Each carboy was sealed with a clean neoprene stopper lined with a clean sheet Teflon, then

stored at 4°C aboard the sampling vessel. At the end of the day, the water samples were transferred to a refrigerated truck, where they were held at 4°C until delivery to the MSL. A water sample chain-of-custody record was initiated when samples were loaded onto the truck.

2.4 FIELD SAMPLING RESULTS

2.4.1 Short Cores: Richmond Harbor Channel and Santa Fe Channel

The initial field sampling strategy called for attempting all the shortcore stations (Stations RI-1-C-1 through RI-1-C-42 and Stations SA-1 through SC-60) (Figures 2, 3, and 4) with the small tug and gravity corer, then returning to any unsuccessful sites with the barge and vibracorer. After spending April 5 and 6 gravity coring aboard the California Eagle, it was evident that the barge and vibracorer combination would be more effective and efficient. In those two days, over 40 sampling attempts were made at 31 stations in both Richmond Harbor and Santa Fe Channels. When a particularly stiff layer of sediment was encountered, the weight of the gravity corer was not sufficient to penetrate the sediment to the required depth. If a successful sample (i.e., sufficiently long) could not be collected after 2 or 3 attempts, the site was revisited with the barge and vibracorer. At nine stations in Richmond Harbor Channel and one station in Santa Fe Channel (single asterisks in Table 1), the core collected was shorter than -40 ft MLLW but longer than -39 ft MLLW. These cores were not resampled, because the USACE representative on board pointed out that the bottom sections were going to be archived, so it would not be worthwhile to resample for the few missing inches of core. During archiving of the short Santa Fe core, all the available lower section was composited. Thirteen Richmond Harbor Channel stations were successfully sampled with the gravity corer (Table 1). The remaining 29 short cores in Richmond Harbor Channel and all of the cores in Santa Fe Channel were collected by vibratory coring as described in the previous section.

Vibratory coring commenced on April 7 in Santa Fe Channel. Successful short cores were obtained from 12 sites on the first day and 25 sites on the second day. Of the 60 stations in Santa Fe Channel, 12 were already below project depth (below -40 ft MLLW): SB-31, SB-32, SC-37, SB-34, SC-40, SC-43,

SC-46, SC-49, SC-52, SC-53, SC-55, and SC-58 (Figure 4). One site, SB-28, was so deep that only the lower section (between -39 and -40 ft MLLW) could be sampled. Most of these sites are on the northwest edge of the channel between the mouth of Lauritzen Canal and the junction with Richmond Harbor Channel. The remaining Santa Fe Channel sites were sampled early on the third day (April 9), then the barge moved into Richmond Inner Harbor Channel and successfully cored at eight stations. Short cores from all 21 remaining Richmond Harbor Channel stations were collected with the vibratory corer on April 10.

2.4.2 Long Cores (Undredged Areas)

The USACE plan for improvements in Richmond Harbor calls for widening the entrance to Santa Fe Channel and for establishing a large turning basin east of Point Potrero. To characterize the sediments from these previously undredged areas, it was necessary to collect undisturbed cores that were 20 to 35 ft in length. One core from Station RI-1-W-1 was intended to represent the material to be removed from widening the entrance to Santa Fe Channel. This site was visited on April 9. The first attempt (Station RI-1-W-1) resulted in sufficient penetration of sediment (25 ft), but the sediment was not retained in the core liner. The site was relocated to slightly deeper water (Station RI-1-W-1A) and a second attempt made. On this attempt, the cutter head and bottom of the core liner were plugged with approximately 2 ft of gravel and pebbles embedded in very stiff clay. Even though the core barrel had penetrated the sediment to -40 ft MLLW, the gravel and clay encountered near the surface prevented any more material from entering the barrel as it pushed down through the sediment. The material collected from Station RI-1-W-1A, though it was not an undisturbed core, was capped and sealed in a short section of Lexan (approximately 2 ft long) and saved for analysis.

Five sampling sites were located in the proposed turning basin east of Point Potrero (Figures 2 and 3). Corrected mudline depths at these stations (RI-1-TC-1 through RI-1-TC-5) ranged from -5.2 to -20.1 ft MLLW, requiring cores 20 to 35 ft in length. Vibracoring at these stations was completed on April 11, although one unsuccessful attempt at Station RI-1-TC-1 was made on April 10. The water at Station RI-1-TC-3 was too shallow at high tide for the

2.16

• 11

boat to be positioned. Hence, the station was relocated 163 ft west of the planned site and was then called Station RI-1-TC-3A. At all five stations, markings on the core barrel indicated penetration of sediment to -40 ft MLLW. However, in all cases, the amount of sediment retrieved in the core was less than the required core length (double asterisks in Table 1). Geologists often credit this loss to compaction of the sediment as the core barrel pushes through deeper sediment. Alternatively, compacted sediments in the core may have prevented some material from entering the core if the new material was less compact than the material already in the core. Apparent core loss is discussed in more detail in Section 3.6.2.

To minimize vibration as the long cores were taken, the core barrel was allowed to drop through the sediment as far as possible before the vibratory hammer was turned on. Because the entire length of the long cores was to be examined by a geologist in the laboratory, the cores were cut into 5-ft pieces rather than divided into upper and lower sections. The results of the geological analysis of the turning-basin cores are presented in Section 3.6.

2.4.3 <u>Water Samples</u>

On April 8, approximately 10 gal of subsurface water was collected near the center of Santa Fe Channel, 40 ft northeast of station SB-35. Three carboys were each filled about two-thirds full to obtain a total of at least 10 gal.

3.0 LABORATORY PREPARATION

3.1 INTRODUCTION AND OBJECTIVES

The laboratory preparation step encompassed all activities between delivery of field samples to MSL and chemical analysis of samples. These activities included geological analysis of long cores, compositing of bulk sediment samples, preparation of interstitial water and elutriate samples, and sample tracking. Specific objectives of laboratory preparation were:

- 1. To avoid sample contamination or alteration of physical and chemical properties by using proper sample storage and preservation techniques and uncontaminated glassware and laboratory equipment.
- 2. To provide detailed chain-of-custody information on the storage and handling of all sediment core and bulk water samples.
- 3. To process core samples from Santa Fe and Richmond Harbor Channels (both long and short cores) by longitudinally splitting in half cores of interest for bulk sediment chemistry and half-core archiving and by archiving whole selected cores.
- 4. To provide geological descriptions of long cores from Richmond Harbor Channel to assist USACE in deciding which depth fractions to analyze chemically.
- 5. To sample for chemical analysis one half of the upper portion of the Richmond Harbor Channel short cores that had been halved longitudinally and to archive both the half-core not used for sampling and the whole core containing the sediment below -39 feet MLLW.
- 6. To process Santa Fe Channel short cores into six composite samples: the upper sections of cores from Reaches A, B, and C (Figure 4) and the lower sections from Reaches A, B, and C.
- 7. To isolate interstitial water for chemical analysis from selected Santa Fe Channel sediment composites.
- 8. To prepare elutriate water for chemical analysis from the three sediment composites of the upper core sections from Santa Fe Channel.

All laboratory preparation activities took place between April 14 and April 28, 1989, the two weeks immediately following the arrival of samples at the MSL. To meet critical holding-time deadlines for chemical analysis, sediment and water samples were processed as efficiently as possible. The

following sections present in detail the steps involved in laboratory preparation.

3.2 LABORATORY GLASSWARE AND EQUIPMENT PREPARATION

All laboratory glassware and equipment was cleaned prior to use to prevent contamination. Stainless-steel utensils used for core cutting, sediment mixing, and short-term sediment storage were washed with warm, soapy water, rinsed five times with deionized water, and allowed to air dry. Immediately before use, the utensils were rinsed twice under a fume hood with methylene chloride, which was allowed to evaporate. Glass jars with Teflonlined caps were used to contain sediment samples for organics analysis. Glass containers were washed in warm soapy water, rinsed five times with deionized water and allowed to air dry, then rinsed twice with methylene chloride and allowed to dry under a fume hood. Teflon and plastic jars were used to hold sediment and water destined for metals analysis. Teflon and plastic containers were washed in soapy water, rinsed five times with deionized water, then placed in a 5% nitric acid bath for a minimum of 4 h. After removal from the acid, the containers were rinsed five times with deionized water, then allowed to air dry.

3.3 SAMPLE STORAGE AND CHAIN-OF-CUSTODY

All sediment and water samples received at MSL were immediately stored in a dark walk-in cold room at 4° C. Sediment cores were stored in a vertical position in core racks and moved only when sampled or archived. Water samples were stored in the original carboys in strong fiberboard protective boxes. Chain-of-custody was maintained from the initial collection through sample analysis and archiving using the forms contained in Appendix A.

3.4 SEDIMENT SAMPLE PREPARATION

3.4.1 Core Cutting and Archiving

Sediment cores from Santa Fe and Richmond Harbor Channels were either archived whole or split longitudinally, with one-half used for bulk sediment analysis and the other half archived. Core sections that were archived whole included all lower sections (where collected) of Richmond Harbor short cores

as well as the upper sections of selected Richmond Harbor short cores (Figure 3). Cores to be archived whole were placed horizontally in a large chest freezer with original seals and field labels intact. Core labels were logged onto a freezer inventory form as cores were archived.

Sediment samples for chemical analysis were prepared from the upper sections of Richmond Harbor and Santa Fe Channel short cores, from the lower sections of Santa Fe Channel short cores, and from selected sections along the entire length of Richmond Harbor long cores. These cores were removed carefully from the cold room to avoid disturbing the overlying water. The core was taken to the cutting area, one cap removed, and the overlying water carefully poured off. The core was then placed in a horizontal position on the cutting platform and cut into two equal longitudinal parts by first scoring the liner on opposite sides with a circular saw, then cutting completely through the liner with a stainless-steel linoleum knife. A large stainless-steel knife was then run down the sediment, splitting it into two halves. The half of the core containing the original core label was used for geological analysis (if required) and for sediment chemistry. The other half was wrapped in sheet Teflon, sealed with duct tape, and affixed with a duplicate label. The wrapped half-core was then placed in a large chest freezer and its label recorded on a freezer inventory form (Appendix A). Tests run by NOAA on the time that samples can be held frozen without change in chemistry indicate that PCBs, pesticides, PAHs, metals, and organotins can all be held up to 3 years (Eric Crecelius, personal communication). Traditionally, frozen cores for USACE projects are held for 1 year: the Richmond Harbor cores will be kept until the report is finalized.

3.4.2 Mixing of Sediment Samples

After cores were split longitudinally, sediment was removed from the core liner with a stainless-steel spatula into a labeled 13-L stainless-steel bowl. Care was taken to avoid sampling sediment in direct contact with the core liner or sediment containing pieces of the liner resulting from the cutting process. Sediment was mixed with the stainless-steel spatula until the color and texture indicated a homogenous mixture. A sample preparation form (Appendix A) was completed as each core was sampled and the sediment mixed.

Information recorded on the form included the station number, vertical section(s) of core sampled, a number code relating the sample to a station, and a letter code indicating the group of compounds to be analyzed. In the case of Santa Fe Channel, a number of cores were combined to form a composite sample (Section 3.4.5), and each core was identified on the sample preparation form.

Immediately after mixing, aliquots of the sediment were removed to prelabeled jars for chemical analysis. These aliquots included samples for metals, total organic carbon (TOC), organotins, oil and grease, organic compounds, and physical characteristics. Bulk sediment samples were delivered immediately to the testing labs with an accompanying sample custody form (Appendix A). A total of 55 sediment samples were mixed: 22 from the widening area and turning basin, 27 from existing Richmond Harbor Channel, and six from Santa Fe Channel.

3.4.3 <u>Richmond Harbor Long Cores</u>

To augment the characterization of sediment from the previously undredged areas, a geological description and classification of the long cores was performed by an MSL geologist. The results of this analysis assisted USACE in determining the length and number of vertical sections to be sampled for chemical analysis. Included in the geological analysis were physical measurements of core length and comments on lithology, dilatancy, toughness, plasticity, type, color, consistency, cementation, structure, HCl reaction, maximum particle size, odor, and additional information. The method used for this description was the American Society for Testing and Materials (ASTM) Procedure D2488-84, "Description and Identification of Soils (Visual-Manual Procedure)," described in Appendix B. Also included in Appendix B are the detailed results of the geological description; a discussion of Richmond Harbor geology is presented in Section 3.6.

In the laboratory, the sections of the long cores were examined by USACE representatives and MSL scientists to decide how these sections were to be divided into samples for chemical analyses. The sections were determined based on layering of the sediments. Four samples (new sections) were taken per long core, except for Station RI-1-TC-5, which was divided into five

samples. Once the length and number of vertical sections of each long core had been determined by the geologist and USACE, the sediment from each vertical section was mixed into a bulk sediment sample for chemical analysis, as described in Section 3.4.2.

3.4.4 <u>Richmond Harbor Channel Short Cores</u>

A total of 27 sediment samples were prepared from Richmond Harbor Channel short cores. The upper core sections from 26 stations were cut, sampled, and mixed as described in Sections 3.4.1 and 3.4.2. In addition, the lower section from Station RI-1-C-14 was sampled, mixed, and analyzed at the request of USACE to bracket sediment from the middle section that was lost during field sampling. All remaining lower sections of Richmond Harbor Channel short cores were archived whole as described in Section 3.4.1.

Geological descriptions were not performed on the short cores because the vertical section to be analyzed (upper) was predetermined; however, the section length and any remarks about the sediment were recorded on the sample preparation form (Appendix A). Sediment was removed from each core, composited, and split into aliquots for chemical analysis, as described in Section 3.4.2.

3.4.5 Santa Fe Channel Composite Preparation

Although a total of 48 cores were collected from Santa Fe Channel, only six bulk sediment samples were prepared from them. The scheme for compositing cores from Santa Fe Channel was designed by USACE's Waterways Experiment Station. The channel was divided into three reaches: Reach A, Reach B, and Reach C (Figure 4). The upper sections of all cores within a reach were combined into one sediment sample, as were the lower sections of all cores within a reach. Because the cores had already been divided into upper and lower sections in the field, each section could be cut longitudinally, as described in Section 3.4.1.

A sediment composite was created from 14 to 18 core sections. On a sample preparation form (Appendix A), the station, core length, sediment consistency, and volume of sediment contributed to the composite were

1.6.14

recorded. As each core was cut, the sediment was carefully removed to a 30qt stainless-steel bowl, which was kept covered with sheet Teflon until all cores for one composite were cut. The sediment was mixed as each core was added. When the composite was consistent in color and texture, aliquots for chemistry were immediately placed into prelabeled jars. The stainless-steel bowl was covered with sheet Teflon and temporarily stored in the cold room until preparation of interstitial water and elutriate samples. Interstitial water and elutriate preparation began within 12 h and 2 h respectively.

3.5 WATER SAMPLE PREPARATION

3.5.1 Interstitial Water Preparation

Interstitial water was prepared from the three composites of upper material from Santa Fe Channel. It was hoped that water content of the sediment would be high enough to yield interstitial water from the composite of lower sections (material exposed as a result of dredging) as well, but this was not the case. Interstitial water was isolated from the sediment composites from upper cores by filling clean 0.5-L Teflon jars with sediment from the 30-qt mixing bowl. These jars were capped and centrifuged for 45 min at maximum speed in a modified clothing extractor. After centrifugation, the supernatant water in the jars was poured into a clean 1-gal jar, purged with nitrogen gas to prevent oxidation, and the jar quickly capped and placed in the cold room at 4°C. The Teflon jars were refilled with sediment from the stainless-steel bowl and centrifuged; the supernatant was added to the 1-gal jar. This process was repeated until approximately 3 L of interstitial water were collected.

When the appropriate volume of interstitial water was collected, the jar was gently shaken to homogenize the water, and the water was poured into centrifuge tubes and centrifuged for 1 h at 1200 x g on a CRU-5000 centrifuge to remove particles >0.45 μ m diameter. After centrifugation, the sample water was transferred into sample containers containing unique labels noted on the sample preparation form (Appendix A). Samples for metals analysis were immediately preserved with 1 μ L concentrated hydrochloric acid (HCl) per milliliter of sample. Samples for organics analysis were shipped within one day of preparation. Samples for metals and organotins were transferred to the

analytical laboratory when preparation of all samples was complete. Chainof-custody forms (Appendix A) accompanied each shipment or transfer of samples to the analytical laboratories.

3.5.2 Elutriate Water Preparation

Elutriate water samples were prepared from composites of Santa Fe Channel Reach A, B, and C upper material. The procedure followed was that described by Palermo (1986). The first step in elutriate preparation was calculation of a wet/dry ratio for each sediment sample to be elutriated. Approximately 10 to 20 g (wet) sediment was weighed into each of five preweighed boats, then dried at 105° for 2 h. After drying, the sediment was reweighed and a wet/dry weight ratio was calculated for each of the five samples. The mean wet/dry ratio was used to measure out the sediment needed to obtain 8 L of 150 g/L (dry weight) slurry. The sediment was split equally in half and each half added to a clean 4-L beaker. The beakers were filled with water collected from Santa Fe Channel and the resulting slurry was mixed to uniform consistency with a stainless-steel spoon.

Filtered compressed air was bubbled through the slurry for 1 h, during which time the slurry was periodically mixed with the spoon. Next, the mixing and aeration were stopped and the jars were covered with a watch glass and allowed to settle for 24 h in a refrigerator at 4°C. After settling, the supernatant water was removed from each jar with a Teflon tube siphon and placed in clean glass 1-gal jars. This water was then transferred to centrifuge tubes and centrifuged at 10,000 x g for of 30 min to remove particles >0.45 μ m diameter. Water was not filtered because studies conducted at WES indicated that some types of dissolved organic compounds are removed from water by filtering (R. Lee, personal communication). After centrifugation, the water from the centrifuge tubes was transferred directly to sample containers with unique labels which were noted on the sample preparation form (Appendix A). Samples for metals analysis were immediately acidified with 1 μ L concentrated HCl per milliliter of sample. Samples for organics analysis were shipped within one day of preparation. Samples for metals and organotins analysis were transferred to the analytical laboratories when preparation of all samples was complete. Chain-of-custody forms
(Appendix A) accompanied each batch of samples as they were transferred.

3.6 GEOLOGICAL ANALYSIS OF LONG CORES

Prior to sampling of core segments from Stations RI-1-TC-1 through RI-1-TC-5 and RI-1-W-1 at MSL, the segments were described geologically. Descriptions were performed according to ASTM Procedure D2488-84, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)." Sediment characteristics that were logged included the following:

dry strength of silt/clay dilatancy of silt/clay toughness of silt/clay plasticity of silt/clay sediment type (i.e., engineering classification) color consistency (i.e., firmness) cementation sedimentary structure reaction with hydrochloric acid maximum particle size odor

In addition, any other diagnostic features, such as the presence of root traces, mollusc shells, or human-related detritus, were noted. A more detailed description of the materials and methods used for describing the sediment cores is given in Appendix A.

3.6.1 Geology

Two geologic units, the Older Bay Mud (OBM) and the Younger Bay Mud (YBM) (USACE 1975a) are present beneath Richmond Harbor (Figure 6). These two units are differentiated principally on the basis of color and consistency (i.e., firmness). USACE (1988) divided the OBM unit into three formations: the San Antonio, Alameda, and Posey formations. Because the characteristics used to differentiate between these formations are unclear, for the purposes of this discussion stratigraphic units are subdivided on the basis of the interpreted sedimentary environment (i.e., terrestrial/fluvial and

GENERAL GEOLOGIC CROSS-SECTION OF PROPOSED TURNING BASIN, NOT CORRECTED FOR CORE LOSS. FIGURE 6.

marine/estuarine). Terrestrial deposits display features indicative of surface weathering (e.g., root traces that extend and bifurcate downward; bleached and/or oxidized color). Marine deposits are usually dark-colored, due to reducing conditions, and contain mollusc shells. In general, because of the transport mechanisms involved, terrestrial sediments display larger average grain sizes (e.g., sand) than marine deposits, which consist mostly of silt and clay. Deposits locally referred to as "Merritt Sands" appear to be equivalent to coarse-grained terrestrial sediments of the OBM unit.

Three cross-sections are used to show the geology of the proposed Richmond Harbor turning basin (Figures 6, 7, and 8). Figure 6 shows the general nature of the geologic units and the difference between the depth of corer penetration and the amount of recovered sediment in the core. Figure 7 displays more detail, by separating the Older and Young Bay Mud units into three sediment types. Figure 8 shows the same layers as Figure 7, but corrected for apparent core loss. The possible mechanisms of cores loss are discussed in Section 3.6.2.

<u>Older Bay Mud</u>

The OBM unit consists of a wide range of deposits, from loose pebbly sands to stiff, cohesive silts and clays. The OBM unit was deposited during the last interglacial period, when sea level resided as much as 335 ft below its present level (USACE 1975b, 1979). Interglacial periods have occurred at approximately 100,000-year intervals over the last 1 million years or so (Stottlemyre et al. 1981); the most recent interglacial period ended about 125,000 years ago (CLIMAP 1984). Most of the OBM unit was probably deposited about this time; however, some of the unit may have formed during previous interglacial periods. The top of the OBM unit appears to represent an erosional surface, but also may have been modified by past dredging activities; the uneven, eroded nature of the OBM surface is apparent in Figures 7 and 8.

The OBM unit is distinguished by its mostly firm consistency and by its color. Color is particularly useful for the identification of terrestrial sediments, which consist of various shades of red, yellow, and brown. These

â

FIGURE 7. DETAILED GEOLOGIC CROSS-SECTION OF PROPOSED TURNING BASIN, NOT CORRECTED FOR CORE LOSS.

DETAILED GEOLOGIC CROSS-SECTION OF PROPOSED TURNING BASIN, CORRECTED FOR CORE LOSS. FIGURE 8.

colors are consistent with an oxidizing environment associated with deposition by rivers and streams. The presence of deeply penetrating root traces is another indication of terrestrial conditions. The marine portions of the OBM unit, on the other hand, consist of drab-colored shades of olive and gray. These colors, along with the presence of whole mollusc shells, are indicative of a low-energy, reducing, estuary-type environment.

The high degree of compaction and consolidation, in combination with the weathered appearance of the OBM, suggests that this unit is much older than the overlying estuarine sediments belonging to the YBM unit. The highly oxidized, weathered, and compacted nature of the OBM, in combination with the presence of root traces, calcium carbonate, and iron concretions, suggest that the OBM unit underwent alteration during a period of soil development when the area lay above sea level.

Younger Bay Mud

dina.

The YBM unit consists mostly of soft, dark-colored sediments deposited in an estuarine environment. These deposits began to be laid down as sea level rose following the last ice age, which ended approximately 12,000 years ago (Barry 1983). The YBM unit appears to form a continuous blanket across the Richmond Harbor bottom. USACE (1975a) subdivided the YBM unit into a Semi-Consolidated Bay Mud member overlain by a Soft Bay Mud member. However, a sudden, characteristic change in consistency, reported by USACE (1979), was not observed within the YBM unit in cores examined in this study. Therefore, it is assumed that the Semi-Consolidated Bay Mud member is not present.

The YBM unit consists mostly of very soft to soft clayey silt. The YBM unit is characteristically dark colored, ranging from gray to dark gray and olive gray. The dark color, in combination with the odor of rotten eggs (i.e., hydrogen sulfide), indicates chemically reduced conditions. The firmness of the YBM unit increases slightly with depth, probably as a result of compaction beneath the weight of the overlying sediments. The YBM unit is not restricted to the present bay area, but also lies above sea level and a considerable distance inland (NSACE 1975a). This observation suggests that sea level has been higher at times in the past.

3.6.2 Apparent Core Loss

Ξ

The cause of large differences in core retrieved versus core drilled is problematic. The percent core loss was calculated as follows:

Percent Core Loss = 100 - Core Recovered X 100 Core Drilled

All cores, except those from Station RI-1-TC-5, penetrated approximately the same thickness of sediments. As a result, differences in the amount of sediment penetrated can be eliminated as a mechanism to account for the observed differences in core loss. Two other possible mechanisms to account for this phenomenon are the "bullet effect" and compaction. The bullet effect refers to the bulldozing action at the driving end of the core liner when, after a critical depth is reached, soft sediments temporarily cease to move upward within the core liner due to the build up of resistance by the sediments against the inside walls of the liner. Any sediments with a similar consistency will be pushed aside until a more competent layer is intercepted, when sediment should again move upward and be preserved within the core liner. If the bullet effect were occurring, then only the more competent, higher strength sediments would be preserved at depth. However, alternating layers of both soft and compact sediments were preserved from the OBM unit, as indicated in the core logs of Stations RI-1-TC-4 and RI-1-TC-5 discussed below. Furthermore, there were no major discontinuities or breaks in the core to suggest that any sediment layers were bypassed during drilling.

Compaction of sediments, as an alternative mechanism, may occur as a result of the jarring and vibration within the core liner during drilling. Such motion may drive off some of the interstitial water and thus promote settling of the loosely packed sedimentary particles. Regardless of the mechanism, apparent core loss appears to be restricted to the less compacted YBM unit. This is indicated in Figure 9, which shows a strong correlation between the amount of apparent core loss and the thickness of the YBM unit. Accordingly, Stations RI-1-TC-4 and RI-1-TC-5, which had less than 10 ft of YBM, showed only a few feet or less of apparent core loss. On the other hand, significantly greater losses (as much as 12 ft, or 30%) occurred in

Stations RI-1-TC-1, RI-1-TC-2, and RI-1-TC-3, which contained the thickest sequences of YBM. For this reason, the depths to the top of the OBM unit shown in Figure 8 (corrected for apparent core loss) are greater than those in Figures 6 and 7.

A possible way to test the validity of the bullet effect would be to confirm that soft as well as firm sediments are being preserved throughout the length of the core. If indeed soft sediments are being retrieved at depth subsequent to the drilling of more compact sediments, then the bullet effect loses credibility. Sediment consistency at present is determined qualitatively from the deformation of core under thumb pressure. A more quantitative measurement for comparing the consistency of sediment cores (i.e., penetrometer) should be used in the future to estimate core strength and retrievability. Without further field work, the cause of the apparent core loss cannot be determined.

3.6.3 <u>Core Summary Descriptions</u>

Presented below is a general description of each core based on the geologic logs presented in Appendix B.

Station RI-1-W-1

Station RI-1-W-1 was drilled along the northern portion of the Richmond Harbor outside the turning basin. Of the 25 ft of core drilled, less than 2 ft were recovered. The recovered core consists of a well-graded mixture of pebble-cobble gravel, sand, silt, and clay, and probably represents a composite of the entire 25-ft section. This is suggested by the marbled appearance of the differing colors. One of the marbled colors, light olive brown, indicates that some of the recovered core came from the OBM unit.

Station RI-1-TC-1

The soft YBM unit extends to a depth of 19.2 ft below mudline (Figures 6 and 7); however, correcting for apparent core loss, the true depth of the YBM unit lies at a depth of about 30 ft below mudline (Figure 8). Except for a thin sand lens about two-thirds into the YBM unit, the average

grain size appears to decrease with depth. Marine mollusc shells were present in the upper half of the YBM unit.

A total of 3.8 ft of OBM was recovered at Station RI-1-TC-1. The OBM unit consists of a gradational sequence ranging from dark-colored finegrained silt and clay at the top to oxidized, coarse pebbly sand toward the bottom. The consistency of the sequence is firm throughout.

Station RI-1-TC-2

The YBM unit extends to a depth of 16.5 ft below mudline (Figures 6 and 7). Correcting for apparent core loss, however, the true depth of the YBM unit lies at a depth of approximately 29 ft below mudline (Figure 8). The YBM unit is a relatively uniform dark gray clayey silt and contains mollusc shells throughout. A strong sulfide odor came from the lower portion of the YBM unit.

A total of 5.0 ft of OBM was recovered at Station RI-1-TC-2. Only the lower 1.5 ft were firm; the upper portion was soft like the YBM. A thin layer of poorly graded sand lies atop the OBM unit. This overlies an ancient soil deposit containing a high concentration of root fillings and mats of decayed plant matter. Toward the bottom of the OBM sequence are mud concretions formed in a stiff clay matrix, characteristic of soil development, which occurred when the area lay above sea level.

RI-1-TC-3A

The soft YBM unit extends to a depth of 18.5 ft below mudline, while the true depth lies at approximately 29 ft below mudline (Figure 8). Except for two thin sand lenses between the 12 and 15 ft depth, the YBM unit is slightly finer grained below a depth of about 6 ft. The maximum observed depth of mollusc shells is about 11 ft.

A total of 3.5 ft of OBM was recovered at Station RI-1-TC-3A. Olivegray fine sandy silt grades downward into well-graded grayish brown sand. Carbonate concretions and root fillings, associated with soil development, occur in the upper 1.5 ft of the OBM sequence. The entire OBM sequence shows a firm consistency.

Station RI-1-TC-4

The YBM unit extends to a depth of 8.8 ft below mudline; however, correcting for apparent core loss, the true base of the YBM unit lies at a depth of about 13 ft below mudline (Figure 8). The YBM unit is relatively thin here because it lies in an area where the OBM unit is eroded less than in adjacent areas (see Figures 6 and 7). Estuarine sediments of the YBM unit, associated with sedimentation within Richmond Harbor over the last ~12,000 years, have since covered the eroded OBM surface. As discussed previously, the thinner YBM sequence resulted in significantly less core loss compared with other cores extending to the same depth. Like other sites, the YBM unit consists mostly of a soft, homogeneous, dark-gray, clayey silt. Only the upper half the YBM sequence contains mollusc shells.

A very thick sequence of OBM, totalling 14.2 ft, was penetrated at Station RI-1-TC-4. A significantly higher proportion of sand occurs at this site in comparison with the other Richmond Harbor sites. At the top of the sequence is a firm, cohesive clay containing animal burrows, decayed organic matter, root traces, and mud concretions. These fine-grained sediments grade downward into softer silty and eventually pebbly sand deposits to a depth of 24 ft below mudline. A sedimentary sequence like this is characteristic of deposition within a river basin, where sandy deposits were deposited in the river channel itself while finer-grained deposits formed on the adjacent floodplain. Beneath the pebbly sands lie several alternating layers of firm, compacted clayey silt to silty clay.

Except for the uppermost one foot of the OBM unit, which is a reduced gray, the entire OBM sequence is some shade of oxidized brown. This is significant because it suggests that reduced colors observed within the OBM unit here and elsewhere were probably also once oxidized but were later stained by the overlying dark-colored YBM unit.

Station RI-1-TC-5

The YBM unit extends to a depth of 6.5 ft below mudline, while the true base lies about 9 ft below mudline. Dredging within Richmond Harbor appears to have removed the uppermost 13 to 15 ft of the YBM unit at Station

RI-1-TC-5 (Figure 7). The YBM unit consists mostly of a soft, dark-gray, clayey silt. An exception is an unusual 1.5-ft thick layer of well-graded, light olive-brown sand, which lies in the middle of the YBM unit. This layer is interpreted to represent an event where rapid sediment influx, perhaps from a nearby stream channel during a major flood, occurred within Richmond Harbor.

A total of 10.5 ft of OBM was recovered from RI-1-TC-5. Unlike the OBM unit in RI-1-TC-4, which is dominantly sand, the OBM in RI-1-TC-5 consists exclusively of silt and clay. The reason for this is that RI-1-TC-5 penetrated an area where more floodplain-type sediments were deposited compared with RI-1-TC-4, which is located in an area of mostly channel-fill deposits (see Figure 7). The uppermost 1.5 ft of OBM in RI-1-TC-5 consists of a soft to firm silty clay, which is of marine origin, since it contains mollusc shells. Below this are several alternating layers of terrestrial gray and brown silty clay to clayey silt, containing root fillings and carbonate and iron concretions. At the very bottom of the core is less than 0.5 ft of brown pebbly sand. The consistency of the OBM unit ranges from soft to firm but is particularly hard between the 12- and 14-ft depth below mudline, where it consists of a very compact blue-gray clay.

4.0 ANALYTICAL CHEMISTRY

4.1 INTRODUCTION AND OBJECTIVES

The goal of the analytical chemistry portion of the Richmond Harbor program was to provide reliable data on contaminant concentrations in Richmond Harbor and Santa Fe Channels. Table 2 summarizes the numbers and types of samples and the groups of compounds that were analyzed. The complete list of chemical analytes with proposed detection limits is presented in Tables 3 and 4. Specific objectives of the analytical chemistry were:

- 1. To analyze all sediment samples from Santa Fe and Richmond Harbor Channels for metals, organotins, base/neutral semivolatile organic compounds, chlorinated pesticides, PCBs, herbicide acids and phenols, oil and grease, and total organic carbon.
- 2. To measure levels of organophosphorus pesticides and dioxins and furans in sediment samples from 12 Richmond Harbor sites and all Santa Fe Channel composites.
- 3. To analyze interstitial water and elutriate samples from Santa Fe Channel for metals, organotins, base/neutral semivolatile organic compounds, chlorinated pesticides, PCBs, herbicide acids and phenols, organophosphorus pesticides, and dioxins and furans.

In this section, we review the methods used, any deviations from established protocols, and the quality control and results of each analysis.

4.2 METHODS

4.2.1 Metals in Sediment and Water

Metal concentrations in sediments were determined by one of four procedures, depending on the particular metal and the matrix from which it was extracted and measured. The analyses were conducted by MSL. In sediment samples, arsenic, chromium, copper, nickel, lead, selenium, and zinc were determined by energy-diffusive x-ray fluorescence (XRF) (Nielson and Sanders 1983). Antimony, beryllium, cadmium, silver, and thallium concentrations in sediment were determined by Zeeman graphite-furnace atomic absorption spectroscopy (GFAA) (EPA SW846 7000 Series 1986; Bloom and Crecelius 1983; Bloom and Crecelius 1984b). Mercury in both sediment and water was determined

		Wate	r	Total
Sample Type	Sediment	Interstitial	Elutriate	Number
Santa Fe Channel	6(a)	3(a)	1.C.3(a)	12(a)
Richmond Harbor Channel Short Cores	9(a) 18(b)			9(a) 18(b)
Long Cores	10(a) 12(b)			10(a) 12(b)
Total Each Type	55	3	3	61
Archived Richmond Total Cores Bottoms of Cores	16 25			
Quality Control Samples Duplicates	1(a) 2(b)	0	1(a)*	2(a) 2(b)
Spikes	1(a) 2(b)	1(a)*	0	2(a) 2(b)
SRM	1	1	0	2

TABLE 2. Types and Numbers of Samples for Chemical Analyses

 (a) Analytical groups for analysis include: Metals Butyl Tins Base/Neutral Semivolatiles Chlorinated Pesticides/PCBs Herbicide Acids/Acidic Phenols Dioxins & Furans Organophosphorus Pesticides Total Organic Carbon Oil and Grease

 (b) Analytical groups for analysis include: Metals Butyl Tins Base/Neutral Semivolatiles Chlorinated Pesticides/PCBs Herbicide Acids/ Acidic Phenols Total Organic Carbon Oil and Grease

QC samples relevant to both interstitial and elutriate analyses.

		`	Proposed	Detection Limit	
Analyte	Abbre- viation	CAS * Number	Water (µg/L)	Sediment (µg/g dry)	Crustal Abundance
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc Selenium Antimony Thallium	As Cd Cr Cu Pb Hg Ni Ag Zn Se Sb T1	7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7440-22-4 7440-66-6 7782-49-2 7440-36-0 7440-28-0	0.1 0.02 0.2 0.02 0.05 0.001 0.02 0.001 2 2 2 2	2 0.05 10 2 2 0.05 3 0.05 3 0.5 0.5 0.5	5 0.5 60 20 10 0.1 30 0.1 60 1 1
Beryllium	Be	7440-41-7	2	0.5	1
Organotins			0.05	0.01	N/A
Total Organ Oil and Gre	ic Carbon ase		N/A N/A	0.1% 20 µg/g dry	N/A N/A

TABLE 3.	Proposed Detection Limits	for Metals,	Organotins,	Total O	rganic
	Carbon, and Oil and Greas	e			-

* CAS Numbers provided for single elements only. N/A = not applicable.

<u>TABLE 4</u>. Proposed Detection Limits for Organic Compounds (a = Benzidine and 3,3'-dichlorobenzidine are subject to degradative losses during sample workup, qualitative analysis only; b = Phtalates are ubiquitous contaminants in the laboratory environment and may be present in laboratory procedural blanks exceeding detection limits; c = Original plan was to analyze for 2,3,7,8-CDD and 2,3,7,8-CDF. It was mutually agreed in April 1989 that totals would be analyzed instead.)

Compound	CAS Number	Water (µg/L)	Sediment (µg/kg dry wt)
Base/Neutral	Semivolatiles by	Method 8270	<u>)</u>
Acenaphthene	83-32-9	33	100
Acenaphtylene	208-01-8	33	100
Anthracene	120-12-7	33	100
Benzidine(a)	92-87-5		
Benzo(a)anthracene	56-55-3	33	100
Benzo(b)fluoranthene	205-99-2	33	100
Benzo(k)fluoranthene	207-08-9	33	100
Benzo(a)pyrene	50-32-8	33	100
Benzo(g,h,i)perylene	191-24-2	33	100
Bis(2-chloroethyl)ether	111-44-4	33	100
Bis(2-chloroethoxy)methane	111-91-1	33	100
Bis(2-chloroisopropyl)ether	108-60-1	33	100
Bis(2-ethylhexyl)phthalate(D)	117-81-7	33	100
4-Bromophenyl phenyl ether	101-55-3	33	100
Butyl benzyl phthalate(D)	85-68-7	33	100
2-Chloronaphthalene	91-58-7	33	100
4-Chlorophenyl phenylether	7005-72-3	33	100
Chrysene	218-01-9	33	100
Dibenzo(a,h)anthracene	53-70-3	33	100
Di-n-butylphthalate	84-74-2	33	100
1,2-Dichlorobenzene	95-50-1	33	100
1,3-Dichlorobenzene	541-73-1	33	100
1,4-Dichlorobenzene	106-46-7	33	100
3,3'-Dichlorobenzidine(a)	91-94-1		
Diethylphthalate(b)	84-66-2	33	100
Dimethylphthalate(b)	131-11-3	33	100
2,4-Dinitrotoluene	121-14-2	33	100
2,6-Dinitrotoluene	606-20-2	33	100
Di-n-octylphthalate(b)	117-84-0	33	100
1,2-diphenvlhydrazine	122-66-7	33	100
Di-n-propvlnitrosoamine	621-64-7	33	100
Fluoranthene	206-44-0	33	100
Fluorene	86-73-7	33	100
Hexachlorobenzene	118-74-1	33	100
Hexachlorobutadiene	87-68-3	33	100
Hexachlorocyclopentadiene	77-47-4	33	100
Hexachloroethane	67-72-1	22	100
Indeno(1,2,3-cd)pyrene	193-39-5	33	100

TABLE 4. (continued)

Compound	CAS Number	Water (µg/L)	Sediment (µg/kg dry wt)
Base/Neutral	Semivolatiles	(continued)	
Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodiphenylamine Phenanthrene Pyrene	78-59-1 91-20-3 98-95-3 62-75-9 86-30-6 85-01-8 129-00-0	33 33 33 33 33 33 33 33	100 100 100 100 100 100 100
<u>Chlorinated</u>	Pesticides by	Method 8080	
Aldrin Captan alpha-Chlordane gamma-Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dicofol (Kelthane) Dieldrin Dinocap Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Heptachlor alpha-Hexachlorocyclohexane beta-Hexachlorocyclohexane gamma-Hexachlorocyclohexane Methoxychlor Pentachloronitrobenzene Polychlorinated Biphenyls Toxaphene	309-00-2 133-06-2 5103-71-9 5103-74-2 72-54-8 79-55-9 50-29-3 115-32-2 60-57-1 131-72-6 959-98-8 33213-65-9 1031-07-8 72-20-8 76-44-8 319-84-6 319-85-7 58-89-9 72-43-5 82-68-8 1336-36-3 8001-35-2	$\begin{array}{c} 0.05\\ 0.50\\ 0.50\\ 0.10\\ 0.05\\ 0.05\\ 0.10\\ 0.05\\ 0.10\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 1\\ 1\\ 1\end{array}$	$\begin{array}{c} 2.5\\ 25\\ 25\\ 5\\ 2.5\\ 2.5\\ 5\\ 2.5\\ 2.5\\ $
Organophosphor	us Pesticides	by Method 8140	
Azinphos-methyl (Guthion) Diazinon Malathion Mevinphos Parathion Parathion-methyl	86-50-0 333-41-5 121-75-5 7786-34-7 56-38-2 298-00-0	5 5 5 5 5 5	250 250 250 250 250 250

<u>TABLE 4</u>. (continued)

Compound	CAS Number	Water (µg/L)	Sediment (µg/kg dry wt)
Herbicide Acid	s and Acidic Pheno	ls by Method 8	150
2,4-D 2,4-DB 2,4-Dinitrophenol Dinoseb (DNOC) MCPA 2-Methyl-4,6-Dinitrophenol	94-75-7 94-82-6 51-28-5 88-85-7 94-74-6	2 2 0.5 0.5 20	100 100 25 25 1000
(DNOČ) 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Silvex 2,4-5-T	534-52-1 88-75-5 100-02-7 87-86-5 93-72-1 93-76-5	0.5 0.5 0.5 0.5 0.5 0.5	25 25 25 25 25 25
Dioxins	and Furans by Meth	od 8280(c)	
Total Tetra-CDD Total Penta-CDD Total Hexa-CDD Total Hepta-CDD Total Octa-CDD Total Tetra-CDF Total Penta-CDF Total Hexa-CDF Total Hepta-CDF Total Hepta-CDF		0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \end{array}$

by cold-vapor atomic absorption spectroscopy (CVAA) using a Laboratory Data Control mercury monitor with a 30-cm cell as a detector (EPA SW846 Method 7471 1986; Bloom and Crecelius 1983). Metal concentrations in water samples were determined by GFAA for all except mercury (determined by CVAA) and arsenic. Arsenic in water was measured using a hydride atomic absorption (HAA) technique following the method of Andreae (1977). The following paragraphs describe the sample preparation steps prior to XRF or atomic absorption analysis.

Sediment samples were freeze-dried and then blended in a Spex mixermill. Approximately 5 g of this mixed sediment was then ground in a ceramicball mill. A 0.5-g aliquot of dried, ground sediment was sent to Pacific Northwest Laboratory in Richland, Washington, for XRF analysis. This technique is recognized by the National Institute of Standards and Technology (NIST) (formerly National Bureau of Standards) for analyzing metals in sediment matrices. The 0.5 g of freeze-dried sediment was pressed into pellets 2 cm in diameter for XRF analysis following the method of Nielson and Sanders (1983). For atomic absorption (AA) analysis of mercury, cadmium, silver, antimony, beryllium, and thallium, 0.2-g aliquots of the dried homogenate were digested with 4:1 nitric acid:perchloric acid in Teflon digestion bombs and placed in a 130°C oven for 4 h. After these samples cooled, hydrofluoric acid was added to them, after which the digestion bombs were heated in a 130°C oven for 8 to 12 h. Again, samples were allowed to cool thoroughly before a third acid digestion, this one with 20 mL of boric acid for 8 h in the 130°C oven. After cooling, solution volumes were determined and the solutions stored in polyethylene bottles until the analysis, approximately 2 to 3 weeks.

In the final preparation step for interstitial water and elutriate samples (Section 3.5), samples were preserved by acidification with concentrated HCl at a ratio of 1 μ L HCl: 1 mL sample. The acidified sample was stored in a Teflon bottle until analysis, approximately 2 to 3 weeks. Analysis of most metals was performed directly on aliquots of this solution. For five metals (cadmium, lead, copper, silver, and nickel), analytical detection in water samples was improved by an additional preparation step. For these five metals, an ammonium pyrrolidinedithiocarbamate (APDC) extraction was carried out on the acidified water sample, after the method of

Bloom and Crecelius (1984a). A 50-mL aliquot of acidified water sample was swirled with 1 mL of 200 ppm cobalt nitrate followed by addition of 1 mL of 2% APDC. This solution stood for at least 30 min before it was vacuum-filtered through a $0.4-\mu$ m, Nucleopore polycarbonate filter. Reagent blanks were prepared by adding 1 mL of cobalt nitrate and 1 mL of APDC to a clean filter, letting it stand about 2 min, then filtering. Each filter was folded and placed in an acid-cleaned 17-mL Teflon vial with a Teflon screw cap, 200 μ L of concentrated nitric acid (HNO₃) was added, and the uncapped vials were placed on a hot plate at a low setting until the filters had dried. The dried filters were allowed to cool, then 2 mL of 5% HNO₃ was added to each vial and the vial capped and digested in an oven for 2 hr at 75°C.

The acid digestates from sediment samples, acidified water samples, and APDC-extracted water samples were then analyzed by GFAA, CVAA, or HAA for the appropriate metals. Quality control procedures for analysis of metals in sediments and water are covered in Section 4.3.

4.2.2 Organotins in Sediment and Water

Organotin compounds were extracted from the matrix, then analyzed using gas chromatography with flame photometric detection (GC/FPD) following the methods of Unger et al. (1986). Sediment and water samples for organotin analysis were received by the analytical laboratory and stored at 4°C until extraction, approximately 4 weeks. For extraction of organotins from sediment samples, approximately 10 g wet sediment were weighed into a 125-mL solvent-cleaned glass jar. This sediment was mixed thoroughly with approximately 100 g of anhydrous sodium sulfate to remove the water within the sediment. Methylene chloride (110 mL) and 0.25 g of tropolone were then added to the container. This mixture was homogenized for 12 h and the liquid portion decanted through silanized glass wool to remove particles. The container was then rinsed three times with additional MeCl₂ and the resulting fluid added to the extract.

Organotins were extracted from water samples by a liquid-liquid separatory-funnel technique. Each sample was extracted three times with 0.2% tropolone in hexane. The mono-, di-, and tri-butyltin compounds extracted from both the sediment and water were derivatized with n-hexyl magnesium

bromide to a less volatile and more thermally stable form (nonionic n-hexyl derivatives). The extracts were cleaned up through a Florisil liquid chromatography column and the butyltins quantified by GC/FPD. The concentrations of mono-, di-, and tri-butyltin species are reported. The reported total butyltin concentration is calculated by adding the measured concentration of detected butyltin species and is not a measured total. Quality control measures for organotin analysis are covered in Section 4.3.3.

4.2.3 Organic Compounds in Sediment and Water

Sediment and water samples were analyzed for a variety of organic compounds using standard methods found in EPA SW846 (1986). Three different extraction procedures were conducted on separate aliquots of each field sample. The three extraction procedures with any minor modifications that deviated from the EPA SW846 methods are briefly described below. All sediments were initially extracted within 7 days of core splitting. When analyses for several groups required repeating, samples were shipped in November 1989, approximately 7 months after core splitting. These groups, which were held at 4°C, included semivolatile compounds, chlorinated pesticides/PCBs, herbicide acids and acidic phenols, and a few dioxins/furans. Tests run by NOAA on the length of time samples can be held at this temperature without change in chemistry indicate that samples can be held up to 3 years (Eric Crecelius, personal communication).

Base/Neutral Semivolatiles, Chlorinated Pesticides/PCBs, and Organophosphorus Pesticides

Base/neutral semivolatiles, chlorinated pesticides and PCBs, and organophosphorus pesticides were extracted from sediment using EPA SW846 Method 3540. Analyses of these compounds in water were conducted by Battelle Columbus Division, as were analyses of organophosphorus pesticides in sediments; semivolatiles and chlorinated pesticides/PCBs in sediments were analyzed by Analytical Resources Incorporated. Approximately 50 g of sediment were transferred into a Soxhlet extraction thimble and spiked with surrogate standards and matrix-spike compounds. Samples were extracted overnight in a Soxhlet extractor with 10% methanol in benzene. The solvent was then

exchanged to cyclohexane and hexane and this final extract reduced in volume using Kuderna-Danish concentration techniques. Base/neutral compounds, chlorinated and organophosphorus pesticides, and PCBs were isolated from 1-L water samples using separatory funnel liquid-liquid extraction (EPA SW846 Method 3510). Surrogate and matrix-spike compounds were added, and the samples extracted three times into methylene chloride. The extract was dried and concentrated using Kuderna-Danish procedures.

The concentrated extracts from both sediment and water samples were then processed through a liquid chromatography (LC) Phenogel 100-Å size-exclusion column (Phenomenex, Inc.) using methylene chloride as the elution solvent. This extract cleanup procedure is equivalent to EPA SW846 Method 3640. It uses the same quality assurance measures as Method 3640 but allows more efficient separation. The Phenogel LC procedure removes sulfur as well as high-molecular-weight matrix interferences. If necessary, alumina-column cleanup (EPA SW846 Method 3610) was performed to prevent interference with the gas chromatography/nitrogen phosphorous detector (GC/NPD) for organophosphorus pesticides. The extract from the LC procedure or additional cleanup was concentrated to 1 mL using Kuderna-Danish techniques and split into two or three equal portions for analysis of semivolatiles, chlorinated pesticides/PCBs, and organophosphorus pesticides (if required).

Base/neutral semivolatile organic compounds were analyzed by capillarycolumn gas chromatography with mass spectrometry detection (GC/MS). The list of base/neutral compounds and their characteristic ions is presented in EPA SW846 Method 8270. Chlorinated pesticides and PCBs were analyzed by capillary gas chromatography using electron capture detection (GC/ECD) following analytical and QA guidelines presented in SW846 Method 8080. Method 8080, a packed-column method, was updated for this study, in that a wide-bore capillary column of similar polarity to that suggested in the method was used. The capillary column results in better chromatographic performance than the packed column. Organophosphorus pesticides were analyzed by GC/NPD following analytical and QA guidelines specified in SW846 Method 8140. To give better chromatographic performance, the capillary column was substituted for the packed column of Method 8140 and the gas chromatography conditions adjusted accordingly. As required in the method, analyte identification will be

confirmed with a second chromatographic procedure using a column of higher polarity.

Herbicide Acids and Acidic Phenols

Herbicide acids and acidic phenols were extracted from an alkaline sediment slurry, derivatized, processed through a Florisil column, and analyzed by GC/ECD (EPA Method 8150). Analyses of these compounds in water was conducted by Battelle Columbus Division, analysis in sediments by Analytical Resources Incorporated. Sediment samples for herbicide and phenol analysis were prepared for analysis by transferring approximately 50 g of sediment into a 250-mL Teflon jar, adding 50 mL water, and adjusting the pH to >12. The alkaline extraction hydrolyzed organic esters, and interfering base/neutral compounds were removed with a solvent wash. The slurry was then acidified with HCl to pH 4 and appropriate internal recovery standards added. Samples underwent three consecutive extractions on a tumbler with acetone and diethyl ether as the extraction solvents. The extracts were combined and concentrated using Kuderna-Danish techniques to 1 mL. The extract was then esterified (converted to methyl esters) using diazomethane as the derivatizing agent (EPA SW846 Method 8150). The resulting solution was concentrated and processed through a Florisil chromatography column and the clean, derivatized extract reconcentrated for GC/ECD analysis.

Herbicide acids and phenols were isolated from aqueous samples using a liquid-liquid extraction procedure. The pH of the aqueous sample was adjusted to >12 using potassium hydroxide (KOH) to hydrolyze herbicide esters, and interfering organic contaminants were removed with an ether wash. The pH was adjusted to 4, appropriate internal recovery standards were added, and the sample was re-extracted three times with ether. Ether extracts were combined, reduced in volume, derivatized with diazomethane, and reconcentrated for analysis.

Derivatized herbicide acids and phenols from both sediments and water were analyzed by GC/ECD following the guidelines provided by EPA

SW846 Method 8150, except that capillary columns were substituted for the packed columns to give better chromatographic performance.

Polychlorinated Dibenzo-p-dioxins (PCDDs or Dioxins) and Polychlorinated Dibenzofurans (PCDFs or Furans)

Introduction. As indicated in the workplan, all dioxin and furan samples were analyzed by Battelle Columbus Division using Method A, described below. Analyses of sediment samples using Method A resulted in some detection limits exceeding 3 ng/kg for 2,3,7,8-TCDD and TCDF. These high detection limits prevented WES from conducting risk assessment analysis on these compounds. Therefore, WES, the San Francisco District, and MSL decided to re-analyze five selected sediment samples at a different laboratory. The five sediment samples were selected based on locations in Richmond Harbor where contaminants have been accumulating. The second laboratory, Twin Cities Testing, conducted the analyses using Method B, also described below.

Method A for Water Analyses. Sediment samples for PCDDs/PCDFs analysis using EPA Method 8280 were prepared by transferring approximately 50 g of sediment into a soxhlet extraction thimble, spiking with nine isotopically labelled PCDD/PCDF surrogates, and extracting overnight in a soxhlet extractor with 10% methanol in benzene as the extraction solvent. Aqueous samples were extracted by separatory-funnel liquid-liquid extraction with methylene chloride identically to the method for isolating base/neutral compounds. Both sediment and water extracts were submitted to an acid-base washing treatment, dried over sodium sulfate, and concentrated using Kuderna-Danish techniques. Following a solvent exchange to hexane, the extract was cleaned up by column chromatography with acid/base silica and neutral alumina. Following the cleanup step, quantification internal standards were added, and the sample was analyzed by high-resolution capillary chromatography using high-resolution mass spectrometry detection. To achieve lower detection limits, calibrations were done with a 50 ng/mL standard instead of a 500 ng/mL standard. Quantification of the individual congeners, total PCDDs, and total PCDFs was achieved in conjunction with a multipoint calibration curve for each compound, during which each calibration solution was analyzed once. Results are reported as total congener series of PCDDs and PCDFs.

<u>Method B for Sediment Analyses</u>. Twin Cities Testing analyzed sediments according to the following procedure.

- PCDD/PCDF Extraction: A portion of each sample was spiked with ¹³C₁₂-labelled PCDD/PCDF internal standards and extracted with benzene in a Soxhlet Dean-Stark extractor. The extracts were quantitatively transferred to Kuderna-Danish concentrators, concentrated, and solvent-exchanged to hexane. The hexane extracts were then spiked with a 2,3,7,8-TCDD-³⁷C₁₄ extraction-efficiency standard and processed through the analyte-enrichment procedures described below.
- Analyte Enrichment for PCDD/PCDF Analyses: The extraction procedure often removes from the sample matrix a variety of compounds in addition to the PCDDs and PCDFs. Some of these compounds can directly interfere with the analyses, while others can overload the capillary column, causing degradation in chromatographic resolution or sensitivity. The analyte-enrichment steps were used to remove interferences from the extracts.

The sample extracts were dissolved in 100 mL of hexane and then transferred to separatory funnels and extracted once with 1-M sodium hydroxide, three times with concentrated sulfuric acid, and once with distilled water. The hexane layers were concentrated with 1 mL and quantitatively transferred to liquid chromatography columns containing alternating layers of silica gel, 44% concentrated sulfuric acid on silica gel, and 33% 1-M sodium hydroxide on silica gel. The columns were eluted with 60 mL of hexane, and each entire eluate was collected and concentrated, under a gentle stream of dry nitrogen, to a volume of 1 mL.

The extracts were then fractionated on liquid chromatography columns containing 4 g of activated alumina. The columns were eluted with 10 mL of hexane followed by 7 mL of 2.0% methylene chloride/hexane and 25 mL of 60% methylene chloride in hexane. The 60% methylene chloride/hexane fractions were concentrated to 1 mL under a stream of dry nitrogen and applied to the tops of chromatography columns containing 1 g of 5% AX-21 activated carbon on silica gel. Each column was eluted with cyclohexane/methylene chloride (50:50 V/V) and cyclohexane/methanol/benzene (75:20:5 V/V) in the forward direction, and then with benzene in the reverse direction. Each benzene fraction collected was spiked with recovery standards and concentrated to a volume of 20 μ l.

 PCDD/PCDF Analyses: Extracts were analyzed for the presence of PCDDs and PCDFs using combined capillary column gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). The instrumentation consisted of a Hewlett Packard Model 5890 gas chromatograph and a VG Model 70SE high-resolution mass spectrometer. The capillary column was interfaced directly into the ion source of the mass spectrometer, providing the highest possible sensitivity while minimizing degradation of the chromatographic resolution.

The mass spectrometer was operated in the electron impact ionization mode at a mass resolution of 10,000 to 11,000. This resolution is sufficient to resolve most interferences, such as PCBs, thus providing the highest level of confidence that the detected levels of PCDD/PCDF are not false positives resulting from interferences.

The data were acquired by selected-ion-recording (SIR) monitoring of the groups of ion masses described in EPA method 8290. The five groups corresponded to the tetrachlorinated through octachlorinated congener classes.

4.2.4 Oil and Grease in Sediment

Total oil and grease concentration in sediment was determined by MSL by infrared spectrophotometry (IR), following Method 502 B (APHA 1985). Oil and grease may include hydrocarbons, fats, fatty acids, soaps, waxes, oils, and any other carbon-hydrogen material extracted by freon solvent. A small aliquot of sample was weighed, dried, and then reweighed to obtain the percent moisture so that results could be reported as dry-weight concentrations. Sediment for oil and grease analysis was extracted by weighing approximately 10 g of sediment into a 250-mL jar rinsed with solvent. Approximately 150 g of anhydrous sodium sulfate was added to the sample and homogenized with the sediment to absorb any water from the sediment. Next, 100 mL of Freon was added and stirred into this mixture. The sample was then immediately homogenized by placing it on a rolling-mill sample homogenizer overnight. After the sample was removed from the roller, the Freon was poured into a solvent-rinsed conical vial. The sample extracts were scanned from 4000 to 600 cm⁻¹, and the peak height measured at 2930 cm⁻¹. This wavelength represents the CH₂ configurations of hydrocarbons and was the standard used to determine oil and grease. The relationship of peak height to the oil concentration was determined by regressing the peak height versus a known concentration of fuel oil (EPA-API Reference Oil WP 681). Oil and grease concentration in sediment is reported in $\mu g/g$ (dry weight).

Results from oil and grease testing were lower than anticipated based on other data for the Richmond Harbor area. Therefore, three oil and grease samples were re-analyzed by MSL. At the same time, an additional method was conducted using a double extraction. As further checks, another laboratory

analyzed the same samples using the single- and double-extraction methods and MSL ran a third single extraction. The data generated through inter- and intralaboratory comparisons support the initial results and indicate that the values are correct.

4.2.5 Total Organic Carbon (TOC) in Sediment

Total organic carbon in sediment was determined by Global Geochemistry of Canoga Park, California, following Standard Method 505 (APHA 1985) and PSEP (1986). The carbon dioxide released from the organic carbon during combustion of the sediment was quantified by a LECO WR-12 carbon analyzer. Prior to combustion, hydrochloride was used to release inorganic carbonates from the sediment sample. Total organic carbon is reported as percent dry weight.

4.3 QUALITY CONTROL

Quality control procedures were applied to all categories of chemical analyses. Minimum requirements included analysis of reagent blanks, duplicate analysis of at least 5% of samples, analysis of standard reference materials (SRMs), and analysis of matrix spikes. Reagent blanks were analyzed with every batch of samples in all analyses except for XRF analysis of certain metals and TOC. In XRF and TOC analyses, samples are freeze-dried without additional preparation, making a reagent blank inappropriate.

For every group of analytes (metals, organotins, organic compounds, TOC, oil and grease), three sediment samples and one water sample were duplicated. These numbers represent 5% of 55 sediment samples and 10 water samples (including Sequim Bay), respectively. In analysis of duplicates, the relative percent difference (RPD) and industrial statistic (I) are calculated as follows:

$$RPD = \frac{|Replicate 1 - Replicate 2|}{Replicate 1 + Replicate 2} \times 100$$

$$I = \frac{|Replicate 1 - Replicate 2|}{Replicate 1 + Replicate 2}$$

The purpose of duplication is to evaluate the analytical precision of a

method. In the case of the Richmond Harbor water samples, no single sample had sufficient volume to yield two aliquots for true duplicate analysis. The water duplicate is a procedural duplicate obtained by carrying two aliquots of sediment composite through the elutriate procedure (Section 3.5.2). Because of the potential variability in the sediment composite and the elutriate procedure, this duplicate cannot be construed to reflect analytical precision.

To assess accuracy of analysis of most metals, SRMs are analyzed along with the samples. Where appropriate to assess accuracy of the method, 5% of samples (three sediment, one water) were spiked with known concentrations of compound and the percent recovery reported. Spiking of 5% of samples was done during analyses involving organotins.

4.3.1 Metals

Sediment

To assess accuracy, SRMs containing known concentrations of the analyte were analyzed with each batch of samples. For sediments, the SRMs were MESS-1 obtained from the National Research Council of Canada (NRCC), and National Bureau of Standards (NBS) SRM-1646. Spike recoveries of Ag and T1, for which there are no certified values in reference material, were measured to test the accuracy of the method. Three replicates of a standard known to have low concentrations of Ag and T1 (SRM MESS-1, NRCC) were spiked with known amounts of Ag and T1 (0.5 and 2.0 μ g/g respectively), digested, and analyzed.

<u>Water</u>

Duplicate analysis was carried out on one sample (5% of 10 total samples). Because a single sample volume was insufficient to split into duplicate aliquots, the water duplicate is a procedural duplicate obtained by carrying two aliquots of sediment composite through the elutriate procedure (Section 3.5.2). To assess analytical accuracy, the standard reference material CASS-1 from NRCC was analyzed at the same time as the Richmond Harbor samples. Accuracy of the As measurement was confirmed by analysis of a second Canadian SRM, NASS-1. However, 5 metals (Ag, Be, Sb, Se, T1) on the list of analytes had no certified values in these standard reference materials. The

accuracy of the measurement of each of these metals, except Ag, was assessed by spike additions at the time of analysis. Silver is a unique analyte in that it undergoes APDC extraction prior to measurement and that no SRM is available with a certified Ag concentration. Therefore, to evaluate the accuracy of Ag analysis, a sample must be spiked prior to the extraction. A standard with low silver concentration (CASS-1, NRCC) was spiked with 0.02 μ g/L Ag, carried through the APDC process, and the extracts analyzed.

4.3.2 Organotins

Duplicate analysis was carried out on three sediment samples and 1 water sample. As with metals in water, not enough volume of a single sample was available to do a true duplicate of a water sample. Prior to extraction, each sample was spiked with a known amount of tripropyltin and carried through the extraction process. The percent recovery of tripropyltin is a measure of the efficiency of the organotin extraction. Three sediment samples and one water sample were spiked with a solution of mono-, di-, and tributyltin in known concentrations and the percent recovery reported. At the time the Richmond Harbor samples were analyzed, no standard reference material was available that was certified for butyltins. The laboratory analyzed a sediment (SQ-1, National Oceanic and Atmospheric Administration) for which they have a range of reported tributyltin values. The SQ-1 is not a certified (NBS, NRCC) reference material, but it is regularly run with each batch to assess the reliability of the data.

4.3.3 Organic Compounds

Quality control measures for organic compounds in sediment samples included analysis of 5% (of the total number of samples) method blanks, duplicates, and matrix spikes. One exception is that the duplicate water sample is not a true laboratory duplicate (aliquots of a single sample) but is a separately prepared elutriate from the Santa Fe Channel Reach B (upper) sediment composite. All samples were spiked with surrogate compounds to assess extraction efficiency and the recovery of analyte from the sample matrix. The quality control measures discussed here apply only to assessment of analytical performance, not to the integrity of the samples.

Base/Neutral Semivolatiles

<u>Sediment</u>. At least three blanks were analyzed, three samples were duplicated, and duplicates of three samples were spiked with all base/neutral compounds. The sample duplicates and matrix-spike duplicates were compared using the RPD and I (Section 4.3). Semivolatile surrogate compounds were d5nitrobenzene, 2-fluorobiphenyl, d14-p-terphenyl, d5-phenol, 2-fluorophenol, and 2,4,6-tribromophenol. The percent recoveries of these compounds reflect the semivolatile extraction efficiency. The percent recovery for the matrix spike of each individual analyte is a measure of analytical accuracy for that analyte.

<u>Water</u>. One method blank was analyzed with the batch of 10 water samples. Because enough of any one water sample was not available to split for a matrix spike, the matrix spike was performed on reagent water. As discussed above, there was not enough of any one water sample to split for duplicate analysis, but two elutriate samples were prepared from the Santa Fe Channel Reach B (upper) sediment composite. These samples are reported as duplicates but are not compared using the RPD and I.

Chlorinated Pesticides and PCBs

<u>Sediment</u>. At least three blanks, three duplicates, and three matrix spikes/matrix-spike duplicates were analyzed with the batch. The matrixspike solution included all the chlorinated pesticides plus the PCB Aroclor 1242. The sample duplicates are compared using the RPD and I; the matrixspike duplicates are compared using RPD. All samples were spiked with the surrogate compound dibutylchlorendate (DBC) as specified in SW846 Method 8080 to assess extraction efficiency and the recovery of analyte from the sample matrix.

Duplicates for Station RI-1-C-39 were inconsistent (see Table 18). Therefore, this station was re-analyzed along with several surrounding it to determine 1) whether high values of 4,4'-DDE were present and 2) if so, whether these levels were restricted to that station. Results from these new analyses of chlorinated pesticides/PCBs (also conducted by Analytical Resources

4.18

Incorporated) indicated that values of 4,4'-DDE are low at those and adjacent stations (Tables 22 and 23).

<u>Water</u>. One method blank was analyzed, and a matrix spike was conducted on reagent water. All chlorinated pesticides were included in the matrixspiking solution. Again, the duplicate elutriate samples are reported but not compared as laboratory duplicates. The surrogate compound added to water samples was 1,3-dimethyl-2-nitrobenzene.

Herbicide Acids and Acidic Phenols

<u>Sediment</u>. Quality control procedures for herbicide acids and acidic phenols were similar to those for base/neutral semivolatiles and chlorinated pesticides and PCBs. Sample duplicates are compared using RPD and I; matrixspike duplicates are compared using RPD.

<u>Water</u>. One method blank was analyzed and a matrix spike including all analytes was conducted on reagent water. The elutriate duplicates are reported but not compared using RPD or I. The surrogate compound used was 2,4-dichlorophenylacetic acid.

Organophosphorus Pesticides

<u>Sediment</u>. Three method blanks, one duplicate (5% of 25 samples), and one matrix spike were analyzed with the sample batch. The duplicate results are compared using RPD and I.

<u>Water</u>. A method blank and reagent-water matrix spike were analyzed with the batch of 10 water samples. All organophosphorus analytes were included in the matrix-spiking solution. The duplicate elutriates were analyzed and reported but not compared using RPD or I.

Dioxins and Furans

<u>Sediment - Method A</u>. For the sediment samples analyzed, three spikes and three blanks were analyzed.

<u>Sediment - Method B</u>. For the five sediment samples re-analyzed, one matrix spike and one blank were analyzed. Isotopically labelled PCDD/PCDF compounds were added to each each sample prior to extraction.

<u>Water - Method A</u>. One method blank was analyzed with the batch, as were the elutriate water duplicates. Isotopically labelled PCDD/PCDF surrogates were added to each sample prior to extraction.

4.3.4 Total Organic Carbon

Three samples were analyzed in duplicate as required for the Richmond Harbor Program. In addition, the laboratory reported the results of seven internal duplicates. A standard reference material (MESS-1, NRCC) was analyzed, but no certified value is available for the percent TOC in the MESS-1 sediment.

4.3.5 Oil and Grease

Procedural blanks were run with each batch (approximately 20) of samples. Duplicate analyses were performed on three samples, and three samples (5% of total) were spiked with known amounts of EPA/API Reference Oil WP 681 and the recoveries reported. There is no standard reference material for oil and grease in a sediment matrix, but the spike recoveries of the known standard provide a measure of the accuracy of the method.

5.0 RESULTS

5.1 Sediments

5.1.1 Metals

The quality control data for analysis of trace metals in sediments is presented in Table 5. The RPD was less than 10% between most duplicates. The only metal with an RPD greater than 10% in all three duplicates was Sb (11%, 17%, 33%), while Tl had two duplicates with RPDs greater than 10% (26%, 29%). Larger RPDs will occur when two low concentrations are compared. In measurements of accuracy, spike recoveries for Ag were within the acceptable range of 80 to 120%. Spike recoveries of Tl were consistently high (140%). Of the analytes with a certified value in an SRM, only Be was outside the certified range of accuracy. The concentration of Be (1.59 μ g/g) was within 6% of the certified range (1.7 to 2.1 μ g/g) of Be in the SRM. Two of three replicate Ni values fell just outside the range certified in the SRM, each by less than 5%. Data for metals in sediments in Richmond Harbor and in Santa Fe Channels are presented in Tables 6 through 8.

5.1.2 Organotins

In review of organotin quality control data (Table 9), propyltin recoveries were found to be low (less than 50%) in 4 of the 16 samples. In all cases where recoveries of less than 50% occurred, the samples were reextracted and re-analyzed and data with the highest percent recovery reported. It is thought that the analyte is lost by volatilization during the extraction process. This hypothesis is supported by the results of the butyltin spikes. Good spike recoveries (80 to 100%) of the mixed-butyltin solution indicate that GC/FPD detected what was present in the sample, evidence that loss of analyte (apparent by the low surrogate recoveries) occurs during extraction. Tributyltin concentration in SQ-1 reference sediment (56 ng/g) was within the range of values previously reported for SQ-1 (44 \pm 15 ng/g). Data for organotins in sediments are presented in Tables 10 through 12.

Table 5. Quality Control for Metals in Sediments

-

-

					Ū	oncentrati	o B∕Brr) uo	dry weight	~				
Station	6v	As	2	3	ა	3	물	¥	æ	ъ,	Se	H	Zn
Achieved Detection Limit	19.9	1.2	. 26	6.683	38		6.018	8. E		0.17	1.2	6 .23	1.8
Dupl icates	1												
RI-1-C-6 RI-1-C-6	6.13 0.11	16. 5 15.1	1.97 2.21	6.13 6.14	199 208	46.3 48.5	6.299 6.316	91.9 86.2	18.6 20.8	6.77 1.67	<pre>< 1.2 < 1.2 < 1.2</pre>	6 .52 6.39	99.2 101.8
RPD I	17% 6.66	8.65% 8.8	11X 8.86	7.4% 8.84	4.4% B	6.3% 6.83	3.6% 8.818	6.4% 9.8	11X 9.1	33% 6.16	VN N	29% Ø.14	1.8% 0.6
RI-1-C-19 RI-1-C-19	6.36 6.36	15.1 13.7	1.77 1.85	6.18 6.18	174 182	64.2 64.1	6.417 6.418	111.3 161.9	36.6 32.1	6 .48 6 .57	<pre>< 1.2 < 1.2 < 1.2</pre>	8.65 8.65	153.4 144.6
RPD I	3.3% 6.62	16% 6.65	4.4% 9.82	¥ .	4.6% 0	6.16 %	6.24% 9.681	6.8% 6.6	8.6% 8.8	17% 8.69	NN NA	X9 X9	6.3% 8.8
SA-UPPER SA-UPPER	6 .33 A.32	7.3 8.9	2.13 1.34	8 .59 8 .68	196 197	66.5 66.3	6.444 6.426	86.2 85.3	46.9 42.5	1.67 8.96	<pre>{ 1.1 { 1.1</pre>	6.46 6.52	139.Ø 146.1
RPD I	3.1% 6.61	26% 6.1	46% 8.23	1.7% 6.83	9.61% 9	6.50%	4.1% 6.021	1.1% 6.6	3.8% 6.6	11% 8.85	AN N	26% Ø.13	4.9% 8.8

NA = Not applicable. RPD = Relative percent difference. I = Industrial statistic I.

Table 5. (continued)

¢'

Concentration (µg/g dry weight)

Station	₿¥	2	8	ટ	ა	3	욯	N	କ	Sb	Se	I	Zn
Spikes (No SRM available)													
Mess-1 Std + Spike	J .51	N	Ŵ	W	N	NA	VN	VN	VN	ž	N	3.32	Ň
Mess-1 Std	878.8	Ň	NA	NA	N	M	N	VN	NA	VN	VN	6 .53	YN .
Amount Spiked	6 .6	Ň	W	VN	ž	NA	NA	VN	NA	M	M	2.6	NN
Percent Recovery	87	¥	W	N	ž	M	VN	Ŵ	M	ž	N	146	VN
kkcse-1 Std + Spike	6 .69	N	Ň	Ň	Ŵ	Ŵ	W	YN	N	Ň	¥	3.32	VN
Ness-1 Std	970.0	Ň	VN	YN	Ň	Ŵ	Ň	N	NA	M	VN	8 .53	КA
Amount Spiked	6 .5	Ŋ	NA	N	N	NA	N	NA	NA	Ŵ	VN	2.6	N
Percent Recovery	192	¥N	YN.	M	ž	¥	Ŵ	VN	N N	ž	VN	140	VN
Mess-1 Std + Spike	ê.56	VN	W	Ň	Ŵ	M	N	Ŵ	Ŵ	W	NA	3.33	NA
Mess-1 Std	6.6 79	Ň	Ŵ	N	Ă	KA	N	N A	N A	W	VN	6 .53	VN
Amount Spiked	6 .6	Ŋ	NA	NA	¥	M	VN	W	N	Ň	M	2.6	N
Percent Recovery	8	M	NA	KA	Ŵ	KN	MA	N	N	N	VN	146	VN

NA = Not applicable.

n

Table 5. (continued)

=

Concentration (ug/g dry weight)

Station	βγ	\$	&	3	ა	5	£	Ŧ	£	8	s.	=	Zn
Standard Reference Materials													
SRM Mess-1 Std	M	10.1	1.59	6 .59	8	27.6	6.188	34.3	34.6	6.68	< 1.1	Ň	178.3
SRM Mess-1 Std	NA	10.1	•	8 .58	11	23.7	0.176	36.7	36.3	۱	< 1.2	VN	184
SRM Mess-1 Std	N	11.4	ı	•	65	26.8	6.171	35.5	35.8	ı	< 1.2	VN	187.7
Certified	Ŵ	16.6	1.9	6 .59	11	25.1	0.171	29.5	34.E	6.73	ı	Ň	191
Va lue+	W	±1.2	± 6 .2	±6.16	IĦ	13 .8	±6.014	±2.7	#6.1	16.08	1	VN	117
NBS SRM-1646	NA	VN	W	6 .31	N	Ň	W	Ň	Ň	Ň	VN	N	VN
Certified	NA	Ň	NA	6.36	VN	NA	X	NA	NA	M	W	NA	VN
Value+	W	W	W	±6.87	V	N	VN	VN	M	W	VN	W	VN
Procedural Blank	ı	ı	•	ı	1	ı	6 . 8 51	1	,	6 .29	·	,	ı
Procedural Blank	1	•	1	·	1	•	5.646	1	ı	< 0.17	۱	ı	1
Procedural Blank	I	ı	ı	ı	•	•	6.6 51	ı	I	•	I	ı	ı

NA = Not applicable. - = Data not available.

17

لا

.

* "Value" means acceptable range for certified value.
Table 6. Metals in Sediments from Long Cores(a)

Concentration (ug/g dry weight)

									1.				
Station	βų	۶	8	3	ა	3	오	ž	£	Ş	ŝ	=	Zn
Achieved Detection Limit	9.01	1.2	6 .26	6.963	90	3.0	6.618	3.0	9.0	6.17	1.2	6.23	1.8
RI-1- 4-1	8.15	6.2	1.16	6 .38	182	34.8	6.173	69.6	21.3	6 .49	1.1	(B .23	95.7
RI-1-TC-1 1/4	99.9	8.9	6 .83	8 .22	213	32.6	6.691	82.9	14.6	6 .19	1.2	8 .52	85.3
RI-1-TC-1 2/4	6.07	9.8	6.89	8 .31	229	31.2	6.6 58	81.7	16.6	< 0.17	(1.1)	6 .52	84.3
RI-1-TC-1 3/4	6.16	12.2	1.43	6 .19	216	42.1	g. 882	91.1	8.3	< 8.17	(1.1)	6 .52	85.8
RI-1-TC-1 4/4	0.04	9.3	1.27	6.63	257	25.3	6.107	66.1	10.1	6 .68	(1.1)	(8 .23	58.2
RI-1-TC-2 1/4	6.10	12.6	1.34	0.16	243	32.6	8.154	76.5	13.8	< 0.17	(1.2	6 .39	91.8
RI-1-TC-2 2/4	E. 84	9.6	1.50	0.17	205	28.4	6.652	83.7	16.1	< 8.17	(1.2	6 .63	78.5
RI-1-TC-2 3/4	6.98	11.6	1.42	1 .28	218	36.6	6.666	96.6	9.2	< 8.17	¢1.2	6 .65	92.7
RI-1-TC-2 4/4	9.98	11.2	1.61	8.27	235	38.5	0.056	104.2	7.3	6.19	(1.1)	8 .52	102.7
RI-1-TC-3 1/4	6. 86	10.0	9 .88	6.15	213	23.6	8 .856	78.4	8 .1	6.19	(1.1)	(8 .23	72.3
RI-1-TC-3 2/4	9.67	16.2	1.15	6 .23	222	33.6	8.863	83.5	1.1	< 8.17	(1.2	6.39	87.6
RI-1-TC-3 3/4	8.63	16.8	1.65	6 .15	264	38.3	0.071	93.3	11.5	6 .39	(1.1)	6 .53	83.8
RI-1-TC-3 4/4	9 .9	9.2	1.67	1.49	196	22.6	968.8	64.5	16.9	6 .38	(1.1)	(5 .23	51.1
RI-1-TC-4 1/4	0.11	9.9	1.41	0.21	215	36.3	5.166	61.9	15.8	8 .19	<pre></pre>	6 .52	94.6
RI-1-TC-4 2/4	6.67	11.4	8.85	9.16	269	32.8	808.8	81.6	8.2	<	(1.2	9.39	74.3
RI-1-TC-4 3/4	6 .68	11.7	1.75	6.8 9	206	33.3	5.893	87.6	16.6	6.77	(1.2	8 .52	78.2
RI-1-TC-4 4/4	10.0	18.4	1.42	6.13	192	28.6	9.854	6.9	9.6	8 .29	(1.2	6 .52	66.8
RI-1-TC-5 1/5	0.27	14.4	1.49	0.23	174	63.1	8.468	89.4	34.7	6.39	(1.2	6.52	141.7
RI-1-TC-5 2/5	6.36	21.8	1.34	99. 9	168	59.8	9.858	83.5	28.3	2.36	(1.2	0.52	154.3
RI-1-TC-5 3/5	6.23	13.2	1.69	6.42	265	71.1	6.748	161.8	26.8	1.14	(1.2	6 .52	156.8
RI-1-TC-6 4/5	0.05	9.8	1.16	8 .19	242	27.4	808. 8	56.8	12.2	8 .48	(1.2	6 .39	54.1
RI-1-TC-5 5/5	6.67	8.5	1.22	0.23	227	22.2	6.672	62.2	8.8	6 .38	(1.1)	6 .39	55.4

(a) Cores were divided into 4 or 5 vertical sections numbered 1 (top of core) through 4 or 5 (bottom of core).

,

Table 7. Metals in Sediments from Richmond Harbor Channel Short Cores

Concentration (ug/g dry weight)

•

									6				
Station	₿v	\$	ß	g	ა	3	择	Ņ	£	Sb	Sa	I	Zn
Achieved Detection													
Limit	9.61	1.2	6 .26	6.963	36	3.6	6.618	3.6	3.6	6.17	1.2	8 .23	1.8
RI-1-C-1	6.21	11.1	1.67	0.20	199	62.3	6.262	166.2	21.8	6 .48	(1.2	8 .39	117.8
RI-1-C-3	0.17	11.9	1.54	8 .19	185	38.9	9.191	96.6	16.8	6 .39	(1.1)	6 .53	168.3
RI-1-C-5	9 .25	11.6	1.34	9 .16	191	55.4	0.311	97.3	27.7	8 .48	(1.2	8 .52	125.0
RI-1-C-6	6.13	15.0	1.97	6.13	199	46.3	6.299	6 .16	18.6	6.77	(1.2	8 .52	99.2
RI-1-C-8	6.29	14.8	1.83	6.19	178	62.5	6.314	169.2	38.3	6 .58	(1.2	g .53	148.1
RI-1-C-16	6.25	14.6	1.63	0.23	201	62.4	6.325	117.8	28.1	8 .58	(1.2	6 .39	148.8
RI-1-C-11	9 .36	13.7	1.81	0.17	184	63.8	g .349	111.6	32.2	6 .49	(1.2	g .68	151.4
RI-1-C-12	0.35	13.3	1.75	6.20	185	69.0	9.353	113.0	36.6	8.48	(1.2	6 .78	141.5
RI-1-C-14-U	9 .29	14.8	1.76	6 .13	213	62.9	6 .348	116.1	32.2	8.48	<1.2	6 .52	148.6
RI-1-C-14-L	9.34	15.9	1.93	6.27	282	74.6	6 .36 6	122.6	34.2	6 .67	(1.2	8 .52	160.8
RI-1-C-16	6 .65	7.3	1.43	6.12	221	26.8	6.116	49.6	8.5	9 .29	(1.1)	(8 .23	47.8
RI-1-C-18	6 .23	12.6	6.81	9.18	162	51.7	6.349	9 .16	36.8	6.67	(1.2	6 .39	121.8
RI-1-C-19	6.31	15.1	1.77	6 .18	174	64.2	6.417	111.3	35.8	6 .48	(1.2	8 .65	153.4
RI-1-C-26	6.16	12.4	9 6.3	6.18	233	40.2	6 .205	74.1	17.0	6 .58	(1.1)	8 .53	95.9
RI-1-C-23	6.67	16.2	1.76	6.14	176	56.7	5.6 84	196.3	13.4	6 .48	(1.2	8 .52	91.7
RI-1-C-24	6.14	12.9	1.37	6.21	286	58.4	0.171	111.5	18.6	6 .38	(1.2	6 .52	116.5
RI-1-C-25	6 .21	13.7	1.58	6.23	165	49.4	6 .266	169.3	24.4	5 .58	(1.1)	g .66	119.8
RI-1-C-26	6.27	16.7	1.76	6.22	194	66.2	6.433	96.6	44.6	6 .68	(1.1)	6.39	153.3
RI-1-C-29	6.17	7.6	1.65	6 .69	165	43.1	9.261	81.4	21.2	Ø.49	(1.2	6.48	107.1
RI-1-C-36	6 .13	6 .8	2.66	6 .58	152	36.5	6 .15 0	76.3	18.8	8 .48	(1.1	6 .39	98.7
RI-1-C-32	6.33	17.6	1.76	6 .26	197	73.2	g .438	118.1	40.2	8 .68	(1.2	8 .53	165.9
RI-1-C-33	6.16	16.1	1.13	g .62	152	38.4	6.112	72.6	16.9	8 .39	(1.2	8 .53	73.9
RI1-C-35	6.15	8.1	1.19	6 .29	167	42.6	0.172	88.4	22.8	g .58	(1.1	B .65	169.2
RI-1-C-36	6.41	14.9	1.66	6.41	194	74.1	6.611	168.6	47.6	8 .86	(1.2	6 .52	177.8
RI-1-C-38	6 .38	12.1	1.86	g . 46	188	71.7	6.451	114.2	48.8	1.26	(1.2	6 .79	173.3
RI-1-C-39	6 .15	4.7	2.65	8.48	145	33.6	0.150	73.2	26.8	6.77	(1.2	8 .39	78.5
RI-1-C-41	9.15	3.6	1.69	6 .45	144	34.3	6 .156	67.3	16.8	6 .49	(1.1)	Ø.53	78.5

Table⁸. Metals in Sediments from Santa Fe Channel

Concentration (ug/g dry weight)

Station	βĄ	As	8	ਣ	ა	3	£	ï	£	ક	ß	F	Zn
Achieved Detection Limit	0.01	1.2	0.26	6.003	2	3.6	6.618	9.0 1		0.17	1.2	6 .23	1.8
SA-UPPER SB-UPPER SC-UPPER	6.33 6.31 6.35	7.3 16.7 8.9	2.13 1.43 1.68	6.59 6.66 6.67	196 178 199	66.5 62.7 66.9	6.444 6.379 6.412	86.2 89.8 85.8	46.9 46.6 39.4	1.67 6.68 6.58	(1.1) (1.1) (1.1)	8.46 9.46 8.52	139. 6 141.3 137.9
SA-LOWER SB-LOWER SC-LOWER	6.15 6.13 6.14	6.9 6.9	1. 9 5 1.27 1.5 6	6.38 6.48 6.81	191 156 184	38.6 36.4 36.7	6.195 6.127 8.154	74.1 74.3 70.1	22.7 16.4 19.1	8.58 6.39 6.39	0.1 0.1 0.1	8.39 8.39 6 8.23	96.4 85.9 85.9

Station	Propyl Tin % Recovery	<u>Butyltir</u> Tri	<u>Concentra</u> Di	tion (ng/g d Mono	dry wt) Total
Achieved Detection Limit*		1.4	1.8	1.3	NA
Duplicates					
RI-1-C-6 RI-1-C-6	69 57	< 0.90 < 1.6	 2.2 < 1.4	< 0.79 < 1.0	2.2 NA
RPD I		NA NA	NA NA	NA NA	
RI-1-C-19 RI-1-C-19	59 42	13 5.1	12 5.9	1.7 < 1.0	26.7 11
RPD I		90% 0.44	68% 0.34	NA NA	
SA-UPPER SA-UPPER	53 48	16 15	19 18	2.8 3.4	37.8 36.4
RPD I		6% 0.03	5% 0.02	19% 0.10	
Spikes					
RI-1-C-6 RI-1-C-6 + Spike Amount Spiked Percent Recovery	69 53	< 0.90 104 130 80	2.2 117 130 88	< 0.79 75 130 58	2.2 NA NA NA
RI-1-C-16 RI-1-C-16 + Spike Amount Spiked Percent Recovery	63 53	< 0.98 66 88 75	< 1.2 56 88 63	< 0.87 39 88 45	NA NA NA NA
RI-1-TC-3 2/4 RI-1-TC-3 2/4 + Spike Amount Spiked Percent Recovery	49 54	< 1.2 113 156 72	< 1.5 155 156 99	< 1.1 92 156 59	NA NA NA

Table 9. Quality Control for Organotins in Sediments

* Achieved detection limit is based on a 5-g sample. Actual level of detection varies with sample size and moisture content. NA = not applicable.

- RPD = Relative percent difference. I = Industrial statistic I.

Tab	le	9.	(Continued)	1
the second se		_	(

	Propyl Tin	Butyltin	Concentrat	ion (ng/g	dry wt)
Station	% Recovery	Tri	Di	Mono	Total
Reference Material	<u>a - 1973 - 1973 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 19</u>				
					×
SQ-1	57	56	< 2.1	< 1.5	56
Procedural Blank-1 Procedural Blank-2 Procedural Blank-3	44 82 84	< 1.4 0.83 0.85	< 1.8 0.43 < 2.0	< 1.3 < 1.5 3.2	NA 1.3 4.05

NA = not applicable.

1.4.44

Ta	b1	e	10	•
			-	

14

Organotins in Sediments From Long Cores(a)

Station	Propyl Tin	<u>Butylti</u>	<u>n Concentra</u>	ation (ng/g	dry wt)
	% Recovery	Tri	Di	Mono	Total
Achieved Detection Limit*		1.4	1.8	1.3	NA
RI-1-W-1	32	< 1.6	< 1.9	< 1.4	NA
RI-1-TC-1 1/4	48	< 1.3	< 1.6	< 1.1	NA
RI-1-TC-1 2/4	48	< 1.3	< 1.6	< 1.2	NA
RI-1-TC-1 3/4	50	< 1.0	< 1.3	< 1.0	NA
RI-1-TC-1 4/4	55	< 0.98	2.1	2.5	4.6
RI-1-TC-2 1/4	58	2.6	< 1.5	2.2	4.8
RI-1-TC-2 2/4	58	< 1.2	< 1.5	< 1.1	NA
RI-1-TC-2 3/4	51	< 1.3	< 1.6	< 1.1	NA
RI-1-TC-2 4/4	26	< 1.1	< 1.4	< 1.1	NA
RI-1-TC-3 1/4 RI-1-TC-3 2/4 RI-1-TC-3 3/4 RI-1-TC-3 4/4	50 49 42 45	< 1.0 < 1.2 < 1.1 < 1.0	< 1.3 < 1.5 < 1.4 < 1.3	< 0.97 < 1.1 < 1.0 < 0.94	NA NA NA
RI-1-TC-4 1/4	52	3.9	< 1.4	< 1.0	3.9
RI-1-TC-4 2/4	64	< 1.1	< 1.4	1.5	1.5
RI-1-TC-4 3/4	54	< 0.94	< 1.2	< 0.90	NA
RI-1-TC-4 4/4	54	2.3	< 1.0	< 0.77	2.3
RI-1-TC-5 1/5	56	10	6.5	3.2	19.7
RI-1-TC-5 2/5	61	< 1.1	< 1.4	1.8	1.8
RI-1-TC-5 3/5	44	< 1.1	< 1.4	1.1	1.1
RI-1-TC-5 4/5	46	< 1.4	< 1.7	< 1.2	NA
RI-1-TC-5 5/5	50	< 1.1	2.2	< 0.94	2.2

(a) Cores were divided into 4 or 5 vertical sections numbered 1 (top of core) to 4 or 5 (bottom of core).
* Achieved detection limit is based on a 5-g sample. Actual level of detection varies with sample size and moisture content.
NA = not applicable.

	Propyl Tin	Butylti	n Concentr	ation (ng/g	dry wt)
Station	% Recovery	Tri	Di	Mono	Total
Achieved Detection Limit*		1.4	1.8	1.3	NA
$ \begin{array}{c} \text{RI-1-C-1} \\ \text{RI-1-C-3} \\ \text{RI-1-C-5} \\ \text{RI-1-C-6} \\ \text{RI-1-C-70} \\ \text{RI-1-C-10} \\ \text{RI-1-C-11} \\ \text{RI-1-C-12} \\ \text{RI-1-C-14-U} \\ \text{RI-1-C-14-U} \\ \text{RI-1-C-16} \\ \text{RI-1-C-16} \\ \text{RI-1-C-179} \\ \text{RI-1-C-19} \\ \text{RI-1-C-20} \\ \text{RI-1-C-30} \\ \text{RI-1-C-31} \\ \text{RI-1-C-32} \\ \text{RI-1-C-32} \\ \text{RI-1-C-33} \\ \text{RI-1-C-35} \\ \text{RI-1-C-35}$	72 54 62 69 26 61 53 39 61 67 63 55 59 59 59 59 59 59 59 59 59 59 59 59	$\begin{array}{c} 2.6 \\ < 0.98 \\ 3.0 \\ < 0.90 \\ < 1.6 \\ 3.6 \\ 5.7 \\ 5.1 \\ < 1.6 \\ < 1.4 \\ < 0.98 \\ 2.8 \\ 13 \\ < 1.7 \\ < 1.7 \\ < 1.9 \\ 5.2 \\ 2.0 \\ < 1.5 \\ < 1.9 \\ 9.5 \\ < 1.3 \\ < 1.8 \end{array}$	$< 2.0 \\ 4.2 \\ < 1.9 \\ 2.2 \\ < 2.1 \\ 4.0 \\ < 2.1 \\ 2.0 \\ < 2.0 \\ 12 \\ < 1.2 \\ < 1.2 \\ < 1.7 \\ 12 \\ < 1.5 \\ < 1.4 \\ < 1.6 \\ < 2.6 \\ 4.0 \\ 2.4 \\ < 1.6 \\ 5.1 \\ < 1.2 \\ < 1.5 \end{aligned}$	<pre>< 1.5 < 0.87 < 1.4 < 0.79 < 1.6 < 1.4 2.7 < 1.3 < 1.5 3.8 < 0.87 < 1.2 1.7 < 1.1 < 1.0 < 1.2 < 1.9 < 0.76 < 0.95 < 1.2 1.8 < 0.84 < 1.1</pre>	2.6 4.2 3.0 2.2 NA 7.6 8.4 7.1 NA 15.8 26.7 NA 2.8 26.7 NA 5.2 6.0 2.4 NA 16.4 NA NA
RI-1-C-36 RI-1-C-38 RI-1-C-39 RI-1-C-41	57 49 50 48	8.3 4.4 < 1.6 < 1.4	4.1 4.4 < 1.4 < 1.2	< 2.1 3.9 < 0.99 < 0.86	12.4 12.7 NA NA

* Achieved detection limit is based on a 5-g sample. Actual level of detection varies with sample size and moisture content. NA = Not applicable.

Table 11. Organotins in Sediments from Richmond Harbor Channel Short Cores

	Propyl Tin	Butylti	n Concentra	tions (ng/g	dry wt)
Station	% Recovery	Tri	Di	Mono	Total
Achieved _* Detection Limit		1.4	1.8	1.3	NA
SA-UPPER SB-UPPER SC-UPPER	53 49 69	16 5.6 10	19 8.1 7.7	2.8 2.2 4.9	37.8 15.9 22.6
SA-LOWER SB-LOWER SC-LOWER	59 52 60	3.1 < 1.3 6.8	8.1 < 1.6 2.8	4.0 < 1.1 < 1.1	15.2 NA 9.6

Table 12. Organotins in Sediments from Santa Fe Channel

* Achieved detection limit is based on a 5-g sample. Actual level of detection varies with sample size and moisture content. NA = not applicable.

5.1.3 Organic Compounds

Base/Neutral Semivolatile Compounds

Quality control data for base/neutral semivolatile compounds are presented in Table 13, except for surrogate-recovery data, which are found in Table 14. Station data for base/neutral semivolatile compounds are located in Tables 15 through 17.

Chlorinated Pesticides and PCBs

Quality control data for chlorinated pesticides and PCBs are included in Table 18. Matrix interference with a nearby peak prevented determining spike recoveries for endosulfan sulfate. Original station data for chlorinated pesticides and PCBs are presented in Tables 19 through 21. Reanalyzed data are located in Tables 22 and 23 (see Section 4.3.3).

Herbicide Acids and Acidic Phenols

Table 24 presents the quality control data for herbicide acids and acidic phenols in sediments. Spike recoveries and duplication are reasonable. Station data for these compounds are found in Tables 25 through 27.

Organophosphorus Pesticides

Quality control data for organophosphorus pesticides in sediments are presented in Table 28. Spike recoveries are reasonable, with the exception of Mevinphos, which is low. Surrogate recoveries were also reasonable. Station data for organophosphorus pesticides are located in Tables 29 through 31.

Dioxins and Furans

The quality control results for the five reanalyzed samples are presented in Tables 32 and 33. The concentrations of dioxins and furans in five samples from Richmond Harbor are presented in Table 34. These QC results indicate a low blank and high recoveries for the matrix spike. The recoveries of the 16 internal standards, which were spiked into each sample before extraction, were all acceptable.

found and confirmed but with low spectral match parameters; T=benzo(b)- plus benzo(k)fluoranthene, peaks cannot be separated; J=estimated value, result less than detection !imit; B=analyte found in blank as well as sample; H=estimated value, analyte Quality Control for Base/Noutral Semivolatiles in Sediments (ug/kg dry weight) (Enot detected at given detection limit; N/A=not applicable). Table 13.

į

Station	Bis(2-chloro- ethyl)ether	1,3-Dichloro- benzene	1,4-Dichloro- benzene	1,2-Dichlero- benzene	Bis(2-chloro- isopropyl) ether	N-nitroso- di-n- propylamine	Hexa- chloro- ethane	Nitro- benzene
Method Blanks 1	33U	33U	33J	nee	33U	331	700	33U
2	67U	67U	67U	670	670	67U	130U	67U
m	33U	33U	33U	33U	33U	33U	700	33U
4	67U	67U	670	67U	670	670	1300	67U
5	33U	33U	33U	33U	33U	33U	700	33U
Duplicates								
SB-UPPER	64U	54U	54U	64U	54U	54U	1100	540
SB-UPPER DUP	48U	48U	480	48U	48U	48U	079	48U
RI-1-TC-5 2/5	46U	46U	48U	46U	46U	46U	006	46U
RI-1-TC-5 2/5 DUP	48U	480	48U	48U	46U	48U	95U	48U
RI-1-C-39	440	440	440	044	440	44U	87U	440
RI-1-C-39 DUP	38U	38U	381	36U	38U	38U	76U	38U
Duplicate RPD			•					
SB-UPPER	N/A	N/N	N/A	N/N	N/N	N/A	N/N	N/N
RI-1-TC-5 2/5	N/N	N/A	N/N	N/A	N/A	N/A	N/N	N/N
RI-1-C-39	N/A	N/N	N/N	N/N	N/N	N/A	N/N	V/N
Duplicate I-Stat								
SB-UPPER	N/A	N/N	N/N	N/N	N/N	N/A	N/A	N/A
RI-1-TC-5 2/5	N/A	N/A	N/N	N/N	N/N	N/A	N/N	N/N
RI-1-C-39	V/N	N/N	N/A	N/N	N/N	N/N	N/N	N/N

١

Lighter and the same of the second of the second second second second second second second second second second

, N 10.1

.

	Bis(2-chloro-	1,8-Dichloro-	1,4-Dichloro-	1,2-Dichloro~	Bis(2-chloro- isopropyl)	N-nitroso- di-n-	Hexa- ch loro-	Nitro-
Station	ethy!)ether	beitzene	benzene	benzene	ether	<u>propylanine</u>	ethane	benzene
Spilce Recovery (X								
SC-i JPPER	50	43	46	50	57	88	40	62
SC-LIPPER DUP	47	45	48	48	51	66	41	51
RI-1-TC-3 1/4	40	35	39	39	46	54	31	46
RI-1-TC-3 1/4 GP	32	35	35	ŝŝ	39	50	30	33
RI-1-TC-5 1/5	46	52	52	55	57	53	47	43
RI-1-TC-5 1/5 DUP	48	46	11	- 61	8	63	43	43
Spilce Recevery RPI								
St-LIPPER	6.4	4.3	4.1	2.4	11.3	21.4	1.0	18.4
RI-I-TC-3	23.9	2.6	11.2	7.3	16.0	8.8	2.9	32.2
RI-:1-TC-5 1/5	4.5	13.0	11.0	8.0	14.3	6.4	7.4	0.7
Spille Recovery I-	itat							
SC-I,PPER	6 - 1 - 3	0.02	0.02	0.01	0.06	0.11	0.01	0.09
RI-: -TC-3 1/4	0.12	0.01	0.05	0.04	0.08	0.04	0.01	0.16
RI-1-TC-5 1/5	0.02	0.07	D.06	0.04	0.07	9.03	0.04	0.00

5.15

E 30

.,

(Continued)	
E1	
Table	

-

		Bis(2-chloro-			Hexach loro-			
		ethoxy)-		Hexach loro-	cyclo-	2-chioro-	Dimethy I-	
Staticn	Is. therene	sethane	<u>Naphtha lene</u>	butadiene	pentadiene	naphtha lene	phthalate	Acenaphthy lene
Hethod Blanks								
1	33IJ	33U	33U	70U	170U	33U	33U	33U
61	67U	67U	67U	1300	330U	67U	67U	67U
~	33U	33U	33U	700	170U	33U	33U	33U
17	67U	6 7U	670	1300	330U	670	670	67U
6	33U	33U	UE	700	170U	33U	33U	33U
[hup]icates								
SiB-UPPER	54U	64U	64U	1100	270U	64U	54U	64U
SIB-UPPER DUP	48U	48U	48U	079	240U	480	48U	48U
FI-1-TC-5 2/5	46U	46U	46U	106	230U	48U	46U	46U
FI-1-TC-5 2/5 DUP	48U	480	48U	050	240U	480	48U	480
f!I-1-C-39	440	440	440	870	220U	440	44U	044
FIT-1-C-39 DUP	38U	38U	381	76U	1900	38U	38U	480
Cuplicate RPD								
SB-UPPER	N/N	N/N	N/A	N/N	N/N	N/N	N/N	N/N
FI-1-TC-5 2/5	N/N	N/N	N/N	N/N	N/N	N/N	N/N	N/N
RI-1-C-39	N/N	N/N	N/A	N/A	N/N	N/N	N/A	V/N
Duplicate I-Stat								ţ
SB-UPPER	N/A	N/A	N/N	N/A	N/A	N/A	N/N	N/N
RI-1-TC-5 2/5	N/N	N/N	N/N	N/A	N/A	N/N	N/N	V/N
RI-1-C-39	N/N	N/N	N/N	N/N	N/N	N/A	N/N	V/N

Table 13. (Continued)

		Bis(2-chloro-			Hexach loro-			
		ethoxy)–		Hexach loro-	cyclo-	2-chloro-	Dimethy I-	
Station	Isophorone	Bethane	Naphthal ene	butadiene	pentadiene	naphtha l ene	phthalate	Acenaphthy lene
Spike Recovery (%)								
SC-UPPER	02	76	75	5	18	06	06	26
sc-upper oup	56	61	6 5	52	10	81	82	87
RI-1-TC-3 1/4	62	60	58	41	16	78	80	85
RI-1-TC-3 1/4 DUP	60	60	57	38	14	67	80	83
RI-1-TC-5 1/5	68	72	74	69	16	Ľ	82	68
RI-1-TC-5 1/5 DUP	64	69	73	82	12	75	80	68
Spike Recovery RPD								
SC-UPPER	22.0	20.3	14.4	21.2	67.6	10.8	9.9	11.3
RI-1-TC-3 1/4	13.0	0.8	2.4	8.0	28.6	14.4	0.0	2.2
RI-1-TC-5 1/5	6. 0	4.3	1.2	6.2	22.2	2.4	2.3	0.7
Spike Recovery I-St	tat							
SC-UPPER	0.11	0.10	0.07	0.11	0.29	0.05	0.05	0.06
RI-1-TC-3 1/4	0.07	0.0	0.01	0.04	0.14	0.07	0.00	0.01
RI-1-TC-5 1/5	0.03	0.02	6.01	0.03	0.11	0.01	0.01	0.00

(Continued)	
Table 13.	

11

allan in h

					4-Chloro-		N-Nitroso-	
		2,4-Dinitro-	2,6-Dinitro-	Diethyl-	pheny I-		d i pheny l –	4-Bromopheny -
Station	Aconaphthene	Toluene	Toluene	Phtha late	pheny lether	Fluorene	an i ne	pheny lether
Method Blanks								
1	33U	170U	170U	33U	330	33U	33U	33U
2	670	330U	330U	67U	67U	670	67U	67U
თ	33U	1700	170U	33U	33U	33U	33U	33U
4	67U	330U	330U	670	67U	67U	670	67U
ŝ	33U	170U	170U	33U	33U	33U	33U	33U
Dup licates								
SB-UPPER	54U	270U	270U	64U	54U	54U	54U	5411
SB-UPPER DUP	48U	2400	340U	48U	48U	480	480	480
RI-1-TC-5 2/5	46U	230U	230U	46U	46U	46U	46U	46U
RI-1-TC-5 2/5 DUP	480	240U	240U	48Ŭ	480	480	48U	480
RI-1-C-39	44U	220U	220U	440	44U	44U	440	440
RI-1-C-39 DUP	381	1900	1900	36U	38U	38U	38U	38U
Duplicate RPD								
SB-UPPER	N/N	N/A	N/N	N/N	N/A	V/N	N/A	N/N
RI-1-TC-5 2/5	N/N	N/N	N/N	N/N	N/N	N/A	N/A	N/N
RI-1-C-39	N/N	N/N	V/N	N/N	N/N	N/N	N/N	N/N
Duplicate I-Stat								
SB-UPPER	N/N	N/A	N/A	N/N	N/A	N/A	N/A	N/A
RI-1-TC-5 2/5	N/N	N/N	N/N	N/N	N/N	N/A	N/N	N/N
RI-1-C-39	N/A	N/N	N/N	N/A	N/N	N/N	N/A	N/N

					4-Chloro-		N-Nitroso-	
		2,4-Dinitro-	2,6-Dinitro-	Diethyl-	pheny I -		diphenyl-	4-Bromopheny -
Station	Acenaphthene	Toluene	Toluene	Phtha late	pheny lether	Fluorane	anine	pheny lether
Spike Recovery (X	7							
SC-UPPER	68	6 2	72	87	68	100	18	86
SC-UPPER DUP	86	11	67	80	80	63	63	90
RI-1-TC-3 1/4	82	02	99	80	78	06	85	11
RI-1-TC-3 1/4 DUP	81	02	2 0	82	76	68	16	20
RI-1-TC-5 1/5	86	11	65	81	76	93	66	73
RI-1-TC-5 1/5 DUP	87	89	83	80	75	92	66	72
Spike Recovery RP	0							
SC-UPPER	1.1	10.3	10.4	8.7	10.0	9.2	4.1	7.9
RI-1-TC-3 1/4	1.1	0.7	0.7	2.8	3.6	1.0	12.5	9.3
RI-1-TC-5 1/5	0.7	4.4	3.3	1.6	1.2	1.6	0.3	1.7
Spike Recovery I-	Stat							
SC-UPPER	0.04	0.05	0.05	0.04	0.05	0.05	0.02	0.04
RI-1-TC-3 1/4	0.01	0.00	0.00	0.01	0.02	0.01	0.06	0.05
RI-1-TC-5 1/5	0.00	0.02	0.02	0.01	0.01	0.01	0.00	0.01

1

							Buty i-	í, ,
	Hexach loro-			Di-n-buty -			benzy i -	3,3-Dichlora-
Station	benzene	Phenanthrene	Anthracene	phthalate	Fluoranthene	Pyrene	phtha late	benzidine
Method Blanks								
1	33U	33U	33U	330	33U	33U	33U	170U
5	67U	67U	67U	67U	670	67U	67U	330U
8	33U	33U	33U	33U	33U	33U	33U	1700
-	670	67U	67U	67U	67U	670	67U	330U
Q	331	33U	33U	33U	33U	33U	33U	1700
Duplicates							· ·	
SB-UPPER	540	640	54U	54U	150	230	54U	270U
SB-UPPER DUP	48U	48U	48U	48U	80	150	181	240U
RI-1-TC-5 2/5	46U	48U	46U	46U	69	100	46U	230U
RI-1-TC-5 2/5 DUP	480	480	46U	48U	66	150	48U	240U
RI-1-C-39	440	440	440	44U	44N	64	440	220U
RI-1-C-39 DUP	38U	38U	38U	381	380	62	38U	1900
Duplicate RPD								
SB-UPPER	N/N	N/N	N/N	N/N	60.9	42.1	N/A	N/N
RI-1-TC-5 2/5	N/N	N/A	N/N	N/N	36.7	40.0	N/A	N/A
RI-1-C-39	N/N	N/N	N/N	N/N	N/A	5.9	N/A	N/N
Duplicate I-Stat								
SB-UPPER	N/N	N/N	N/N	N/N	0.30	0.21	N/N	N/N
RI-1-TC-5 2/5	N/N	N/N	N/N	N/N	0.18	0.20	V/N	N/N
RI-1-C-39	N/A	N/N	N/A	N/A	N/A	0.03	N/N	N/N

-

:	Hexach loro-	:		Di-n-butyl-	: i	ť	Buty - benzy -	3,3-Dichloro-
Station	benzene	<u>Phenanthrene</u>	Anthracene	phtha late	Fluoranthene	Pyrene	phthalate	benzidine
Spike Recovery (%)								
SC-UPPER	36	107	18	18	5	82	61	G
SC-UPPER DUP	80	103	92	87	06	85	72	0
RI-1-TC-3 1/4	11	2	88	100	68	88	82	0
RI-1-TC-3 1/4 DUP	78	87	81	8	9 6	5	16	0
RI-1-TC-5 1/5	38 ()	16	88	16	88	8	82	0
RI-1-TC-5 1/5 DUP	78	92	8	06	88	88	61	8
Spike Recovery RPD								
SC-UPPER	7.4	4.0	4.9	10.0	4.9	7.8	9.7	N/A
RI-1-TC-3 1/4	1.2	6.8	6.8	1.4	4.2	6.6	11.0	N/N
RI-1-TC-5 1/5	2.7	1.0	0.0	0.7	0.3	1.9	4.1	N/N
Spike Recovery I-S	tat							
SC-UPPER	0.64	0.02	0.02	0.05	0.02	0.04	0.05	N/N
RI-1-TC-3 1/4	0.01	0.03	0.03	0.01	0.02	0.03	0.06	N/N
RI-1-TC-5 1/5	0.01	0.00	0.00	0.00	0.00	0.01	0.02	N/A

(Continued	
Table 13.	

-

		Bis(2-ethyl-						Indeno-
	Benzo(a)-	hexy l)-		Di-n-octyl-	Benzo(b)-	Benzo(k)-	Benzo(a)-	(1,2,3-CD)-
Station	anthracene	phthalate	Chrysene	phthalate	fluoranthene	fluoranthene	pyrene	pyrene
Method Blanks								
1	33U	83	33U	33U	33U	33U	33U	33U
2	67U	670	670	67U	67U	670	670	67U
3	33U	33U	33U	33U	33U	33U	33U	33U
4	67U	67U	67U	67U	67U	67U	6 7U	67U
5	33U	33U	33U	330	33U	33U	33U	33U
Duplicates								
SB-UPPER	120	2308	290	54U	160	180	160	73M
SB-UPPER DUP	50M	270	100	48U	190	84	64M	73N
RI-1-TC-5 2/5	46U	63	43J	46U	46%	Bew	58M	N61
RI-1-TC-5 2/5 DUP	480	94	480	48U	707	•	54M	53M
RI-1-C-39	440	180	440	440	440	44U	440	440
RI-1-C-39 DUP	38U	160	38U	36U	38U	38U	38U	38U
Duplicate RPD								
SB-UPPER	N/N	N/N	97.4	N/N	17.1	72.7	N/A	N/N
RI-1-TC-5 2/5	N/A	39.6	N/N	N/A	N/A	N/N	N/N	V/N
RI-1-C-39	N/N	11.8	N/A	V/N	N/N	N/A	N/N	N/A
Duplicate I-Stat		·						
SB-UPPER	N/A	N/N	0.49	N/N	0.09	0.36	N/N	N/A
RI-1-TC-5 2/5	N/N	0.20	N/A	N/A	N/N	N/N	N/N	N/N
RI-1-C-39	N/N	0.06	N/N	N/A	N/N	N/N	N/N	N/N

		Bis(2-ethyl-						Indeno-
	Benzo(a)-	hexy i) -		Di-n-octyl-	Benzo(b)-	Benzo(k)-	Benzo(a)-	(1,2,3-CD)-
Station	anthracene	phtha late	Chrysene	phthalate	fluoranthene	fluoranthene	pyrene	pyrene
Spike Recovery (X)	-	ı				·		,
SC-UPPER	ш	81	68	06	98	88	76	67
SC-UPPER DUP	73	72	6 3	84	80	95	76	61
RI-1-TC-3 1/4	82	87	68	5	11	9 8	ш	66
RI-1-TC-3 1/4 DUP	84	93	83	88	75	88	47	63
RI-1-TC-6 1/5	75	84	84	88	74	75	68	62
RI-1-TC-6 1/5 DUP	76	6/	80	81	72	78	87	62
Spike Recovery RPD								
SC-UPPER	5.4	6 .6	6.2	6.6	6.7	6.6	0.5	6.9
RI-1-TC-3 1/4	2.7	6.1	7.4	3.9	3.0	7.4	4.8	4.9
RI-1-TC-5 1/5	0.4	4.9	4.3	8.6	2.4	3.0	1.3	1.4
Spike Recovery I-S	tat					·		
SC-UPPER	0.03	0.05	0.03	0.03	0.03	0.03	0.00	0.05
RI-1-TC-3 1/4	0.01	0.03	0.04	0.02	0.01	0.04	0.02	0.02
RI-1-TC-5 1/5	0.00	0.02	0.02	0.04	0.01	0.02	0.01	0.01

(Continued)	
Table 13.	

Station	Dibenzo(a,h)- anthracene	Benzo(g, h, i)- perylene	Benzidine
Method Blanks			
F-4	33U	33U	1700U
3	670	67U	3300U
8	33U	33U	1700U
4	670	67U	33000
¢	33()	33U	1700U
Duplicates			
SB-UPPER	54U	72	2700U
SB-UPPER DUP	48U	88	2400U
RI-1-TC-5 2/5	46U	63	2300U
RI-1-TC-5 2/5 DUP	48U	52M	24000
RI-1-C-39	44U	044	2200U
RI-1-C-39 DUP	38U	38U	1900U
Duplicate RPD			
SB-UPPER	N/A	8.7	N/N
RI-1-TC-5 2/5	N/N	N/A	N/N
RI-1-C-39	N/N	N/N	N/N
Duplicate I-Stat			
SB-UPPER	N/A	0.04	N/N
RI-1-TC-5 2/5	N/N	N/A	N/N
RI-1-C-39	A/K	N/N	N/N

g,h,i)- ne Benzidine		N/A	N/N	V/N	N/N	N/N	N/N		.3 N/A	N/N 0.	.2 N/A		.12 N/A	V/N 10	V/N 60
) benzo(a,h)- Benzo(<u>Ehracene peryle</u>		77 26	70 33	73 45	64 45	65	65 68		9.9 23	12.6	1.4 17	•	0.05 0	0.06	0.01 0
lable 13. (Continued) Dib Station and	Spike Recovery (%)	SC-UPPER	SC-UPPER DUP	RI-1-TC-3 1/4	RI-1-TC-3 1/4 DUP	RI-1-TC-5 1/5	RI-1-TC-5 1/5 DUP	Spike Recovery RPD	SC-UPPER	RI-1-TC-3 1/4	RI-1-TC-5 1/5	Spike Recovery I-Stat	SC-UPPER	RI-1-TC-3 1/4	RI-1-TC-5 1/5

	BASE	E/NEUTRAL SURF	ROGATES		CID SURROGATE	S
STATION	d5-Nitro- benzene	2-Fluoro- biphenyl	d14-p- Terphenyl	d5-Phenol	2-Fluoro- phenol	2,4,6-Tri- bromo- phenol
QC LIMIT	23-120	30-115	18-137	24-113	25-121	19-122
METHOD BLANK 1	84.3	93.9	87.3	84.2	66.4	61.6
METHOD BLANK 2	66.6	72.2	88.1	69.8	70.9	65.1
METHOD BLANK 3	83.8	92.7	84.1	79.4	67.3	61.7
METHOD BLANK 4	53.5	59.7	95.0	59.1	59.4	62.3
METHOD BLANK 5	25.4	34.1	65.8	27.5	25.0	3Ø.9
SC UPPER SPIKE	76.7	92.8	83.1	80,4	65.1	74.7
SC UPPER SPIKE DUP	58.0	84.4	75.6	69.3	56.8	72.5
TC-3 1/4 SPIKE	54.4	85.4	82.4	73.6	58.3	72.8
TC-3 1/4 SPIKE DUP	47.6	76.9	83.2	62.6	42.4	65.9
TC-5 1/5 SPIKE	68.9	83.3	80.2	65.4	51.6	61.9
TC-5 1/5 SPIKE DUP	61.2	82.2	81.0	71.2	58.5	60.0
sa upper	82.5	106	96.6	87.6	73.8	78.9
SB UPPER	50.5	72.5	74.3	64.0	46.2	68.5
SB UPPER DUP	83.2	162	91.7	87.9	82.7	91.4
SC UPPER	89.9	91.2	82.3	88.9	73.8	70.8
SA LOWER	73.4	87.4	80.7	85.3	72.5	76.6
SB LOWER	6 6 . 8	76.2	77.1	73.9	61.2	72.6
SC LOWER	53.1	71.8	76.7	57.4	49.3	65.9
RI-1-W-1	54.4	71.9	72.6	63.2	58.1	59.4
RI-1-TC-1 1/4	68.3	83.6	77.7	81.0	65.6	79.4
RI-1-TC-1 2/4	62.6	79.9	75.5	74.4	60.6	71.3
RI-1-TC-1 3/4	60.9	88.2	76.2	72.8	62.4	72.0
RI-1-TC-1 4/4	64.2	85.7	76.7	76.	63.8	73.8
RI-1-TC-2 2/4	73.4	85.6	79.7	78.6	63.8	85.9
RI-1-TC-2 3/4	73.6	85.8	79.2	74.8	63.5	84.4
RI-1-TC-2 4/4	69.9	81.9	76.7	70.9	59.8	79.9
RI-1-TC-3 1/4	57.1	64.5	71.5	62.1	65.2	65.2
RI-1-TC-3 2/4	60.8	68.3	161	67.5	68.7	75.2
RI-1-TC-3 3/4	63.5	70.9	88.5	69.9	68.1	78.1
RI-1-TC-3 4/4	64.2	74.4	87.0	71.5	79.5	72.3
RI-1-TC-4 1/4	61.3	70.9	73.0	62.6	58.5	67.7
RI-1-TC-4 2/4	69.5	73.9	72.8	66.8	60.6	67.9
RI-1-TC-4 3/4	71.4	76.1	74.7	68.8	82.0	71.6
RI-1-TC-4 4/4	71.4	86.8	74.4	71.5	69.8	77.6
RI-1-TC-5 1/5	74.6	87.8	86.6	84.5	73.4	77.6
RI-1-TC-5 2/5	73,1	85.2	69.7	71.2	65.7	63.8
RI-1-TC-5 2/5 DUP	83.4	99.6	92.7	92.1	88.2	92.1
RI-1-TC-5 3/5	69.0	71.5	66.0	70.8	59.0	55.8
RI-1-TC-5 4/5	76.5	76.8	72.1	73.1	58.4	45.3
RI-1-TC-5 5/5	71.9	76.7	73.6	63.7	44.7	38.9

Table 14. Surrogate Recoveries (%) for Base/Neutral Semivolatiles.

5.26

11.1

70

	BASE	E/NEUTRAL_SURF	ROGATES	/	CID SURROGATE	<u></u>
STATION	d5-Nitro- benzene	2-Fluoro- biphenyl	d14-p- Terphenyl	d5-Phenol	2-Fluoro- phenol	2,4,8-Tri- bromo- phenol
QC LIMIT	23-120	36-115	18-115	24-113	25-121	19-122
RI-1-C-1	65.4	77.6	72.7	66.4	57.5	77.7
RI-1-C-3	78.9	90.3	89.9	85.4	73.7	76.6
RI-1-C-5	6#.6	76.3	79.4	67.7	69.5	72.1
RI-1-C-6	77.1	95.9	93.6	83.5	78.6	73.2
RI-1-C-8	56.7	77.6	78.3	68.3	58.8	78.7
RI-1-C-10	58.7	78.4	76.3	63.0	56.7	69.6
RI-1-C-11	57.3	68.5	78.9	64.3	58.8	67.0
RI-1-C-12	6 0 .4	74.9	78.5	65.9	62.5	76.7
RI-1-C-14U	57.6	69.6	71.6	67.5	61.2	64.7
RI-1-C-14L	43.2	64.9	68.3	57.9	46.8	63.9
RI-1-C-16	87.5	96.0	92.2	84.3	71.3	49.5
RI-1-C-18	87.1	97.2	89.6	87.5	85.9	79.0
RI-1-C-19	54.1	65.9	67.8	62.7	55.8	61.8
RI-1-C-29	86.6	97.5	93.3	87.3	82.9	81.7
RI-1-C-23	72.4	91.8	89.7	82.1	75.3	80.2
RI-1-C-24	81.4	94.5	89.7	79.6	88.7	87.7
RI-1-C-25	68.6	85.7	88.8	74.3	65.3	79.5
RI-1-C-28	72.8	95.9	92.5	88.5	77.3	83.2
RI-1-C-29	57.2	78.3	78.5	68.9	59.8	68.2
RI-1-C-30	74.2	93.2	94,2	77.8	79.6	86.4
RI-1-C-32	54.8	68 . 🖉	76.3	62.8	55.2	71.#
RI-1-C-33	78.7	96. 🕊	87.6	85.8	81.5	89.6
RI-1-C-35	77.8	99.3	93.4	78.1	75.3	93.4
RI-1-C-35	65.5	71.7	78.8	66.5	59.6	68.5
RI-1-C-38	55.0	76.7	68.5	65.5	56.3	68.6
RI-1-C-39	88.7	96.1	89.9	86.4	81.9	87.3
RI-1-C-39 DUP	88.5	99.5	93.5	92.3	81.7	89.9
RI-1-C-41	75.9	96.1	91.2	79.5	74.9	87.7

Base/Neutral Semivolatiles in Sediments from Richmond Harbor Channel Long Cores (ug/kg dry weight) (U=not detected at given detection limit; J=estimated value, result less than detection limit; B=analyte found in blank as well as sample; M=estimated value, analyte found and confirmed but with low spectral match parameters; T=benzo(b)- plus benzo(k)fluoranthene, peaks cannot be separated). Table 15.

Bis(2-chloro-	1,3-Dichloro-	1,4-Dichloro-	1,2-Dichloro-	Bis(2-chloro- isopropyl)	N-nitroso- di-n-	Hexa- chloro-	Nîtro-
ethy!)ether	benzene	benzene	benzene	ether	propylamine	ethane	benzene
460	46U	18 4	46U	181	460	BBU	480
470	11	470	470	170	470	0.96	17U
440	440	141	440	440	440	N #6	140
460	460	460	480	460	460	860	181
31U	31U	310	31U	31U	31U	099	31U
470	47U	470	470	470	470	N#6	17 ₽
46U	46U	46U	46U	46U	46U	N9 6	46U
51U	51U	510	51 U	51U	51U	1860	51U
87U	87U	870	87U	870	870	17 0 U	87U
870	870	870	870	87U	870	NØ/T	87U
N96	196	196	N96	- 36 U	196	NØ6 I	196
141	74U	740	740	74U	74U	158U	74U
470	470	P.14	470	12 1	470	N 96	47U
420	420	420	42U	42U	420	800	42U
460	480	460	46U	460	460	86U	460
340	34U	34U	340	34U	34U	70U	34U
64U	64U	640	64U	64U	64U	136U	64U
46U	46U	46U	46U	46U	46U	N96	46U
51U	61U	51U	51U	51U	51U	1961	51U
36U	36U	36U	36U	360	36U	76U	36U
33U	33U	33U	33U	33U	33U	69 U	33U

5.28

 $\mathcal{B}_{i}^{(i)}(f)$

	Acenaphthy lene	181	174	440	480	31U	174	46U	510	B7U	870	196	740	12	42N	460	34U	54U	46U	51U	36U	33U
	Dimethy I- phtha late	46U	47U	140	480	31U	174	46U	510	870	870	N96	740	171	42N	46U	34U	640	46U	51U	36U	33U
	2-chloro- naphthalene	₽ŧ	47	440	B t	31U	171	46U	511	018	870	096	74U	174	420	Jit	340	040	46U	51U	36U	330
Hexach loro-	cyclo- pentadiene	2000	23 0 U	22 0 U	200U	160U	24 6 U	2360	2540	4360	4300	486U	3760	24 6 U	216U	296U	1760	3260	23 6 U	26 6 U	1860	168U
:	Hexech loro- butadiene	B BU	N#5	N9 6	N a	089	N#6	N#6	TRAU	178U	1760	1961	1600	N8 6	Ne	N e	78U	1380	796	1960	NØ2	040
	<u>Naphtha lene</u>	N9 †	174	141	184	310	470	46U	51U	8 7U	870	960	74U	124	420	480	34U	64U	46U	51U	36U	33U
Bis(2-chloro-	ethane Bethane	480	470	141	480	31U	124	461	61U	870	870	961	74U	470	420	191	341	64U	46U	51U	36U	33IJ
	Isopherone	460	470	44U	460	31U	1 7\$	46U	51U	87U	87U	096	74U	470	42N	48U	0¢E	64U	46U	51U	36U	33U
	Station	RI-1-W-1	RI-1-TC-1 1/4	RI-1-TC-1 2/4	RI-1-TC-1 3/4	RI-1-TC-1 4/4	RI-1-TC-2 2/4	RI-1-TC-2 3/4	RI-1-TC-2 4/4	RI-1-TC-3 1/4	RI-1-TC-3 2/4	RI-1-TC-3 3/4	RI-1-JC-3 4/4	RI-1-TC-4 1/4	RI-1-TC-4 2/4	RI-1-TC-4 3/4	RI~1-TC-4 4/4	RI-1-TC-5 1/5	RI-1-TC-5 2/5	RI-1-TC-5 3/5	RI-1-TC-5 4/5	RI-1-TC-5 5/5

/

5.29

					4-Chioro-		N-Nitroso-	
		2,4-Dinitro-	2,6-Dinitro-	Diethyl-	pheny -		diphenyl-	4-Bromopheny -
Station	Acenaphthene	Toluene	Toluene	Phtha late	pheny lether	Fluorene	anine	pheny lether
RI-1-W-1	181	296U	2 9 6U	N#	ŝ	18	480	4.31
RI-1-TC-1 4/4	470	23 6 U	23 6 U	470	170	470	R.H	1. F
RI-1-TC-1 2/4	440	22BU	22 M U	440	440	440	44U	141
RI-1-TC-1 3/4	46U	286U	286U	18 7	₽ ₽	187	460	460
RI-1-TC-1 4/4	31U	150U	150U	31U	310	310	31U	310
RI-1-TC-2 2/4	47U	246U	246U	470	124	R\$	470	124
RI-1-TC-2 3/4	46U	23 0 U	236U	46U	46U	161	161	46U
RI-1-TC-2 4/4	61U	26 U U	25 0 U	61U	51U	610	51U	510
RI-1-TC-3 1/4	870	4360	43 6 U	870	870	878	870	870
RI-1-TC-3 2/4	870	4360	4360	870	870	870	87IJ	870
RI-1-TC-3 3/4	N96	4860	4860	096	196	196	960	96U
RI-1-TC-3 4/4	74U	37 6 U	37 0 U	74U	740	74U	740	74U
RI-1-TC-4 1/4	54	24 6U	24 0 U	470	470	17	174	174
RI-1-TC-4 2/4	42N	21 6 U	216U	42N	420	420	420	420
RI-1-TC-4 3/4	1 8 1	2001	266U	480			480	460
RI-1-TC-4 4/4	34U	17 6 U	17 6 U	34U	34U	340	34U	34U
RI-1-TC-5 1/5	64U	320U	32 0 U	64U	64U	64U	64U	64U
RI-1-TC-5 2/5	46Ü	2300	230U	46U	460	46U	46U	46U
RI-1-TC-5 3/5	51U	26 0 U	26 0 U	51U	61U	51U	51U	61U
RI-1-TC-5 4/5	36U	1800	186U	36U	36U	36U	36U	36U
RI-1-TC-5 5/5	33U	166U	168U	33U	33U	33()	33U	33U

3, 3-Dichloro- benzidine	200U	2300	22 0 U	286U	1500	246U	236U	256U	436U	4300	486U	3760	246U	2100	2000	17.BU	32BU	23 8 U	266U	1880	168U
Butyl- benzyl- phthalate	460	47U	44U	48U	31U	470	46U	51U	870	870	196	74U	£7U	42N	480	34U	64U	46()	51U	36U	33U
Pyrene	66.	17	U++	N ŧ	31U	17	46U	61U	870	87 U	N96	£1	17	420	19 2	34U	206	100	51U	301	33U
Fluoranthene	603	111	440	181	31U	470	46Ú	51U	870	87U	0 6U	740	470	420	48U	34U	176	89	5 1U	36U	33U
Di-n-butyl- phthalate	481	470	44U	460	31U	470	46U	611)	870	870	96U	74U	470	420	460	340	64U	46U	51U	36U	33U
Anthracene	18 U	470	440	480	31U	470	46U	61U	62N	870	796	74U	17	420	181	340	64U	16U	61U	36U	33U
Phenanthrene	460	470	440	480	31U	12	46U	51U	56M	870	06 U	740	470	420	181	340	72N	46U	51U	36U	33U
Hexach loro- benzene	46U	470	440	460	31U	470	46U	61U	87U	870	96U	740	470	420	465	34U	64U	46U	61U	36U	33U
Station	RI-1-#-1	RI-1-TC-1 1/4	RI-1-TC-1 2/4	RI-1-TC-1 3/4	RI-1-TC-1 4/4	RI-1-TC-2 2/4	RI-1-TC-2 3/4	RI-1-TC-2 4/4	RI-1-TC-3 1/4	RI-1-TC-3 2/4	RI-1-TC-3 3/4	RI-1-TC-3 4/4	RI-1-TC-4 1/4	RI-1-TC-4 2/4	RI-1-TC-4 3/4	RI-1-TC-4 4/4	RI-1-TC-6 1/5	RI-1-TC-5 2/5	RI-1-TC-5 3/5	RI-1-TC-5 4/5	RI-1-TC-5 5/5

(Continu a d)
12
Table

		Bis(2-ethyl-						Indeno-
	Benzo(a)-	hexy i) -		Di-n-octyl-	Benzo(b) -	Benzo(k)-	Berizo(a)-	(1,2,3-CD)
Station	anthracene	phthalate	Chrysene	phtha late	fluoranthene	fluoranthene	pyrene	pyrene
RI-1-W-1	400	738	46U	N9 7	547	-	460	460
RI-1-TC-1 1/4	470	470	470	47U	174	470	470	R1
RI-1-TC-1 2/4	141	440	44U	440	44U	440	44U	144
RI-1-TC-1 3/4	480	460	48U	460	480	48V	460	460
RI-1-TC-1 4/4	31U	31U	31U	31U	31U	31U	31U	310
RI-1-TC-2 2/4	470	878	17	470	473	470	470	171
RI-1-TC-2 3/4	46U	169	46U	46U	46U	46U	46U	46U
RI-1-TC-2 4/4	51U	678	61U	51U	61U	51U	51U	510
RI-1-TC-3 1/4	870	870	870	870	870	870	870	870
RI-1-TC-3 2/4	870	87U	87.3	870	870	870	870	87U
RI-1-TC-3 3/4	196	196	196	196	N96	96U	9 6U	0 96
RI-1-TC-3 4/4	74U	74U	74U	74U	74U	74U	74U	74U
RI-1-TC-4 1/4	47U	470	47	R	41U	174	470	470
RI-1-TC-4 2/4	42N	42U	420	420	420	42N	420	420
RI-1-TC-4 3/4	48U	36J	4 9 U	48U	18N	480	40U	480
RI-1-TC-4 4/4	34U	430	34U	34U	34U	34U	34U	34U
RI-1-TC-5 1/5	76	176	116	84U	2001	-	116J	156
RI-1-TC-5 2/5	46U	63	43.1	460	46M	56M	58M	N67
RI-1-TC-5 3/5	51U	61U	51U	51U	510	61U	51U	51U
RI-1- ïC-5 4/5	36U	110	36U	36U	36U	36U	36IJ	36U
RI-1-TC-5 5/5	33U	27.1	33U	33U	33()	33U	33U	33U

.

5.32

IJ

3,

Semivolatile Compounds in Sediments from Richmond Harbor Channel Short Cores (µg/kg dry weight) (U=not detected at given detection limit; J=estimated value, result less than detection limit; B=analyte found in blank as well as sample; M=estimated value, analyte found and confirmed but with low spectral match parameters; T=benzo(b)- plus benzo(k)fluoranthene, peaks cannot be separated). Table 16.

-

Bis(2-chloro-	1,3-Dichloro-	1,4-Dichloro-	1,2-Dichloro-	Bis(2-chloro- isopropyl)	N-nitroso- di-n-	Hexa- chloro-	Nitro-
ether	benzene	benzene	benzene	ether	propy lanine	ethane	benzene
IU	61U	51U	610	61U	510	1660	51U
IJ	61U	61U	61U	51U	51U	168U	510
R	62U	62U	62U	62U	62U	1200	B2U
n	51U	51U	51U	61U	510	166U	510
90	690	69U	69U	690	690	1200	69U
2	67U	67U	57U	570	570	1100	67U
90	59U	69U	59U	690	59U	1260	59U
80	68U	68U	68U	681	68U	1460	68U
11	71U	710	710	710	U17	1460	710
33U	63U	63U	63U	631	63U	1300	63U
P	340	a tu	340	34U	34U	700	34U
57U	57U	67U	67U	570	57U	1100	57U
63U	63U	63U	63U	, 63U	63U	136U	63U
460	46U	46U	46U	46U	46U	nø6	46U
61U	5 1U	61U	61U	51U	51U	166U	51U
56U	66U	56U	56U	56U	56U	116U	56U
53U	63U	63U	63U	53U	63U	1160	53U
67U	671	£7U	57U	570	57U	116U	57U
P#	14U	440	440	044	440	N96	440
39U	39U	39U	390	39U	390	088	39U
73U	73U	73U	73U	730	73U	158U	73U
190	48U	46U	48U	181	181	810	46U
† 5U	45U	45U	45U	45U	450	010	45U
68U	58U	58U	58U	58U	58U	1200	58U
5 9 U	69U	69U	590	69U	59U	1200	59U
440	440	44U	0 11	141	440	87U	44U
46U	48U	460	46U	₽¥	480	800	480

nt i nued)	
<u>16</u> . (Col	
Table	

		Bis(2-chloro- ethoxv)-		Hexach loro-	Hexachloro- cvclo-	9-chíoro-	Diaethyl	
Station	Isophorone	sethane	Naphtha lene	butadiene	pentadiene	naphthalene	phthalate	Acenaphthy lene
RI-1-C-1	61U	210 210	61U	166U	25 0 U	510	61U	51U
RI-1-C-3	51U	51 U	51U	166U	26 0 U	61U	61U	51U
RI-1-C-5	620	62U	620	1200	3100	62U	62U	62U
RI-1-C-6	51U	51U	61U	166U	25 6 U	51U	51U	51U
RI-1-C-8	59U	59U	59U	12BU	366U	59U	690	59U
RI-1-C-16	670	57U	57U	116U	286U	670	67U	57U
RI-1-C-11	59U	69U	69U	12 0 U	2960	590	69 U	59U
RI-1-C-12	68U	68U	68U	146U	346U	681	68U	68U
RI-1-C-14U	71U	710	71U	146U	358U	710	ULL	ULL
RI-1-C-14L	63U	63U	63U	136U	316U	63U	63U	63U
RI-1-C-16	34U	34U	34U	760	17 6 U	34U	34U	34U
RI-1-C-18	57U	670	67U	1100	28 6 U	670	57U	570
RI-1-C-19	63U	ଥେ	63U	1360	316U	63U	63U	63U
RI-1-C-20	46U	46U	460	N96	23 0 U	46U	46U	46U
RI-1-C-23	51U	61U	61U	1691	26 8 U	61U	51U	51U
RI-1-C-24	56U	56U	66U	UNIT	28 6 U	56U	199	56U
RI-1-C-25	63U	53U	63U	1180	26 0 U	63U	63U	63U
RI-1-C-26	57U	670	67U	UII	28 6 U	570	67U	57U
RI-1-C-29	440	440	440	N96	220U	440	440	440
RI-1-C-30	39U	39U	39U	880	1961	390	39U	390
RI-1-C-32	13U	73U	73U	1530	368U	13U	73U	73U
RI-1-C-33	48U	160	460	6 1U	266U	460	460	400
RI-1-C-35	45U	45U	45U	61U	23 0 U	45U	45U	45U
RI-1-C-36	58U	58J	58U	12 8 U	2960	58U	58U	58U
RI-1-C-38	59U	69U	69N	12 6 U	29#U	59U	690	59U
RI-1-C-39	440	440	440	870	22BU	44U	44U	440
RI-1-C-41	181	460	4 6 U	N #8	2090	460	480	481

ont inued)	
U S	
Table	

					4-Chloro-		N-Nitroso-	
		2,4-Dinitro-	2,6-Dinitro-	Diethyl-	pheny l –		dipheny l-	4-Brosopheny -
Station	Acenaphthene	Toluene	Toluene	Phtha late	pheny lether	Fluorene	an ine	pheny lether
RI-1-C-1	51U	25 6 U	25 RU	61U	51U	51U	510	510
RI-1-C-3	61U	268U	26 0 U	51U	61U	5 1U	510	510
RI-1-C-5	62U	3100	3100	62U	62U	62U	62U	621
RI-1-C-6	61U	266U	25 0 U	61U	6 1U	510	510	510
RI-1-C-8	59U	366U	366U	69U	69U	59U	690	59U
RI-1-C-16	57 U	2880	286U	47 W	670	570	570	570
RI-1-C-11	59U	208U	296U	69U	59U	59U	59U	590
RI-1-C-12	68U	3480	3460	68U	68U	680	68U	68U
RI-1-C-14U	71U	3500	360U	71U	UI7	71U	71U	710
RI-1-C-14L	63U	316U	316U	63U	63U	63U	63U	63U
RI-1-C-16	34U	17 6 U	17 6 U	34U	34U	34U	34U	34U
RI-1-C-18	670	2860	28 6 U	57U	57U	67U	57U	570
RI-1-C-19	63U	316U	3160	63U	63U	63U	63U	63U
RI-1-C-28	46U	23 0 U	23 6 U	46U	46U	161	46U	46U
RI-1-C-23	51U	· 266U	28 6 U	£10	51U	61U	5 1U	51U
RI-1-C-24	56U .	28 0 U	28 K U	ଥେ	56U	56U	56U	56U
RI-1-C-25	63U	2600	26 6 U	ଥେ	53U	53U	53U	53U
RI-1-C-26	67U	28 6 U	28 f U	67U	570	67U	STU	570
RI-1-C-29	44U	226U	22 6 U	44U	141	141	440	U##
RI-1-C-30	39U	1961	1961	390	390	390	390	390
RI-1-C-32	73U	366U	368U	ner	73U	73U	73U	73U
RI-1-C-33	48U	266U	286U	181	460	460	N9 %	46U
RI-1-C-35	450	23 0 U	23 6 U	46U	45U	46U	46U	45U
RI-1-C-36	68U	29 6 U	29 6 U	58U	58U	58U	58U	58U
RI-1-C-38	59U	298U	298U	59U	59U	59U	59U	690
RI-1-C-39	140	22BU	220U	141	141	140	44U	440
RI-1-C-41	48U	2000	2000	181	48U	480	480	480

	and Annual						Buty -	
	HEXECUIOLO-			U-n-Duty -			Denzy -	3,3-Dichloro-
Station	penzene	Phenanthrene	Anthracene	phthalate	Fluoranthene	Pyrene	phtha late	benzidine
RI-1-C-1	51U	146	61	51U	220	366	510	25ØU
RI-1-C-3	510	51U	61U	61U	55	8	51U	260U
RI-1-C-5	620	116	62U	62U	236	310	62U	31.00
RI-1-C-6	51U	61U	61U	61U	83	8	51U	256U
RI-1-C-8	59U	106	59U	69U	216	286	69U	366U
RI-1-C-16	67U	2	57U	670	136	196	67U	288U
RI-1-C-11	69U	GFN	59U	59U	146	226	59U	298U
RI-1-C-12	680	89	68U	68U	150	230	68U	346U
RI-1-C-14U	71U	710	71U	710	158	196	ULT	3500
RI-1-C-14L	63U	113	63U	63U	116	170	63U	316U
RI-1-C-16	34U	34U	34U	34U	340	34U	34U	1760
RI-1-C-18	57U	78M	57U	57 U	148	200	67U	2800
RI-1-C-19	631	58M	63IJ	63U	130	176	63U	316U
RI-1-C-2#	48U	460	461	46U	11	110	46U	23 0 U
RI-1-C-23	61U	51U	51U	510	61U	51U	61U	26 0 U
RI-1-C-24	56U	56U	Rel	193	56U	56U	56U	288U
RI-1-C-25	53U	ଥେ	63U	63U	8 5	. 116	63U	268U
RI-1-C-28	570	25	57 U	570	176	316	67U	288U
RI-1-C-29	N +1	440	44U	14U	440	440	44U	220U
RI-1-C-36	39U	390	390	39U	39U	391	39U	1980
RI-1-C-32	73U	64N	73U	130	126	286	73U	366U
RI-1-C-33	18 1	181	480	180	18 1	191	46U	286U
RI-1-C-35	45U	45U	450	45U	45U	76	45U	23 6 U
RI-1-C-36	50U	58.)	58U	58 U	116	246	58U	298U
RI-1-C-36	59U	89	59U	59U	126	316	69U	2960
RI-1-C-39	44	440	44U	U+4	44U	49	440	2200
RI-1-C-41	1 60	460	480	D\$	460	454	460	200U

(Continued)
9
Table

		Bis(2-ethyl-						Indeno-
	Benzo(a)-	hexyl)-		Di-n-octyl-	Benzo(b)-	Benzo(k)-	Benzo(a)-	(1,2,3-CD)-
Station	anthracene	phthalate	Chrysene	phtha late	fluoranthene	fluoranthene	pyrene	pyrene
RI-1-C-1	8	468	110	61U	1607	-	110	81
RI-1-C-3	51U	61U	51U	61U	61U	51U	51U	61U
RI-1-C-5	116	198	169	5 2U	2267	н	160	911
RI-1-C-6	61U	256	51U	61U	61U	27 0	61U	51U
RI-1-C-8	82N	166	911	690	1967	F	126	166
RI-1-C-16	N99	376	NLL	57U	150T	⊢	8	N9/
RI-1-C-11	56M	256	N18	59U	1001	F	169	N o n
RI-1-C-12	67N	518	100N	68U	1707	-	116	68
RI-1-C-14U	64M	206	84	71U	150T	F	5 3	W6 2
RI-1-C-14L	63IJ	316	59N	63U	1207	-	76N	6 3U
RI-1-C-16	34U	176	34U	34U	34U	34U	34U	34U
RI-1-C-18	62N	448	72N	57U	1201	-	76M	73M
RI-1-C-19	55M	338	75N	83U	1467	-	87	6/
RI-1-C-28	46U	316	46U	46U	THIT	•••	46U	46U
RI-1-C-23	61U	316	61U	51 U	61U	51U	61U	51U
RI-1-C-24	56U	106	56U	56U	56U	56U	56U	56U
RI-1-C-25	53 U	63U	63U	53U	163	53U	67	53U
RI-1-C-26	74M	246	106	570	94T	-	120W	116
RI-1-C-29	144	226	44U	440	44U	44U	44U	440
RI-1-C-36	39U	136	39U	39U	390	39U	39U	39U
RI-1-C-32	73U	346	73U	730	1967	-	5 6	84M
RI-1-C-33	480	100	480	460	480	460	460	460
RI-1-C-35	45U	176	46U	45U	617	۲	45U	45U
RI-1-C-36	67N	746	126	58U	2967		96	74
RI-1-C-38	Ne/	566	120	69U	1407	-	140	116
RI-1-C-39	440	186	44U	440	440	044	440	44U
RI-1-C-41	180	276	460	460	460	460	Ver	4841

	Dibenzo(a,h)-	Benzo(g,h,i)-	
Station	anthracene	pery lane	Benzidine
RI-1-C-1	51U	99	9500K
RI-1-C-3	61U	51U	26 86U
RI-1-C-5	62U	100	31660
RI-1-C-5	61U	51U	2596U
RĨ-1-C-8	5 9 U	16	Neger -
RI-1-C-16	57U	62	28 66 U
RI-1-C-11	59 U	RLLL	2966U
RI-1-C-12	66U	61	3466U
RI-1-C-14U	71U	74	3566U
RI-1-C-14L	63U	69M	3166U
RI-1-C-16	34U	34U	17 66U
RI-1-C-18	670	76M	28 66U
RI-1-C-19	63U	62	3199U
RI-1-C-26	46U	46U	2300U
RI-1-C-23	51U	51U	26 96 U
RI-1-C-24	56U	56U	28 69U
RI-1-C-25	63U	66	2666U
RI-1-C-26	57U	116	28 46 U
RI-1-C-29	440	141	2266U
RI-1-C-36	39U	39U	19680
RI-1-C-32	13U	84	3666U
RI-1-C-33	181	480 j	2666U
RI-1-C-35	45U	46U	23 85 U
RI-1-C-36	58U	ទ	2966U
RI-1-C-38	59U	88	2966U
RI-1-C-39	440	141 NH	2206U
RI-1-C-41	460	181	2000U

84

5.39
found and confirmed but with low spectral match parameters; T=benzo(b)- plus benzo(k)fluoranthene, peaks cannot be separated). J=estimated value, result less than detection limit; B=anmelyte found in blank as well as sample; M=estimated value, analyte Base/Neutral Semivolatiles in Sediments from Santa Fe Channel (ug/kg dry weight) (U=not detected at given detection limit; Table 17.

~

1

Station	Bis (2-chioro- ethyl)ether	1,3-Dichloro- benzene	1,4-Dichlorc benzene	- 1,2-Dichtor benzene	Bis(2-ch o- isoprop) ether	ri)	l-nitroso- li-n- sropylanine	Hexa- chloro ethane	- Nitro- benzene
sa upper	56U	581	56U	56U	1 6 3	-	56U	116	56U
SB UPPER	54U	54U	54U	540	54L	_	54U	116U	54U
sc upper	61U	61U	61U	61U	611		81U	120L	61U
SA LOVER	38U	38U	38U	38U	36	_	38U	861	38U
SB LOWER	481	180	460	460	4		400	900	460
SC LOVER	38U	38U	38U	380	381		38U	880	38U
Station	Isophorone	Bis (2-ch loro- ethoxy) - sethane	Naph tha lene	Hexach loro- butad i ene	Hexach loro- cyc lo- pentad i ene	2-ch loro- naphtha le	Dime Phth	thy I- a late	Acenaphthy lene
sa upper	56U	56U	560	1160	2860	56U	ā	60	560
SB UPPER	54U	54U	54U	118U	276U	54U	οŭ.	Ð	540
sc upper	61U	61U	61U	12 6 U	319U	61U	ŝ	n	61U
SA LOWER	38U	38U	38U	860	1980	38U		8	380
SB LOVER	460	48U	46U	098	206U	460	4	ßU	480
SC LOVER	38U	38U	38U	860	1961	38U	ਲ	80	38U

Table 17. (Continued)

					4-Chloro-		N-Mitroso-	
tation	Acenaphthene	2,4-Dinitro- Toluene	2,6-Dinitro- Toluena	Diethyl- Phthalate	pheny I - bhenv i ather	Fluorene	diphenyl- anine	4-Bresophenyl- phenvlether
UPPER	56U	28 9 U	20 0 U	56U	66U	56U	56U	56U
UPPER	54U	27 6 U	27 6 U	54U	64U	54U	54U	54U
UPPER	610	316U	316U	019	61U	61U	8 1U	019
LOVER	38U	1961	1961	38U	36U	38U	38U	38U
LOVER	480	2 96 0	296U	46U	Jet	180	46U	48U
LOWER	38U	1961	1961	38Ú	38U	30U	38U	38U
itat ion	Hexach oro- benzene	Phenan threne	Anthracene	Di-n-baty - ohtha late	Fluoranthene	Prrene	Buty - benzy - bhtha late	3,3-Dichloro- benzidine
UPPER	66U	110	19	39	196	366	58U	28 8 U
UPPER	64U	64U	64U	54U	158	234	54U	270U
UPPER	61U	61U	61U	N19.	22	120	61U	3100
LOWER	38U	38U	022	38U	28.1	3	38U	1960
CITER	N8 †	Net.	Net	18 0	480	38.]	46U	206U
LOVER	36U	38U	386	36U	23J	36.	38U	1960

Table 17. (Continued)

Ξ

-

Indeno-	(1,2,3-CD)-	pyrens	128	73N	N+9	431	46U	38U		
	Benzo(a)-	pyrene	186	166	66	47	36M	36M		
	Benzo(k)-	fluoranthene	236	186	199	+	j an	T		
	Benzo (b) -	fluoranthene	216	160	128	110T	761	8 3T		
	Di-n-octyl-	phthalate	64U	54U	010	36U	460	38U	2	
		Chrysene	216	298	196N	37N	191	N84	Benzidi	26300 27000 31900
Bis(2-ethyl-	hexy i) –	phtha late	62 8 8	2368	236	1668	1668	878	Benzo(g,h,i)- perylene	116 72 93M
	Benzo(a)-	anthracene	116	128	72N	386	1 80	36U	Dibenzo(a,h)- anthracene	56U 64U 61U
		Station	sa upper	se upper	sc upper	SA LOVER	SB LOWER	SC LOVER	Station	sa uper Se upper Se upper

5.42

1986U 2866U 1966U

18

38U 38U 38U

SA LOVER Sa Lover Sc Lover Quality Control for Chlorinated Pesticides and PCBs in Sediments (ug/kg dry weight) (N/A = Not applicable, U = compound analyzed, but not detected at given detection limit, J = Estimated value when result is below specified detection limit, MI = Matrix Interference from Unidentified Compounds, * = Indeterminable, below level found in sample - see Table 21) Table 18.

-

_

<u>Station</u>	Surrogate Recovery (X)	A l pha BHC	Beta BHC	Del ta BHC	Gaarma BHC	<u>Heptach or</u>	Aldrin	Heptachlor Epoxide	Endo- gulfan I	Dieldrin	4,4'-DDE	Endrin	Endo- sulfan II
<u>Hethod Blanks</u> 1 3	88 88	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	2.56 2.50 2.50
<u>Duplicates</u> SB-UPPER SB-UPPER BL-1-TC-5 2/5 D RI-1-TC-5 2/5 D RI-1-C-39 RI-1-C-39 DUP	568788 883	2.50 2.50 2.50 2.50 2.50 2.50 2.50	2.50 2.50 2.50 2.50 2.50	2.50 2.50 2.51 2.55	2.55 2.55 2.55 2.55	2.55 2.55 2.55 2.55 2.55	2.58 2.58 2.58 2.58	2.58 2.58 2.58 2.58	2.55 2.55 2.55 2.55 2.55	8.0 5.3 2.50 2.50 2.50	18 13 2.50 7.5 2.50	2.50 2.51 2.55 2.55 2.55	2.50 2.55 2.55 2.55
Duplicate RPD SB-UPPER RI-1-TC-5 2/5 RI-1-C-39		V/N V/N	V/N V/N	N/N N/N	8/# 8/# 8/N	K/N K/N K/N	R/N R/N	R/N R/N	V/N V/N	41 #/A #/A	32 N/A N/A	V/N V/N	V/N V/N V/N
Duplicate I-Sta SB-UPPER RI-1-TC-5 2/5 RI-1-C-39	비	</td <td>V/N V/N</td> <td>V/N V/N</td> <td>X X X X X X X X X</td> <td>N/N N/N N/N</td> <td>8/8 8/8 8/8</td> <td>N/A K/A N/A</td> <td>V/N V/N</td> <td>.20 14/a 14/a</td> <td>. 16 N/A N/A</td> <td>N/N N/N N/N</td> <td>V/N V/N V/N</td>	V/N V/N	V/N V/N	X X X X X X X X X	N/N N/N N/N	8/8 8/8 8/8	N/A K/A N/A	V/N V/N	.20 14/a 14/a	. 16 N/A N/A	N/N N/N N/N	V/N V/N V/N
Spike Recovery SC-UPPER DUP SC-UPPER DUP RI-1-TC-3 1/4 RI-1-TC-3 1/4 RI-1-TC-5 1/5 RI-1-TC-5 1/5	(X) 73 69 89 89 83 83 83 83	18 8 9 10 18 6 19 10 10 10 10 10 10 10 10 10 10 10 10 10	828282	67 88 88 89 20 88 89 20	28 201 201 201 201 201	K8888	សននន ទ ទី	8628888	282285	288822	2022888	8 552565	828 888 888 888 888 888 888 888 888 888
Spike Recovery SC-UPPER RI-1-TC-3 1/4 RI-1-TC-5 1/5	<u>Oda</u>	19 2.9 14	15 5.5 10	21 9.5 18	19 0.9 15	21 2.1 13	24 2.1 16	15 1.0 12	16 2.2 10	26 2.2 10	32 3.6 12	22 1.9 15	18 9.8 19
Spike Recovery SC-UPPER R1-1-TC>3 1/4 R1-1-TC-5 1/5	l-Stat	.10 .17	70. 20. 20.	1.88.	.18 .005 .07	11.	-12 10. 08	-02 -02 -02	8.9.9.	5.9. 5.9.	8.02 8.02	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	.05 0.05 0.05

•

.

.

(Continued)
18.
Table

<u>Station</u>	surrogate Recovery (X)	00G-, 5, 5	Endosul fan Sul fate	1005.5	Methoxy- chlor	Endr in <u>Ketone</u>	Garana - Ch l or dane	Alpha- Chlordane	Pentachloro- nitrobenzene	Kel thane	<u>Captan</u>
<u>Method Blanks</u> 1 3	228	2.5U 2.5U 2.5U	5.0U 5.0U	8.5 8.8 8.8	<u>555</u>	5.00	5.00 5.00 5.00	5.8	2.5U 2.5U 2.5U	5.00 5.00	25U 25U 25U
<u>Dupl i cates</u>											
	£	55	ž			ā	į	2		2	1130
SB-UPPER	21	ß	B.	DS1	B	3.0	B. .	B.	NC.2	3.0	
SB-UPPER DUP	R :	120	5.0	110		5.6	8.8	5.8	2.50	8.S	N 52
RI-1-TC-5 2/5	8	2.5U	5.00	5.0	<u>3</u>	5.0	5.8	5.00	2.50	5.00	25U
RI-1-TC-5 2/5 D	GP 71	2.5U	5.00	5.0	10	5.00	5.00	5.00	2.50	5.00	250
RI-1-C-39	80	32	5.00	310	<u>1</u>	5.00	5.00	5.00	2.50	5.00	2 50
RI-1-C-39 DUP	82	17	5.00	2.2J	NO:	5.00	5.00	5.00	2.5U	5.00	25 U
Duplicate RPD											
SB-UPPER		45	N/A	17	N/A	N/N	N/A	N/A	N/A	N/A	N/A
RI-1-TC-5 2/5		N/A	N/A	N/N	N/N	N/N	N/N	N/A	N/A	N/A	N/A
RI - 1 - C - 39		61	N/N	N/N	N/N	N/A	N/N	N/N	H/A	N/A	N/A
Duplicate 1-Sta											
SB-UPPER	•i	ક	N/A	89.	N/A	N/A	N/A	N/A	N/N	N/A	N/A
RI-1-TC-5 2/5		N/A	N/A	N/N	N/N	N/A	N/A	N/A	N/A	N/A	N/N
RI-1-C-39		.31	N/N	N/N	N/N	N/A	N/N	N/N	N/A	N/N	N/N
:	į										
Spike Recovery Sr-HDDFP	E K	131	HI.	*	ř	N/N	N/N		N/A	N/N	N/A
CC-LIDDED NID	2.0		: ;	•	2 8						
SC-UFFER VUF		ູງຮ	23	6	2 3						
DI-1-TC-3 1/6 DI		2 8		; X	2						M/A
RI-1-TC-5 1/5	22 F8	22		87	58				N/A	N/N	N/A
RI-1-TC-5 1/5 D	16 di	5		28 28	102	N/N	N/N	N/N	N/A	N/N	N/N
Spike Recovery	<u>Car</u>										
SC-UPPER		56	N/A	N/A	20	N/N	N/A	N/A	N/A	N/N	N/N
RI-1-TC-3 1/6		2.2	N/A	3.2	5.1	N/A	M/A	N/N	N/A	N/A	N/A
RI-1-TC-5 1/5		19	V/K	13	13	N/A	N/A	N/N	N/A	N/A	N/N
Spike Recovery	<u>I-Stat</u>										
SC-UPPER		.27	N/N	N/A	10	N/N	N/N	N/A	N/A	N/N	V/N
RI-1-TC-3 1/4		-01	N/A	-02	.02	N/A	V/R	N/N	N/A	N/A	N/A
RI-1-TC-5 1/4		8.	N/A	-07	8.	N/N	N/N	N/A	N/A	N/A	N/A

١

<u>Table 18.</u> (Continued)

Station	Surrogate Recovery (X)	Toxaphene	Arochlor 1242-1016	Arochlor 1248	Arochlor 1254	Arochlor 1260
Method Blanks						
-	2	50U	50U	20	500	500
2	5 8	50U	202	200	500	500
'n	8	nnc	mc	Ř	ß	Ŋ,
<u>Duplicates</u>						
SB-UPPER	22	500	500	201	500	201
SB-UPPER DUP	12	200	200	500	107	501
RI-1-TC-5 2/5	: 8	200	20	200	500	200
RI-1-TC-5 2/5 DUP	1	200	500	500	500	200
RI-1-C-39	80	50U	500	500	500	50U
RI-1-C-39 DUP	82	500	500	50	50U	500
Duplicate RPD						
SB-UPPER		N/N	N/A	N/N	N/A	N/N
RI-1-TC-5 2/5		N/A	N/A	N/A	N/A	N/A
RI-1-C-39		N/N	N/N	N/A	N/A	N/N
Duplicate I-Stat					,	
SB-UPPER		N/N	N/A		N/A	N/A
2/3 [1-1-1-] 5/3		< / X				
						V/N
Spike Recovery (X	4					
SC-UPPER	2	N/N	N/N	N/A	W/A	N/A
SC-UPPER DUP	87	N/N	N/N	N/A	N/A	N/N
RI-1-TC-3 1/4	89	N/A	N/A	N/A	N/N	N/A
RI-1-TC-3 1/4 DUP	92	N/A	N/A	N/A	N/A	N/A
RI-1-TC-5 1/5	83	N/A	N/N	N/N	N/N	N/N
RI-1-TC-5 1/5 DUP	76	N/A	N/A	N/N	N/A	N/A
Spike Recovery RPI	Q					
SC-UPPER	1	N/N	N/A	N/A	N/A	N/A
RI-1-TC-3 1/4		N/A	N/N	N/A	N/N	N/A
RI-1-TC-5 1/5		N/A	N/N	N/N	N/N	N/A
Spike Recovery I-:	Stat					
SC-UPPER	1	N/N	N/A	N/N	N/N	N/N
RI-1-TC-3 1/4		N/N	N/N	N/N	N/N	N/A
RI-1-TC-5 1/5		N/N	N/A	N/N	N/N	N/A

Chlorinated Pesticides and PCBs in Sediments from Richmond Harbor Channel Long Cores (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) Table 19.

-

-

	Surrogate Recovery	Alpha	Beta	Delta	Gamna			Heptachlor	Endo-				Endo-
tion	(%)	BHC	BHC	BHC	BHC	<u>Heptachlor</u>	Aldrin	Epoxide	sulfan I	<u>Dieldrin</u>	4.4'-DDE	Endrin	sulfan II
1-W-1	109	2.5U	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.5U	2.50
1-TC-1 1/4	8	2.50	2.50	2.50	2.50	2.50	2.50	2.5 Ú	2.5U	2.50	2.50	2.5U	2.5U
1-TC-1 2/4	80	2.50	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.50	2.5U	2.5U	2.5U	2.5 U
1-10-1 3/4	123	2.50	2.5U	2.5U	2.50	2.5U	2.50	2.50	2.5U	2.50	2.50	2.5U	2.50
1-10-1 4/4	%	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.50	2,5U	2.5U	2.50	2.5U
1-10-2 2/4	83	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.50	2.50	2.50	2.50	2.50	2.5U
1-10-2 3/4	120	2.50	2.50	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.5U	2.5U	2.5U
1-TC-2 4/4	٤	2.5U	2.50	2.50	2.50	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U
1-10-3 1/4	97	2.50	2.5U	2.50	2.50	2.50	2.50	2.5U	2.50	2.5U	2.50	2.50	2.5U
1-TC-3 2/4	88	2.5U	2.50	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.50
1-10-3 3/4	98	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.50	2.50	2.5U	2.50	2.5U
1-TC-3 4/4	92	2.50	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2. 5Ú
1-TC-4 1/4	<u>98</u>	2.50	2.50	2.5U	2.50	2.50	2.5U	2.50	2.5U	2.5U	2.50	2.50	2.5U
1-10-4 2/4	8	2.50	2.50	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.50	2.50	2.5U
1-TC-4 3/4	101	2.50	2.5U	2.50	2.5U	2.50	2.50	2.5U	2.50	2.50	2.5U	2.5U	2.5U
1-10-4 4/4	83	2.5U	2.50	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.5U
1-TC-5 1/5	85	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5 U
1-TC-5 2/5	8	2.5U	2.5U	2.50	2.5U	2.50	2.50	2.5U	2.50	2.50	2.5U	2.5U	2.5U
1-10-5 3/5	96	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U
1-TC-5 4/5	114	2.5U	2.50	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.50	2.50	2.5U	2.5U
1-TC-5 5/5	98	2.50	2.50	2.5U	2.50	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2.5U

H

н.

••

и .

Table 19. (Continued)

iel thane <u>Capta</u>	12N 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	5.0U 25U	
Pentachloro- <u>ní trobenzene</u> <u>1</u>	2.50	2.50	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.50	2.50	2.50	2.50	2.50	
Alpha- <u>Chlordane</u>	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Ganna - <u>Chlordana</u>	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Endrin <u>Ketone</u>	5.0	5.00	5.0	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.0	5.00	5.00	5.00	5.00	5.00	5.00	
Methoxy- chlor	<u>5</u>	10	100	100	100	101	100	100	<u>1</u> 8	101	100	101	101	3	10	10	1 0	100	101	101	
100-,4,4	7	5.0	5.0	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Endosul fan Sul fate	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
<u>4.4'-DDD</u>	50	2.5U	2.5U	2.5U	2.5U	2.5U	2.5 U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.5 U	6.7	2.50	2.5U	2. 5U	
Surrogate Recovery (X)	109	8	8	123	96	83	120	ድ	57	88	98	92	98	8	101	83	85	8	96	114	
tation	[-1-W-1	1-1-TC-1 1/4	1-1-10-1 2/4	1-1-10-1 3/4	1-1-10-1 4/4	1-1-10-2 2/4	I-1-TC-2 3/4	1-1-10-2 4/4	11-1-10-3 1/4	1-1-10-3 2/4	11-1-10-5 3/4	1-1-70-3 4/4	1-1-TC-4 1/4	11-1-10-4 2/4	1-1-10-4 3/4	1-1-10-4 4/4	11-1-10-5 1/5	11-1-TC-5 2/5	1-1-1C-5 3/5	1-1-10-5 4/5	

	och lor 60	23	_						2 3		3	7		2	-		
	Ar 12	88	88		28	50		8		8	20	õ	ğ	ß	20	05	õ
	Arochlor 1254	20 20	50U 50U	205	28 28	200	2 <u>2</u>	200	200	500	50U	50U	50	500	50U	50U	500
	Arochlor 1248	20 20	200	202	202	200	200	50U	<u>8</u> 8	500	50U	50U	500	500	500	500	500
	Arochlor <u>1242-1016</u>	50U 50U	200 201	50U 50U	25	500	22	50U 201	2 <u>2</u>	500	50U	50U	500	50U	50U	50U	500
	<u>Ioxaphene</u>	50U 50U	50U 50U	50U 50U	26,2	200	25,	500	20	500	500	200	500	50U	500	500	500
(Continued)	Surrogate Recovery (X)	90 90	ន <u>ប</u>	% %	120	\$. 8	98 20	28	8	101	83	85	60	96	114	98
Table 19.	Station	RI-1-W-1 RI-1-TC-1 1/4	RI-1-TC-1 2/4 RI-1-TC-1 3/4	RI-1-TC-1 4/4 RI-1-TC-2 2/4	RI-1-TC-2 3/4	RI-1-TC-2 4/4 BI-1-TC-3 1/4	RI-1-TC-3 2/4	RI-1-TC-3 3/4	RI-1-TC-4 1/4	RI-1-TC-4 2/4	RI-1-TC-4 3/4	RI-1-TC-4 4/4	RI-1-TC-5 1/5	RI-1-7C-5 2/5	RI-1-TC-5 3/5	RI-1-TC-5 4/5	RI-1-TC-5 5/5
															- 5	. (48

Chlorinated Pesticides and PCBs in Sediments from Richmond Marbor Channel Short Cores (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit, J = Estimated value when result is than less specified detection limit)

<u>Table 20.</u>

	Surrogate Recoverv	Alcho	Reta	Delta	Gamma			<u>Hentachí or</u>	Endo-				Endo
<u>Station</u>	(%)	BHC	BHC	BHC	BHC	<u>Heptachior</u>	Aldrin	Epoxide	sulfan I	<u>Dieldrin</u>	<u>4,4'-DDE</u>	Endrin	sulfan I
RI-1-C-1	74	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.50
RI-1-C-3	7	2.5U	2.50	2.50	2.50	2.5U	2.5ú	2.50	2.5U	2.50	2.50	2.50	2.50
RI - 1 - C - 5	71	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.5U
RI-1-C-6	72	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.5U	2.50	2.50	2.5U	2.5U	2.5U
RI-1-C-8	2	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2.50	2.50	2.50	2.50	2.5U
RI-1-C-10	80	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5U	2.50
RI-1-C-11	83	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.50	2.50
RI-1-C-12	25	2.5U	2.5U	2. 5U	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.50
RI-1-C-14U	78	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.5U
RI-1-C-14L	74	2.5U	2.5U	2.50	2.50	2.5U	2.50	2.50	2.50	2.5U	2.50	2.50	2.5U
RI - 1 - C - 16	82	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.50	2.5U
RI-1-C-18	11	2.5U	2.5U	2.50	2.50	2.50	2.5U	2.50	2.50	2.5U	2.5U	2.5U	2.5U
RI-1-C-19	76	2.5U	2.5U	2.5 U	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.5U
RI-1-C-20	35	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.50	2.50	2.50	2.5U	2.50
RI-1-C-23	80	2.50	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.50
RI-1-C-24	72	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.50	2.50
RI-1-C-25	80	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	2.5U
RI-1-C-26	R	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.50	2.50	2.5U	2.5U	2.5U
RI-1-C-29	85	2.5U	2.50	2.50	2.50	2.50	2.5U	2.50	2.5U	2.50	2.50	2.5U	2.5U
RI-1-C-30	76	2.5U	2.5U	2.5U	2.50	2.50	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U
RI-1-C-32	25	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.5U
RI-1-C-33	000	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.50	2.5U	2:5U
RI-1-C-35	65	2.5U	2.50	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	2.50	2.50	2.5U
RI-1-C-36	ĸ	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.50	5.1	2.5U	2.5U
RI-1-C-38	R	2.5U	2.5U	2.5U	2.50	2.5U	2.5U	2.5U	2.5U	4.8	10	2.5U	2.50
RI-1-C-39	8	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	7.5	2.5U	2.5U
RI-1-C-41	8	2.5U	2.5U	2.5U	2.5U	2.50	2.5U	2.50	2.5U	2.5U	3.0	2.5U	2.5U

(Continued)	
<u>Table 20.</u>	

Station	Surrogate Recovery (X)	000-,5*5	Endosul fan Sul fate	100-,7,7	Methoxy- chlor	Endr in <u>Ketone</u>	Ganna - <u>Ch l ordane</u>	Al pha- Chlordane	Pentachloro- ní trobenzene	Kelthane	Captan
RI-1-C-1	74	2.50	5.00	5.00	9	5.00	5.00	5.00	2.5U	5.00	25U
RI-1-C-3	1	2.50	5.00	5.00	100	5.00	5.00	5.00	2.5U	5.00	25 U
RI-1-C-5	7	2.50	5.00	5.00	100	5.00	5.00	5.00	2.5U	5.00	25U
RI-1-C-6	72	2.50	5.00	5.00	100	5.00	5.00	5.00	2.50	5.00	25U
RI-1-C-8	22	3.2	5.00	5.00	101	5.00	5.00	5.00	2.5U	5.00	2 5U
RI-1-C-10	80	2.5U	5.00	5.00	101	5.00	5.00	5.00	2.5U	5.00	220
RI-1-C-11	8	3.6	5.00	5.00	100	5.00	5.00	5.00	2.50	5.00	25U
RI-1-C-12	2	4.6	5.00	5.00	10	5.00	5.00	5.00	2.50	5.00	Ŋ
RI-1-C-14U	82	2.50	5.00	5.00	10	5.00	5.00	5.00	2.50	5.00	25U
RI-1-C-14L	2	3.8	5.00	5.00	100	5.00	5.00	5.00	2.5U	5.00	25U
RI-1-C-16	78	2.50	5.00	5.00	<u>10</u>	5.00	5.00	5.00	2.5U	5.00	25 U
RI-1-C-18	1	2.50	5.00	5,00	101	5.00	5.00	5.00	2.50	5.00	<u>25</u> U
RI-1-C-19	76	3.6	5.00	5.00	101	5.00	5.00	5.00	2.50	5.00	DSU SSU
RI-1-C-20	85	3.2	5.00	2.5J	100	5.00	5.00	5.00	2.5U	5.00	22N
RI-1-C-23	80	2.5U	5.00	5.00	101	5.00	5.00	5.00	2.50	5.00	22N
RI-1-C-24	74	2.5U	5.00	5.00	<u>10</u>	5.00	5.0	5.00	2.5U	5.00	25U
RI-1-C-25	80	3.3	5.00	5.00	10	5.00	5.00	5.00	2.5U	5.00	25 U
RI-1-C-26	R	1 3	5.8	5.9	101	5.00	5.00	5.00	2.5U	5.00	25U
RI-1-C-29	85	20	5.00	5.00	10	5.00	5.00	5.00	2.5U	5.00	2 50
RI-1-C-30	76	3.2	5.00	5.00	101	5.00	5.00	5.00	2.50	5.00	250
RI-1-C-32	వ	19	5.00	31	10	5.00	5.00	5.00	2.5U	5.00	250
-RI-1-C-33	8	1.9J	5.00	5.00	1 00	5.00	5.00	5.00	2.50	5.00	2Su
RI-1-C-35	65	6.0	5.8	6.2	5	5.00	5.00	5.00	2.50	5.00	2Su
RI-1-C-36	Ŕ	62	5.0	41	5	5.00	5.00	5.8	2.50	5.00	<u>ک</u> ر
RI-1-C-38	Ř	55	5.00	41	100	5.00	5.00	5.00	2.50	5.00	ns
RI-1-C-39	80	32	5.00	310	<u>5</u>	5.00	5.00	5.00	2.5U	5.00	25U
RI-1-C-41	8	28	5.00	23	100	5.8	5.00	5.00	2.50	5.00	25U

(Continued)
2.
Table

Station	Surrogate Recovery (X)	<u>I oxaphene</u>	Arochlor <u>1242-1016</u>	Arochlor 1248	Arochlor 1254	Arochlor 1260
RI-1-C-1	74	200	500	201	500	SOU
RI-1-C-3	1	200	200	200	200	200
RI-1-C-5	11	500	200	200	200	200
RI-1-C-6	74	500	500	500	500	200
RI-1-C-8	2	500	50U	500	50U	200
RI-1-C-10	8	500	500	500	200	200
RI-1-C-11	ន	500	500	500	500	200
RI-1-C-12	వే	500	500	500	500	50U
RI-1-C-14U	8 2	500	500	500	50U	500
RI-1-C-14L	2	500	50U	500	500	200
RI-1-C-16	82	500	500	50	500	200
RI-1-C-18	1	500	500	500	500	500
RI-1-C-19	76	500	500	500	50	500
RI-1-C-20	85	500	500	500	500	500
RI-1-C-23	8	500	500	500	20	200
RI-1-C-24	2	500	500	500	500	500
RI-1-C-25	8	500	500	500	500	500
RI - 1 - C - 26	R	500	500	50U	500	500
RI-1-C-29	85	50U	50U	500	500	200
RI-1-C-30	82	500	500	500	500	500
RI-1-C-32	వ	500	500	500	500	500
RI-1-C-33	8	500	500	500	500	500
RI-1-C-35	65	500	200	50U	500	500
RI-1-C-36	к	5 0U	500	500	200	500
RI-1-C-38	к	500	50U -	500	42J	500
RI-1-C-39	8	500	500	500	500	500
RI-1-C-41	80	500	500	200	200	20

Chlorinated Pesticides and PCBs in Sediments from Santa Fe Channel (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) <u>Iable 21.</u>

	-	•							
	Endo- sulfan	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	aptan	2222		1		
	Endrin	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	thane		222			
I	4.4DDE	17 18 15	4.7 3.9 8.1	ro- Ene Kel	~~~~ ~~~~	8.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7			
	<u>ieldrin</u>	8.8 3.0 5.6	8995	Pentachl c <u>ní troben</u> z	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U			
	Endo- sulfan 1	2.5U 2.5U 2.5U	2.50	Alpha- Chlordane	5.00 5.00	5.00	·		
	sptachlor boxide	223	ਡ, ਡ, ਡ,	Garma - Chlordane	5.œ 5.œ	5.00			
	Aldrin Ei	2.5U 2.5U 2.5U 2.5U	2.50	Endr in <u>Ketone</u>	5.0Ŭ 5.0U	5.00	Arochlor 1260	200	200
	tachior			Methoxy- chlor	<u>9</u> 99	9 <u>9 9</u> 9	Arochlor 1254	20.02	200
	it the terms	50 2.5 50 2.5 50 2.5	55 50 2.5 2.5	100-,5,4	210 130	54 8.2 91	Arochlor 1248		N N N
	elta HC BH	.5 ⁰ 2.	50 2. 50 2.	ul fan ite 4			hlor A		
	Beta D BHC B	2.5U 2 2.5U 2 2.5U 2	2.5U 2 2.5U 2 2.5U 2	Endos Sulfa	5.5 9.9 9.9	5.00	Aroc 1242	26 26 26	50U 50U
	Al pha BHC	2.5U 2.5U 2.5U	2.5U 2.5U 2.5U	4.41-DDD	150 84 150	46	Toxapher	200 200	200 200 200
	Surrogate Recovery (X)	02 72 67	77 85 117	Surrogate Recovery (X)	02 27 67	77 85 117	Surrogate Recovery (X)	22 22 67	77 85 117
,	Station	SA-UPPER SB-UPPER SC-UPPER	SA-LOWER SB-LOWER SC-LOWER	<u>Station</u>	SA-UPPER SB-UPPER SC-UPPER	SA-LOWER SB-LOWER SC-LOWER	<u>Station</u>	SA-UPPER SB-UPPER SC-UPPER	SA-LOWER SB-LOWER SC-LOWER
						5.52			

Quality Control for Chlorinated Pesticides and PCBs in Sediments Reanalyzed from Selected Cores (U_G/kg dry wgt) (U = compound analyzed but not detected at given detection limits; * = high recovery due to sample matrix interference). Table 22.

ta + 1 201	Surrogate Recovery	Atpha	Beta Bur	Ganna Pur	Hantach ne		<u>Heptachlor</u> Ecovida	Endo- eul fan 1	Dialdrin	4 -hhe	Endrin	Endo- sulfan 11
3191101	e	Dua		birc				SULTER 1				
<u>Method Blank</u> 1	02	ţ	ţ,	10	ŋ	Ę	ŋ	n,	R	R	Ŗ	Ŋ
5	69	2	2	2	2	1	2	2	2	2	2	R
<u>Duplicates</u>								,				
RI-1-C-37-U	57	10	5	<u>10</u>	101	<u>1</u> 0	<u>10</u>	10	200	20U	200	200
RI-1-C-37-U Dup	25	2	2	3	1	1	2	2	⋧	7.80	R	SU
RI-1-C-42-U	8	1.	5	₽	2	1	10	1	ନ୍ଥ	6.4U	ୟ	R
RI-1-C-42-U Dup	81	ŋ	1	1	1	1	2	2	R	5.2	ଟ୍ଟ	2
Duplicate RPD												
RI-1-C-37-U		N/N	N/N	N/N	N/N	N/N	N/A	N/N	N/A	N/N	N/A	N/A
RI-1-C-42-U		N/A	N/N	N/N	N/N	N/N	N/N	N/N	N/N	N/A	N/N	N/N
Duplicate I-Stat												
RI-1-C-37-U		N/N	N/A	N/A	N/A	N/A	N/A	N/N	N/A	N/A	N/N	N/A
RI-1-C-42-U		N/N	N/A	N/A	N/N	N/A	N/A	N/A	N/N	N/N	N/A	N/A
Spike Recovery (X)									1		•	
RI-1-C-42-U	85	110	8	110	8	100	8	8	110	140	100	8
سي 1-C-42-U لاين	76	110	80	100	8	<u>10</u>	8	8	110	190	100	90
Spike Recovery RPD		0	11.8	0	0	0	0	0	0	30.3	0	0
Spike Recovery I-Sta	ابد	0	0.06	0	Ø	0	0	0	0	0.15	0	

Table 22. (Continued)

	Surrogate Recovery		Endosul fan		Methoxy-	Endrin	Gamma-	Alpha-	Pentachloro-			
<u>Station</u>	(X)	000-,7.7	<u>Sul fate</u>	100-17.7	Chlor	Ketone	<u>Chlordane</u>	<u>Chloidans</u>	<u>ni trobenzene</u>	<u>Kel thane</u>	Captan	
<u>Hethod Blank</u> 1 2	02 69	ଛ ଛ	77	2 2	14 14	R R	1.5U 1.5U	1.5U 1.5U	55	20	5U 5U	T.
<u>Duplicates</u> RI-1-C-37-U RI-1-C-37-U Dup	57	39	007 70	2 2	40 41		15U 1.5U	15U 1.5U	101	50U 51	50U 5U	
RI-1-C-42-U RI-1-C-42-U Dup	2 2 2	2 8	40 40	t ~	33	R R	N. 1	1.5U	55	2 <u>7</u>	2 Z	
<u>Duplicate RPD</u> RI-1-C-37-U RI-1-C-42-U		36.4 14.6	N/N N/A	38.5 72.7	V/N	N/A N/A	N/N N/N	A/N A/N	N/N N/N	N/N N/N	N/N N/N	N/A N/A
<u>Duplicate I-Stat</u> RI-1-C-37-U RI-1-C-42-U		0.18 0.17	N/A N/A	0.19 0.36	8/H 8/N	K/X N/A	N/A N/A	V/N V/N	N/N	N/A N/A	N/N N/N	K/A N/A
<u>Spike Recovery (%)</u> RI-1-C-42-U RI-1-C-42-U Dup	85 76	160° 320°	1 1	250° 150°	<u>6</u> 8	N/A A/W	V/N	V/N	V/N	N/N	N/N N/N	N/N N/A
Spike Recovery RPD		66.7	N/A	50.0	11.1	N/A	N/N	N/N	N/N	V/M	V/N	A/H
Spike Recovery 1-Sta	눼	0.33	N/A	0.23	0.53	N/N	N/N	N/A	N/N	N/N	N/N	N/N

<u>Table 22</u>. (Continued)

<u>Station</u>	Surrogate Recovery (X)	Toxaphene	Arochlor <u>1242-1016</u>	Arochlor 1248	Arochlor 1254	Arochlor 1260
<u>Method Blank</u> 1 2	R 9	150U 150U	200 201	20U 20U	200 200	50 20
<u>Duplicates</u> RI-1-C-37-U RI-1-C-37-U Dup	52	50U 150U	250U 20U	2200	32	250U 20U
RI-1-C-42-U RI-1-C-42-U Dup	వ ప	150U 150U	ng ng	200 200	6.61 91	200 200
<u>Duplicate RPD</u> RI-1-C-37-U RI-1-C-42-U		N/N N/N	N/A N/A	N/A A/H	90.2 6.5	N/N A/N
<u>Duplicate 1-Stat</u> RI-1-C-37-U RI-1-C-42-U		N/N N/N	N/N N/N	A/M A/M	0.45 0.03	V/N

<u>Table 23</u>. Chlorinated Pesticides and PCBs in Sediments Reanalyzed from Selected Cores (ωg/kg dry wgt) [U = compound analyzed, but not detected at given detection limits; J = estimated value when the result is less than the calculated detection limit; Q = value quanitfied from original dilution (1:2)].

	Surro gate Recovery	Alphe	Beta	Ganna			Heptachlor	Endo-				Endo-	
SI	3	BHC	BHC	BHC	<u>Heptachlor</u>	Aldrin	Epoxide	sulfer I	<u>Dieldrin</u>	4.4'-DDE	Endrin	sulfan	Π
C-37-U	22	101	100	101	100	101	100	1 0	200	200	200	20U	
C-38-U	55	100	<u>8</u>	10	1 0	100	101	101	200	200	200	20U	
C-39-U	80	1	5	₽	5	2	10	Ĵ	ୟ	R	R	ຊ	
U-40-U	55	100	<u>5</u>	1 0	100	10	100	100	200	200	200	20U	
0-41-U	85	5	2	1	5	2	2	1	R	2.5U	R	S	
C-42-N	z	5	2	1	1	1	1	₽	ୟ	6.4U	2	ZU	
	Surrogate Recovery (%)	<u> 4 DDD</u>		osul fan fate	100-,7*7	Methoxy- <u>chlor</u>	Endr in <u>Ketone</u>	Garma - Chlordane	Alpha- Chlordane	Pentachlorc ní trobenzer	e Kelt	hane	aptan
C-37-U	22	39	-	400	21	104	300	15U	150	100	ŝ	8	50U
C-38-U	55	59	•	400	57	104	300	150	15U	1 0	5	8	50U
C-39-U	80	13		3	1.2.1	٩U	R	1.50	1.50	2		50	2
0-07-0	55	59	•	400	37	400	300	150	15U	101	5	8	500
C-41-U	85	18		\$ 10	6.4	N4	2	1.50	1.50	<u>10</u>		50	50
ก-25-0	జే	22		40	15	140	R	1.50	1.50	1		50	5U
	Surrogate Recovery (X)	Toxapher	k 124: 124:	chlor 2-1016	Arochlor 1248	Arochlor 1254	Arochlor 1260						
0-37-U	57	15000	N	200	25M	379	2500						
C-38-U	55	1500U	Ň	50U	2500	210	250U						
:-39-U	8	150U		200	200	200	200						
0-07-0	22	1500U	N	50U	250U	390	250U						
C-41-U	85	150U		200	200	7.8J	20N						
-42-U	\$	150U		200	200	9.61	200						

5.56

ь ч

Quality Control for Herbicide Acids and Acidic Phenols in Sediments from Richmond Harbor Channel (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) Table 24.

=

<u>Station</u> .	Surrogat Recovery (X)	e <u>Sílvex</u>	Penta- chloro- phenol	4,6-Dinitro- 2-Hethyl- Dhenol	4-Nitro- phenol	2-Nitro- Dhenol	2,4-Dinitro- phenol	2.4-08	2.4.5-1	<u> Dinoseb</u>	2.40
<u>Blanks</u> 2 3	8 8 E	22N 22N 22N	25U 25U 25U	25 251 251	<u>រ</u> ភ្ល ភ្ល	25 U 25U 25U	22 23 23	100U 100U	<u>5</u> 25 25 25 25	ຊາ ຊາ	1001 1001 1001
<u>Dupl icates</u> SB-UPPER SB-UPPER DUP R1-1-TC-5 2/5	<u> </u>	72 72 72	25U 25U 25U	25U 25U 25U	25U 25U	221 221 221	រភ្គ ភ្គ	1001 1001 1001	ស្ត្រ ស្ត	ຊີ ຊີ	1000 1000 1000
RI-1-TC-5 2/5DUP RI-1-C-39 RI-1-C-39 DUP	41 67 114	25U 25U 25U	25U 25U 25U	220 220 220	25U 25U 25U	រន្ត រន្ត	25U 25U 25U	1001 1001 1001	NS 22	NS 22	1000 1000 1000
<u>Spike Recovery (</u> SC-UPPER SC-UPPER DUP RI-1-TC-3 1/4 DUF RI-1-TC-5 1/5 DUP RI-1-TC-5 1/5 DUP	2 8 3 5 2 2 2 8 3 3 5 2 2	۲ X X X X X X	79 98 98 98	838725	, , , , , , , , , , , , , , , , , , ,		5 K & & Z Z	*****	5 8 7 8 2 5 8 7 9 8 2	22 22 22 22 22 22	85 93 78 85 93 85
<u>Spike Recovery RF</u> SC-UPPER RI-1-TC-3 1/4 RI-1-TC-5 1/5	ନା	25 13 0	7.5 19 3.1	2 2 2 3	×/#	V/ V/ V/	5 5 7 5 7 5	39 1.3 0	44 5.3 5.7	32 S2 38 C2	50 4.2 3.5
<u>Spike '-Stat</u> SC-UPPER R1-1-TC-3 1/4 R1-1-TC-5 1/5		.12 .08 0.0	8. 8. 8.	.10 .51	8/8 8/8 8/8	N/N N/N	.12 .20 .22	.19 .01 0.0	25. 59. 59.	.11 .08 .18	50. 20. 20.

Herbicide Acids and Acidic Phenols in Sediments from Richmond Harbor Channel Long Cores (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) Table 25.

,

	Surrogate Recovery		Penta- chloro-	4,6-Dinitro- 2-Methyl-	4-Nİtro-	2-Nitro-	2.4-Dinitro-				
<u>Station</u>	(%)	Silvex	phenol	phenol	phenol	phenol	phenol	2.4-08	2.4.51	<u>Dinoseb</u>	2.40
RI-1-W-1	92	25U	25U	25U	25U	250	25U	1000	25U	25U	1001
RI-1-TC-1 1/4	83	25U	25U	25U	25U	25U	25U	1001	25U	25U	100U
RI-1-TC-1 2/4	35	2 5U	25U	25U	25U	25U	25U	1001	25U	25U	1000
RI-1-TC-1 3/4	К	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-TC-1 4/4	101	2 5U	25U	25U	25U	25U	25U	1001	25U	25U	1001
RI-1-TC-2 2/4	109	25U	25U	25U	25U	25U	25U	1001	25U	25U	1001
RI-1-TC-2 3/4	104	25U	25U	25U	25U	25U	25U	1001	25U	25U -	1000
RI-1-TC-2 4/4	74	25U	25U	25U	25U	25U	25U	100U	25U	25U	100U
RI-1-TC-3 1/4	131	25U	25U	25U	25U	25U	25U	1001	25U	25U	1001
RI-1-TC-3 2/4	69	25U	25U	25U	25U	25U	25U	1001	25U	25U	1001
RI-1-TC-3 3/4	74	25U	25U	25U	25U	25U	25U	1001	25U	25U	1001
RI-1-TC-3 4/4	К	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-TC-4 1/4	81	25U	25U	25U	25U	25U	25U	1001	25U	25U	1000
RI-1-TC-4 2/4	81	25U	25U	25U	25U	25U	22N	1000	25U	25U	1000
RI-1-TC-4 3/4	8	25U	25U	SU	25U	SSU	25U	1000	25U	25U	1000
RI-1-TC-4 4/4	85	25U	25U	25U	25U	25U	25U	1000	25U	25U	1001
RI-1-TC-5 1/5	88 88	25U	25U	250	25U	25U	25U	1000	25U	25U	100U
RI-1-TC-5 2/5	к	25U	25U	25U	25U	25U	52 0	1000	25U	25U	100U
RI-1-TC-5 3/5	R	25U	25U	25U	25U	25U	25U	1001	25U	25U	1000
RI-1-TC-5 4/5	٤	25U	25U	25U	25U	25U	25U	1001	25U	25U	1000
RI-1-TC-5 5/5	76	25U	25U	25U	25U	25U	25U	100U	25U	25U	100U

Herbicide Acids and Acidic Phenols in Sediments from Richmond Harbor Channel Short Cores (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) Table 26.

	Surrogate Recovery		Penta- chloro-	4,6-Dinitro- 2-Methyl-	4-Nitro-	2-Witro-	2,4-Dinitro-				
<u>Station</u>	3	Silvex	<u>phenol</u>	phenol	phenol	phenol	phenol	2.4-DB	<u>2.4.5T</u>	<u>D i noseb</u>	<u>2.6</u>
RI-1-C-1	67	25U	25U	25U	Z SU	25U	25U	1001	25U	25U	1001
RI-1-C-3	63	25U	25U	25U	250	25U	25U	1001	25U	25U	1000
RI-1-C-5	62	25U	25U	25U	25U	25U	25 U	1000	25U	25U	1000
RI-1-C-6	67	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-8	88	25U	25U	25U	25U	25U	250	1000	25U	25U	1000
RI-1-C-10	108	25U	25U	25U	25U	25U	250	1001	25U	25U	100U
RI-1-C-11	59	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-12	90	25U	25U	25U	25U	25U	25U	1001	25U	25U	100U
RI-1-C-14-U	67	25U	25U	25U	25U	25U	25U	1001	41	25U	1000
RI - 1 - C - 14 - L	52	25U	25U	25U	25U	25U	25U	1001	25U	25U	100U
RI-1-C-16	72	25U	25U	25U	25U	25U	25U	100U	25U	25U	1001
RI - 1 - C - 18	139	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
Ri-1-C-19	53	25U	25U	25U	25U	25U	250	1001	25U	25U	1000
RI-1-C-20	93	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-23	112	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-24	62	25U	25U	25U	25U	25U	22N	1000	25U	25U	1000
RI-1-C-25	76	25U	31	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-26	92	25U	25U	25U	25U	25U	25U	100U	25U	25U	1000
RI-1-C-29	58	25U	25U	25U	25U	25U	25U	1001	25U	25U	100U
RI-1-C-30	54	25U	25U	25U	25U	25U	SSU	1000	25U	25U	1000
RI-1-C-32	160	25U	25U	25U	250	25U	25U	1000	25U	25U -	1001
RI-1-C-33	2	25U	250	25U	25U	25U	250	1000	25U	25U	1000
RI-1-C-35	115	25U	25U	25U	25U	25U	250	10 <u>0</u> 0	25U	25U	100U
RI-1-C-36	81	25U	25U	25U	25U	25U	22U	1001	25U	25U	1000
RI - 1 - C - 38	56	25U	25U	25U	25U	25U	25U	1000	25U	25U	1000
RI-1-C-39	67	25U	25U	25U	25U	25U	25U	1001	25U	25U	1000
RI-1-C-41	48	2SU	25U	25U	25U	25U	25U	1001	25U	25U	1000

Herbicide Acids and Acidic Phenols in Sediments from Santa Fe Channel (ug/kg dry weight) (U = compound analyzed, but not detected at given detection limit) Table 27.

2,40	1000	1001	1000	1000	100U	1000
<u> Pinoseb</u>	25U	25U	250	25 U	25U	25U
2,4,5,-1	25U	25U	25U	25U	25U	25 U
2.4-DB	1000	1000	1000	1001	1001	1001
2,4-Dinitro- phenol	25U	25U	25U	25U	25U	25U
2-Nitro- phenol	25U	25U	25U	25U	25U	25U
4-Nitro- phenol	25U	25U	25U	25U	25U	25U
4,6-Dinitro- 2-Nethyl- phenol	25U	25U	25U	25U	25U	25U
Penta- chloro- <u>phenol</u>	25U	25U	25U	25U	25U	25U
Silvex	25U	25U	250	25U	25U	25U
Surrogate Recovery (X)	87	8	6	120	108	84
Station	SA-UPPER	SB-UPPER	SC-UPPER	SA-LOWER	SB-LOWER	SC-LCWER

Quality Control for Organophosphorus Pesticides (ug/kg dry weight) in Sediments (ND = Analyte not found) **TABLE 28**.

Para- <u>thion</u>	211		0.18 ND	0.22		QQ		120
Azinophos- methyl	211		QQ	QN		QN		96
Mala- thion	211		99	QN	144 1274			74
Parathion- methyl	211		QN	QN		QQ		80
Dia- <u>zinon</u>	211		3.7 ND	3.9		QQ		85
Mevin- phos	211		QN	QN		QN		11
Surrogate Recovery (%)			152 78	94		83 96		98
Measurements	Detection Limit	<u>Blanks</u>	Method Blank Method Blank	Method Blank	<u>Duplicate</u>	SA-UPPER SA-UPPER DUP	.5 Spike Recovery (%)	RI-1-TC-3 2/4 SPI

Organophosphorus Pesticides (ug/kg dry weight) in Sediments from Long Cores (ND = Analyte not found) <u>TABLE 29</u>.

	Surrogate	Mavin-	Diar	Darathion	Mole .	Azinnhoc.	Dama
<u>Station</u>	(%)	phos	zinon	methyl	thion	methy]	thion
Detection Limit		211	211	211	211	211	211
RI-1-W-1	131	QN	QN	QN	QN	QN	ND
RI-1-TC-3 1/4	100	QN	ND	QN	QN	QN	QN
RI-1-TC-3 2/4	106	Ŋ	Q	Q	QN	QN	QN
RI-1-TC-3 3/4	105	QN	Q	Q	QN	QN	QN
RI-1-TC-3 4/4	95	Q	QN	Q	QN	QN	QN
RI-1-TC-5 1/5	105	Q	QN	Q	ON	Q	QN
RI-1-TC-5 2/5	109	Q	QN	QN	QN	QN	QN
RI-1-TC-5 3/5	75	Q	Q	QN	ND	QN	QN
RI-1-TC-5 4/5	31	Q	QN	Q	QN	QN	QN
RI-1-TC-5 5/5	141	Q	Q	Q	QN	QN	QN

5.62

Organophosphorus Pesticides (ug/kg dry weight) in Sediments from Richmond Harbor Channel Short Cores (ND = Analyte not found) TABLE 30.

Para- <u>thion</u>	211	<u> </u>
Azinphos- <u>methyl</u>	211	2222222222
Mala- <u>thion</u>	211	2222222222
Parathion- methyl	211	
Dia- <u>zinon</u>	211	4.000007.000 000007.00000000000000000000
Mevin- <u>phos</u>	211	2222222222
Surrogate Recovery (%)		94 75 89 89 89 89 101
Station	Detection Limit	RI-1-C-1 RI-1-C-3 RI-1-C-5 RI-1-C-24 RI-1-C-25 RI-1-C-26 RI-1-C-38 RI-1-C-38 RI-1-C-38 RI-1-C-38 RI-1-C-38

Organophosphorus Pesticides (ug/kg dry weight) in Sediments from Santa Fe Channel (ND = Analyte not found). **TABLE 31**.

asurements	Surrogate Recovery (%)	Mevin- phos	Dia- zinon	Parathion- methyl	Mala- thion	Azinophos- methvl	Para- thion
ection Limit		211	211	211	211	211	211
UPPER UPPER UPPER	83 93 108	QQQ			999		
OWER OWER OWER	106 63 73				999		

IABLE 32. Quality Control for Dioxins and Furans in Reanalyzed Sediments: Matrix Blank (MB) [ng/kg) and Matrix Spike (MS) (%). 123789-0.36U 153 123678-0.47U 115 HxCDD 123478-0.56U 95 Total 125 Q 23478-0.51U 88 PeCDF 12378-0.46U 95 Total Q 36 PeCDD 12378-0.33U 108 Total 108 Q 1CDF 1 2378-0.41U 103 Total 103 QN 1CDD 1 2378-1.100 66 Spike Recoveries (X) Total Q 66 <u>Station</u> <u>B lank</u> Ð **W**S

0.85U OCDF Total 101 23.00 0CDD Total 84 1234789-0.36U 105 HpCDF 1234678-0.51U 108 Total 106 Q HpCDD 1234678-1.00U 90 Total 웆 8 234678-0.43U 93 123789-0.46U 103 HxCDF 123678-0.36U 100 123478-0.27U 103 Total Spike Recoveries (X) 100 Q Station <u>B lank</u> MS æ

2
: Recoveries
Surrogate
d Sediments:
Reana lyzec
ŗ
Furans
and
Dioxins
for
Quality Control
TABLE 33 .

Internal Standard	SA Upper	SB Upper	RI-1-C-5	RI-1-C-25	RI-1-C-38	Method	Matrix
2378-TCDD-C13	83	85	50	82	84	61	79
2378-TCDD-C137	73	19	49	67		56	22
2378-TCDF-C13	67	11	52	72	11	45	12
12378-PeCDD-C13	11	60	50	67	67	66	9
12378-PeCDF-C13	60	57	50	65	67	54	83
23478-PeCDF-C13	57	53	46	61	63	55	62
123478-HxCDD-C13	60	76	61	68	- 29	57	84
123678-HxCDD-C13	29	40	35	61	42	68	43
123478-HxCDF-C13	ß	93	47	67	86	55	52
123678-HxCDF-C13	57	11	52	11	74	58	60
123789-HxCDF-C13	65	73	48	66	72	54	63
234678-HxCDF-C13	36	47	59	79	54	55	64
1234678-HpCDD-C13	52	75	54	78	61	68	20
1234678-HpCDF-C13	50	78	51	"	66	60	64
1234789-HpCDF-C13	66	103	54	91	87	67	75
0CDD-C13	76	112	67	92	84	65	11

TABLE 34. Dioxins and Furans in Reanalyzed Sediments (ng/kg).

	4			CDF	otal	130 74	29	34	51
	123789	12.0 7.9 1.0U	2.1		_	00	0	0	0
	3678-	1.0 7.1 4.6	8. 8. 8. 8.	0000	Tota	170	36	69	88
HXCDD	- 12:	2.7			34789-	2.4U 1.4U	1.40	1.10	1.90
	123478	3.0 1.3U 1.2U	2.0	ta.	27				
	otal	190 4 0	73 100	HpCD	123467	43 26	12	19	53
	-8/	6 5 7U	87		otal	150 76	34	48	67
	234	0			ITI ITI				
PeCDF	12378-	1.0U 0.9U 0.5U	0.9 1.10	CDD	1234676	180 110	46	88	110
	Total	38 31 11	31 28	H	Iotal	970 450	120	230	400
	12378-	1.3 1.1U 0.6U	1.10 1.11		4678-	UI. UI.	.1U	<u>8</u> .	.70
PeCD	tal				2		***	-	0
	비의	~ 2 2	~ ~		123789	3.5 3.2	1.10	1.50	2.5
Ъ	2378	9.9.6 9.9 9.9 9.9 9.9 9.0 9.0 9.0 9.0 9.0 9.0	4 .5 3.7	P.	78-		n	5	
1	Total	24.0 24.0 8.7	34.0 28.0	HXC	1236	2.2	1.3	1.2	2.3
~	2378-	1.1U 1.2U 1.0U	0.9U 1.2U		123478-	4.5 2.5	1.00	2.20	4.8
TCD	Total	1.5 1.6 ND	2.0 ND		Iota	66 44	20	37	59
	<u>Station</u>	SA Upper SB Upper RI-1-C-5	RI-1-C-26 RI-1-C-38		<u>Station</u>	SA Upper SB Upper	RI-1-C-5	RI-1-C-26	RI-1-C-38

} .

The compound, 2,3,7,8-TCDD was below the detection limit about 1 ng/kg in all samples. The total of all TCDD congeners ranged from below detection to 2 ng/kg. The 2,3,7,8-TCDF concentrations range from 3 to 6 ng/kg, and the total TCDF ranged from 9 to 34 ng/kg. The concentrations of the individual pentaand hexa-congeners are generally similar to those of the tetra-congeners, with only station SA-Upper containing more than 8 ng/kg of two congeners. The hepta- and octa-compounds were generally in the range of 1 to 100 ng/kg.

For completeness, the results of the quality control for original dioxin/furan analyses are presented in Tables 35 and 36, and the results of the original dioxin/furan analyses are presented in Tables 37 and 38.

5.1.4 TOC and Oil and Grease

In both the TOC and the oil and grease data (Table 39) there was good agreement between all duplicates analyzed. Percent recovery was acceptable (101%) for two of the three spikes, and slightly low in the third (75%). In analysis of oil and grease, all blanks were below detection. However, the detection limit based on a 5-g sample was 61 ug/g (dry wt), approximately three times the 20 ug/g required by program. Data for TOC and oil and grease are presented in Tables 40 through 42.

Data comparing different methods of analyzing oil and grease are presented in Table 43. These intra- and interlaboratory comparisons support results presented in Tables 40 through 42.

5.2 <u>Water</u>

5.2.1 Metals

Table 44 presents quality control data for interstitial and elutriate water analyses. For metals, analysis of SRMs resulted in only two metals falling outside of certified range (Cd by 10%, Zn by 5%). The spike recoveries for non-certified metals were in the acceptable range (80 to 120%) for all but Ag. With Ag, 55% of the amount spiked before APDC extraction was recovered; 45% was lost during the APDC preparation. This observation was supported by acceptable recovery (116%) of a spike addition performed when the APDC extract was analyzed to prove that AA detection was accurately measuring

<u>1/BLE 35</u>. Quality Control for Original Analyses of Dioxins in Sediments (ug/kg dry weight) (CONC = Concentration; DL = Detection Limit).

2

[v]	B	N/N N/N N/N	0.0045 0.0045			(X)	5 5 6
Tot	CONC	0.0034 0.0028 0.0028	1.300 1.300	0	0	Tot 0CDD	===
	5	0.0030 N/A N/A	0.0039 0.0039			al D (X)	557
Tot	HEC CONC	* 0.0013 0.0019	0.570	1.7	0.1	Tot HECD	999
Į	5	0.0006 0.0009 0.0008	0.0007 0.0007			ا ع	0.4-1
Tota	CONC	* * *	0.081 0.073	10.4	0.5	Tot. HCDD	805
	đ	0.0023 0.0023 0.0026	0.0420				
Tota	CONC PCDI	2 4 4	* *	V/N	N/A	Tota	
		0.0120 0.0054 0.0058	0.0140 0.0092			(X)	
Toću	TCDI CONC	* * *	* *	N/A	<u>t</u> N/A	Tota	
	SIATION	<u>Method Blanks</u> 1 3	<u>Duplicates</u> SA-Upper SA-Upper Dup	<u>Duplicate RPD</u> SA-Upper	<u>Duplicate I-Sta</u> SA-Upper	5.69	Stike Recovery Native Spike I Native Spike 2 RI-1-TC-3 2/4

Quality Control for Original Analyses of Furans in Sediments (ug/kg dry weight)(CONC = Concentration; DL = Detection Limit). <u>I,46LE 36.</u>

1

Total OCDD	INC DL	0.0061 0.0021 0.0045	.100 0.0079 .110 0.0079	Σį	.05	Total 0C00 (X)	116 109 110
- 8	DI DI	0.0011 * 0.0013 * 0.0011 *	0.0015 0. 0.0015 0.	G	0	al 0 (X)	8 9 9
Tota	CONC	* * *	0.098 0.110	11.5	0.1	Tot	0 0 0 0 0 0 0
a l D	Ы	0.0014 0.0007 0.0010	0.0018 0.0018			a 1 (X)	6 17
Tot HCD	CONC	4z 4z 4z	0.070 0.053	27.6	0.1	Tot <u>HCDD</u>	191
[80	ы	0.0009 0.0014 0.0014	0.0011			a1 (X)	o n o
Tot	CONC	+x +x +x	0.054 0.015	113.0	0.6	Tot PCDD	10 9 10
	ы	0.0039 0.0028 0.0027	0.0051				C: 80 4
Tot	CONC	* * *	0.170 0.027	145.2	t 0.7	Tot ICD0	11 10
	STATION	<u>Method Blanks</u> 1 3	<u>Duplicates</u> SA-Upper SA-Upper Dup	<u>Duplicate RPD</u> SA-Upper	<u>Duplicate I-Sta</u> SA-Upper		- Spike Recovery Native Spike 1 Mative Spike 2 RI-1-TC-3 2/4

•

<u>IABLE 37</u>. Original Analyses of Dioxins in Sediments (ug/kg dry weight)(CONC = Concentration; DL = Detection Limit).

a D	Ы	0.0045	0.0041	0.0040	0.0026	0.0024	0.0024	0.0028	0.0033	0.0097	0.0034	0.0026	0.0049	0.0035	0.0038	0.0028	0.0026	0.0033	0.0030	0.0037	0.0031	0.0031	0.0035	0.0036	0.0025	0.0025	
	CONC	1.3000	0.3800	0.6400	0.4700	0.1900	0.2600	0.0630	0.0140	*	0.0035	0.0023	0.0970	0.0380	0.0130	0.0017	0.0030	0.2500	0.1800	0.3100	0.0730	0.2700	0.5400	0.8700	0.1700	0.2500	
18	Б	0,0039	0.0035	0.0034	0.0012	0.0016	0.0016	0.0024	0.0028	0.0028	0.0029	0.0006	0.0042	0.0030	0.0058	0.0024	0.0022	0.0150	0.0019	0.0170	0.0002	0.0029	0.0023	0.0170	0.0016	0.0016	
Tet	CONC	0.5700	0.1200	0.1800	0.1300	0.0530	0.0620	0.0150	0.0050	4	0.0012	#	0.0097	0.0089	#	0.0013	0.0015	0.0720	0.0350	0.0810	0.0150	0.0540	0.1400	0.2100	0.0430	0.0580	
	Ы	0.0008	0.0007	0.0006	0.0008	0.0007	0.0007	0.0005	0.0007	0.0012	0.0006	0.0004	0.0038	0.0006	0.0016	0.0011	0.0002	0.0010	0.0009	0.0012	0.0009	0.0009	0.0011	0.0011	0.0007	0.0007	
Tota	CONC	0.0810	0.0270	0.0440	0.0240	0.0100	0.0140	0.0033	*	*	*	*	*	0.0026	*	*	*	0.0230	0.0052	0.0320	0.0017	0.0140	0.0400	0.0450	0.0120	0.0180	
1	ы	0.0420	0.0035	0.0071	0.0035	0.0042	0.0019	0.0008	0.0029	0.0035	0.0009	0.0011	0.0044	0.0022	0.0051	0.0015	0.0011	0.0030	0.0040	0.0030	0.0023	0.0024	0.0057	0.0077	0.0150	0.0032	
Tota	CONC	4	#	#	#	*	*	ŧ	ŧ	#	41	*	#	*	*	4	*	*	*	0.0023	*	*	#	*	*	#	
-	Б	0.0140	0.0110	0.0050	0.0039	0.0063	0,0033	0.0017	0.0066	0.0064	0.0031	0.0027	0.0000	0.0039	0.0130	0.0068	0.0037	0.0110	0.0055	0.0072	0.0051	0.0059	0.0073	0.0380	0.0051	0.0039	
Tota	CONC	*	*	*	*	¥	*	¥	¥	*	*	ŧ	*	*	*	*	¥	*	*	0.0038	*	*	0.0110	*	*	*	
	STATION	SA-Upper	SB-Upper	SC-Upper	SA-Lower	SB-Lower (f)	SC-Lower	RI-1-14-1	RI-1-TC-3 1/4	RI-1-TC-3 2/4	RI-1-TC-3 3/4	RI-1-TC-3 4/4	RI-1-TC-5 1/5	RI-1-TC-5 2/5	RI-1-TC-5 3/5	RI-1-TC-5 4/5	RI-1-TC-5 5/5	RI-1-C-1	RI-1-C-3	RI-1-C-5	RI-1-C-24	RI-1-C-25	RI-1-C-26	RI-1-C-38 (f)	cn FI-1-C-39	14-1-C-41	1

,

-

<u>IABLE 38</u>. Original Analyses of Furans in Sediments (ug/kg dry weight) (CONC = Concentration; DL = Detection Limit).

a l	Ы	0.0079	0.0071	0.0069	0.0019	0.0039	0.0038	0.0049	0.0079	0.0059	0.0031	0.0034	0.0085	0.0061	0.0130	0.0057	0.0026	0.0025	0.0047	0.0028	0.0027	0.0050	0.0049	0.0056	0.0039	0.0039
Tot 0CD	CONC	0.1000	0.0390	0.0510	0.0430	0.0210	0.0240	0.0110	*	*	*	*	0.0075	0.0072	*	*	ŧ	0.0190	0.0140	0.0210	0.1500	0.0064	0.0210	0.0400	0.0200	0.0220
100	Ы	0.0015	0.0013	0.0013	0.0012	0.0009	0.0009	0.0009	0.0016	0.0016	0.0007	0.0011	0.0016	0.0011	0.0012	0.0011	0.0007	0.0015	0.0011	0.0017	0.0017	0.0012	0.0012	0.0013	0.0009	0.000
Tot. HECI	CONC	0.0980	0.0360	0.0470	0.0420	0.0190	0.0200	0.0097	*	*	*	ŧ	0.0040	0.0110	0,0037	#	*	0.0210	0.0140	0.0240	0.0850	0.0073	0.0180	0.0470	0.0210	0.0230
	đ	0.0018	0.0016	0.0016	0.0006	0.0008	0.0008	0.0011	0.0012	0.0013	0.0013	0.0005	0.0037	0.0014	0.0029	0.0011	0.0010	0.0008	0.0010	0.0009	0.0009	0.0011	0.0010	0.0012	0.0008	0.0008
Tota	CONC	0.0070	0.0190	0.0250	0.0300	0.0130	0.0110	0.0110	*	*	0.0006	*	*	0.0047	*	0.0006	0.0005	0.0220	0.0110	0.0260	0.0350	0.0072	0.0087	0.0430	0.0170	0.0210
la D	đ	0.0011	0.0010	0.0030	0.0013	0.0012	0.0012	0.0007	0.0016	0.0013	0.0007	0.0007	0.0024	0.0018	0.0038	0.0011	0.0016	0.0016	0.0015	0.0018	0.0018	0.0015	0.0015	0.0017	0.0012	0.0012
Tot PCD	CONC	0.054	0.012	*	0.025	0.011	0.009	0.014	*	*	#	*	#	*	*	*	*	0.025	0.004	0.025	0.029	0.005	0.004	0.049	0.020	0.023
[e D	Ы	0.0051	0.0046	0.0044	0.0026	0.0023	0.0023	0.0031	0.0023	0.0033	0.0019	0.0025	0.0080	0.0057	0.0067	0.0024	0.0023	0.0032	0.0028	0.0036	0.0035	0.0029	0.0029	0.0033	0.0023	0.0023
Tot TCD	CONC	0.017	0.036	0.007	0.066	0.030	0.017	0.067	41	*	*	*	*	*	*	*	*	0.036	0.023	0.080	0.028	0.013	0.041	0.100	0.045	0.056
	STATION	SA-Upper	SB-Upper	SC-Upper	SA-Lower	SB-Lower (f)	SC-Lower	RI-1-W-1	RI-1-TC-3 1/4	RI-1-TC-3 2/4	RI-1-TC-3 3/4	RI-1-TC-3 4/4	RI-1-TC-5 1/5	RI-1-TC-5 2/5	RI-1-TC-5 3/5	RI-1-TC-5 4/5	RI-1-TC-5 5/5	RI-1-C-1	RI-1-C-3	RI-1-C-5	RI-1-C-38	RI-1-C-24	RI-1-C-25	5-2-1-11 J	Z RI-1-C-39	2 RI-1-C-41

-

÷

ŝ,

Station	TOC (%)	Oil and Grease (µg/g)
Achieved Detection Limit	0.06	61*
Duplicates		
RI-1-C-6	0.79	68
RI-1-C-6	0.80	76
RPD	1.3%	11%
I	0.01	0.1
RI-1-C-19	1.11	84
RI-1-C-19	1.16	81
RPD	4.4%	3.6%
I	0.02	0.2
SA-UPPER	0.82	302
SA-UPPER	0.72	296
RPD	13%	2.0%
I	0.65	0.0
Laboratory Internal Duplicates, TOC		
SA-UPPER SA-UPPER	0.82 0.79	-
RPD	3.7%	NA
I	0.02	NA
RI-1-TC-1 2/4 RI-1-TC-1 2/4	0.72 0.72	-
RPD	0%	NA
I	0.00	NA

Quality Control for Total Organic Carbon and Oil and Grease in Sediments <u>TABLE 39</u>.

* Achieved Detection limit is based on a 5-g sample. Actual level of detection varies with sample size.
NA = not applicable.
- = data not available.
RPD = Relative Percent Difference.
I = Inductrial Statistic I

I = Industrial Statistic I.

TADLE 33. (CONCINCE)	TAB	LE	39.	. (Cont	ir	ued)
----------------------	-----	----	-----	-----	------	----	------

Station	TOC (%)	Oil and Grease (µg/g)
RI-1-TC-5 5/5 RI-1-TC-5 5/5	0.57 0.58	-
RPD I	1.7% 0.01	NA NA
RI~1-C-1 RI-1-C-1	0.94 0.95	-
RPD I	1.1% 0.01	NA NA
RI-1-C-38 RI-1-C-38	0.95 0.97	-
RPD I	2.1% 0.01	NA NA
RI-1-C-20 RI-1-C-20	0.42 0.43	-
RPD I	2.4% 0.01	NA NA
SRM MESS-1 STD SRM MESS-1 STD	2.32 2.21	-
RPD I	4.9% 0.02	NA NA
Reference Material		
SRM MESS-1 STD-1 SRM MESS-1 STD-2 SRM MESS-1 STD-3	2.23 2.32 2.17	NA NA NA

NA = not applicable. - = data not available. RPD = Relative Percent Difference. I = Industrial Statistic I.

TABLE 39. (Continued)

١

н. т

Station	TOC (%)	Oil and Grease (µg/g)
Spikes (Oil and Grease)		
RI-1-C-6 RI-1-C-6 + Spike Amount Spiked Percent Recovery	NA NA NA NA	68 287 284 75
RI-1-C-16 RI-1-C-16 + Spike Amount Spiked Percent Recovery	NA NA NA	< 34 219 217 101
RI-1-TC-3 2/4 RI-1-TC-3 2/4 + Spike Amount Spiked Percent Recovery	NA NA NA	< 47 294 291 101
Procedural Blank-1 Procedural Blank-2 Solvent Blank	NA NA NA	< 61 < 61 < 62

NA = not applicable.
Station	TOC (%)	Oil and Grease (µg/g)
Achieved Detection Limit	0.06	61*
RI-1-W-1	0.31	< 40
RI-1-TC-1 1/4	0.77	< 43
RI-1-TC-1 2/4	0.72	< 45
RI-1-TC-1 3/4	0.67	< 44
RI-1-TC-1 4/4	0.16	< 37
RI-1-TC-3 1/4	0.45	< 42
RI-1-TC-3 2/4	0.68	< 47
RI-1-TC-3 3/4	0.66	< 44
RI-1-TC-3 4/4	0.08	< 38
RI-1-TC-5 1/5	0.92	111
RI-1-TC-5 2/5	0.56	187
RI-1-TC-5 3/5	1.07	128
RI-1-TC-5 4/5	0.57	< 47
RI-1-TC-5 5/5	0.13	< 36
RI-1-TC-4 1/4	0.68	< 49
RI-1-TC-4 2/4	0.49	< 42
RI-1-TC-4 3/4	0.10	56
RI-1-TC-4 4/4	0.08	< 37
RI-1-TC-2 1/4	0.62	< 48
RI-1-TC-2 2/4	0.57	< 45
RI-1-TC-2 3/4	0.66	< 46
RI-1-TC-2 4/4	0.74	< 48

TABLE 40. Total Organic Carbon (TOC) and Oil and Grease in Sediments From Long Cores(a)

(a) Cores were divided into 4 or 5 vertical sections numbered 1 (top of core) through 4 or 5 (bottom of core).
 * Achieved detection limit for oil and

* Achieved detection limit for oil and grease is based on a 5-g sample. Actual level of detection varies with sample size.

TABLE 41. Total Organic Carbon and Oil and Grease in Sediments From Richmond Harbor Channel Short Cores

Station	TOC (%)	Oil and Grease (µg/g)
Achieved Detection Limit	0.06	61*
RI-1-C-1 $RI-1-C-3$ $RI-1-C-5$ $RI-1-C-6$ $RI-1-C-10$ $RI-1-C-11$ $RI-1-C-12$ $RI-1-C-14-U$ $RI-1-C-14-U$ $RI-1-C-16$ $RI-1-C-16$ $RI-1-C-19$ $RI-1-C-19$ $RI-1-C-20$ $RI-1-C-20$ $RI-1-C-23$ $RI-1-C-25$ $RI-1-C-25$ $RI-1-C-26$ $RI-1-C-26$ $RI-1-C-29$ $RI-1-C-32$ $RI-1-C-32$ $RI-1-C-35$ $RI-1-C-36$ $RI-1-C-36$	0.94 0.94 1.03 0.79 1.18 1.10 1.16 1.19 1.23 1.22 0.06 0.75 1.11 0.42 0.68 0.71 0.56 0.84 0.31 1.14 0.29 0.44 1.06	57 64 89 68 93 124 100 67 109 179 < 34 99 84 51 < 34 99 84 51 < 52 < 57 254 155 71 87 156 < 40 < 50 222
RI-1-C-39 RI-1-C-41	0.28	50 124

* Achieved detection limit for oil and grease is based on a 5-g sample. Actual level of detection varies with sample size.

<u>TABLE 42</u> .	Total	Organic	Carbon	and	0i1	and	Grease	in	Santa	Fe	Channe1
-	Sedime	ent									

Station	TOC (%)	Oil and Grease (µg/g)
Achieved Detection Limit	0.06	61*
SA-UPPER	0.82	302
SB-UPPER	0.72	285
SC-UPPER	0.75	268
SA-LOWER	0.37	88
SB-LOWER	0.29	< 42
SC-LOWER	0.32	83

* Achieved detection limit is based on a 5-g (dry wgt) sample. Actual level of detection varies with sample size). TABLE 43.

Concentrations of Oil and Grease in Sediments Analyzed in Three Samples Using Several Techniques ($\mu g/g$ or ppm drywt)

			Method		
<u>Sample No.</u>	_1	<u>2a</u>	_ <u>2b</u>	<u>3a</u>	<u>3b</u>
SB-Upper RI-1-TC-5 2/5 RI-1-C-6	285 187 76	215 132 42	148 211 53	226 171 15.5	110 120 NA

NA = Not analyzed

1 = Single extraction by Battelle, initial testing
2a = Single extraction by Battelle, second testing
2b = Double extraction by Battelle, second testing
3a = Single extraction by Battelle, third testing
3b = Double extraction by commercial laboratory, third testing

Double extraction is considered a more sensitive technique than single extraction.

		TABI	E 44.	Quali	ty Con	trol fc	or Meta	als in	Water	ĸ			
						Con	centratio	(1/8n) u					
Station	βv	As	2	3	ა	3	(1/6u) Hg	Ξ	æ	S.	Se	F	Zn
Achieved Detection Limit	0.001	0.05	0.01	0.001	0.03	0.011	0.08	0.015	0.010	1.03	1.33	0.91	0.49
Spikes							,						
Sequim Bay PB	•	ı	< 0.01	ı	•	•	•	•	ı	9 38	/ 1 33	1	:
Sequim Bay PB + Spike	ı	ı	0.22	1	ı	•	•	•	1	17 AR	N 74	18 94	•
Amount Spiked	ı	ł	0.25	۱	۱	.1	ł	ı	•	13.30	19.61	19.61	1
Percent Recovery	۱	•	88	ł	ł	ı	•	ı	۱	111	106	85	•
SRN CASS-1	0.002	ı	•	. 1	ı	1	1	1		1	I		
SRM CASS-1 + Spike	0.013	۱	•	1	1	•) (1 1	•	I	1	1	1
Amount Spiked	0.020	•	•	•	•	1	1	• •	• •	• •	• •	• •	•
Percent Recovery	55	ı	·	•	ı	1	ı	. 1	•		, I I		
Standard Reference Materials													
SRN CASS-1	ı	1.09	1	0.034	0.127	0.291	1	0.266	0 978	1	. 1	(71 1
Certified	ł	1.04	۱	0.026	0.118	0.291	ı	0.290	0.251	ı	1	1	0 980
Value	•	±0.07	ł	±0.005	±0.021	±0.027	•	±0.031	±0.027	ı	ı	ı	660°0∓
SRM NASS-1	ı	1.60	1	ł	1	1	•	•	•	•	(1	I
Certified	1	1.65	ł	•	1	•	•	•	•	1	ł	1	
Value	ı	4 0.19	•	۱	ı	۱		•	١	1	ł	ı	ı
Duplicate										•			
SB-UPPER	0.060	4.84	40.01	0.010	0,33	0 309	0 83	1 035	0 160	/ 1 03	A D A	1 14	ÚC [
58-UPPER	0.009	5.16	10.0 >	0.004	0.29	0.356	0.10	0.600	0.115	1.19	< 0.86	16.0 \$	1.79
PB = Procedural Blank.											а. ²¹		
- = Data not available.													
VA = not applicable.											4		

Ag. Because of low recovery, samples were rerun twice, and yielded even lower recoveries (50%). The next step was to repeat the APDC process starting with new standard and spike solutions. This was also done twice, and in both cases the data were rejected because reagent blanks prepared along with the APDC extracts were too high. Data for metals in water are found in Tables 45 and 46. The field data for Ag is quite low and would not be of concern were the numbers doubled to account for 50% recoveries.

5.2.2 Organotins

Table 47 presents quality control data for organotin's in water, and Tables 48 and 49 present field data.

5.2.3 Organic Compounds

Base/Neutral Semivolatile Compounds

Table 50 presents quality control data for elutriate and interstitialwater analyses. Spike recoveries ranged between 54 and 81% for the four compounds spiked. Detection limits were below the levels expected, except for 3,3'-Dichlorobenzidine and Benzidine which were anticipated to be high. Data for semivolatile compounds in water are presented in Table 51.

Chlorinated Pesticides and PCBs

Quality control data for chlorinated pesticides and PCBs in elutriate and interstitial water are presented in Table 52. Detection limits for various compounds are below or at the expected values. Surrogate recoveries are reasonable, with the exception of the interstitial water sample for Station SA-Upper. Most spike recoveries were reasonable. As anticipated, spike recovery for Dicofol was very high. Values for gamma-HCH, Captan, and DDE are also slightly high. The I-Stat and RPD for the duplicate of DDD are 0.09 and 0.18, respectively. Station data for chlorinated pesticides and PCBs in elutriate and interstitial water are located in Table 53.

Herbicide Acids and Acidic Phenols

Table 54 presents quality control data for elutriate and interstitial water analyses. Spike recoveries, surrogate recoveries, detection limits, I-Stats, and RPDs were reasonable.

IABLE 45. Metals in Interstitial Water

Concentration (µg/L)

Station	ΒŸ	\$	8	ខ	J	3	Hg Hg	W	å	Sb	Se	IL	Zn
Achieved Detection Linit	0.001	0.05	0.01	0.001	0.03	0.011	0.08	0.015	0.010	1.03	1.33	0.91	0.49
SA-UPPER	0.006	18.78	< 0.01	0.022	0.54	0.313	1.63	1.391	0.414	1.19	< 1.33	1.04	4.07
SB-UPPER	0.007	13.08	< 0.01	0.026	1.07	0.415	3.85	1.826	0.494	< 1.03	< 1.33	< 0.91	7.16
SC-UPPER	0.003	12.61	< 0.01	0.034	0.51	0.364	1.60	2.400	0.540	< 1.03	< 1.33	2.08	2.28
Sequis Bay	<0.001	ı	< 0.01	0.052	< 0.03	0.324	ı	0.235	0.012	< 1.03	< 1.33		1.63
Sequim Bay PB	{0.01	1.41	< 0.01	0.129	0.35	0.880	4.74	1.130	0.333	2.38	< 1.33	1.50	7.48
				•									

PB = Procedural blank. - = data not available.

IABLE 46. Metals in Elutriate Water

1.63 1.30 1.79 1.95 1.63 3.09 0.49 1.63 Zn 1.04 1.04 < 0.91 1.56 1.56 0.91 1.04 1 F 0.86 < 0.86 < 0.86 < 0.86 < 0.85 < 0.86 < 0.86 < 1.33 ŝ < 1.03
< 1.03</pre> < 1.03< 1.03 1.03 1.19 < 1.03 < 1.03 Sb 0.012 0.010 0.116 0.230 0.310 0.150 0.172 0.431 £ Concentration (µg/L) 1.255 0.235 0.016 1.383 1.035 0.600 0.809 0.774 ï Hg (J/Bu) 0.08 0.56 0.83 0.10 0.66 0.74 0.84 1 5.149 0.382 0.011 0.462 0.309 0.356 0.265 0.324 3 < 0.03 0.03 **1**. 0.46 0.33 0.29 0.27 0.36 Շ 0.052 0.010 0.001 0.010 0.004 0.057 0.077 0.107 3 (0.0) (0.0) **{0.01 (0.01** (0.01 0.01 (0.01 (0.01 8 0.05 9.13 4.84 6.16 1.32 2.13 3.77 2 1 0.009 0.008 0.004 (0.001 <0.001 0.001 0.010 0.060 \$ 'unta Fe Channel PB Achieved Detection Sequim Bay PB Sequim Bay SB-UPPER SC-UPPER SB-UPPER Limit SA-UPPER Station

.

PB = Procedural blank. - = Data not available.

	Propyl Iin	But	<u>yltin Conce</u>	ntration (ng	/L)
Station	% Recovery	Tri	Di	Mono	Total
Achieved Detection Limit		3.1	3.5	2.5	NA
SB-UPPER SB-UPPER	47 42	< 2.1 < 3.1	3.7 < 3.5	3.4 < 2.5	7.1 NA
Sequim Bay Sequim Bay + Spike Amount Spiked % Recovery	63 74	12 188 200 88	< 2.8 160 200 80	4.4 50 200 23	16.4 NA NA NA

TABLE 47. Quality Control for Organotins in Water

* Achieved detection limit is based on a 500 mL sample. Actual level of detection varies with sample size. NA = not applicable.

	Propyl Tin	Buty	ltin Conc	entration ((ng/L)
Station	% Recovery	Tri	Di	Mono	Total
Achieved,Detection Limit		3.1	3.5	2.5	NA
SA-UPPER SB-UPPER SC-UPPER	59 57 60	< 2.7 < 3.7 < 2.7	24 21 13	< 2.2 11 6.8	24 32 19.8
Sequim Bay PB	51	< 3.0	86	12	98

TABLE 48. Organotins in Interstitial Water from Santa Fe Channel

* Achieved detection limit is based on a 500 mL sample. Actual level of detection varies with sample size. PB = procedural blank. NA = not applicable.

	Propyl Tin	Buty	ltin Conc	entration	(ng/L)
Station	% Recovery	Tri	Di	Mono	Total
Achieved Detection Limit*		3.1	3.5	2.5	NA
SA-UPPER SB-UPPER SC-UPPER	44 47 44	< 3.1 < 2.1 < 2.8	10 3.7 6.8	7.7 3.4 3.5	17.7 7.1 10.3
Santa Fe Channel PB	60	< 3.3	13	< 2.7	13
Sequim Bay PB	58	< 2.2	8.6	< 1.8	8.6

TABLE 49. Organotins in Elutriate Water from Santa Fe Channel

* Achieved detection limit is based on a 500 mL sample. Actual level of detection varies with sample size.
 PB = procedural blank.
 NA = not applicable.

ā

2

<u>|ABLE 50</u>. Quality Control for Semivolatile Compounds in Water (Conc = Concentration in ug/L, DL = Detection Limit, ND = Not Detectable, N/A = Not applicable. Blank = Reagent Water)

		מחוב, סום		מאכוור שמרו													
<u>Station</u>	Bis(2- ethyl) Conc	-chloro- ether DL	1,3-D1 benzer Conc	Ichloro- Ne DL	1,4-Di benzen Conc	chloro- e DL	1,2-Di benzen Conc	chtoro- e DL	i soproj ether Conc	97L) DL	di -n- progyle Conc	anine DL	chloro ethane Conc	or	Nitro- benzen Conc	<u>ے</u> ہے	
<u>F Lank</u>	Q	20.0	9	5.0	2	5.0	â	5.0	9	5.0	ŝ	5.0	N.	5.0	QN	20.0	
<u> </u>																	
SB-UPPER SB-UPPER DUP	9 9	20.0 20.0	9 9	5.0 5.0	99	5.0	9 Q	5.0	99	5.0	<u>9</u> 9	5.0	9 9	5.0	9 9	20.0 20.0	
Spike X Recovery																	
Lab Spike	N/N		N/A		X42		N/N		N/N		80%		N/N		N/N		
Frocedural Blanks																	
0C-EL-SFC 0C-EL-SB 0C-IW-SB	R 8 9	20.0 20.0 22.5	<u> </u>	5.0 5.6	<u> 9</u> 9 9	5.0	<u> </u>	5.0 5.6	9 9 9	5.0	<u> </u>	5.0 5.6	9 9 9	5.0 5.6	<u>9 9 9</u>	20.0 20.0 22.5	
5.87			Bis(2- ethoxy	-chloro-			Нехасћ	laro-	Hexach cvclo-	loro-	2-chlor	þ	Dimeth	- - -			
<u>Station</u>	1 sophc Conc	prone DL	me than Conc	DT g	Naphth Conc	al ene DL	but adi Conc	E E	pentad Conc	iene DL	naphth Conc D	alene	ph thal Conc	E E	Acenap Conc	hthylene DL	
<u>B Lank</u>	9	5.0	9	20.0	Q	5.0	Q	5.0	Q	20.0	, ON	5.0	QN	5.0	Q	5.0	
<u>Quplicate</u>								ŗ									
SB-UPPER SB-UPPER DUP	<u>8</u> 9	5.0	22	20.0 20.0	99	5.0	<u>9</u> 9	5.0	29	20.0 20.0	<u> </u>	5.0	9 9	5.0	<u>9</u> 9	5.0	
Spike X Recovery																	
Lab Spike	N/N		N/N		N/N		N/A		N/N		N/A		N/A		N/N		
<u>Procedural Blanks</u>																	
9C-EL-SFC 9C-EL-SB 9C-1V-SB	<u>9 9 9</u>	5.0 5.6	<u>999</u>	20.0 20.0 22.5	999	5.0 5.6	222	5.0 5.6	999 999	20.0 20.0 22.5	<u> </u>	5.0 5.6	<u> </u>	5.0 5.6	<u>999</u>	5.0	

<u>[ABLE 50</u>. (Continued)

ü

	0 - Y C								-	4-Chi	OLO-			N-Nİt	roso-		•	
Station	tolue Conc	Ē	Acer	apht D	hene	conc Conc		phthal Conc	bi at	Drei Concilia Concilia	rlether Dl	Fluor	ಕ್ಷ ವ	dipher amine Conc	- DF	4-Bro pheny Conc	nophenyl - Lether DL	
<u>B lank</u>	QN	20.0	QN	in .	0.	QN	20.0	9	5.0	QN	5.0	9	5.0	Q	5.0	Q	5.0	
<u>Duplicate</u>																		
Sß-UPPER Sß-UPPER DUP	9 9	20.0 20.0		เก๋เก๋	00	9 9 9	20.0 20.0	물모	5.0	<u> 9</u> 9	5.0	9 9	5.0	Q Q	5.0	QN QN	5.0	
<u>Spike X Recovery</u>																		
Lab Spike	N/N		(9)	×		81%		N/N		N/N		N/N		N/N		N/A		
Procedural Blanks																		
0C-EL-SFC 0C-EL-S8 0C-1N-S8	Q Q Q	20.0			000	N 9 9	20.0 20.0 22.5	<u> </u>	5.0 5.6	9 9 9 9	5.0 5.6	9 9 9	5.0	QN QN QN	5.0 5.6	9 9 9 9	5.0	
<u>Station</u>	Hexac benzei Conc	hloro De DL	Phen Conc	b th	L Ten	Anthra Conc	DL	Di-n-t phthal Conc	utyl- ate DL	fluor Conc	anthene DL	Pyren Conc	Б	Butyl- benzy phthal Conc	late DL	3,3'- Dichlo benzio Conc	oro- dine DL	
<u>B lank</u>	Q	5.0	Q	Ń	0	QN	5.0	9	5.0	9	5.0	9	5.0	â	5.0	â	50.0	
<u>Duplicate</u>																		
SB-UPPER SB-UPPER DUP	<u> </u>	5.0	<u>9</u> 9		00	9 9	5.0	<u>9</u> 9	5.0	22	5.0	22	5.0	a a	5.0	22	50.0 50.0	
Spike X Recovery																		
Lub Spike	N/N		1/H	<		V/N*		N/N		N/N		N/A		N/N		N/N		
Procedural Blanks																		
QC-EL-SFC QC-EL-SB QC-IV-SB	222	0.0.9 0.0.9	<u> 9</u> 9 9	เก้เก้เก้	000	999	0.0.9	<u>999</u>	5.0	9 9 9	5.0	<u> 9</u> 9 9	2.0	999	5.0	225	50.0 50.0	

TABLE 50. (Continued)

Station	Benzo anthru Conc	(a) - licene DL	Chryse Conc	울리	Bis(2- hexyl) phthal Conc	ethyl- ate DL	Dí-n-c phthal Conc	ctyl- ate DL	Benzo(fluorar Conc	b)- DL	Benzo(fluorar Conc	there DL	Benzo(pyrene Conc	e)-	Indeno (1,2,3 pyrene Conc	- 6 11
<u>B l ank</u>	Q	5.0	Q	5.0	140.0	5.0	7.4	5.0	Q	5.0	QN	5.0	QN	5.0	QN	5.0
<u>Duplicate</u>																
SB-UPPER SB-UPPER DUP	QN QN	5.0	R 8	5.0	9 9	5.0	N 9	5.0	9 9	5.0	R 8	5.0	QN QN	5.0	R R	5.0
Spike X Recovery																
Lab Spike	N/A		N/A		N/N		N/A		N/A		N/N		N/A		N/N	
Procedural Blanks																
	9 9 9 9	5.0 5.6	9 9 9	5.0 5.6	200.0 ND ND	5.0	<u>999</u>	5.0 5.6	9 9 9	5.0 5.6 5.6	<u> </u>	5.0 5.6	999	5.0 5.6		5.0 5.6
<u>Station</u>	D iben: anthri Conc	zo(A,H)- acene DL	Benzo(peryle <u>Conc</u>	G,H,I)- ne DL	1,2-Di hydraz Conc	phenyl - ine Dl	Benzic Conc	ine DL								
<u>Blank</u>	QN	5.0	QN	5.0	QN	5.0	QN	100.0								
<u>Duplicate</u>																
SB-UPPER SB-UPPER DUP	9 9	5.0	9 9	5.0	9 9	5.0	9 9	100.0								
Spike X Recovery																
i.ab Spike	N/N		N/A		N/N		N/N									
<u>Procedural Blanks</u>																
QC-EL-SFC QC-EL-SB QC-IV-SB	<u> </u>	5.0 5.6	<u>999</u>	5.0 5.6	<u>9999</u>	5.0	<u> 9</u> 9 9	100.0 100.0 112.4								

<u>TABLE 51</u>. Semivolatile Compounds in Water (Conc = Concentration in ug/L, DL = Detection Limit, ND = Not detectable)

			_			_	eue							
드 말		20.0	20.0		22.5	22.0	phthyl DL		5.0	5.0		5.6	5.6 2.5	•
Ni tro benzei Conc		N N	Q		99	2	Acenal		QN	9 9		Q	99]
Б		5.0	5.0		5.6	5.5	yl- ate DL		2.0	2.0		5.6	ю. У. С.	1
Hexa- chlorc ethane Conc		99	9		29	2	D imeth phthal Conc		Q	99		8	99	ł
oso- amine DL		5.0	5.0		5.6	5.5	ro- al ene DL		5.0	5.0		5.6	6 .5	-
W-nitr di-n- progyl Conc		29	2		29	2	2-chlo naphth Conc		QX	99		9	29	!
hloro- yl) DL		5.0	5.0		5.6	5.5	oro-		20.0	50.0 50.0		22.5	2.5	
Bis(2-ci isoprop ether Conc		22	9		99	2	Hexachl cyclo- pentadi Conc I		2	55		2	29	
oro-	later	00	0	<u>Vater</u>	v o vo		6	later	0	00	Water	20	50 10	
Dichl	iate l		1	ri tial			ich lor diene	fate l	5.		itial	5.	-	;)
	Flutr		¥	Intersi			hexa buta Conc	Elutr	Ŭ		Interst	Q		
chloro- 6 DL		2.0	2.0		5.6	5.5	al ene DL		5.0	0.0 0.0		5.6	5. 2. 5	
1,4-ŋi benzen Conc		<u> 9</u> 9	9		29	9	Naphth Conc		Ŋ	9 9		QN	29	ļ
l oro-		0.0	0.		9.9	L.	l oro-		0.0	0.0		2.5	2.5	
1,3-Dich benzene Conc [22	2		22	2	3is(2-ch ethoxy)- nethane Conc D		Q	22		ON 2		
		00	0		5	. 0								
2-chlo [)ethe DL		ຂີ່ຂີ່	50.		22.2	8	lorone DL		5.0	0.0 0.0		5.6	5 N. 10	
Bis() ethyl Conc		999	Ð			9	I sept		Q			QN	22	
		, ~ ~ .	~			~			~	, 61 61				
Station		SA-UPPEI SB-UPPEI	SC-UPPEI		SA-UPPEF	SC-UPPE	Station		SA-UPPER	SB-UPPER SC-UPPER		SA-UPPER	SB-UPPER	

(Continued)
51
L L L
8
Ā
-

-Bromophenyl henylether onc DL		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 ND 5.5	,3'- ichloro- enzidine onc <u>DL</u>		ND 50.0 ND 50.0 ND 50.0		ND 56.2 ND 56.2 ND 54.9
N-Nitroso- diphenyl- 4 amine pl Conc DL C		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 ND 5.5	Butyl-3 benzyl-0 phthalateb <u>conc01</u> <u>C</u>		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 ND 5.5
Fluorene Conc DL		ND 5.0 ND 5.0		00 00 00 00 00 00 00 00 00 00 00 00 00	Pyrene Conc <u>DL</u>		ND 5.0 ND 5.0 5.0		ND 5.6 ND 5.6 ND 5.5
4-Chloro- phenyl- phenylether Conc DL		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 5.5	Fluoranthene Conc DL		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 ND 5.5
Diethyl- phthalate Conc DL	Elutriate Vater	ND 5.0 ND 5.0 ND 5.0	iterstitial Water	80 5.6 8.7 8.7 8.7	Di-n-butyi- phthalate Conc DL	<u>Elutriate Vater</u>	ND 5.0 ND 5.0 ND 5.0	iterstitial Water	ND 5.6 ND 5.6 ND 5.5
2,4-Dinitro- toluene Conc DL		ND 20.0 ND 20.0 ND 20.0	되	ND 22.5 ND 22.5 ND 22.0	Anthracene Conc DL		ND 5.0 ND 5.0 ND 5.0	л Ц	ND 5.6 ND 5.6 ND 5.5
Acenaph thene Conc DL		ND 5.0 ND 5.0 ND 5.0	-	ND 5.6 ND 5.6 ND 5.5	Phenanthrene ConcDL		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 ND 5.5
2,6-Dinitro- tolu ene Conc DL		ND 20.0 ND 20.0 ND 20.0		ND 22.5 ND 22.5 ND 22.0	Hexach loro- benzene Conc DL		ND 5.0 ND 5.0 ND 5.0		ND 5.6 ND 5.6 5.5
Station		SA-UPPER SB-UPPER SC-UPPER		SA - UPPER SB - UPPER SC - UPPER	<u>Station</u>		SA-UPPER SB-UPPER SC-UPPER		SA -UPPER SB -UPPER SC -UPPER

(Continued)	
TABLE 51.	

ы Б. Э.		5.0	0°0		5.6	5.5 5.5							6
Indene (1,2,3 Pyrene Conc		2 9	2 9		9	2 2							
		5.0	2.0		5.6	• •							
Benzo		99	2 2		9	2 2							
k)- nthene DL		5.0	2.0		5.6	5.5	*						
Benzo(fluora Conc		29	2 2		웆	2 2							
)- thene		0.0			9	.							
lenzo(b) fluorant conc []		99			2								
1 - U	ater	~ ~		<u>Water</u>		• • • •		ater	0.0	•	<u>Vater</u>	4	4 0
octyl I ate DL	ate 4	5.5	5.0	tial	5		dia	ate V	<u>5</u> 5	100	tial	112	<u>8</u>
Di-n- Conc	Elutri	99	2 2	nterst	9	2 2	Benzi Conc	Elutria	22	QN	ntersti	Q	<u>9</u> 9
ethyl- ate Dl		0.0	5.0	. –	5.6	5.5	thenyl- ine DL		5.0	5.0	H	5.6	5.5
Bis(2- hexyl) phthalu Conc		58.0 M	55		99	2 2	1,2-Dip hydrazi Conc			Q		9	99
		.	. o		vi v	٥vi	+'1, +		00	o		9	ەبن
ysene C D		•• • •	20		<u>د</u> م		zo(G, l			n.			nini
50		2 2	ĬZ		23		Ben.						불물
(a)- Icene		5.0	2.0		5.6	5.5	o(A,H)- icene Di		5.0	2.0		5.6	0 <u>1</u> 0 1
Benzo(anthra Conc		QN QN	2		29	2 9	D i benz anthra Conc		9 9	9		9	2 2
Station		SA-UPPER SB-UPPER	SC-UPPER		SA-UPPER	SC-UPPER	Station		SA-UPPER SB-UPPER	SC-UPPER		SA-UPPER	se-upper sc-upper

TABLE 52.

Quality Control for Chlorinated Pesticides and PCBs in Water (ug/L) (ND = Not detected; a,b,c = Due to coelution on primary column, quantification from secondary column analysis).

	Station	Surrogate Percent <u>Recovery</u>	Alpha HCH	Pentachlo ní tro- benzene	ro- Gamma <u>HCH</u>	Beta HCH	Hepta- Chlor	Aldrin	Dicofol	Garma Chlor- dene	Endo- sulfan I ^a	Alpha Chlordane ^a
	Detection Limit		0.0063	0.0063	0.006	3 0.019	0.0063	0.0063	0.013	0.013	0.0063	0.063
	<u>Blank</u>	39	9	QN	9	QN	9	9	QN	QN	2	QR
	<u>Duplicate</u>											
	SB-UPPER SB-UPPER DUP	22	R 9	Q Q	<u>9</u> 9	<u>R</u>	웃웃	9 9	99	99	99	9 9
	Procedural Blank											
	0C-EL-SFC 0C-EL-S8 0C-1W-S8	<u>ឌ</u> ភភ	9 9 9	9 99	<u>999</u>	<u> 9</u> 9 9	999	9 2 9	9 9 9			9 9 9
	Spike Recovery (%)	82	64	61	265	86	8	78	2530	96	108	110
5.93	Station	Surrogate Percent Recovery	300	DDT	000	Dieldrin ^b	Captar		u 11 1	ndrin ^c	<u> Pinocap^c</u>	
	Detection Limits		0.0063	0.013	0_0063	0.0063	0.063	0.00	63 0	.0063	0.063	
	<u>Blank</u>	39	Q	Q	9	Ð	9	9		Ð	QN	
	<u>Duplicate</u>											
	SB-UPPER SB-UPPER DUP	85	<u>9</u> 9	99	0.049	<u>9</u> 9	<u>9</u> 9	0.0	0 C)	<u>e</u> e	9 9	
	Procedural Blanks											
	0C-EL-SFC 0C-EL-SB 0C-1W-SB	8 X K	9 9 9	<u> </u>	<u>9</u> 999	9 9 9	292	물문문		999	9999	
	Spike Recovery (X)	R	1 95	105	103	195	212	105	-	18	157	

TABLE 52 (Continued)

Station	Surrogate Percent <u>Recovery</u>	Endo- sul fan <u>Sul fate</u>	Methoxy- chlor	Aroci or 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Toxaphene
Detection Limit		0.013	0.025	0.78	0.78	0.78	0.78	QN
Blank	39	9	2	9	9	QN	9	QN
<u>Duplicate</u>								
SB-UPPER SB-UPPER DUP	85	0.11 ND	ND 0.19	22	9 9	<u> 9</u> 9	22	22
Procedural Blanks								
OC-EL-SFC	88	9	9	Q	Q	Q	9	QN
QC-EL-SB	ស	Q	Q	QN	QN	QN	Q	QN
0C-14-SB	R	Q	Q	Q	Q	Q.	9	Q.
Spike Recovery (%)	82	127	111	QN	9	, 9	9	2

Chlorinated Pesticides and PCBs in Water (ug/L) (ND = Not detected; a.b,c = Due to coelution on primary column, quantification from secondary column analysis). TABLE 53.

- -

<u>Station</u>	Surrogate Percent <u>Recovery</u>	Al pha HCH	Pentachloro ni tro- benzene	- Gamma HCH	Beta HCH	Hepta- Chlor	Ndrin	Dicofol	Germa Chlor- dane	Endo- sulfan I ^a	Al pha Ch l ordane ^a
Detection Limit		0.0063	0.0063	0.0063	0.019	0.0063 (0.0063	0.013	0.013	0.0063	0.063
					Elutriat	e Vater					
SA-UPPER SB-UPPER	28	99	99	22	99	22	99	99	22	99	22
SC-UPPER	8	Q	2	2	9	9	9	Q	Q	QN	QN
				ㅋ	nterstiti	al Vater					
SA-UPPER	o	9	2	9	Q	QN	9	9	9	Q	2
SB-UPPER SC-UPPER	3 3	22	2 2	99	<u> </u>	99	e e	<u> </u>	웃옷	99	99
<u>Station</u>	Surrogate Percent <u>Recovery</u>	DDE	100 D	00	eldrin ^b	Çaptan ^t	Endo Sulfi		dr in ^c	<u>Dinocap^c</u>	
Detection Limit		0.0063	0.013 0	.0063 0.	0063	0.063	0.00	5	.0063	0.063	
					Elutriat	e Vater					
SA-UPPER SB-UPPER SC-UPPER	F 2 8	999		.041 ND .049 ND .022 ND		<u>9999</u>	9999				
				ᅴ	nterstiti	al Water					
SA-UPPER	0 4	9	9	. 049 NG	_	2	2	¥ :	-	2 !	
SC-UPPER	8	2 9	29	IN 120.0		99	2 2	걸		2 2	

5.95

(Continued)
TABLE 53

	Surrogate Percent	Endo- sulfan	Methoxy-	Aroclor	Aroclor	Aroclor	Aroclor	
STATION	Recovery	<u>Sulfate</u>	chlor	1242	1248	1254	1260	<u>Toxaphene</u>
Detection Limit		0.013	0.025	0.78	0.78	0.78	0.78	QN
			Ш,	<u>Elutríate l</u>	later			
SA-UPPER	11	Q	QN	9	Q	g	QN	C N
SB-UPPER	76	0.11	QN	Q	9	9		9
SC-UPPER	80	QN	QN	9	Q	9	9	9
			<u>r</u>	terstitial	Water			
SA-UPPER	0	QN	QN	Q	9	2	Q	QN
SB-UPPER	65	QN	QN	9	Q		9	QN
SC-UPPER	69	QN	QN	QN	Q	QN	Q	Q

Quality Control for Herbicide Acids and Acidic Phenols (ug/L) in Elutriate and Interstitial Water (ND=Not detected, NA = Not applicable, i-Stat and RPD defined in text). <u>TABLE 54</u>.

<u>Station</u>	Surrogate Recovery (%)	2-Nítro- Phenol	MCPA	4-Nitro- Phenol	2.4-0	2-ME- <u>4.6-DNP</u>	PCP	<u>Silvex</u>	2.4-DNP	2.4.5-1	2.4-DB	<u>D i noseb</u>
Detection Limit		0.50	99	10	2.0	0.50	0.50	0.50	0.50	0.50	2.0	0.50
<u>Blank</u>	11	Q	Q	QN	Q	Q	0.003	0.009	QN	QN	9	QN
<u>Dupl i cate</u> SB-UPPER SB-UPPER DUP	83 85	0.15 0.14	5 20	0.49 ND	0.070 0.070	0.038	QN QN	0.007 ND	0.059 0.051	0.042 0.043	0.37 0.46	ND 0.051
I-Stat RPD		0.03	0.09 0.18	NN NN	00	0.04	Y N N	N N	0.07 0.15	0.01 0.02	0.11 0.22	VN NN
Procedural Blanks												
QC-EL-SFC QC-EL-SB QC-IV-SB	89 96 90	0.056 0.082 ND	м М 2.5	0.61 0.61	ND 0.061 ND	0.012 0.010 0.014	0.005 0.009 0.012	0.018 0.017 0.030	<u> 9</u> 9 9	0.051 0.041 0.060	(1.12 ND ND	0.018 0.014 0.032
Spike Recovery (%)												
Reagent Water	80	8	160	62	102	69	104	104	23	104	203	60

5.97

ł

Station data for herbicide acids and acidic phenols in water are found in Table 55.

Organophosphorus Pesticides

Quality control data for organophosphorus pesticides in water are shown in Table 56. Surrogate recoveries are reasonable except for one procedural blanks in which part of the sample was lost. Spike recoveries ranged between 76 and 112 percent. Detection limits were below those expected. Table 57 presents the data for the organophosphorus interstitial and elutriate water samples.

Dioxins and Furans

Table 58 presents the quality control data for dioxins and furans in water. Detection limits vary considerably, with many of them below the expected amount. Unfortunately, there was not sufficient sample material to repeat the analyses and improve the detection limits. Station data are found in Table 59. TABLE 55. Herbicide Acids and Acidic Phenols (ug/L) in Elutriate and Interstitial Water (ND = Not detected).

Dinoseb	0.50		Q.		750.0		0.030	0.024	0.11
2,4-DB	2.0		0.33	0.37	0.80		0.36	0.33	
2.4.5-1	0.50		0.062	0.042	0.061		0.11	0.072	0.13
2.4-DNP	0.50		0.026	0.059	60.0		0.016	2	0.10
Silvex	0.50		0.015	0.007	Q		0.066	0.017	2
22	0.50	ater	0.007	2 9	QN	Water	0.047	0.012	120°0
2-ME- 4.6-DNP	0.50	utriate V	0.029	0.038		erstitial	0.014	QN	0.088
2.4-0	2.0	ū	0.11	0.070	10.0	Int	0.14	2.0	0.23
4-Nitro- Phenol	10		0.36	0.49	2		Ŵ	2.1	c.1
MCPA	60		8.6	ې ۲	2		8.3	22	44
2-Nitro- <u>Phenol</u>	0.50		0.10	C. 15	2		QN	2 g	0.20
Surrogate Percent <u>Recovery</u>			69	ខេះ	741		5	<u>ب</u>	84
<u>Staticn</u>	Detection Limit		SA-UPPER	SB-UPPER	SC-UPTER		SA-UPPER	SB-UPPER	SC-UFFER

Quality Control for Organophosphorus Pesticides (ug/L) in Water (ND = Not detectable; a = A portion of sample was lost during preparation, thereby affecting the recovery) TABLE 56.

ħ

	Surrogate Recovery	Mevin-	Dia-	Parathion-	Mala-	Azinphos-	Para-
Station	(%)	phos	zinon	methyl	thion	methyl	thion
Detection Limit		4.0	4.0	4.0	4.0	4.0	4.0
<u>Blank</u>	11	QN	ND	ND	QN	QN	ND
Duplicate							
SB-UPPER SB-UPPER DUP	132 140	QN	QN	QN	QN	QN	QN
Spike Recovery (%)	62	76	96	66	104	102	112
Procedural Blanks							
QC-EL-SFC QC-EL-SB QC-IW-SB	125 _a 39 ^a 113	PN QN	QN QN N			QNN	QN QN N

5.100

۰.

. .

Station	Surrogate Recovery (%)	Mevin- phos	Dia- zinon	Parathion- methyl	Mala- thion	Azinphos- methyl	Para- thion
Detection Limit		4.0	4.0	4.0	4.0	4.0	4.0
			Elutri	iate Water			
SA-UPPER SB-UPPER SC-UPPER	123 132 111	QQQ			N N N	QN QN	QN QN N
÷.			Interst	itial Water			
SA-UPPER SB-UPPER SC-UPPER	102 124 122	QQQ	QNQQ	QQQ		O O O	ON ON

<u>TABLE 57.</u> Organophosphorus Pesticides (ug/L) in Elutriate and Interstitial Water (ND = Not detected)

Quality Control for Dioxins (-CDD) and Furans (-CDF) (ug/L) in Elutriate and Interstitial Water (Conc = Concentration, DL = Detection Limit, ND = Not detected)

<u>TABLE 58</u>.

-

=

	Total Tetra -CDD	e F	Tota Pent	i e	Tota Nexa - CDD	l	Total Kepta -CDD		Octa -CDD	
STATION	Conc	DL	Conc	ы	Conc	Ы	Conc	Ы	Conc	DL
<u>Blark</u>	QN	0.000660	QN	0.000170	QN	0.000032	9	0.000170	0.000110	N/N
<u>Duplicate</u>										
SB-(JPPER SB-(JPPER DUP	9 9	0.000130 0.000110	<u>9</u> 9	0.000120 0.000087	<u>9</u> 9	0.000028 0.000022	ND 0.000053	0,000010	ND 0.000060	0.000095 N/A
<u>Procedural Blanks</u>										
QC-EL-SFC QC-EL-SB	<u>9</u> 9	0.000110 0.000290	99	0.000053 0.000270	<u>8</u> 8	0.000011	0.000045 ND	0.000170	0.000054 ND	N/A 0.000340
0C-1N-SB	Q	0.000110	Q	0.000130	QN	0.000028	Q	0.000078	ÛN	0.00097
5	22	otal etra	F 4	otal enta	Te Te	ital Xa	He	al Dta	8	ta
201 Station	Conc	CDF (a) DL	Conc -	DF	Conc -C	DF DL		F	Conc	DF DL
<u>Blark</u>	Q	0.000130	QN	0.000074	QN	0.000038	Q	0.000064	QN	0.000130
<u>Duplicate</u>										
SB-LJPPER SB-LJPPER DUP	Q Q	0.000084 0.000095	Q Q	0.000040		0.000035	Q Q	0.000051 0.000027	9 9	0.000110 0.000130
<u>Procedural Blanks</u>					1					
QC-EL-SFC	29	0.00038	29	0.000024	29	0.000015	2	0.000019	29	0.000073
4C-11-28	55	0.000094	53	0.000051	5 3	0.000026	5 5	0.000022	<u> </u>	0.000110

Dioxins (-CDD) and Furans (-CDF) (ug/L) in Elutriate and Interstitial Water (Conc = Concentration, DL = Detection Limit, ND = Not detected)

TABLE 59.

-

			,							0900																							
	Ы		N/A 0.000095 N/A		N/A 0.000093 N/A		DF DF	ы		ND 0.000 0.000110 0.000069		0.000049	0.000083																				
	Octa - CDD Conc		0.000040 ND 0.000053		0.000070 MD 0.000071		80	Conc		UN ND		99	2																				
	Б		0.000170 0.000077 0.000170		0.000170 0.000060 0.000170		otal spta DF	ы		ND 0.0000 0.000051 0.000022		0.000028	0.00020																				
	Total Hepta -CDD Conc		0.000052 ND 0.000045		0.000048 ND Ü.000070	To	5 ¥ 7	Conc	ı.)20 ND ND		89	9																				
	DL	<u>Vater</u>	0.000017 0.000028 0.000019	L Water	0.000021 0.000020 0.000021		tal Xa DF	Ы	<u>Water</u>	0.000033 0.000033 0.000022	<u>l</u> yater	0.000016	0.00012																				
	Tota Hexa - CDD Conc	-CDD Conc Elutriate 1	9999	Interstitial	Interstitia	nterstitial	999		은 훈 다	Conc	<u>Elutriate</u>		Interstitia	29	9																		
	l DL		0.000050 0.000120 0.000043	-1	0.000048 0.000073 0.000061		tal nta DF	Ы		0.000032 0.000040 0.000024	-,	0.000024	0.000058																				
	Tota Pent - CDD Conc	Conc	9 9 9																						9 9 9		5 5 7 - 2 7	Conc		ON ON ON		99	9
	(a) DL	0.00080 0.000130 0.000660													0.000160 0.000130 0.000095		tal tra DF (a)	Ы		0.000031 0.000084 0.000033		0.000059	0.000082 0.000055										
	Total Tetra - CDD Conc		ND ND 0.000059		9 9 9 9			Conc				22	2																				
	STATION		SA-IJPPER SB-IJPPER SC-IJPPER		SA-LJPPER SB-LJPPER SC-LJPPER			<u>Station</u>		SA-LIPPER SB-LIPPER SC-LIPPER		SA-LIPPER SB-LIPPER	SC-LIPPER																				
								5	. 103	3																							

6.0 QUALITY ASSURANCE

Several steps have been taken along the way to ensure that proper quality assurance of the program has been conducted. The Battelle Quality Assurance Engineer, Mr. Rob Cuello, audited the work plan before it was sent to the USACE for approval. In addition, Mr. Cuello was on-site at MSL to audit the handling of the cores from the time they arrived in the laboratory to the time they were ready for chemical analysis. Mr. Cuello met with the QA personnel at the Battelle facility in Columbus, Ohio, to ensure that appropriate QA measures were to be conducted. While in Columbus, Mr. Cuello met with the organic chemists at the point that they were extracting the sediments in order to conduct an audit and to review the protocols. Mr. Cuello audited the data on metals, organotins, TOC, and oil and grease when it was completed. Quality Assurance personnel located in Columbus audited the data on organic compounds. Finally, Mr. Cuello reviewed the report and audited the data tables in the report.

7.0 PROJECT PERSONNEL

Numerous people were involved in conducting Task 4. For the USACE, Ms. Ruth Brodie served as Project Manager, Ms. Sandy Lemlich served as contract manager and provided principal technical oversight, and Dr. Richard Lee provided technical support. Dr. Betsy Brown served as Program Manager for the MSL. Figure 10 presents the organization chart for the MSL participants. Personnel who comprised the field sampling team are presented in Table 60.

شكك

TABLE 60. Field Sampling Team

Participant

<u>Responsibility</u>

U.S. Army Corps of Engineers

Sandy Lemlich Edgar Poe Brian Walls Contract Manager Scientist Scientist

<u>Battelle</u>

Betsy Brown James Coley Karin Hoover Steve Kiesser Nancy P. Kohn Jack Q. Word Program Manager Sampling Preparation & Coordination Scientist Scientist Scientist & Sample Tracking Chief Scientist

Manson Pacific Construction and Engineering

Charles Gibson Randy Morgan Keith Orr Ruben Virgin Logistics Support, Barge-Vibracoring Barge-Vibracoring Crane Operator for Barge-Vibracoring Barge-Vibracoring

Land and Sea Surveyors

John Corona Robert Dellaert Surveyor Surveyor

Westar Marine Services

Bill Hammond Joe Wirth Deckhand, Vibratory Hammer Operator Skipper, <u>Bearcat</u>

Slackwater Towboat Company

Thomas Decker

加尔蒂尔斯

Skipper, <u>California Eagle</u>

7.3

-

đ

8.0 <u>REFERENCES</u>

Andreae, M.O. 1977. "Determination of Arsenic Species in Natural Waters." <u>Anal. Chem.</u> 49:820.

American Public Health Association (APHA). 1985. <u>Standard Methods for the Examination of Water and Wastewater</u>. 16th edition. American Public Health Association (APHA), American Water Works Association (AWWA), Water Pollution Control Federation (WPCF), Washington, D.C.

Barry, R. G. 1983. <u>Late-Pleistocene Climatology: Late Quaternary</u> <u>Environments of the United States</u>. Vol. 1, ed. H. E. Wright, Univ. of Minnesota Press, Minneapolis, Minnesota.

Bloom, N.S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-nanogram per Liter Levels." <u>Mar. Chem.</u> 14:49-59.

Bloom, N.S., and E.A. Crecelius. 1984a. "Determination of Silver in Sea Water by Coprecipitation with Cobalt Pyrrolidinedithiocarbamate and Zeeman Graphite-Furnace Atomic Absorption Spectroscopy." <u>Anal. Chimi. Acta</u> 156:139-145.

Bloom, N.S., and E.A. Crecelius. 1984b. "Distribution of Silver, Mercury, Lead, Copper and Cadmium in Central Puget Sound Sediments." <u>Mar. Chem.</u> 21:377-390.

California Department of Health Services. 1988. List of Abandoned Sites Adjacent to Richmond Harbor, Contra Costa County, California. (Provided by USACE).

CH2M Hill. 1988. "Site Characterization Technical Memorandum, Levin Richmond Terminal Corporation Site." Prepared for California Department of Health Services, Sacramento, California.

Climate, Long-Range Investigation, Mapping, and Prediction Project (CLIMAP). 1984. <u>The Last Interglacial Ocean: Quaternary Research</u>. Vol. 21:123-224.

Federal Register. 1977. "Ocean Dumping. Final Revisions of Regulations." <u>Fed</u> <u>Reg</u> Part VI, Vol. 42, No. 7.

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. "Standard Analytical Procedures of the NOAA National Analytical Facility, 1988. New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants." Prepared for the NOAA National Status and Trends Program and the Outer Continental Shelf Environmental Assessment Program. Environmental Conservation Division, Northwest and Alaska Fisheries Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration. Seattle, Washington.

Nielson, K.K., and R.W. Sanders. 1983. "Multielement Analysis of Unweighed Biological and Geological Samples Using Backscatter and Fundamental Parameters." <u>Adv. X-Ray Anal.</u> 26:385-390.

Palermo, M.R. 1986. <u>Development of a Modified Elutriate Test for Estimating</u> the Quality of Effluent from Confined Dredged Material Disposal Areas. Technical Report D-86-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Puget Sound Estuary Program (PSEP). 1986. <u>Recommended Protocols for</u> <u>Measuring Selected Environmental Variables in Puget Sound</u>. <u>Final Report</u>. TC-3991-04, Prepared by Tetra Tech, Inc. for the U.S. Environmental Protection Agency.

Stottlemyre, J. A., G. M. Petrie, G. L. Benson and J. T. Zellmer. 1981. <u>A Conceptual Model for Release Scenario Analysis of a Hypothetical Site in</u> <u>Columbia Plateau Basalts</u>. PNL-2892, Pacific Northwest Laboratory, Richland, Washington.

Unger, M.A., W.G. MacIntyre, J. Greaves, and R.J. Huggett. 1986. "GC Determination of Butyltins in Natural Waters by Flame Photometric Detection of Hexyl Derivatives with Mass Spectrometric Confirmation." <u>Chemosphere</u> 15(4):461-470.

U.S. Army Corps of Engineers (USACE). 1975a. <u>Maintenance Dredging: Existing</u> <u>Navigation Projects, San Francisco Bay Region, California</u>, Final Composite Environmental Statement, December, 1975. U.S. Army Corps of Engineers, San Francisco District.

U.S. Army Corps of Engineers (USACE). 1975b. <u>Dredge Disposal Study: San</u> <u>Francisco Bay and Estuary, Appendix F: Crystalline Matrix</u>. U.S. Army Corps of Engineers, San Francisco District.

U.S. Army Corps of Engineers (USACE). 1979. <u>Dredge Disposal Study: San</u> <u>Francisco Bay and Estuary, Appendix B: Pollutant Distribution</u>. U.S. Army Corps of Enginers, San Francisco District.

U.S. Army Corps of Engineers (USACE). 1988. <u>Oakland Harbor: Deep Draft</u> <u>Navigation Improvements Design Memorandum 1. General Design</u>. U.S. Army Corps of Engineers, San Francisco District.

U.S. Environmental Protection Agency (USEPA). 1986. <u>Test Methods for</u> <u>Evaluating Solid Waste: Physical/Chemical Methods. SW-846.</u> U.S. Document No. 955-001-00000, U.S.Environmental Protection Agency, Washington, D.C.

APPENDIX A

CHAIN-OF-CUSTODY AND SAMPLE PREPARATION FORMS

DATE:

1. . III . . .

PAGE OF (Continue numbering between dates)

SEDIMENT SAMPLE CHAIN OF CUSTODY BATTELLE PACIFIC NORTHWEST USACE RICHMOND HARBOR PROJECT

COLLECTION FERIOR):										
NUMBER OF CORES LOADED ON TRUCK FOR PERIOD:											
TOTAL NUMBER OF (CORES LOADED TO DAT	E:									
SAMPLE NUMBER	SECTION NUMBER	RELEASED BY/ DATE	ACCEPTED BY/ DATE								
	.										
a yana ya kata ya kata kata ya											
	میں پر بین ور بر اور اور اور اور اور اور اور اور اور او										
		/ 479-785 									

50 m
DATE:			PAGE OF
	WATER SAMP BATTELLE USACE RICH	PLE CHAIN OF CUSTODY PACIFIC NORTHWEST MOND HARBOR PROJECT	
COLLECTION PERIC)D:	-	
NUMBER OF CARBON	S LOADED ON TRUCK	FOR PERIOD:	
TOTAL NUMBER OF	CARBOYS LOADED TO	DATE:	
SAMPLE NUMBER	CARBOY NUMBER	RELEASED BY/ DATE	ACCEPTED BY/ DATE
and the first of the second second second second second second second second second second second second second			
		· · · ·	
And State of the Contract of the State of th			s

٨

- Miris - Miris

A.2

BATTELLE Marine Sciences Laboratory USACE Richmond Harbor Program

Ĭ

SAMPLE PREPARATION FORM

DATE	1177-1141-1-		
STATION			
CORE SECTIONS			
		-	
		-	
ANALYTICAL GROUP A	В		
SUBSAMPLE DESIGNATIONS:	Bulk Sediment	Elutriate	Interstitial
METALS/TOC ORGANOTIN/0&G	S-M S-T-	E-M E-T-	I-M I-T-
ORGANICS	S-0	E-0	I-0
PHYSICAL (USACE)	S-P		
		INITIALS	
COMMENTS			
· · · · · · · · · · · · · · · · · · ·			
		Managan and Albert an ann an Albert agus in a su an Anna ann an An	
	A.3		

BATTELLE Marine Sciences Laboratory USACE Richmond Harbor Program

	SAMPLE PREPARATI	<u>ON FORM</u>	
DATE			
STATION		• •	
CORE SECTIONS			
			·
ANALYTICAL GROUP A	В		
SUBSAMPLE DESIGNATIONS:	Bulk Sediment		
METALS/TOC ORGANOTIN/0&G	S-M S-T-		
ORGANICS	S-0		
PHYSICAL (USACE)	S-P		
		INITIALS	
COMMENTS			
	· · · · · · · · · · · · · · · · · · ·		
	A.4		

մերեկերերը, եր որն

Ż

CHEMISTRY SAMPLE CUSTODY FORM

PAGE ____ of ____

USACE RI BATTELLE 206/683-	CHMOND HARBOR PRO MARINE SCIENCES 4151; FAX 206/683	JECT LABORATORY, 439 W. Sequim B -1059	ay Rd., Sequim, WA 98382,
SAMPLES ORGANIZA ADDRESS: CITY, ST	SENT TO: TION: ATE, ZIP:		
SAMPLE T	YPE:	ANALYSIS REQU	ESTED:
SPECIAL	INSTRUCTIONS:		
Sample <u>Number</u>	Identification Number	Released By / Date	Accepted By / Date *
			Anna an an an an an an an an an an an an
وروب المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا			
			·
			•
·			
		and a first of the second second second second second second second second second second second second second s	

 * Please sign, date, and send copy with <u>original</u> signature to: Nancy P. Kohn, Battelle Marine Sciences Laboratory, 439 West Sequim Bay Road, Sequim, WA 98382, 206/83-4151

. .

BATTELLE Marine Sciences Laboratory USACE Richmond Harbor Program

Page _____ of

N

THERE WILL BE NO RETRIEVAL OF ARCHIVED CORE WITHOUT THE WRITTEN PERMISSION OF PROGRAM MANAGER

FREEZER INVENTORY

			DATE IN			PROJECT MANAGER	TNITIALS
INLLZLK	CONC LADLE	LENGTH	DATE IN	INITIALS	DATE OUT	INTIALS	INTTALS
<u></u>							
				A REAL PROPERTY AND A REAL			
	والمتكاف ويجرع والمتكاف المتحيي والمتكاف المتحد والمتكافي						
	**************************************		**************************************	and the second difference of the second differ			
		**************************************	······				and the second se
		<u></u>			······	ىنىزىنى تەكەكىرىز بىرى 20 21-يىل	
						ر د	
				· · · · · · · · · · · · · · · · · · ·		e	
	ويتكالك ويسترجع والكالي ويتروك والكالي ويتروك	·					
	ومتكاف ومرجوع والمتحر ومرجوع والمتحال ومرجوع والمح	4-19-19-19-19-19-19-19-19-19-19-19-19-19-	دروار وروار والمتحدين والمتحدين				
	······						ها الدين <u>من من من المراجع المراجع من من معالماً الحرم</u>
·····							
				·			
							-
				and the second second second second second second second second second second second second second second secon			
							a
		·	CALL OF MARY ACCOUNTS OF THE TOP OF THE		هيبين بينا فالشبيبي فتكالسم		
	·····	Construction of the second second second second second second second second second second second second second				**************************************	and the second se
······	······		مىكەن يە ئالا ^{رىك} ئىي <u>تىن بە</u> تەكەنتەن				······································
	بالمانية المرجوعية (1996) المرجوع من المانية المرجوعية (1996) المرجوع من المرجوع من المرجوع من المرجوع من الم	and the supervision of the super					
				فالسين مبرة الالاسيرين بيناكرو			
مینیدانی میشان الالات اور _{می} پیشان الاست.		·		مارن <u>ى بىن بىن بىن مە</u> للىر			
				د میں بین کا ترجیل کی دارہ			
	**************************************		<u>سى بىراكى بىرى تە</u>				

APPENDIX B

GEOLOGICAL-DESCRIPTION METHODS AND DETAILED RESULTS

APPENDIX B

GEOLOGICAL DESCRIPTION METHODS AND DETAILED RESULTS

B.1 MATERIALS

The following is a checklist of items and materials useful for the examination and description of sediment cores.

- ASTM Procedure D 2488-84
- Stainless-steel knife
- Hand lens (10X magnification)
- 10 N Hydrochloric acid (HCl)
- Ruler (scaled in 0.1-foot increments)
- Blank log forms (see Figure B-1)
- Clipboard
- AGI Data Sheets
- Munsell Color Charts

In addition, the charts and/or reference materials listed in Table B- 1 are useful in the description of specific sediment characteristics.

B.2 METHODS

Descriptions of the physical, chemical, and biological features preserved in sediments aid in the interpretation of the types of geologic processes active both during and after the sediment was deposited. A total of 17 sediment characteristics, outlined in ASTM (1984), are commonly used to describe inorganic soils. These are listed in Table B-2.

Moisture condition was not routinely logged because of the saturated nature of the sediments. Furthermore, since particles were rarely larger than coarse sand, neither were angularity, particle shape, range in particle size, and hardness logged. For this reason, these sediment characteristics were not included in the log form for the description of Richmond Harbor sediments (Figure B-1). However, in the few instances where these characteristics did apply, they were described under the "COMMENTS" column.

<u>TABLE B-1</u>. Charts and Other Reference Materials Used to Provide Standardized Descriptions of Sediment Characteristics

	CHART/REFERENCE	PURPOSE	FIGURE #
•	Roundness Scale	Roundness of sand and coarser particles	B-2a
•	Percentage Estimate Chart	Estimate percentage of individual particles or constituents	B-3
•	Particle Shape	Reference to describe particle shape	B-4
•	Munsell Soil Color Charts	Soil color	B-5
•	Unified Soil Classification System	Method for designating sediment type	B-6, B-7
•	Grain-size Scales	Range of particle sizes; maximum particle size	B-8, B-9
•	Sorting Chart	Estimate of grading	B-2b
•	Lithologic Symbols	Graphic patterns for lithologic log	B-10, B-11

TABLE B-2. Sediment Characteristics Identified in ASTM Procedure D2488-84.

* Applies to coarse-grained sediment (sand and larger particles) ** Applies to fine-grained sediment of mostly silt and/or clay <u>Features not generally logged for this study are underlined</u>.

The definition of "soil" from the engineers standpoint (ASTM 1984), includes any unconsolidated sediment. The geologic definition of soil is slightly different and restricts soils to those sedimentary deposits that have undergone alteration near the land's surface by either physical, chemical, and/or biological processes; therefore, in a strict sense, not all sediments are soils. For the purposes of this discussion, however, "soils" and "sediments" will be used synonymously.

It is sometimes helpful to provide an estimate of the relative proportions of different constituents in sediments (e.g. light- versus darkcolored minerals). This is made easier and more accurate by using a percentage estimate chart, which provides a graphic reference with varying concentrations of a particular constituent (Fig. B-2).

The criteria used to describe each of the 17 sediment characteristics identified in ASTM (1984) are discussed below.

B.2.1 Angularity

The angularity of sedimentary particles is a reflection of the sedimentary environment and the amount of time that has elapsed before deposition and burial. A chart showing how to to classify the angularity of sedimentary particles is presented in Figure B-3a. A range of angularity may be stated, such as: subrounded to rounded.

B.2.2 Shape

Shapes of sedimentary particles often reflect the internal characteristics (e.g., preferential parting) of the material or sometimes the type of sedimentary environment. For example gravel clasts deposited in high-energy environments, such as beaches and river bottoms, are often worn flat.

According to Figure B-4, gravel-sized clasts may be described in one of four ways. First, if the ratio of the clast's width to thickness is >3, it is classified as flat. Second, if the ratio of the clast's length to B.5 width is >3, the clast is elongate. Third, if both criteria apply the clast is both flat and elongate. And last, if none of the criteria apply, then

25% ິດ 20% 15% 30%

FIGURE B.2. Comparison chart used to estimate the percentages of constituents. From AGI (1982).

Poorly Graded

FIGURE B.3. Charts Used to Visually Estimate Roundness/Sphericity (A) and Sorting/Grading (B)

Ł

FIGURE B.4. Criteria Used to Describe Particle Shape From ASTM (1984)

shape is not mentioned. One indicates the fraction of the clasts that have the shape, such as: one-third of gravel clasts are flat. Particle shape did not apply to most of the sediments logged during this project and the few pebbles that were observed were neither flat nor elongate.

B.2.3 <u>Color</u>

Color may be useful in identifying materials of similar geologic origin. For example, color was often a useful criteron for differentiating Younger Bay Mud from Older Bay Mud. Sediment color was determined by comparing the wet sediment with standard sediment colors given in Munsell (1975). The advantage to using the Munsell soil color system is that it provides a consistent, standardized method for describing color and that subjectivity is minimized.

The Munsell color notation consists of three simple variables that combine to describe all colors known in the Munsell soil color system. The three variables are: hue, value, and chroma (Figure B-5). The hue notation indicates the relation of the sediment color with respect to red, yellow, green, blue and purple; the value notation indicates its lightness; and the chroma notation indicates its strength (i.e., intensity).

Color can be described either by the Munsell notation (e.g., 5YR 5/3; hue=5YR, value=5, chroma=3) or by its equivalent color name (e.g., reddish brown). Both the color name and Munsell notation were recorded on core logs. Only rarely was there not a reasonable match between the true color of the core sediment and one of the colors on a Munsell color chart.

B.2.4 Odor

Odors may indicate the presence of contaminants or they may be the result of the eochemical environment. Odors most frequently noted were the odor of petroleum hydrocarbons and the smell of rotten eggs (an indication of the presence of hydrogen sulfide). Both of these odors were restricted to the Younger Bay Mud unit. Petroleum odors may be the result of contamination of sediments by shipping spills or industrial waste, or perhaps are derived from the abundant decaying organic matter present in these sediments. Hydrogen sulfide is a common natural by-product in chemically reducing environments such as the Richmond Harbor estuary.

Example of a page from the Munsell Soil Color Chart for Hue 5YR. Color chips used to estimate soil color are on the right. FIGURE B.5.

B.2.5 Moisture Condition

Moisture condition is described as either dry, moist, or wet according to the following criteria:

DRY Absence of moisture, dry to the touch

MOIST Damp but no visible water

WET Visible free water, usually soil is below water table (i.e., saturated)

All the sediments logged for this project were taken from below sea level and did not lose any significant moisture between the time they were drilled and logged. Therefore, they are all classified as wet.

B.2.6 HCl Reaction

The reaction (i.e., effervescence) of sedimentary material, as a result of adding dilute hydrochloric acid, is an indication of the presence of calcium carbonate. Calcium carbonate in sediments may be derived from a variety of sources including: 1) physical disintegration of preexisting carbonate rocks (e.g., limestone, marble), 2) biogenic precipitation (e.g., shell, bone), and 3) soil development. In the last example, calcium carbonate concentrations, often referred to as caliche or calcrete, may accumulate over time near the land's surface in arid climates. Where calcium carbonate concentrations occur in combination with other evidence for soil development, such as root traces and oxidation, then a pedogenic (soil forming) origin is favored. Criteria for describing the reaction with 10 N HCl are as follows:

NONE	No	visible	reaction

WEAK Some reaction, with bubbles forming slowly

STRONG Violent reaction, with bubbles forming immediately

A solution of 10 N HCl is obtained by slowly adding one part of concentrated hydrochloric acid to three parts of distilled water. B.2.7 Consistency

Consistency is a measure of the firmness or consolidation of sedimentary material. In general, there is a direct relationship between consistency and

10 A R

0

age of the deposit (i.e., older deposits are usually more firm because of compaction and/or cementation).

Consistency is most applicable to fine-grained sediments and least applicable on sediments that contain significant amounts of gravel. The criteria used to determine consistency are as follows:

VERY SOFT	Thumb will penetrate soil more than 1 inch (25 mm)
SOFT	Thumb will penetrate soil about 1 inch (25 mm)
FIRM	Thumb will indent soil about 1/4 inch (6 mm)
HARD	Thumb will not indent soil but readily is readily indented with thumbnail
VERY HARD	Thumbnail will not indent soil

B.2.8 Cementation

Often sedimentary particles are held together with a binding cement. Three common natural cements are calcium carbonate (lime), silica, and ironoxide compounds. Particles cemented with calcium carbonate effervesce in the presence of hydrochloric acid (see Section B.2.6 above). Sediments cemented with iron oxide are usually some shade of red, yellow, or brown. Usually there is a relationship between consistency (Section B.2.7) and cementation, in that strongly cemented deposits are also hard to very hard. Criteria used to describe the degree of cementation are:

WEAK Crumbles or breaks with handling or light finger pressure MODERATE Crumbles or breaks with considerable finger pressure

STRONG Will not crumble or break with finger pressure

B.2.9 Structure

Structures are features that originate within the layers of sediment or at the sediment/water interface in response to various physical, biologic and/or chemical processes. Structures may be classified into two categories: primary and secondary. Primary structures form as the sediment is being deposited (e.g., lamination, stratification). Secondary structures form after deposition, often as a result of compaction or other stresses (e.g., fissured, slickensided), biologic activity (e.g., root traces, mottling), and soil

development (e.g., homogeneous, blocky, mottled). The following are some common structures observed in sedimentary deposits.

PRIMARY STRUCTURES

- STRATIFIED Alternating layers of varying material or color with layers at least 6 mm thick
- LAMINATED Alternating layers of varying material or color with the layers less than 6 mm thick
- LENSED Inclusion of small pockets of different sediment type, such as small lenses of sand scattered through a mass of clay. (This type of structure may also be secondary)

SECONDARY STRUCTURES

- FISSURED Breaks along definite planes of fracture with little resistance to fracturing
- SLICKENSIDED Fracture planes appear polished or glossy, sometimes striated
- BLOCKY Cohesive soil that can be broken down into small angular lumps which resist further breakdown
- MOTTLED Variation in color of sediments as represented by localized spots or blotches of color or shades of color

HOMOGENEOUS Same color and appearance throughout

B.2.10 Sediment Classification Type

The classification method used in this study is the Unified Soil Classification System (Fig. B-6), which consists of a two-letter designation for most soils (i.e., unconsolidated sediments). A simplified version of the Unified Soil Classification System is presented in Figure B-6, while a moredetailed breakdown is presented in Figure B-7. According to this classification system, coarse-grained sediments are classified based on grain-size distribution and grading (i.e., sorting), while fine-grained sediments are classified on the basis of grain size and liquid limit vs. plasticity.

Particle-size distribution may be determined with precision using laboratory methods (e.g., sieving of sand and coarser particles; pipette or hydrometer analysis of silt and clay). Because these methods are expensive

Major Divisions			Group Symbols	Description
sand		Clean Graveis	GW	Well-graded (i.e., poorly sorted) gravels, gravel-sand mixtures, little or no fines
very fine	>E0% Gravel		GP	Poorly graded (i.e., well sorted) gravels, gravel-sand mixtures, little or no fines
liments er than	250 % Giavei	Gravels	GM	Silty gravels, gravel-sand-silt mixtures
ned Sec are larg		Fines	GC	Clayey gravels, gravel-sand-clay mixtures
e-Grair articles		Clean Sands	sw	Well-graded sands, gravelly sands, little or no fines
Coars alf of pé	≥50% Gravel		SP	Poorly graded sands, gravelly sands, little or no fines
than h		Sands with Fines	SM	Silty sands, sand-silt mixtures
Mon			SC	Clayey sands, sand-clay mixtures
eents aller id		Low Liquid Limit	ML	Silts and very fine sands, silty or clayey fine sands, or clayey silts, with slight plasticity
Fine-Grained Sedim More than half of particles are sma than very fine san	Silts and Clays		CL.	Clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
		High Liquid Limit	мн	Silts or fine sandy silts with moderate plasticity
			СН	Clays of high plasticity, fat clays

FIGURE B.6. Abbreviated form of the Unified Soil Classification System. From AGI (1982).

and time-consuming, it is more desirable to estimate grain size using rapidvisual-manual techniques described below. For example, sand and coarser particles are most easily identified via comparison with standard charts of grain size (Figs. B- 8 and B-9). Fine-grained soils, consisting of mostly silt and/or clay, on the other hand, are identified based on manual tests of their dry strength, dilatancy, toughness, and plasticity (Figure B-10).

In the Unified Soil Classification System (Figs. B-6 and B-7), the first letter of the sediment-type symbol represents the predominant grain-size interval, be it gravel (G), sand (S), silt (M), or clay (C). For coarsegrained sediments, the first letter (i.e., G or S) may be followed by a descriptor of grading, either W (well graded) or P (poorly graded), or a secondary grain-size descriptor (M or C). The definition of <u>grading</u> is opposite that of <u>sorting</u>, a common geologic term. For example, a clean, well-sorted sand, consisting of particles over a narrow range in grain size, is referred to as poorly graded in the Unified Soil Classification System and would receive the designation "SP". The relationship between grading and sorting is shown graphically in Figure B-3b. The second letter in the fine-grained soil designation consists of either L (low liquid limit) or H (high liquid limit).

The lithology column on the geologic log (Fig. B-1) essentially represents a graphic display of sediment type. The graphic displays of lithology are utilized for quick easy reference and comparison between different cores and thus make interpretations easier. The symbols used for the Richmond Harbor sediments are shown in Fig. B-11. Examples of other lithologic symbols in common use are presented in Fig. B-12. Additional symbols may be used as long as they are graphically representative of the feature and are specifically defined and identified in a key that accompanies lithologic logs.

B.2.11 Range of Particle Sizes

For gravel- and sand-sized particles, the range of particle sizes within each component is defined. For example, 20% fine to coarse gravel, 40% fine to coarse sand. The sizes of particles corresponding to the different ize components are presented in Figures B-8 and B- 9.

FIGURE B.7. Detailed Flow Chart for the Classification of Coarse-grained (A) and Fine-grained (B) Soils Using the Unified Soil Classification System.

	Grade Lin	nits		U.S. Standard	
phi	mm	mm	inches	Sieve Series	Grade Name
-12	4096 -		161.3		very large
-11	2048 -		80.6		large
-10	1024 -		40.3		medium
-9	512 -		20.2		small
-8	256 -		10.1		large
-7	128 -		5.0		small Cobbles GRAVEL
-6	64 -		2.52	63 mm -	very coarse
-5	32 -		1.26	31.5 mm	coarse
-4	16 -		0.63	16 mm -	medium Pebbles
-3	8 -		0.32	8 mm -	fine
-2	4 -		0.16	No. 5 -	very fine
├ -1 ─	2		- 0.08	No. 10	very coarse
0	1 -		0.04	No. 18 -	coarse
+1	1/2 -	0.500 -		No. 35 -	medium Sand SAND
+2	1/4 -	0.250 -		No. 60 -	 fine
+3	1/8 -	0.125 -		No. 120	very fino
- +4	1/16	0.062 —		—No. 230 —	coarse
+5	1/32 -	0.031 -			medium
+6	1/64 -	0.016 -			Silt
+7	1/128 -	0.008 -			very fine
+8	1/256 -	0.004 -			coarse MUD
+9	1/512 -	0.002 -			medium
+10	1/1024	0.001 -			Clay Size fine
+11	1/2048	0.0005 -			very fine
+12 -	-1/4096	- 0.00025 -			

FIGURE B.8. Grain-size scales used to determine sedimentary particle size.

FIGURE B.9. Comp

Comparison chart used to distinguish among sand to pebble-size particles. From AGI (1982). For larger particles, refer to Figure B.8; for smaller particles, refer to sections B.2.13 and B.2.16 in this Appendix.

Plasticity	Nonplastic Low Medium High				
Toughness	woJ Medium Low				
Dilatancy	9noN Slow BiqsA				
Dry Strength	Vone Medium Migh Very High				
	Sediment Type	ML (Sitt)	MH (Elastic Silt)	CL (Lean Clay)	CH (Fat Clay)

FIGURE B.10. Identification of inorganic fine-grained soils from manual tests.

FIGURE B.11. Symbols used to represent different lithologic properties on core logs in Appendix B.

B.2.12 Maximum Particle Size

Maximum particle size is significant because it gives a general indication of the amount of turbulence or energy associated with deposition. If the maximum particle size is sand, it should be described as either fine, medium, or coarse sand. If the maximum particle size is in the gravel range, the largest particle is measured and its width recorded along the narrowest axis. The sizes of particles corresponding to the different size components are presented in Figures B-8 and B-9.

The maximum grain size observed for the Younger Bay Muds ranged from silt to medium sand, while the Older Bay Mud usually ranged from fine sand to coarse sand. The largest particles observed anywhere were fine pebbles in the Older Bay Mud unit.

B.2.13 Dry Strength

Dry strength, dilatancy, toughness, and plasticity are physical characteristics used to distinguish fine-grained inorganic soils, consisting of mostly silt and/or clay. Basically, the more clay present in a soil the greater its dry strength (Fig. B-10). To perform a manual test of dry strength, enough material must be selected in order to mold into a ball about 1 in. in diameter. The material is molded until it has the consistency of putty, adding water if necessary. From the molded material, at least three test specimens each about 1/2 in. in diameter are made. The specimens are allowed to dry in air, sun or by artificial means, as long as the temperature does not exceed 60C (ASTM 1984). The criteria for determining dry strength are as follows:

- NONE The dry specimen crumbles into powder with mere pressure of handling
- LOW The dry specimen crumbles into powder with light finger pressure
- MEDIUM The dry specimen breaks into pieces or crumbles with considerable finger pressure

Figure B.12. Additional lithologic symbols in common use.

z

5

- HIGH The dry specimen cannot be broken with finger pressure. Specimen will break into pieces between thumb and a hard surface
- VERY HIGH The dry specimen cannot be broken between the thumb and a hard surface

Dry strength was determined for Richmond Harbor cores by sampling selected intervals and allowing the samples to air dry overnight. Dry strength was determined the next day and noted in the comments column of the geologic log.

B.2.14 Dilatancy

Dilatancy is a measure of how easily a soil gives up water when shaken. For example, some clays have the ability to absorb and retain large amounts of water into their crystal lattice. "Fat" clays tend to retain their water even under stress, whereas "lean" clays and silt tend to release water when shaken.

To test for dilatancy enough material to mold into a ball about 1/2 in. in diameteris selected. The material is molded, adding water if necessary, until it has a soft, but not sticky, consistency. The soil ball is smoothed in the palm of the hand with a blade of a knife or small spatula. The soil then is horizontally by striking the side of the hand vigorously against the other several times. The reaction of water appearing on the surface of the soil is observed. The sample is squeezed by closing the hand or pinching the soil between the fingers, noting the reaction. Specimens with high dilatancy will quickly yield water when shaken and absorb water when squeezed. The criteria for describing dilatancy are:

NONE No visible change in the specimen

- SLOW Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing
- RAPID Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing

The range of dilatancy for the different fine-grained sediment types is shown in Figure B-10. From this figure it is apparent that dilatancy decreases with decreasing grain size.

B.2.15 Toughness

After completion of the dilatancy test, the same specimen is shaped into an elongated pat and rolled by hand on a smooth surface or between the palms into a thread about 1/8 in. (3 mm) in diameter. (If the sample is too wet to roll easily, it should be spread into a thin layer and allowed to lose some water by evaporation.) The sample threads are folded and the sample is rerolled repeatedly until the thread crumbles at a diameter of about 1/8 in. The thread will crumble at a diameter of 1/8 in. when the soil is near the <u>plastic limit</u>. The pressure required to roll the thread near the plastic limit is noted. Also, the thread strength is noted. After the thread crumbles, the pieces are lumped together and kneaded until the lump crumbles. The toughness of the material during kneading is noted and the sample is classified into one of the following categories:

- LOW Only slight pressure is required to roll the thread near the plastic limit. The thread and lump are weak and soft.
- MEDIUM Medium pressure is required to roll the thread to near the plastic limit. The thread and lump have medium stiffness.
- HIGH Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness.

The range of toughness for the different fine-grained sediment types is shown in Figure B-10. From this figure it is apparent that toughness increases with a decrease in particle size.

B.2.16 Plasticity

On the basis of observations made during the toughness test, the plasticity of the material is described according to the following criteria:

NONPLASTIC A 1/8 in. thread cannot be rolled at any water content.

- LOW The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.
- MEDIUM The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.

It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

The range of plasticity for the different fine-grained sediment types is shown in Figure B-10. From this figure it is apparent that an increase in plasticity accompanies a decrease in grain size.

B.3 RICHMOND HARBOR CORE LOGS

HIGH

Richmond Harbor core logs are shown in the following pages. A key to the symbols used on the core logs is followed by the detailed descriptions for each Richmond Harbor long core. The arrows in the "depth below mudline" column show the divisions between vertical sections that were sampled for chemistry. These descriptions also show where changes in sediment characteristics were used to differentiate between the Older Bay Mud and Younger Bay Mud units.

Gre drilled = 34.8 0-2.0 600 received = 21.6 Composite 2.0-6.7 Core #: RI-1-TC-2 Date: 4/10/89 Page _L of _2 6.7-16.61 sample Mudline dopth polow MLLW = 5.2 intervals 16.6-21.6 - E 1-5 - Kr - 1 Center C) CO Contraction of the contraction o Connents - Tongras 11thoost Onetend Plasticist Storente C900 1.400 (57 4/2) (57 4/2) VS 5 ML L N L Ν Η 2 ↓ S i 10 5 1 ; . . 15 10 ℣ Š 2 **9** ----

n
Core #: RI-1-TC-2 Date: 4//8/89 Page 2 of 2 9 - C. - (X)-CO, Second Toothes Comments (O) Plasticit Stucion Color 1. Ros S ML DALK STAY L L S N H N 2 \checkmark -\$ younger Bay ∜ Ŧ 业 S N SP Dank 5 10) (2.57 4/0) . FS ₽ L Older Bary Mud L ML H filled roots and mats 25 ¥ Y 20 v Very dank (2.3 y 3/0) H CL M ۴ mud concre-tions, drop stones N-S (Fr . Ì • . 25 8

.

.

B.34

н

1 . .

Core #: RI-1-TC-5 Date: 4/17/89 Page 1 of 2	Core drilled = 18.9 Core received = 17 Mudline dopth bolow MLLW = 20.1	0-2.3) 2.3-5.0, (Composite 5.0-8.3 8.3-11.5, - sample 1.5-17.0', intervals
The second secon	rra coo core	in the state of th
	ML Ohve (5 V 5/3) Srug (5 V 5/1) Very dack (my d(5 V 5/0) Very dack (my d(5 V 5/0) V SP H. olive brown (2.5 V 5/V)	M N FS P $2 $ $3 MS $
	ML Dank Star (57 4/1)0	M Z Low dry strength V Younsen Bury Music V Okken Bary
	CL (575/1) F ML Videnk grayish S brn(2.575/2)	5 + H H H Grada - Sgt. tional blue - clay Crowles
	CL · Gray H (2.5 ¥ 5/0)	BI H V K W Carbonat-and jron con- cretions. Medium - elry str.
	ML (5004(2.373/0) F Jand J 14.01:00 brown (2.57 5/4)	FS FS

B.4 REFERENCES

- AGI. 1982. AGI Data Sheets for Geology in the Field, Laboratory, and Office. American Geological Institute, Falls Church, Virginia.
- ASTM. 1984. Standard Practice for Description and Identification of Soils (Visual-manual procedure): Procedure D 2488-84. American Society for Testing and Materials, Philadelphia, Pennsylvania, p. 293-302.
- Compton, R. R. 1962. <u>Manual of Field Geology</u>. John Wiley and Sons, New York, 378 p.
- Munsell. 1975. <u>Munsell Soil Color Charts</u>. Macbeth, a Division of Kollmorgen Co., Baltimore, Maryland, 7 charts.
- Tucker, M. E. 1982. <u>The Field Description of Sedimentary Rocks</u>. John Wiley and Sons, New York, 112 p.

,