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1 SUMMARY AND INTRODUCTION

Since the invention of the alternating gradient pringiple thare has been a
rapid evolution of the mathematics and physica techniquea applics ble to charged
particle optics. In this publication we derive a differential equation and & matrlx
algebra formalism valid to second-order to present the basic principles governlng
the design of charged particle beam transport systems. A potation first intro-
duced by John Streib’ is used to convey the essential principles dictating the
design of such beam transpori systems. For exarmple the momentum disper-
sion, the momentum resolution, and all second-order aberrations are expressad
as simple integrals of the first-order trajectories {matrix elements) and of the
ragnetic field parameters (multipole components) characterizing the system.

These integrals (listed in Tables I, IT, and ITI) provide direct physical insight
into the design of beam transport systems. From them one obtains an intultive
grasp of the mechanism of second-order aberrations, For example, the effects of
magnetic symmetry on the minimization or elimination of the aberrations is im-
mediately apparent. In fact it is demonsirated that all second-order sberrations
will vanish under approptiate symmetry conditions,

It has olwo proved convenient to express the magnetic fields via a multipole
expansion about & central trajectory. In this expansion, the conatant term, pro-
portional to the field strength at the central trajectory, i» che dipole term, Tha
teim proportional to the firat derivative of the field (with respect to transverss
dimensiiny) is the quadrupole term and the second derivative is the sextupala
term, etc.

At high energics, a considerabie design simplificasion results if the dipole,
quadrupole, and sextupole functions are physically separatcd such that eross
product terms among them do not appear, and if the fringing flald eflects are
small compared with the contributions of the muliipole elements comprising the
system.

At the risk of aversimplification, the basic function of the multipele slements
may be identified in the following way:



The purpose of the dipole elements is to bend the central trajectory of the
gystem and to generate the first-order mementum dispersion. The quadrupole
elements provide the first-order imaging. In addition to their fundamental pur-
pose, dipoles and quadrupoles will alse introduce higher-order aberrations. 1f
these aberrations are second order, they may be eliminated or at Jeast modified
by the introduction of sextupole elements at appropriate locations.

Dipoles irtroduce both second-order geometric and chromatic aberrations.
Quadrupoles ao not generate second-order geometric aberrations but they do
have strong chromatic {energy dependent) aberrationa.

In regions of zero momentum dispersion, a sextupole will couple with and
modify only geometric aberrations, However, in a region where dispersion is
present, sextupoles will also couple with and madily chromatic aberrations,

Quadrypole elements may be introduced in any cne of three characteristic
forms: (1) via an actual physical quadrupale consisting of four poles such that a
first field derivative exists in the field expansion about the central trajectory; (2)
via a rotated input or output face of a bending magnet; or (3} via a transverze
field gradient in the dipole elements of the aystem. Clearly any one of these
three fundumental mechanisms may be used as a means of achieving first-order
imaging in a system. Dipole elements will tend to image in the radial bending
plane independently of whether a transverse field derivative does or doca not
exist in the system, but imaging in the plane perpendicular to the plane of
bend is not poesible without the introduction of a Brst field derivative. Like
the quadrupole element, a sextupole element may be generated in one of several
ways; first by incorporating an actual sextupcle, that is, a six-pole iagnet, into
the system. However, any mechanism that introduces a second-order derivative
of the field with respect to transverse dimensions is, in effect, iniroducing a
sextupole component.

We have included in the report a discussion of linear (first~order) optics as
it relates to beam transport systems and to the design of circul sr machines and
to the relationship between the two. Also included is a discussion of the basic
optical building blocks that are most often used in the design of such systems. Iz
addition we have provided some applications of second-order optics to the design
of chromatic corrections in beam transport systema and circular machines,

It is our hope that the informetion supplied will provide readers with the

necessary tools to design any heam transport system suited to their particular
needs.

For the study of details beyond second order, computer ray tracing programs
or higher-order formalisms such as 1” 2 Lie algebra techniques developed by Alex
Dragt and his students should be ex) “red by the reader.



2 A GENERAL FIRST- AND SECOND-ORDER
THEORY OF BEAM TRANSPORT OPTICS

The fendamental objective ia to study the trajectories described by charged
particles in a static magnetic field. To maintain the desired generality, only
one major restriction is imposed on the field configuration: Relative to a plane
that is designated as the magnetic midplane, the magnetic scalar potential ¢ is
an odd function in the transverse coordinate y (che direction perpendicular to
the midplane), i.e. ¢{z,y,8) = —¢(z,—y,9). This restriction greatly simplifies
the calculations, and from expetience in designing beam transpott systems it
appears that for most applicaiions there is little, if any, advantage to be gained
from: a more complicated fizld pattern. The trajectories are deacribed by means
of a Taylor expansion about & particular trajectory (which lies entirely within
the magnetic midplane) designated henceforth an the central trajectory. Re-
ferring to Fig. 1, the coordinate # is the arc length measured along the central
trajectory; and z,y, and & form a right-handed curvilinear coordinate system.

y ARC Length

T T= {O-C) of
* Arbitrary
L~ Trojectory
ARG Length
{O-A) of

Central
Trajectery

s

Central Trojectory
( llesin magneilc)

midplane

5-88
O ABDOA1

Fig. 1. Curvilinear coordinate system used in the derivation of the equations of
motion,
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The results are valid for describing trajectories lying close to and making small
angles with the ceniral trajectory.

The basic steps in fonnulating the solution to the problem are as follows:

1) A geners] vector difforential equation = desived describing the trajec-
tory of a charged particle in an arbitrary static magnetic field which possesses
midplane symmetry.

2) A Txylor series solution abont the central trajectory is then assumed; this
is substituted Into the general differential equation, and terms to second order
in the initiz] conditions are ratained.

3) The first-order coefficients of the Taylor expansion (for monocenergetic
ray:) satisfy homogeneous second-order differential equations characteristic of
simple harmonic oscillator theory; and she frst-ordes dispersion and the second-
order coefficients of the Taylor sacles satisly second order differential equations
having driving tarma,

4) The firmt-arder dispersion term and the second-order cocflicients are then
evaluated via a Green's function integral containing the driving function of the
particular coafficient being evalusted and the characteristic solutiona of the ho-
mogensous equatlons,

In other words, the baslc mathemstical solution of beam transport optics
is similar to the theor of forced vibrations or to the theory of the classical
barmonic osclllator with driving terms,

1t is useful 10 express the second-order results in terms of the first-order
coefficients of the Taylor expansion, These first-order coefficients have a one to
one corraspondence with the following five characteristic fizst order trajectories
{matrix slements) of the system,

1) The unit eineltke function s4(8) in the plane of bend defined by s5(0) = 0
and 83(0) =1, See Fig. 2.

2) The unit cosine-like function ¢s(s) in the plane of bend defined by ¢,(0) =
1and ¢4(0) =0, See Fig. 3.

8) The dispersion funetion dy(s) in the plane of bend defined by d,{0) = 0
and d%(0) = 0 and 5 momentum p euch that (p— pp}fpo = 1. See Fig. 4.

4) The unit sinelike function sy(s) in the nonbend plane defined by s,(0) =0
and 83(0) = 1. See Fig. 3.

5) The unit cosinelike function oy(s) in the nonbend plane defined by ¢,{0) =
1 mdcﬁ(@ =0, SeeFig. 6.
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Fig. 4. Dispersion function &;(s) in the magnetic midplane.
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Fig. &, Sinelike function s,(8) in the nonbend plane.
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Fig. 6. Cosinelike function cy(s) in the nonbend plane.

In the first-order Taylor expansion for the transverse poaition of an azbitrary
trajectoty at position s it terms of its initial conditions, the above five quantities

are the coefficients appearing in the expansion for the transverse coordinates x
and y as follows :

z(8) = ex(8)zo + 25 (8)z b + d=(u)}8
and
y(8) = cy{alyo + sy(e)y b

where o and yy are the initial transverse coordinates and zt) and yb are the
initial slopes of the arbitrary ray with respect to the central trajectory.

$ = Ap/p = {p - po)/po is the fractional momentum deviation of the ray from
that of the central trajectory,

2.1 THE VECTOR DIFFERENTIAL EQUATION OF MOTION

We begin with the usual vector relativistic equation of motion for a ch=rged

particle in a static magnetic field, equating the time rate of change of momentum
to the Lorentz force:

p=e(V xB)

and immediately transform this equation to one in which time has been elimi-
nated and we are left with only spatial coordinates. The curvilinear coordinate
system used is shown in Fig. 1. Note that the variable s Is the arc distance
measured along the central trajectory. With a little algebra, the equation of
motion i readily transformed to the following vector forms:

10
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Let e be the charge of Lhe particle, V its velocity, V its speed, p its momen-
tumn magnitude, ‘T its position vector and T its distance to the origin. The unit
tangent vector of the trajectory is dT/dT. Thus the velocity and momentum of
the particle are, respectively, (¢T/dT)V and {dT/dT}p. The vector equation of

motion then becomes:
3 (30) - or (5 <)

&IT  dT/dp dT
et ariar) =z *B)

where B s the magnetic induction. Then, since the derivative of a unit vector
is perpendicular to the unit vector, d¥T/dT? is perpendicular to dT/dT. It
follown that dp/dT = 0; that is, p i3 a constant of the motion as expected from
the fast that the magnetic force is always perpendicular to the velocity in a
static magnetic field, The final result is

e EHEE @

or

2.2 THE COORDINATE SYSTEM

The general right-handed curvilinear coordinate system (z, y, 8) used is illus-
irated in Fig. 1. A point O on the central trajectory is designated as the origin,
The direction of motion of particles on the central trajectory is designated as
the positive direction of the coordinate s, A point A on the central trajectory
is specified by the arc length 8 measured along that curve from the origin O to
point A. The two sides of the magnetic symmetry plane are designated the pes-
itive and negative sides by the sign of the coordinate y. To specify an arbitrary
waint A which lies in the symmetry plage, construct a line segment from that
point to the central trajectory (which alse lies in the symmetry plane) intersect-
ing the latter perpendicularly at A; the point A provides one coordinate s; the
second coordinate z is the length of the line segment B A, combined with a sign,
{+) or (=) according as an observer, on the positive side of the symmetry plane
and facing in the positive direction of the central trajectory, finds the point on
the left or right side. In other words, », y, and s form a right-handed curvilingar
coordinate system. To specify a point C which lies off the symmetry plane,
we construct a line segment from the point to the plane, intersecting the latter
perpendicularly at B; then B provides the two coordinates s and z; the third
coordinate y is the length of the line segment CB.

We now define three mutually perpendicular unit vectors (£,%,8). & is
tangent to the central trajectory and directed in the positive s direction at the

11



point A corresponding to the coordinate s; z is perpendicular o the principal
trajectory at the same point, parallel to the symmetry plane, and directed in the
positive £ direction. § is perpendicular to the symmetry plane, and directed
away from that plane on its positive side, The unit vectors (, §,8) constitute a
right-handed aystem and satisfy the relations

t=gx8,
j=4dxt,
i=Zxy. (2.2)

The coordinate s is the primary independent variable, and we shall uae the
prime to indicate the operation d/ds. The unit vectors depend only on the
coordinate s, and, from differential vectar calculus, we may write

Hv
Il

hi
o,

mr I
I

fl

' -h:?: s (2.3)
where h(s) = 1/po is the curvature of the central trajectory at point A defined
as positive, as shown in Fig. 1.

The equation of motion may now he rewritten in terms of the curvilinear
coordinates defined above. To facilitate this, it is conveninent to express dT/dT
and d*T/4T? in the following forms:

(dT/ds) _
T~ (dT[ds) T' '
T aT)
a2 T &B\T
or
T 1 T d
fr'e »_ - = I
TdT’ =T 2T'3ds(T)'
The equation of motion now takes the form
1T d 2 e
w_ - —_ - Yy = o™ 4 . 4
T 2T-"dn(T) pT(‘]? x B) (2.4)

In this coordinate syatem, the differential line element is given by

dT = %dr + jdy + (1 + hz)ids
and
(dT)? = dT - dT = dz? + dy® + (1 + hz)ds® .

12



—  Wemmme—e e T Tem R e ST T T T

Differentiating these equations with respect te s, it follows that
Tc? -‘=2'2 +y¢2+{1+hz}2 ,

%(rl*} ==z'z" +y'y" + (1 + hz){hz’ + k'],

W=

‘=2z + Gy’ + (1 +h2)E,

T =22+ 22t +§y" + §'y' + (14 h)d’ 4 (hz' + B'2)2 .

Using the differential vector relations of Eq. (2.3), the expression for T* reduces
to

T = 2(z" - A2 +hz)) + fy" + 8(2hz’ + h'z) .

The vector equation may now be separated into its component parts with the
result

B{(a" ~ h(1 + ha)) = g(a's" +y'y "+ (1+ ha) bz + 'z}
+ oy - ,%;—(z'z” +y'y" + (L + hz)(hz' + k'7))}

+8{(2hz’ +h'z) - “; 52) o 1 yoyn 4 (14 RE)(he + Bz}

= 51"('1" x B)

- ir {#(y'By — (1 + k=) B,) + 2{(1 + kz) Bz — z'By)

+8(z'B, - y'B.)} - (25)

Note that in this forin, no spproximations have been made; the equation

of motion (2.5) is atill valid 1o all ardars in the variables z and y and their
derivatives.

If now we retain only terms through second order in z and y and their

derivatives and note that T2 = 1 + 2hz 4 ---, then the z and y components of
the equation of motion beceme

2" —h{l4+hz) -2z’ +hiz) = ET'(y'B. -{1+42)B)),

y'—y'lhz' +hez) = SP((1+ h2)B. —2'By) . (26)

-

13



The equation of motion of the centzal orbit is readily obtained by setting =
and y and their derivatives equal to zero. We thus ahtain

h= -58,(0,0,3} ot Bpy= B (2.7}
Po [
This result will be useful for simplifying the final equations of motion. py is

the mementum of a pariicle on the rentral trajetiory, Note that this equation
establishes the sign convention between h,e and B,.

2.3 EXPARDED FORM OF A MAGHRETIC FIELD HAVING MEDIAN PLANE
SYMMETRY

We now evolve the field components of a static magnetic field possesaing
median or midplane symmetry. See Fig. 7. We define midplane symmetry as
followa, Relative to the plane containing the central trajectory, the magnetic
potential ¢ is an odd function in y : ie. $(z,y,8)=—¢(z,~y,s). Stated in
terms of the magnetic field components By, By, and B; this is equivalent to

B:(z. th ’} =- B,(z, ' ') ?

B,.(:c.y, l) =By(=, e 1] 3) 3

By z,y,8) = — By(2,~y,8) .

s-.a DIPOLE QUADRUPOLE SEXTUPOLE TABAIY

Fig. 7. Ulustration of the magnetic midplane for dipole, quadrupole, and sex-
tupole elements.
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1t follows immediately thut on the midplane B; = By = 0 and onl; F, remains
nonzere; in other words, on the midplane B is always normal to the plane. As
such, any trajectery initially lying in the midplane will remain in the midplane
throughout the system.

‘The expanded form of a magnetic field with median plane symmetry has
been worked out by many ueop!e. one of the iost canvenient and comprehensible
refetences is provided by Teng

For a magnetic field in vacnum, the Celd may be expressed in terms of a
scalar potential ¢ by B = V¢.™ The scalar potential will be expanded in the
curvilinear coordinates about the central trajectory lying in the median plane
v = 0. The curvilinear coordinates have been defined in Fig. 1, where z is the
outward normal distance in the mi.dian pluhe away from the central trajectory,
y is the perpendicular distance from the median plane, s is the distance along
the central trajectory, and k = h(s) is the curvature of the central tra,ectory.
As previouslv stated, these coordinates {z,y,8) form a right-kanded erthogenal
curvilinear zoordinate system.

As has been stated, the existence of the median plane rvequires that ¢ be
an odd function of y, i.e. &(x,y,8) = —¢(z, —v,8). The most general expanded
form of ¢ may be expressed as follows:

(2, 9,8) ={410 + Anz+ Az(z?/2) + Ana(z®/3) + .- )y
+ (A3 + Anz + An{Z2 /20 +-- P3N+ -
" 2m+l

- z EA,.,,H,,, — (2m V] (2.8)

m=0Dn=0

where the coefficients Az 5 are functions of 2.
The differential line element dT of the coordinate system is

dT? = dz? + dy® + (1 + hz)?(ds)? (2.9)

and the Laplare equation has the form

o 8¢ 1 8, 1 a4
vie= (1+ha:)3:c{(1+ ha)g )+ +(1+h=)a_s((1+hz)‘é?)=°'

(2.10)

Substitution of Eq. (2.8) into Eq. (2.10) givea the following recursion formula

11 For convenience, we omit the minus sign since we are restricting the problam
to statn: magnetic fields,

15




for the coefficients:
—Aapian TA%miLn A g 1a-1 ~ R Abma i n-1 + A2mttnez
+ (3r + L)hAzm4t,n+1 + n(3n — 1)h2A2m+1'n
+nn - 1)h° Aama1a-1
+ 3rhArmian—s + 3n(n — 1)A Aamyana
+u(n = 1)(n— B> Agmisn-s (2.11)

where prime means &/ds, and where it is understood that all coefficients A with
one or more negativa subscripts are zcero. This recursion formula expresses ali
the coefficients in terms of the midplane field By(z,0,8} via the coefficients Ay a:

"B,

Ain = (G

) ., = functions of s . (2.12)
=

Since ¢ is an odd fuaction of y, oni the median plane we have B, = B, =0, The
normal (in z direction) derivatives of By on the reference curve defines By over
the entire median plane, hencz the magnetic feld B over the whole space, The
components of the field are expressed in terms of ¢ explicitly by B = V¢ or

n y2m+l

Z ZA2m+l.h+l M Em It

m=0n=0

=3 = Y‘ ZAIm-H.u

m—O n=0

B
Q’le-

z® yzm

ol Zm)t *

1 a¢ y: m+1
B, = (* + hz) as 1+ h:c) E Z A'ﬂm*H,n " 2m & l)l ’ (2.13)

mz=0 n=0

where B, is not expreesed in pure expansion form. This form can be obtained
in a strajghtforward way by expanding 1/{1 + hz) in a power geries of hx and
multiplying out the two saries; however, there does nat seem to be any advantage
gained over th: form given in Eq. (2.13).

The coefficicnta up to sixtli-degree texms in £ and y are given explicitly below
as deri-ed lrom Eq. (2.11).

16



=—A" - An-—hin,
Ay =~ A% +2hA%0+ A'A% ~ Aw— hAn + M an,
Ass = — A'ta +1hA") + 2h'Ay — €2 A" - BRR'A Yo — Age
- hArs +2h% Ay - 280 An
Ay = — A% +6hA%s + 3k'A3; — 18K A%y — 18kR'A Gy
+ 2455 A0 + 3647H A Yo ~ Ass — hAw + 3R Ay
— 8h%4;3 -- 8R4y ,
As0 =A™%0 +24 "2 = 2hA%) + h"Au +4h%A %0 + Bhh'Age
+ A+ ZhArz — b4 + KAy,
Ag) =AMy —4RAMo ~ BRI Ao —4h A — R A+ 2413
—6hA"z —2h'A%g +h"Ag - 10A%AY1 + Thh' A4y — dhk" Ay
— 3K Agg ~ 16h°A"10 — 20h%h ' A'ta + Ase + 2h A1
~ 3h% Ay + 3h% 45 - 3044, . f2.14)
In the special rase when the field has cylindrical symmetry about §, we
can choose a circle with radius go = 1/k constani for the reference curve. The
coefficlents Az2m41,4 in £q. (2.8) and the curvature A of the reference eurve are
then all independent of e. Eguations (2.14) are greatly simplified by patting all
terme wizh primed quantitics equal to zero.
2.4 FipLD TXPANSION TO SECOND ORDER ONLY

H the field expansion is terminated with second-order terms, the results

muy be considesably simplified. For this case, the scalar potential ¢ and the
field B = V¢ become

1
d(’hy.ﬁ) = (A10+ Anz+ ﬁ)‘u:z + ---)V-l- {Aso+--- !;-—::-l-'-- 1

A= .80% o = fupctions of s only ,

17



and
Aso = —(A'1s + hAn + Av))
where prime me«ana the total derivative with respect to s. Then B = V¢ gives

By(z,y,8) -—¢ = Ayy + Aipzy + -

By(z,y,8) —-—Q =Aw+Auz+ 5 Alazz + -—Aao!l’ +-ee

%
1 9p_
®) ={1T%:] s

By inspection it is evident that B;, By and B,, are all expressed in terms of
Ajo, Aq1, and A;z and their derivatives with respect to s, Consider then B, on
the midplanc only:

Bu(z,u, (1 _:}w) (Atoy+ Anazp+--}. (2.18)

By(z,0,8) = Ao+ Anz + Au-'-

21
dipole  quadrupole  sextupole  ete.

=Y

1 8B,

=B, ® g —r‘,_, e (2.16)

The successive derivatives identify the terms as being dipole, quadrupole,
sextupole, octupole, etc., in the expansion of the field. To eliminate the necessity
of continually writing these derivatives, it is useful to express the midplane feld
in terms of dimensionless quantities n(s), §(s), etc., or

By(z,0,8) = B,(0,0,8)(1 ~ nhz + fh*z® + vh3z% + ... (2.17)

where, as before, 2(s) = 1/pp, and n, # and - are functions of 8. Direct com-
parison of Eqs. {2.18) and ({2.17) yields

aB, 11 9B,
)] =0 md p= [2Ih‘B, oz? )] i (218)
We now make use of Eq. (2.7), tk » equation of motion of the cent.-a] trajectory:
B,{0,0,8) = (%) .
Combining Eqs. (2.7) and (2.18), the coefficients of the fiold expansions become

Aso =Bu(ulot ') = h(?) v
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Aso =~ (h" - nh® + 36 (B) ,
e ().
At = (2arae+n W) (22) . (2.19)

To second order the expansiona for the magnetic field components may now
be expressed in the form

By(z,y,8) = (p—:) (~nhly + 720h%zy + 1) ,
By(2,4,8) = (?) (h — nhiz + BHS
- -;—(h" -k 2R + )
B,(z,y,9) = ('—:i) (h'y = (v'h? +2nhh' + hhYzy + 1) , (2.20)
whare pp is the momentum of the central trajectory.

2.5 EXPANSION OF THE MAGNETIC FIELD AS A [FUNOTION OF
MULTIPOLE COMPONERTS

‘The magnetic fie)]d on the midplane may also be expressed as follows:

By(z,0,8) = Bpi Kn(s)=" (z.21)

n=o

where Bp = B/h = py/e iz the magnotic rigidity of a particle of momei.ium py
and charge ¢ alony the central trajectory. From Eq. (2.21) it {ollows that

Ka(s} = ( Bp) ( =) ( ?j’ )ﬂ,"o (2.22)
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and

L
Sn= | Ka{s)ds (2.23)
/

where S, is the integratad strength of an nth order multipole component of
Jength L.

2.5.1 Multipole Strengths for Pure Multipole Fields

Consider the scalar potential of an nth-order (2(n -+ I)pale) pure multipole

element:

Bpr* !
b= T;?:_l)_a"- sinfr + 1)¢ (2.24)

where
z=reccsd and y=rsind,

By is the field at the pole and a is the radial 'istarce (o the pole from the central
trajectory.

Expanding ¢ as a function of z and y and differentfating, we have

By = g% = ::TO(’"'*"")
from which
- @)(5) -
and
5= (22) (B%) (2.26)

where L iz the length of the multipcle dlement.®
For a dipole (n = D), the dipole strengih is

where a is the angle o. bend of the central trajectory.

12 Note that in moat European publications the monomial Ka(s)z" in Eq.
{2.21) would be yeplaced by --i55(s)2" /n!, which would result in a change
of sign and the introduction of the factor n! in the definition of Ky in Eq.
{2.25) and &, in Eq. (2.26).



For a quadmypole (2 = 1},

= (2)(%):

= (3)(3)

and so on for highex-order multipoles.

for a sextupale (n = 2},

2.5.2 Multipole Strengths for 8 Noa-Uniiorm Ficld Expansion
Consider the midplane field expansion of a non-uniform field:

By(z,D,8) =By(0,0,8)(1 — nkz + #(kz)? 4 y{hz)* +...)

=Bplh - nh®z + g2 + H42® + )

=Bp§: Kn(s)z" .

n=0

The multipole strungth factors are
Ko=h, Ky = —nh?, Ka=8R, ...
The integrated strengths S, are

Sp=hl=a, S=-nk'L, S;=8L,

(2.27M

263 Multipole Strengths for 8 Contoured Entrance or Exit Boundary of

a Dipaole

A third method of introducing multipole components is via a curved entrance
or exit boundary of a dipole magnet. To calculate the multipole strengths in
this case, we integrate Eq, (2.21), holding z constant. The shape of the exit {or
entrance) pole face is introduced by lotting the hmit of integration L(z) vary

with . Thus we have the following relation:

Lz) L(z)
j B,(z.0,0)ds = Bp 3" 2" [ Knls)ds = Bp ¥ Suz® .
] /]

a

(2.28)



We assume By tuv be a constam inside the effective field boundary and zero
autside (the finite extent of thu fringe field is ignored). In this sharp-cutoff
approximation, the £eld boundary L(z) is given by

L{z) = -';; 7 By(z,0,s)ds = %&' + 53:‘ + - (2.29)
1]

where b = 1/p.

The slope of the boundary at z = 011 5 /h. 'f we denc’e the boundary angle
by B, the stope is alsa —ten A, The minus sign detines the positive orientation
of the angle. Thus we have

Si==htanf} .

A positive # implies radial (z-planc) defocusing and transverse (y-plane} focus-
ing.
The boundary defining a sextupole ¢companen? is parabolic. It Iz convenient

(from a construction point of view) to relate the sextupoi:strength to the radiua
of curvature R of the parabolaat z=0:

1 Zn _ 25
R a+ z.:)s?: = hsectf

or

From Eq. (2.28) we contlude that a positive multipole component o the feld
Increases the value f Bds as z increases, Thus a positive sextupole is represented
by a concave surfece at the boundary Figure B shows the aign ¢onventions uaed
in the "RANSPORT program for § and E.

— . ——— -
B
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Fig. 8. Field boundaries for bending magnets, The quantities lllustrated in
the Ggure have a positive algn when using the conventlon of the TRANSPORT
program.

2.8 THE EQUATIONS OF MOTION IN TREIR FINAL FORM TO BECOND
ORDER

Having derived the expressions (2.20), we are now In a position to substitute
them into the general second-order aquations of motlon (2.6). We find for z

29—h{1 + he) - z'(hz* + h2)
=(2)7{0 + Medih 4wkt - 9822 4 S0 - mk? +288°07)

+h'gyt %
and for g
v —y'(he’ + h'z)
=(§)r-(-s-w — (1 + hx)(ni’y — 28M024) +-- ) .
Note that we have eliminated the charge of the particle ¢ in the equations of
wotion. This has resulted from the use of By, (2.7), which ia the equation of
motion of the central trajectory.



Inserting a second-arder expsnsion for

T'= 22498 + (1 +hafl
and letting .
., _WR
2 pmlled
we finally express the differentinl equations for = and y to second order as fol-
Lerws:

m=l—b+8 4.0 (2.30)

£+ (1 - n)A%z =hé 4 (20 - 1 -ﬁ)h‘s’+h'n'+%&s"
+ (2= W)hPzb 4 2(h" — nh® + 20A%)?

+hiyy' - %hy A — h§? + higherorder terms ,
y" +nhly =2(F - n)hzy + h'zy! = h'z'y + hz'y’ + nhiys

+ higher-ordar terms . (2.31)

From Eqs. (2.31) the familiar equations of motion for the first-order terms
may be exiratted:

z2'+(1=n)AlzmAd and yidnhlyemo, (2.32)
Substituting Ky = —nh? into Equ, (2.31), the equations of motion for a pure
quadropole field regult by taking the ¥mit h — O, At — 0, and A” —+ 0. They
s+ Kya=Ki26 ,
y" - Ky =— Kb ,
where
Ba\fe\ _ ¢Bo\/ 1
x=(E) =G - (223)

Similarly, to find the equations of nmtion for a pure sextupole field, we substitute
K3 = pk* into Eqe. (2.31) and take the Bmit A — 0, h* =+ 0, and A= — 0. The




equotions are
z" + Ka{z? - p*) =0,

$" —2K2y =0,

@B e

2.7 THE DESCRIPTION OF THE TRAIEQTORIES AND THE
COEFPICIENTS OF THE TAYLOR EXPANSION

where

The deviation of an arbitrary trajectory from the central trajectory is de
seribed by expresaing = and y as functions of 8. The expressions will also contain
2o, Yo, Zb, ¥ b, and 5, where the subscript 0 indicates that the quantity is evalu-
ated at g = 0} thess five initial values will have the value 0 for the central trajec-
tory itself. The procedure for expressing £ and y as a fivefold Taylor expansion
will be considered in a general way using these initial values, and detailed for-
mulas are given for the calculations of the coefficients through quadratic terms.
The expansions are written

z=Y . zlzfudz bty b’ 6X)2zfud z Py eX
v =2 (vlefudz b y b’ s¥)zfudz vty ¥ X . (2.35)

Here, the parentheses are symbols for the Taylor coefficionts; the firat part
of the symbol identifies the coordinate represented by the expansion, and the
eecond indicates the term in question. These coefficients are functions of 8 to
be determined. The ¥ indicates summation over gero and all positive integer
values of the exponents , A, u, ¥, X, however, the detailed calculations wil'
involve only the terms up to the second power, The constant term is zero, and
the Brst-order tcrms that would indicate a coupling betwesn the coordinates z
and y are also zero; this results from the midpiane symmetry. Thus we have

{=]1) ={yj1) =0,
(zlw) =(ylzg) =0,

(zlyb) =(vjz} = 0. (2.36)

Here, the firet, line ia a consequence of choosing 2o =: g = 0, while the second and
third lines follow directly from considerations of symmetry, or, more formally,
from the formulas at the end of this section.
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As mentioned in the introduction, it is convenient to introduce the following
abbreviations for the first-order Taylor coefficients:

(zlvo} = cz(8) ,  (zlz%) =85(8) ,  (z[6) = de(s) ,
(o) = (),  {wlub) =s,ls) . (2.37)

Retaining terms to second order and using Eqgs. (2.33) and {2.37), the Taylor
expangions of Egs. (2.35) reduce to the following terms:

—% — =

z= (2|z0) %o +(z|zb)zb +(z(6) 6

+(z|23)=} +(z|zozh)zozrh  +(zlzab)2eb

+(z]2p?)z ? +{z)z 08)zbé +(z|6%)5%

+{zivd)vd +Hzlyoyblyous  +(zlys?)yb? (238

and
ey ay

y= ’(?!T;o-)\ Yo + my b

+(ylzow)zoys  Hylzowblzoyd  Hyletw)zowe
+{vlzbyb)zbyd  +(vivoSlued  +(ylyubb)ybs
Substituting these expansions into Eqe. (2.31), we derive & differential equa-

tion for each of the {irst and second order coefficients contained in the Taylor
expansions for z and y. When this is done & systematic pattern evolves, namely

ey + kgcs =0, "” + k:Cr =0 N
A+ ki =0, &"+klsy=0,
g:"+kigz=fe \ o'tk =l (2.38)

where k3 = (1 - n)k? and kg = nh? for the z and y motions, respectively. The
first two of these equations ropresent the equations of motilon for the firsi-order
monoenergetic torms 8z, ¢4, 3y, and ¢y, That there are two solutions, ¢ and s, in
a manifestation of the fact that the differential equation is second order; hence
the two solutions differ only by the initial conditicns of the characteristic o and
¢ Tunctions, The third differential equation for ¢ is a type form which represents
the solution for the first-order dispersion d; and for any one of the coefficienta
of the second-order aberrations in the system where the driving function f for
each aberration is obtained from the substitution of the Tayloc cxpansions of
Eqs. (2-38) into the general differential Eqe. (2.31).
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The coeflicients satisfy the boundary conditions:
ef0)=1, c(0)=0,
sl0y=0, as(Q)=1,
dioy=0, d¥{0)=0,

¢glo)=0, g¢'(D)=0,. (2.40)

The driving term f is a polynomial, characteristic of the particular g whose
terms are coefficients of order less than that of g, and their derivatives. The
coeflicients in these polynomials are themselves polynomials in &, &7, ..., with
coefficients that are linear fuactions of n, 8, ... . For example, for g = (z|z3),
we have

1
J={2n—1=P)h% +heect + ghet® . (241)

In Table I are listed the f functions for the remaining linear coefficient, the
momentum dispersion dx(s) and all of the nonzero quadratic coefficients, shown
in Eqs. (2.38), which represent the second-order aberrations. of a system.

The coefficients ¢ and s (with identical subscripts) satisfy the same differ-
ential equation, which has the form of the homogeneous equation of a harmonic
oscillator. Here, the stilfness k? is a function of 8 and may be of either sign. In
view of their boundary conditions, it is natural to consider ¢ and s as the analog:
of the two fundamental solutions of a simple harmonic oscillator, namely cosws
and {sinws)/w, The function g is the response of the hypathetical oscillator
when, starting at equilibrium and at rest, it is subjected to a driving force f.

The stiffness parameters k3 and k: represent the converging powers of the
field for the two respective coordinates. It is possible for either to be negative,

in which case it actually represents a diverging effect. Addition of k? and &}
yields

K+k=H. (2.42)

For a specific magnitude of 2 (within one dipole magnet), &2 and Ic: may be
varied by adjusting n, but the total converging power is unchanged; any increase
in one converging power iz at the expense of the other. The total converging
powet is positive,

A special case of interest i3 provided by the uniform ficld; here & = const
and n = 0; then k? = Ah* and k: = 0, Thus, there is a converging effect for
z resulting in the familiar semicircular focusing, which is accompanied by no
convergence or divergence in y.



Table I. The Driving Terms for the Coefficients

d. = {z}6) h
{zl=3) + (2n-1— g)AS? +hicac's +3hee?
(zlzoz) +2(2n — 1 — f)h%c.a,  th'(citla+che,) +hoyet
(zlzo%) (2- n)h%e, +2(2n -1~ W% d:  +h'(cad s + c'ody) +held’
(zi=%%) {2n - 1~ B)h%s32 hiaes’s +ihet?
(zlz6) {2—n)h%a; +2(20—1— S)ASazde  +A'(Padls + 0'uds) +he'ad’
{z16%)  |-A+(2-n)A%, +(2n—1-B)W0d2  th'dadi +hhdy?
(=hg) §(hr —nh® 4 28R% 3  +hicycy ~Lhey?
(zlyoy’s} (A —nh® + 28K%)c 8, +ho(eyely +eiyn,) —haiyry
(=ly”) 3(h" ~ b +200°)] +h'sys% —xhay?
{elzow) 2(8 - m)h%eacy Fhileaty — e'azg) Hhelsey
(sicov) 26— nlhlesty  hi(esny - chey) Hhoury
{y]='o%0) 2(f — n)hazcy Fh(racy — 'ae,) Fhatey
(ylz oyl 2(8 — n}hlasy +h(eealy — 2an,) +hs%ety
(vlwé) nk¥s, +2(8 - n}he,d, —h(e, di — clydy) +heydt,
(y]yob) nhts, +2(8 ~n)h3e,d, —he{ayds — eyds) +hslds

Another important special case is given by n = 1/2; here, k2 = &3 = h3/2,
Thus, both coordinates experience an identicai pesitive convergence, and ¢: = ¢
and s, = 8g; that is, in the linear approximation, the two coordinates behave

identically, and if the trajectory continues through a sufficiently extended field,
a double focus is produced.

The method of solution of the equations for ¢ and s will not be discussed
here, since they are standard differential equations. The most suitable approach
1o the problem muat be determined in each case, In many cases it will be
a satisfactory approximation to consider h and n, and thercfore k* also, 25
piecewise conatent, Thus, ¢ and s are represented in each interval by a sinuscidal
function, a hyperbolic function, a linear function of 5 or simply a constant. Using
Eq. (2.39) it follows for either the = or y motions that

d i ot =
z;(cs—cs)_ﬂ.

Upon integrating and using the initial conditiens on ¢ and 5 in Eq. (2.40) we
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find
eat-eh=1. (2.43)

This expression is just ihe determinant of the first-ordes transfer matrix
representing either the x or ¥ equations of motion, It can be demonstrated that
the fact that the determinant is equal 1o one is equivalent to Lioyville’s theorem,
which atates that phase areas are conserved throughowt any first-order system
in both the z and the y plans motions.

The ~ocificients g are evaluated usiag & Green's funclion Integral

o= [ frate e (248
°
where
G(a,r) = s(8)efr) — o(7)c(s) (2.45)
and
g =a{s) [ f(r)e(r)dr ~c(n) | J(r)s(r)dr . (2.46)
[ /

To verify this result, it should be noted that thia aquation, In conjunction with
Eq. (2.43), reduces the last of Eqs, (2.30) to an identity, and that the laat pair
of Eqs. (2.40) follow readily from this proposed aolution, In particular, if f =0
then ¢ == 0. Then it will be geen from Tahble I that sevaral coefficiants are sbsent,
including the linear terms ¢hat would represcnt s coupling betwean z and y .
Frequently, the absence of a particular coeflicient Is obvious from considerations
of symmetry.

Diflerentiation of g, {2.45) ylalds

v =o10) [ Si)elor - lo) [ rostrer (2.47)
[ ')

g% = [+ 8(s) f Flr)elr)dr — c™(s) f F(r)s(r)dr - (2.48)
] [ )

The driving terms tabulated ia Tshle I, combined with Eqe. (2.46), (2.47),
and (2.48), complete the solution of the ganeral second-order thoory. The explicit
solutions for apecific systems or element of sy teme can be fornd in the report

)



SLAC 75 by Brown® 1t is utefu} to integrate the driving terms tabulated in
Tabie I for a separated function lattice, so that the dipole, quadrupole, and
sextupole tetts are separated. The results are shown in Table II for point
to point imaging (sey(s) = 0), and in Table X for parallel to point imaging
(cxa(8) = 0). The fringing fisld tecms containing i'(s) have been drupped. This

is a reasonable approximation at high energies where o(s) i vexry large compared
with the beam dimensions.

Tables 1, 11, and T are especially ussful for determining the symmety con-
ditions needed to make a given aherration or group of aberrations vanisk, or
to determine the coupling cosfiicient of the terme with respect to the multipole
strengths S,y for the ' element. Where n Is the order of the multipole and 5

Table Il. The integrated values of the sccond-order mairix elements for a
separated function lattice for point to point imaging {¢;4({s) = 0); fiinging
ficld terms are not Includad.

Dipole Sextupole Quadrupcle
(z]2) & —Leu(s) Jy cosada +oq(8) T, Sisedes
(#|z0zb) & —ea(s) fo e20cacda+2c,(s) 51 Bajest]
(2lzof) & —ca(8) fo 0 4d'seada+205(a) T ; Sajexsads—ca() 32, Sijecas
(z]20™) & = eq(s) Jo s4 0zda +es{n) Ty 53, 42
(2|70 '6) 2 —ey(0) J 8 bdutpdat2e,(0) Sy 8y503ds —caln) 3o, 515k
(2167} & —hoy(w) [ ds®agder +o5(s) z Spytadi  —ea(n) 2 51582ds
(=hd) £ feals) o eV 0rda  —ca{s) T; Syyoea
(zlvoso’) 2 eqfs) fp cyshbada  =205(0) 1oy Sajeytys,
(zino?) % les() 3 24P s0de —c:(9) T, 550004
(#1z0m0) = —eyla) Jy eueptyda—2ey{s) s Sagescyty
(vlzosn?) = ~oy(8) Jy e hayda —26,(0) X; Spjeus}
(oleo'm) = —¢y(8) [g akelaydu~2ey(s) T; Tajontysy
wizo'w?) & ~cy(0) [ 2 s5yayds—2¢y(s) Ly Syyose}
(vlvnb) & —cy(s) Jg ayduayda~ey(8) Xo; Saeydzoy-+oy(s) 22 Srjcyty

(vl00'6) = ~cy(a) fi 2l saydu—20y(8) T2y S1jdat} +&,(0) 12; 556}

Brmopas e -




Table II], The intexrated values of the second-order matrbx elome:. & for

a ceparated function Iattice for pavaliel to point imaging (czy(8) = 0);
fringing field terms ate 5 -4 included.
Dipole Sextupole ~“"Quadrupole

(=z=3) & +fes(v) 5 cxPeadei —8:(5) 1, Syl
(zlzomt) & +oa(B) fy o't konda—25,(8) T, Sz5cds,
(z]zo8) 5 +2u(s) _ro' ehdsopder—2a,(s) 3 Syycld,  +ug(s) L; Sigcd
(zlzo ?) & +aa(e) Jg 947 esda —2.(e) T; Sajsice
(#l2o"0) & +35(0) fo s%dicada—2s,(s) T_; Syjaaceds+a,(8) £, Sijaece
(216%) = +3sa(0) Jo d4crder—s.(n) 3 ; Sajead?  +5.(0) 1oy Sygeads
(=) & —3oe(0) fg o4 cdder +0:(8) 3, Sayees
(syomo?) 2 —a5(0) i ey8Ycader+20:(s) 3 Syjeynyes
(zlw?) = —Jas(s) Jo 83 esda+o.(8) T°; Sajole,
(vizow) & +oy{s) J ¢aeyoyda+25,(5) T; Sajeac
(vlzoyn’) & +oy(0) fy oo yeyda+2sy(s) ; Syyeaeyay
(y]z0"vo) & +8y(8) [ suelyeyda+24,(s) T, Sajs.c}
(ylzo’ye') & +ay(s) f; a48yepdat2s,(s) 3 Szjsecymy
{vivos) & +ey{0) o eydaeyda+ls,{8) T, Saicdd; —ay(8) T, Suyc
(vls0*0) 8 +ay(0) fo a4dheydert2s,(s) 3 ; SajdocE  —ayla) £ S1ja50

3 FIRST-ORDER OPTICS
3.1 NOTATIONS AND DEPFINITIONS

This chapter Is devoted to the detailed study of first-order optics. The resulis
are derived from those obtalned in Chapter 2, and in particular from Eqe. (2.35)
to (2.40),

In order to slmplify the notation, the following coanvenilon ix adopted:
The variables 2, #, 3, ¥/, I, § will be denoted by zy, 23, z3, 24, 25, 2.
Using this poiatlon and restricting ourzelves to first order, Bq. (2.33) can
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be written in the following form:

8
S‘=ZRU'I(|J‘, i=1,2,-..,3 {301)
i=1

where we have adnpted for (z;)z;;) the notation Ry as used In lincar algebra.
Bquation (3.1) can also be rewritten in compact mateix notation os

X=RXp.

3.1.1 Geosetric Terms, Chromatic Terms, and Phase Space

In optica studies it is customary first to study the properties of a set of optical
elements by restricting the momentnmm of the test particles to one value (called
the reference momentum), and then to study the properiies as the momentum
is changed. The elementa R;; of the matrix R that contain one subeeript with
the value 6 are called chromatic terras. The elewents Ry; for which no anbecript
is equel to 6 aze referred to aa geometric terms,

The condition expressed by Eqa. (2.36) and (2.37) simplify the matrix R to
the following expression:

e(0) si(8) O 0 0 dyu)
es'{8) s2'(s) 0 ) 0 dg(s)
R= 0 0 cyis) s4(8) O a
0 0 cis) af(e) O 0
Rst Rsa Ry Bse Res Ree
\Ba Ra Ro R Ry R/
Because there is no coupling between the varisbler x3,2a and £y, 24 (resnlting
from midplane symmetty) it is convenient, when one Is not considering the
chromstic texmsa, to Tetain anly the two by two matrices describing the motion
in the planes defined by the coordinates x;, 23 o7 7,2" and by the toordinater
Z3, %4 0 $,1/. The first plane i the horizontal phase space or the (3,2') phase
plane, and the s2cond i the vertical phase plane or the (y,3’) phase plane. The

matrix R, called the transfer matrix, then reduces to the simple 2 x 2 form for
each plane;

=
=

R(l) = [Ru(s) Rn(ﬂ)]

{e(a} a{n)
Ry (s) Rzafs)

¢'s) o))
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3.2 GREEN'S FUNCTION EINTERPRETATION

Consider two pointa in a beam line defined hy the positions r and 8 (assumed
in increasing order) of the longitudinal coovdinate, as illustrated in Fig. 9. An
interesting problem is to determine at the point & the effect of a punctual (zero
length) magnetic element located at coordinate r. It is understood that only
angular kicks can he achieved by such clements.

x‘(r)

— ] -y

Ry
=04 4AR0FA DA

Fig. 9. Green's fupction interpretation; an angular kick at position r
results in an effect at position =.

Let x'(7) denote the angular kick produced at position 7. The values of z(s)
and z'(s) denoting tke effect at position s are given by

z(s) \ 0\ (Ru Ru 0
(zs(.)) = B (zO(r]) - (Ru Rg;)r.' (z'(r))

where R is the linear transformation matrix between pesitions © and 8.
Since the matrix
rey )
e'(7) «(r)

transfers data from position 0 to position r, the transfer mairix R, between 7
and ¢ is abtained as follows:

R(s) = Ryq R(Y)

&nm whith one gets
R = P(s)R{r)™}
or, in explicit form,

(R,, R,.,.) _ (c(e} 3{&}) ( s'(r) —afr)
Bn R/, c{a) a'fs) ) \ -e'(r) e(r)
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from which
(Rig)ea = —e{8)s(r) + a(g)e(r)
and
(Rag)r,e = —c'(8)s(r) + s'(8)e(r) .

(R13)+a is the Green's function for 2{s) and (Rz1)ra is the Green's furction for
z'(s).
3.2.1 Example of the Use of the Green’s Function

Find the expression for the fizst-order dispersion in terms of the ¢ and s
functions and find the condition (in terma of the same functions) for first-order
achromaticity (a dispersion-free system}. The dispersion function dy(s) is the
solution of the equaticn

dy + kB, = h{s) = (1/0) -

In this equation h(s) s the driving term f for the dispersion dy; then, from Eqs,
(2.46) and (2.47), we have

d(s) =ff(f)G(r,s}dr =[h(r)G(r,s)dr
0 0

=8,(8) ! ex(7)h(r)dr — cois) [ ax(rh(r)dr .
] 0

Denoting dr/pgy by da, the differential angle of bend of the central trajectory,
we obtain

dz(8) = sa(s) / es(r)do — ex(s) j ss(7)da
(] [

and

d2(s) = s2(s) f es(r)des — e2(a) ] sslr)dex -
] 1}

From these two formulas defining the dispersion and iis derivative in terms of

H

=




the c and s functions we get the achromaticity conditions ns

j ex(r)da =0 = j En(rida ,
s °

! safr)da =0 = o[ Ruafr)de .

3.3 LINEAR BEAM OPTICS

By the word beam we mean a set of » particles where n is 2 large integer. The
behavior of beamns can be studied by the tracing of a large number of individual
particles or by studying the transfer propertices of algebraic curves which are
assumed to bound the particles contalned in the beam. It is a property of linear
algebra that the only curves that are simple to transfer are the conicas (second-
degree curvea). Therefore, as a simplification dectafon, it will be assumed that
beams resiricted to two dimensions are adegquately described in Hnear opties by
sn ellipse.

3.3.1 Elliptical Beam Envelopes

Let us first consider the twe~-dimensional case In tho horlzental phase plane
z,z',

The general equation of an ellipse, centered on the origin, le
oz® + 2bzz’' + oz = m
which can be written in matrix form as
X'BX=m

where B ia a poaitive definite aymmetric matrix defined by the coeflicients a,b,¢

as follows:
(i) = xe()
& e F
and X* is the transpose of X. The multiplication of all four coefficients by a
common factor does not change the ¢llipse. One has then the choice of either

letting m = | or det B = 1. In the first instance the ares of the ellipse is given
by x/+/det B and in the second Instance the area equals am.



Let us adopt the definition

X'BX =1 {3.9)
acd denote o as the inverse of matrix B
0-3"-("“ m) . (3.3}
on on

One cao prove, by using techniqies of dual spaces in linear algebra, that /oy
and /o33 are the tangential projectious of the extreme points of the ellipee on
the axes z and =’ reapectively, as shown in Fig. 10,

*maxs v 9|
- det
%int ot o

AN

Controid

=G

809405

Fig. 10. A besm ollipse based on the o matrix, The maximum
extent of the sllipas and its orlentation axe shown as a function
of the matyix elementa.

With this definition the equation of the ellipse may also be expressed as
Xlo™iX =1
or atternatively 2a
mz’-ﬂﬁld+o;w"=dnta
and its ares is A = 1/det 0.
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This definition msy be extended in a straightforward way to n-dimensions.

An n-dimensicnal ellipsoid ia defined by o, a positive definite ayromneisic matrix,
and has the equation

Xo'X=1
where now X stands for an n-dimensional vector, The volume enchsed by the
ellipecid is given by

nf2
)
-f(m\fdltﬂ.

In partiular for dimensions 4 and 6 the volume of the ellipsoid is given by
(77/2)vdet @ and by (r3/8)v/Jet 0 respectively.

3,82 Beam Ellipse Transformation

Assume o beam to be defined at & longltudinal position sy by the matrix ;.
Iis equation is

Xlorlx =1,

Conslder Lhe point #; and assurne that R is the linear transfer matrix from g,
to 83. Tho coordinate iransformation satisfles the following relations:

Xy=RX; and X;=R"X,.

This linear transformation will change the ellipse ; at point s; into another
ellipae o at palnt 85. The equation of the sscond ellipse is

XjoT' Xy m 1,

Wa noed to find the relation between o and ;. To do so we express X3 and
X; in terms of X} and X;, We obtain

xfﬁ'c;‘RX‘, m]
from which we conclude
of! = BlortR

and, by inverting,
oy = R-IQ(R')"I
or equivalently
s = Roa\R* .
Note that since det 2 = 1 (Liouville’s theorem) it follows that
det o) = det oy,

showing that the transfonnation has preserved the phase volume of the beam,
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Before pursuing the study of the tronsmission of heams through a aystem we
shall look st the formulzs that govern single-particle motion in closed machines,

3.4 SINGLE-PARTICLE OPTICS POR A CLOSED Maoing

The frst-order equations ¢f motions are given by

dﬁz + k3 (s)z =7[T = 5h(s) ,

‘f;’ +Kife)y =0,

In a closed machine the Tunctions ks{s).ky(s) and p(s) are poriodic functions
of 8 . Let us consider solutions for the nondisperaive (¢ = 0) ntable case, The
theorem of Floguet states that there exist twe perlodic functions 5(s) and y(s)
in terms of which the general solution =(s} can be expressed:

z(8) = v/¢A(s) con(yi(s) + )

where ¢ and ¢ are two arbitrary constants and the two functions 8{s) and ¢(s)
are not independent, but are liuked by the relation

vy = [ 375y

(s) is called the *machine phase shift® betwoen poinis 0 and » , Differontiation
of z(8) with respect to s yields

26) =y conttle) + 8) = VB olalg(s) + )5

=- /3{;} (a(s) cos{y(s} + ¢) + sin(t(s) + 45))

where we define the function afs) by

Bs) = ~2ais) .
Alternatively 2'(s) can be written in the form
z'(s} = Ver(s)cos(x(a) + 8)




where x{s) satisfies the relation

tan(4(e) ~ x{o)) = ;}—,;

o) - o) = -
and the function -(s) is defined by
ol = LERlE

Let us note once again that ALL the functions x{s}, =°(g), f{s), a{s}, +(s), and
¥(s) are perindic with the period L where L is the length of the closed machine.
Consider now the values of the solution z and its derivative at sticcessive revo-
lutions at a fixed point 5. We can-describe the moiion at pesition s by plotting
the values of 2 and £ in the “z-phase plane”. Eliminating the trigonometric
functions from the expresalons of z(s) and z'(s) yields, after some manipulation,

v(s)2® +2a(s)zz’ + f(a)z 2 = ¢,

which shows that the positions (z,z') of a particle at the coordinate » 4pon
mccessive turns lie on an ellipse. This ellipse can also be written in matrix form.

The parameters &, §, and -y are somotimes referred to in the literature as
the Twiss parameters,

34.1 The Machine Ellipse

Let T denote the matrix
8 -afs
T=(ﬁ() a()) 3.4)
—ale) +is)
where T" hes a determinant eqaal to 1. The equation of the ellir.e characteristic
of the machine may then alsa be written in the matrix form
Xirix=¢. (3.5)

The area of this ellipne Iz me. As was shown fo. the beam ellipse in a previous
paragraph, we can compute the maximum z excursion ., and the maximum

»



Z' excursion T 'pyx. They aze given by the expressions :
Tmax = Ve ’ Tmax = VP -

From the explicit equation of the ellipse one cen also obtain the coordinates of
the inteicepts with the axes:

_\/f I L
Tinter p » Tndnr ﬁ'

From these expression one can deduce aliernative expressions for the avea of the
ellipse:

Avea = ¥€ = XZpmaxZinter = Foigtr® ‘max -

This result can alse be generalized o dimension n. For » dimensions ¢ is the
product of one intercept ,one maximum and (» — 2) maxima of subspace inter
cepts, Figure 11 {llusirates these points in two dimensions.

| x”

‘Ifl'lﬂl =-\/7_€\

/I =z fE a
"im'/;\ /slopu=— 5
j"
)
=Xy
K -
Xmax VBe
— . o fE
Kmt*v ¥
Beam
Cantrold
5— g4 9pval

Fig. 11. An ellipse besed on the mechine parameters j, a,
4, Mustrating single-particle wotion iz a closed machine. The
aren of the ellipse is 4 — xe.

e

R —

e ———
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Comsider now two points 5) and 5 on the reference orbit of the closed
muchiss, Lot 7} and Ty denotn the machine ellipse matrices at these two points
and R tha transfer matrix from polnt §) to point S;. As for the beam elfipses,
we have the ollowing transformation relating T3 to 7y:

%= ROE

B R’y -2Rul2 B} [
(q) o (—Rﬂnn 14 2R2Rn "RRRB) (“l) - (3.6)
% R}, -2RnRa R} n

3.5 THE RELATIONSEIP BETWEEN THE BEAM ELLIPSE AND THE
MACHINE ELLIPSE

Having defined allipses both for beams of particles and ior single-particle
motion In closed machines, we now turn our sttection to the relationship between
the two. Consider & closed machine that is characterized by the ellipse E;, with
emittance ¢ and ares Aj, as shown In Fig, 12, Let F; denote 2 point on that
wllipse and let O denots the origin of the axes, After successive turns around
the machine the point Py will reappear at Py, Py, ete, Bince the transformation
R governing th!s motlon Ia linear and area presarving, the area O F; is cqual

=04 800417

Fig. 12. The superposition of deam ellipses
E3 and E; witls a machine ellipse E;.
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to aren OF;Fs, etc, It also follows thet these aveas and A; satiafy the following
relation:

where mod{z, 1) denotes the fractional pat of £ . Here we have introduced the
new notation g, defined as

p=(L),

which is the phase shift for one complate revolution of s closed machine, where
L b the length of the closed machine. The ratio ;2/2x it dencted by ¥ and i
called the tune of the machine. Consider now an ellipse B inscribed In By with
a contact point at Py, Let the cllipse B represent a beam of particles circulating
in the machine. Ellipse By bocomes, after one turn, elilpse Es with contact polat
P,. Ellipies E; and Ey hava tho same ures,

When the beam ellipse Ey s concentric and similer to the mnchine ellipss
E}, the heam is gaid to be matched to the machine, In this instance the beam
reappears on successive turns as the ssme ollipse, but the individual particles in
the beam rotate around the ellipse aa did the poluts P, etc. This observation
shows that the phaze space aren (and consequently the physical sperture) needed
to accommodate a given beam I3 minimum when the beam g matched to the

machine. We shall now use the abava properties io define beamlines in varlows
ways which prove useful in practice.

Let us find the transfar matrix which transforma the ellipse defined by the

input values f; and oy st positlon sy into an ellipse with the values g3 and o« |

at poszition s3.

Consider the solutions ws glven by the Floquast theorem:
z(s) =v/¢3{g) cos((s) +¢) ,
o) = - o[ (aladeonipie) + ¢) +sin(yle) + )
Expanding the trigonometric functions and aimplifying the notation gives
x =yeBleas o d—sinpeingd) ,
2= - | §lacospoons - asinpsing + s pesed + coning)

The point having ¢ = 0 is assumed to be associated with the values f§; and oy

2




and z; and 2y these values then satisfy the following relations:
o =\/ePrcosd .,

Iy =— Jg(mmé-i-sina) .

Denoting by f:, &z, Z3, and 2’3 the values associated with ¥ nonzero, and
ehminating cos $ and sin @ from the previous four equations, one gets

o3 =2y \/%(cmb + oy sintd) + 2’/ Fafising ,

—ag cok ¢ — sln ) — gy si0 ) 4 oy con ¢ .
201

' =z

2/ g—;(cosw — agsiny) .

From the above nquations we deduce the transfer matrix between position 1 and
position 2 to ba

J%(eos Ae) + a3 8in AdY) VD1 3z sin A
{(1+aym)aindy+ (a3 —oy)cos A [B1 (cos A — ag sin Av)
142 VB

(57)
whers Ay is the phase uhift between position 8, and 3;.

In the particular cuse where the input values (5, 1) are equal to the output
values (£, a3) the transfer matrix bucomes

R= coSy -+ asinu fisinp
—rysinu cosu ~ aeiny

where we hava defined

B=b=0, a=m=03, n=Aay,

and

Formuis (2.7) expiresses the elemeants of the transfer matrix R in turms of the

input paramaters f;, ay, the output parameters 8z, ax, and the phase sdvance
Ay betwean positions sy and a3,




It i5 also possible to express the gutput Twiss parameters and the phase
advance in terms of the input Twiss perameters and the matrix elements. The
firat patt of this invergion process s achieved in formula {3.6) which we repruduce
here:

fi A Rfl —2Bu Ry R;g B
oz | = | ~RuRn 142RuRn —~RuRn ||ey ] . (38)
- K, 2BaRy R N

The phase shift Ay & derived from formula (3.7) a8

Rz

A = e —— o
tan Ay R py - Ryen (2.6}
ar
sin Ay = —12 ’ (5.10)
1

or equivalertly by the formulas relating v(s) and A(s):

M’:-—:!%.

Let us look at some elementary configusations and delermine thelr phase
shifts:

a) A thin lens is cheracterized by 5, = 82 so that A¢ =0,

b) If Ry3 = 0 (point to point imaging) then Ay = n7,

¢) It ®.. =0 (parallel to point; imaging) then tan Ay = —1/ay.
d) For a drift of length L, Ryp = L and sin Ay = L/ .

3.5.1 Iniroduction to an Alternative Notation for Beam Definliion

In obtaining Eq. (3.3) we have shown that a beam eontzined in an ellipse
can be characterized by the matrix

N o 013)
fia o

Let ua reca’l that the square roots of the Jiagonal terms give the maximum
extent of the beam, and that the number ¢ = /det ¢ is called the amittance




of the beam. The arca of the beam ellipse is then xe. With this notation the
equstion (3.2} of the boundary ellipze is

XiBX=1
where B is the invarse of ¢ and its determinant, i equal to ¢2. Let us nmitiply
eath element of the matrix B by thescalar ¢ and let us denote the newly sbtained

moatrix by F and let
¢ o
E=(a b) . (3.11)

st E=br-0"=1
and the Eq. (3.2) of the ellipss becomes
X'EX=q. (3.12)

The above rosults ehow that & beam contained in an ellipse may be defined in
two equivalont modes, either by the four parameters:

Oboerve that

o1 o 22 £
and the relation

Vdeto = ¢

or by the parameters

aud the relation
be—adml.

Let us now turn our atientlon to Eqs. (3.4) and (3.5), in which we defined an

ellipss assoclated with the transfer matrix for s‘ugle-particle mation in a closed
machine. This ellipse has the form

XX ¢ (3.13)
where
f -«
T= (_a . ) (3.14)
and
Bi—ot=1.

The mathematica) similarity between the relations (3.14), (2.13} and (2-11),
(3.13) is clear. This hes led many designers to use the parameters £, o, -y, and ¢



to define a beam eilipse as well 23 to dofine a transfer ellipee for a closed machine.
This habit cax lead to some confusion. R Is certalnly mathematically correct,
but the interpretation of the physica ia clexrly different.

To illustrate this mathematical equivalence let us consider an optical ceit
chararterized by the machine transfoy matrix

X coa s+ &sinp Fsing
—ysing  cosp—ashp

and an input beam characterized by the matrix

B o6
E - »
' (“t "1)
E; will be transformed as foliows:

Ey=(RY B R .

With the explicit multiplication of the above matrix relation one can ahow that
Ey = E; when the Yeam defined by Ey s such that

bh=f, am=ma, a=s.

When these conditions are met one says that the beam ls matehed to the cell.
This alternate notailan for a beam deflning ellipee glves » very simple form to
the matching conditions.

This fact alone justifes the usclulness of the alternative notation presented
here.

4 OPTICAL HUILDING BLOCKS

Having studied the behavior of beams In a general context, we shall now
turn our attention to the study of special elements or sets of elemonts which can
be nsed to design modules with apecific functions in beam opticz. The fallowing
sections are devoted to the study of a few simple and practical modules that
occur frequently as lattice bullding blocks.




A ——m b e b a s 0 R mad peeme ems

4.0.1 A Drift Space or Field-Free Region

The transfer matrix of a drift is

()

Arxr=a9—ay = Lxn* and Z3' = X' = a constant .

from which one detives

The Twiss parametr s transform as follows according to foxmula (2.8):

B2 71 -zL L3 &
az | = (0 1 -L (23]

v o o 1 \n

From this relation one obtains
Aa=ap—ay = —L and ~2 =1 = a constant .
The relation (3.10) applied to the drift gives

AV = = Thk

showing the relation between the phese advance and the length. The relation
(3.9) gives

R _ L
Rufi~Rypey  fi— Loy’

tan At =

Consider the extreme point on the beam ellipse shown in Fig. 13.

As the beam travels throuzh the drift space, this peint will be displaced by

Az given bt
Az = L./5 =L1’i.
t

where f, is the # value achieved at the point where the beam has a walst.
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/ ’ %’ ’
x5 = xy = canstant xb ax=/ 7€ =constant
Ax={xg-x 1z lng |
2
xz -
- i
o X
__‘_,-’iil 2 Xint® /€ = consiant
ol L Y
ds L
x!= canstanl y = constant
pe DRELY de=~Ly a1

Fig. 13. The transformation of an ellipse through a drift (field-free) space, i
4.0.2 A Thin Leny

A focusing thin lens has the following transfer matrix:
1 0
R=
~-1/F 1

T
Tz =z = & constant and Az'=z;'-—z1'==—-Fl|.

from which one derives

The Twiss parameters transform according to formula (3.8),

fa 1 0 0 B
ai=11F 1 olla
" 1YF* 2/F 1) \m ;
which gives ‘
_ _ B
$3 =P == constamt  and Aa-ag-al-—-}; .
The relation (3.9) gives
Rz
tan AY = ———+——— =
wnav Rypy - Rz
48
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and 90 Ay = 0 bacavse the integral
ds
sv= [ 5=

mnce the thin lens bas a length equal to zero. The transformation of an ellipse
through a focusing thin lens is fllusirated tn Fip. 14.

!
x ey l-\/%-n constont 1"

2%
ge-Forf q
x X X2 | .
X
wrd ' _gf_;l
2 ™ tmgx s VB¢ sconsiant
% v constant A ¢ gonstoni

() sar+(f)

Fig. 14. The transformation of an ellipse through a focusing thin lens,

RLL LTS

403 A Quadrupoh

The thin lens quadrupole behaves in sach phase plane (2, ') and (y,y*) hike
a {hin lens of opposite signs, If the lena ia focusing in the z-plane, the matrices

can ba written =a follows:
L 0
R (*1/5‘ 1) ‘

We have assumed here that the quantity F is positive.
The phase advanca is zero in both planes, and 2 is constuat in both planes.
The change in @ is given by

g
Aﬂ' t? [

in these expressions the upper sign applies to the (z, 2 ') focusing plane and the
lower gign to the (v, 1) defocusing plane,



crlrath v g o . L L -

404 A thin Dipole

A wedge dipole with the Geld index n equal to D (Ls. & uniform field) can
be simulated a9 a thin clement (baving sero Ilength), located at its middle, and
having the following transfer matsix:

1 ) I
R=| —dhnalp 1 saa
0 e 1

where o« iv the defcction angle of the central trajectory and where the thivd row
and colomn describe the part of the transformation associated with the energy-
dependent parameter § = (Ap/p). The wadge dipole behaves like a thin lens
of focal length F = p/sina in the (z,2'} plane. In the (v,1’) plane the wedge

dipale behaves like 2 drift wor = sharo cutoff Seld Loundsry, The matrix R gives
us

23 = z; = o constant and A='=:g'-=1'l=-£“—;n-g+5llna.

The formula (3.8) becomes
B2 1 0 o0\ /A
(a,) = ( slnat/p 1 0) (a;)
" sinfa/p' 2slnafe L/ \m

Biina

which gives

Bz = §; = & conatani ad Aagsay—o=

An for the thin lens, the relation {3.1C) shows that Ay = 0 for the gerc length
dipcle. The transformation of an ellipse through a wedge dipole magnet Ia
illustrated in Fig. 185.
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V

t—-pa 4809423

Fig. 15. A wedge dipole magnet from input to output principal planes,
4.1 STUDY OF SIMPLE USEFUL COMPOSITE MODULES

Using the basic elements discussed in the previous section we shall now
explore some typical composite modules,

4.1.1 Basic Facusing Modula

If a focusing thin lens of foca! length F is placed between two drifts of length
F, the transfer matrix for the composite system is

2=(o 1) (e D6 1)
z(—xc/p z) '

From the matrix R we observe that angles are transformed to displacements and
displacements to angles as follows:

Zp = Fayp!t and 2y = ——
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From the relation (3.8} we have

i Y 0 0 F? il
[127] = 0 -1 0 [+3]
2 1/F* 0o 0 "

from which
fr = Fg"n and G = —ay .
Relations (3.9) and (3.10) yield

1 F
tan Ay = —— and BinAY = ——uuxo
vEa Vi
from which we can conclude the following result: If ay = a3 = 0 then, since
sin At > 0, we must have Ay = #/2 and F = /Bif.
This relation links the lens focal length F and the length L = 2F of the
module to the magnitude of the § values.

Practical two-dimensional modules based on this concept are typically achieved
by symmetric triplets or by gquadruplets, as shawn in Fig. 16.

For the teiplet, the focal length is different in the two phase planes (z, %)
and {y,y') because of casic properties of triplets.

If it in required that Fy = Fy, then a symmetric quadruplet array »f guadrupoles
may be uged as illustrated in Fig. I6.

I W

-

6-84 fy fp ts f) 4B0BA2D

Fig. 16, A triplet and a quadruplet lens system pos-
sessing paralle] to point and point to parallel imag-
ing in both planes.
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4.1.2 The FODU Array

The FODO array is perhaps the most common building block used in the
design of machine lattices and beam lines, Its atructure is illustrated in Fig. 17.

o
RN

4809A21

Fig. 17. A FODO array as a building block for
Jattices. 1) The transformation for one cell be-
tween the centera of the lenses, 2} The trans-
formntion for one cell between the centers of the
drift regions.

It is informative to study the FODO array at two different observation points
in order to better understand its basic properties.

1) First cass: The cell begins and ends at the center of a lens, then the
transfer matrix for the z and y planes is obtained by the following multiplication:

R_(IO)IL 1 o0\{1 L 1 0
“\F2r 1) \o 1)(5:1/; 1) 0 1) (;1/2; 1)

where again the upper sign applies to the (z,z’) plane and the lower sign to the
{wy") plane.

If we assume that ) = 3; = § and a; = o3 = &, then

( ") (-57) =)

~1 c-as L. b 2
(7)) (o)
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from which

(-5,

Bin(%)=‘,u—_;“;”)-=%'

_ op1Eein{n/2)
By = 2L—j.i—n'5—

*
and
asy =0,

and, using symmetry arguments, the ratio of the beta functions in the focusing
and defocusing lenses is given by

Bmax _1 +sin{u/2)
Paiz  1—sin{pf2)

Note that this ratio is independent of the length of the cell.

2) Second case:  If we now begin the FODO array in the middle of one
of its drifts, the transfer matrix for one cell is given by

e[t 22 1 o\{1 L 1 o)1 L2\
“\o 1 £1/f 1/\0 tJ\x:/f 1j\0 1}’

i L L3
R_(c-ﬂn Bs )_ (l_if—z)q:? 21’—;?5//
~y ol L L’,. L
SN e

from which we obtain .
cosu=(1—§%) '

i (5) =57

which is the same as 1n case 1, but

then

frg = % (2 - ain?(/2))
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and
:F2 sinfp/2) .

ary = -
¥ sinp

The last two relations show that at this location we have the interesting 1elations
B = By and oy = —ay ,

which is the same property possessed by a thin lens quadrupole,

A particular case of interest is obtained when u = /2. This corresponds
to (L/f) = v/2. This FODO cell is then often referred to as a ‘quarter-wave’ or
Af4 tranaformer and is shown schematically in Fig. 18.

R e e

Lladl £ H =w/e Lh0SA20

Fig. 18. The A/4 transformer.
The transfer matrix R of this quarter-wave transformer is
R VI 3Lj2
YT\ -2fL V2

and we have the interesting property RB;; = — Rag and Ry, and Rz both change
signs between the z and y planes.

Wa shall use all of the above properties later when we discuss the problem
of matching between twa dissimilar FODO arrays.

4.1.3 A Telescopic System

The optical system illustrated in Fig. 19 is calld telescopic.
Ita transfer matrix is given by
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Fig. 19. A one-dimensional telescopic system.

R= 1 M 1 0 1 R+ R/ 1 0 1 F;
“lo 1 /J\-yym 1) \lo 1 -1/R 1/\o 1

(R 0 Y (-M 0
_( 0 -F;/F;)*( a —1/M)' (41)

From the R matrix we abtain

g = —-Mn and zg' = —%1?'- .
The relation (3.8) becomes:
fa M* 0 0O M1
ez |]=] 0 1 0 o
2 0 0 1/M? 1

which shows that
B2 = M6y and ag = ay = a constant ,
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Since Ria = 0, the relations (3.9) and (2.10) reduce to

tanA¢=0 and ainA¢=0.

Using the formula (3.7) rewritten a3
[
==cos A¢Y 0
. VE
0 -g’-'-coaA\b

we dedure that cos Ay < D, and consequently that Ay = .,
A telescopic system hes &n optical magnification M given by
Py
L] M= ﬁ' L]

Tt also has the proparty that the transfer matrix R is an invariant if a drift
length mituated to the right of the lenses is transported to the front with the
multiplication fastor M2, To prove and illustrate this property, consider the
telescopic system having the transfer mairix of Eq. (4.1) and let i1 be preceded
by a drift of length iy and followed by a delft of length /3. The tota]l matrix is

1 I =M 0 1 4
""(o 1)( 0 —(mw))(o 1)
. (-—M —Miy = ijM
0 My

The matrix Ry is equal to the matrix of the original telescopic system if and
only i the ‘ollowing condition holds:

My +MM 0

or equivalently
1: = —M‘ll a

In praclice, to achieve a telescope in both planes one needs at least two
quadrupoles (o simulate each lens of the telescope. Figore 20 shows such a
solution.
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Fig. 20. A two-dimensional telesccpic system. |

The magn!fication may be diferent in each plane; therefore, the general 1x4
transfer matrix of the systam becomes
-M, 0 0 0 !
0 ~-1/My O 0 ;
0 0 ~My 0
0 0 0 =1/M,

(/& o o o]
0

or

Py 0 0
2 B
0 0 T 0




4.1.4 Repetitive Cells
Consider the following transfer matrix:

R, cos g <+ asing Asing
- —ysiny cogp —asing )

If the cell characterized by this transfer matrix is repeated n times, the total
transfer watrix becomes

o (cﬁ(nn] + asin(ngy) Bsin{ny) )

—vsin(ng) cas{np) — asin{nyu)
Fuch that after cach successive coll
=fh==f=F
and
U=ty = =0 =0,
This system is zormagnifying in 3.
4.1.5 Repetitive Magnifying Cells
How can one obtain a ret of magnifying cells that would have the prepertics

@l =g == Oy

Ba __ ‘/ﬂ_a =
B A, .ﬂn— !

in other words each cell has a transverse magnification equal to r? Since phase
space areas must be pseserved, the iransverse siopes will be subjected to a
magnification of 1/r. Consider then the following matrices Rp and M:

COBfi + oy ding Bsing r 0O
Ry= . . ’ M= .
—msing €OB j ~ ) 5in g 0 1fr

If the first cell in such a sequence hay the matrix

MR, = (r(c+ as) rfe )

—nsfr (e— cus)/r

and




and the successive cells are defined by a similarity transformation
B = MRpaM™ = M™ R, M~=-1
then the total matrix for 2 sequence of n cells becomes
Ryr=Ru---By = M"R}

ar
" (coynp + o sinny) gy sinny

Rr = 7 sieng cosnpg — asinng

n P

In the particular tase where u is chosen go that nu = m, the total matrix Ry

becomes
(7 2 )
Vo =—1) 0 ~VB1/Pn

and the set of » magnifying cells becotnes a telescopic system with an optical
magnification of r™.

4,2 CELL MATCHING

I a previous paragraph we derived the conditions under which a beam
contained jn an ellipse is matched to a cell. It was also indicated in paragraph
3.5 that when the matching conditions were satisfied hetwoen a beam and a eet
of repetitive cells the aperture required to contain the beam ls minimized.

All lattices, be they beamlines or segments of circular machines, are made
by the juxtaposition of a series of cells having different transfer properties. One
important problem facing the designer can br expressed in the following way:

Consider a section S; which is to follow a seetion 5;. Suppose the beam is
matched to the section S, Generally this beam will not be matched to seciion
Sz. Is it possible to design nn intermediate section $)3 so that the beam is
matched from 51 to £27 The problem of finding such a section 52 is called the
section matching problem.

Many design programs help the designer in solving this problem in its gen-
erality. It is, however, important to have some rational guidelines on how this
matching can be achieved. The following paragraphs Indicate two gencral meth-
ods for matching one FODO array to snother FODO array.
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421 General Consideratiops on FODO Cell Matching

Consider the maicked symmetric FODO cell that was described in paragraph
4.1.2. ¥ we chooss the beginning of the cell to be halfway between the two
guadrupoles, the following conditions hold at this point in every cell:

ﬂ. = ﬂ’ and O = —Qg .

Consider now two seis of FODO cells characierized by the two sets of rela-
tions

ﬂ!l = ﬁly and Xy = —Qry ,
p’s = ﬂ!r and Qzz = —&xy .
What properiles should 2 matching section have in order to transform the

values 51, a1, m into the values By, ag, 7a? If the {ransfer matrix of the
matehing section for the z,z’ plane ls

Ry Ry
R=
(R:n Rz:)

then the following relation exists:

P R}y =2Ru Ry R}, B
a3 { =| ~RuRy RuRp+RuRn -RuRpllal. (42)
™ Bh  2BuRw Rh / \m

Let us note the following:
If at the input of the matching cel]l we have

Bia = ﬂl.v and oy = —agy (4.3)

and if the transfer matrix R of the matching cell is such that the underlined ele-
ments in Eq. (4.2} change sign from the (z,2’) plane to the (y,y') plane and the
other elementa do not change sign, then it follows from the Twiss transformation
that:

Pas = Py and @y = —0ap -

When such asituation is created, then the values of a FODO cell are matched
to the values of another FODO cell. This, however, does not mean that the
above procedure matches any FODO cell to another arbitrarily chosen FODO
cell, The following procedure will exemplify and extend the preceding one.
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The fixst condition ¢an be realized generally in two ways: cither the matrix

R is such that
n-_-(gﬂ- B
Fa Ba
or it is such that
o)
Fa Ry

where we have underlined the clements that must change sign as one switches

from plane {z,2') to plane (¥,¥/). An example of a practical matching systemt
is the following. ‘

4.2.2 Beam Matching with & Quarter~Wave Transformer

Consider the quarter-wave transformer defined In the FODO array ssction
of paragraph 4.1.2 and illustrated in Fig. 21.

& f
4—a¢ WA
Fig. 21. A quarter-wave matching transformer.

The matrix element of this cell can be written as

(2 2)

where, according to our convention, the underlined elements changa sign when
switching from the (3, 2) plane to the (y,y) plane, |

The transformation of this cell satisGes the condition of the previous pars-
graph, and this cell will match pairs of FODO cells whose parameters both
patisfy the relation

ﬂ, ﬂz =2ab bz ﬁl
o =g ~a®=bc bgllarl].
7 & 2 &/ \m

Using the )/4 cell, which matches specific pairs of FODO cells, one can obtain,
by the addition of two eizments, 3 cell which will match any two palrs of FODO
cells (with some constraint on the range of 83).




Consider a guarter-wave transformer to which we «dd a quadrupole @) at
its entrance and another quadrupole Q2 at its exit.

The insertion of quadrupole Q: does nat change the exit value G2 but will
change the value ag of the planes ,r,7’) and (y,¢') in opposite directions and
50 preserves the condition az: = —agy.

The insertion ol quadrupole @ ut the entrance does not change the value
B or the relation ay; = —ayy but it does change the absolute values of a-
and eqy. The Twiss transformation, Bq, {3.8), for the quarter-wave transformer
shows that this variation of @y will change the values of both #; and a; while
preserving the conditions fy1; = fiy and ay; = —eayy.

Using the transformation matrix of the quarter-wave transformer and con-
sidering oy to be variable (via variation of the sirength of @,), one can show
that the value f; that can be maiched by the preceding cell has a minimum
value equal to 52/4,, as follows:

The expression for 8; is
B2 =a*B1 - Zobay + m

5(1 + af)
i} )

The first and second derivatives with respect to o are

= 251 — 2aboy 4

dﬁz _ 25’0:1
d—-?—.l = ~2ab+ ""ﬁl—
and
&8, 2P
—m =0,
dﬂ? 51
Therefore, a minimum will be achieved if
a
@) = sﬂl
and the value of this minimum is
b!
Brmin = 7

The procedure of adjustment of the matching cell then hecomes:

The quadrupole @, is adjusted so that, given the input values £y, aj, the
required output value §; is achieved at the exit. Quadrupole @2 is then adjusted
to obiain the required az, and the match is sccomplished.
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4.2.3 Beam Matching with ilalf- Wave Transformers

Telescopic nystems which have a phase shift of « may also be used as match-
ing transformers with the restriction that as = a; and fp = M?8,, where M
is the optical magnification of the transforrner. Their most obvious application
is to match between two points where & = az = 0 {the location of an erect
phase ellipse). They have the advaniage that M. does not have to equal M,.
They also have the property of minimizing the higher-order opticzl distortions

because of their optical symnmetry. Half-wave matching transfartnness are ilfus~
trated schematically in Fig. 22.

P ———

A | I T |
Um Voo bV s

Fig. 22. A half-wave matching transformer: 1) using doublets; 2) uaing triplets.
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5 SECOND-ORDER OPTICS

In Chapter 2 we introduced a general notation for the coefficients of the
Taylor expansion of the solution of the equations of motion. The notation of the
first-order terms was simplified in order to conform with the standard matrix
notation. For example,

R = (z]z0) » Ry = (2'|20) » Raq = (ylyb) -

In order to ease the writing, a similar simplification of notation is introduced
for the second-order teyms: the tensor Tj;x can be defined in a similar way. For
exzmple,

Tz = (zlzozh) , Tyt = (='|v08) -

The following discussion will frequently use the adjectives geometric and
chromatic to describe the optical properties of beam lines.

All terms for which no subscript is equal to 6 will be referred to as geometric
terms or alternatively as geometric aberrations because they depend only upon
the central momentum py.

Any term R;; or T;;; where one subscript is equal to 6 will be referred to as
a chromatic term {or chromatic aberration) by virtue of the fact that its effect
depends on the momentum deviation § = Ap/pp of the particle.

5.1 SECOND-ORDER PROPERTIES OF BAsic ELEMENTS

In Chapter 2, table I gives the driving terms which generate the various
second-order coeficients for a general magnetic element . From this table it is
possible to deduce the contributions to second-order terms from the following
basic elements: dipole, quadrupole, and sextupole.

For a pure dipole n =0 and § = 0 with k(s) = (1/pp) # 0.

For a pure quadrupole let # = 0 and take the lim(h) = 0 and lim(nk?) =
—kg = —K,.

For a pure sextupole let h =0, nh® = 0 and take the lim{(8A*) = K.

A careful examination of Tables I, II, and 111 will show that the following
statements are correct.

Dipoles introduce both second-order geometric and second-order chromatic
aberrations.

.Quadrupoles do not introduce second-order geometric aberrations.

Quadrupoles do introduce chromatic aberrations.
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Sextupoles introduce both second-order geometric and chromatic aberra-
tions.

The chromatic aberrations of 2 quadrupole can be interpreted 7imply in the
following way:

The magnetic induction of a quadmpole is a linear function of either vari-
able z or y. In cther words the gradient of the induction is conatant within
a quadrupole. A particle with momentum p will be affected differently than
a particle with momentum pg. The corresponding strengths of the quadrupole
Ki(p) and K (po) satisfy the relation

Kilp) _po
Kilp) »°

In other words, the [ocel strength of a quadrupole decreases an the momentum
of the particle increases,

The chromatic properties of a sextupole may be interpreted in a similar
fashion.

The geometric properties of a sextupole may be understood in the following
simplified way:

The magnetic field of a sextupole varies quadratically with the variable 2. Or
the gradient of the field varies lirearly with z. In the immediate neighborhood
of z the sextupole can be considered to be a quadrupole whose gradient varies
linearly with the variable 2. This intuitive view of the sextupolar field will be
helpful in the understanding of the undetlying principle of chromatic corrections
in beam lines to be diseussed Jater.

5.2 OBIECTIVES IN SECOND-ORDER OPTICS STUDIES

Second-order optica studies come a3 a complement to the first-order studies
and zerve to detect and correct deviations from the results obtained in fimst-
order studies. These deviations, generally called abesrations, are of two types:
ehromatic and geometric. In some cases, as for example in reson=nt extraction,
the second-order properties of a lattice are an essential feature.

5.3 CHROMATIC CORRECTIONS

As described in a previous section, chromatic effects occur because particles
with different momenta respond differently to 2 given magnetic field, Consider

a lattice made up entirely of quadrupoles, as itlustrated schematically in Fig.
23.
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Fig. 23. Schematic represantation of a Jattice with quadrupoles.

A particle with nominal momentum py and initial covsdinates z; = 0 follows
the axis of the system. The Jincar motion of neighboring particles of the same
momenium is described by the functions (s} and ${s). These iwo fanctions
Getermine the amplitude of osclllation axd the phase advance of individual par-
ticles. A pasticls with the same input coordinates but a different momentum p,
(Its alxth coardinate § # 0) will follow the same central axis in the quadr poles,
and the motion of neighboring particles having this new momentum p; is de-
scribed by the functions y(s,8) and f{s,6). The difference in the values of
the functions Is the result of the fact that the particles with momentum py see
the quadrupoles with stzengths different from the strengths experienced by the
particles witk momentum pg.

‘To compensate fur this chromatic diference a lattice may be designed where
particles of greater momentum encounter an extra guadrupolar field to com-
pensate for the Irecressed momentum. This is achieved by the introduction of
dipoles and ssxtupoles Into the Isttice structure.

Figure 24 shows a latiice made up of quadrupoles and dipoles which has the
potential for chromatic corrections bacause particles of different mom&nta follow
different trajectories.

Positlon |

= g4
4aaGvala

Fig. 24. A chromatic correction lattice.
A particle Py with zero initial coordinates and nominal momentorm follows
the cantral trajectory {axis of the figure). The particle Py with zern inilizl coor-
dinates but with & # 0 will follow the trajectory defined by the function 5dy{s).
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This function is nonzero after the first dipcle of the lattice. Consider position
1 in the lattice. At this point parlicle Py will have encountered quadrupolar
strenpths that are slightly different from the strengths encountered by particle
Py Let us introduce at point P » sextupolar elemeant with its axis coincldent to
the reference axis of the lartice. Particle Py and neighboring parlicles will not
experience any first-order disturbante of their motion from the sextupols (» sex-
tupole field has zero gradient on jis axis), However, particle Py, will axpasience
a gradient that iz proportional to its displacemant and therefore is proportional
to the quantity 6. If the strength of the sextupcle is appropristely chosen, the
extra gradient will exactly coropensate the difference in gradlent experienced by
particles with different momenta in the preceding quadrupeles. By progreming
alang the lattice it scema fevsible to et up o family of sextupoles that would

exactly compensate for the chromatle aberrations arling from the quadrupolar
fields.

However, in this process, the sextupales wil] in general introduce geometric
distortions. In the next section we describe a simple procedurs that eliminates

the chromatic aberrations to second order without Introducing second-order ge-
ometric aberrations.

5.3.1 Module for Sextupolar Chromatic Correction

Consider two FODO cells set up a3 in paragraph 4.1.2 and tuned so that
Hz,y = 90 degrees for each cell. Such asstup is often referred to as a I telescople
transformer because its transfer matrix in both tha = and y tranaverse planw ls

-1 0
Rg,y="f"(° _1).

In Fig. 25 is a schematic representation of such a —TI transformer, Let 1 and 2
dencte the entrance and exit positions.

AK

A- :
I tLisK

440%A1Y

Fig. 25. Principle of a —I transformer,

A particle at position 1 with coordinates 1, 2] will emerge at position 2 with
coordinates 3,2} given by

X3 = —I) and 4‘4--#.
Imagine now that we place at position 1 4 thin magnetic element that produces
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an-angle kick to the particle, say AK. The particle of momentun pg will now
arrive at position 2 with the coordinates

=—z3 and z=-2-AK.

If we now submit the particle to another angle kick equal to AK at position 2,
we see that the exit coordinates are the same as they were without kicks. In
conclusion, when particles are submitted to equel angle kicks at the entrance
and exit points of a —J transformer, there is no visible effect on their behavior
outside the —7 transformer for monoenergetic particles having momentum py.

Let us apply this principle, using some of our elementary building blocks.

1) Dipoles: Dipoles are even-order elements in the sense that the angle
kick they Jcliver to a particle is an even function of the lateral displacement (in
this case a constant function). Thus, if we place two identical dipole magnets
(one at the entrance and one at the exit) of a I transformer, there will be no
net angular deflection experienced by particles of momentum py outside of the
—1I transformer.

2} Quadrupoeles: The angular displacement produced by a quadrupole
is an odd function of the lateral position z. (In this case the angle kick is
proportional to z.) Consequently two identical quadrupoles of apposite polarity
placed at the entrance and exit of a —J transformer will have no net effect
cutgide the tranaformer,

3) Sextupoles: Sextupoles are even-order elements . The angular kick
they produce is proportional to z?. In thia instance pairs of equal sirength
sextupoles will have no pet effect outside the —=I transformer.

Thus, in summary, all odd-order elements (quadrupoles, octupoles, etc.) will
have to be introduced in pairs of opposite polarity, and all even-order elements
(dipoles, sextupoles, etc.) have to be introdueed in patrs with the same polarity
in order for the cancellation to be effective.

53.2 A -7 Transform Sextupolar Chromatic Correction

Conslder now a —~I transformer with two sextupoles of equal streagih placed
at the entrance and exit, and suppose that dipoles have been inserted in each
cell of the —[ transformer. From the previous discussion we know that the
sextupoles will not introduce geometric aberrations. The presence of the dipoles
between the sextupoles ensures that there will be coupling between the sextupale
sirengths and the chromatic behavior of particles. Having thus demonstrated
the principle of the chromatic correction, let us analyze its feasibility in greater
detail.



In practice one must do at least one chromatic correction per phase plzne,
and sometimes two or wore per plane. The ideal situeztion, from the point of
view of the second-order geometric uderrations, is to assemble enough —J trans-
formers so that the different aextupole pairs (placed —1 epart) do not interfere
with each other. This condition is often prohibitive in its space requirement and

in ita cost. So let us analyze the effect of interlacing sextupole pairs usad in
chicmatic corrections.

Consider, as shown in Fig. 26, two consecutive —J transformers containing
two interlaced pairs of sextupoles 5 and S;.

~I

2 Sz
L]l 5
-1

a=84
4E0PALG
Fig. 26, Interlaced sextupole pairs, '

If the sextupcles are pure second-order elements, no additional second-order

aberrations are introduced by the coupling between the suxtupoles of the two
pairs.

Suppose a particle arrives at the frst sextupole §; with displacement =zi.
As it reaches the first sextupole of the palr S, ita motion, within the —I trans
former that separates the pair 5}, is perturbed, and the particle will reach the
second sextupole of the Sp pair with & displacement that is not aqual to -z,
Conseguently the second sextupole of the Sy pair will not exactly compensate
the geometrics introduced by the the first sextupole. However since the distur-
bance introduced by the sextupole Sy is of order two, the uncorrected geometric
aberration of the pair S is of order three and four.

In a following paragra~h we ehall show a complete practical setup of a cor-
rection scheme using interlaced families of sextupoles.

5.4 GEOMETRIC CORRECTION USING REYETITIVE SYMMETRY

The second-order aberrations are obtained Ly the computation of integrals
rontaining the sinelike and cosinelike functior. (see, for example, Tables [[ and
IH). The first-order condition that a lattice be stable implies that the sinelike
znd cosinelike Fanctions <scillate in 2 menner similar to the circular functions.
Symmetries introduced jn the design of a Jattice may have the desirable effect
of canceling some second-order aberrations. Among the important symmetzies
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o be considered are mirror symmetry, rotational symmetry, (z,v) symmetry,
Tepeiitive syrometry, and repetitive symmetry with magnification.

Let us look at a gencral approach to the study of the effect of some of these
symmelries on the secord-order aberrations.

Inspection of Tables I, II, and 111 ghows that the second-order geometric
aberration terms can be expressed us

&
Ton= [ ERGIRa@™  whee  (aym)=2
[}

wheye Ky is the dipole strength per unit length and Ky is the sextupole strength
per unit length, Pure guadrupoles do not generzte second-order geometric aber-
rations.

Since the R (s) aze linsar combinutions of sin Ay and cos A, we ean wiite

Tix = ] Fpaln"(Ay) cos™(Ay)ds

0

where the functions Fy, are equal to the strengths X, mulitiplied by some power
of the A(s) functions, Adopting a complex varinble notation, we obtain the
condition for having all second-order geomotric terms Ty, vanish, namely,

L L
j Fe*dgm0 and f Fpe®3ds = 0
0

The integral of the expressions Fpe*/f and F,¢*%¥ for each separate element
of a lattice can be represented geomstrically as a vector in the complex plane, ur
shown in Fig. 27. The integeals over the fotal lattice become the vector sums of
all the complex vectors representing the geometric aberrations of the individual
tlemmenta, namely,

N N
Y A aa oA,
1 1

For reasons that should appsar clear in the next patagraph, one generally places
the vectors corresponding to §y . one diagram and the vectors corresponding
to i in another. The second-order geometric aberrations are zero if both these
SUmA a1 ZOID.
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We shall now .estrict qur study to the case of repetitive symmetry.

¥y

T

4-84 2 4800413

Fig. 27. Complex plane diagram for second-order abesrations.
5.4.} First-Order Repetitive Geometric Correction

For repetitive tymmetry [i..e.' when the [attice Is mude of the juxtaposition of
equal cells), the beta functions are equsl from cell to cell and so are the element
strengths.

In this case the functions Fp(s) are aqual in value at the same location from
cell to cell, Let us analyze two special cazes: o Jattice contirining four identical
cells and a lattice containing three identical cells, and such that the votal phaze
advance for the lattice is 2 in both cases,

Consider the ¢ plot of Fig, 28, The vectors correapond to the number of
the cell to which they belong. In the ¢ plane they appear in consecutive arder
with in angle of 90 degrees. Their aum obviously s garg, Tn the 3¢ plane the

angle hetween consecutive vectors becomes 270 degrees, and their sum will also
be zero.

In conclusion, in a lattice made of four equal cells with total phase shift of
2r, the second-order geometric aberrationa ariginating In individual elements
will cancel.

Consider now the ¥ plot of Fig, 29. The thres vactors display an angle of
120 degrees, and so their sum is also sero. However, In the 3¢ plot they will
have an angle of 360 degsees and will all coincide. Their sum is not sero unless
their amplitude is zero,

Tn conclusion, for & iattice with three cells and a total phase shift of 2w,
some geometric aberrations do not cancel.

We can now formulate the following importast thecrem:

In a Iattice made of n jdentical cells with # > 8 und having & total phase
shift of 2mr, all secord-order geometric aberrations will cancel.

——-
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Fig. 28. Complex plane diagram for second-order aberrations in a fous-cell
lattice with repetitive symmetry and a 27 phase shiit.
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Fig. 29. Complex plane diagram for second-order aberrations in a three-cell
lattice with repetitive symmetry and a 2n phase shift.

5.5 THE SECOND-ORDER ACHROMAT

Modem high energy machines vequire long beam lines to transport the beam
from one region to anothee or to perform specific functions within a lattice,
These beamn lines are expected to transport the beam achromatically to as high
an order as possible withcut introducing appreciable geometric aberrations. We
call an achromat a line that would meet that goal perfectly. We qualify the name

with nth erder when the goal s met up to the order n in the Taylor expansion
of the motion,
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In the following sections we restrict our analysis to repetitive cell structures.
5.4.1 The First-Order Achromat

Consider a lattice made of n identica! cells having the following transfar
matrix:

a b u M G
R=]¢ d v =( w)'
0 1
o 01

The total tranafer matrix T will be

o (M MM T A
Lo 1 )‘
The dispersive vector of the {otal transfer matrix T can be written in the fol-
lowing form:

d=(M*1+ M -t NG = (M"— )M -1)'5 .

From the above expression one can deduce the following theorem:
A lattice made of n identical cells is achromatic to first order if and only if
) Mh=1
or
) d=6.
In other words, it is achromatic if and only if each cell is achromatic, or

the total transfer matrix is the identity matrix {equivalently if the total phase
advance is 2mw for any integer m).

This first-order result is the basis for the building of achromatic beam lines.

5.5.2 A Practical Second-Order Achromat

Figure 30 shows a possible layout for a four-cell svcond-order achromat.
The Jabels BD stand [or bending dipoles, The labels QF and QD stand for
horizontally focusing quadrupoles and horizontally defocusing quadrupoles, We
assume that the quadrupoles have been tuned to provide a total phase advance
of 2w,
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Fig. 30. Example of a practical second-order achromat with four cells.

Sextupol:s have been introduced so that the chromatic correction procedure
can be perforiced in both the (z,z') and the (y,y') plane.

The sextupoles of the family SF will couple predominantly with the z plane
because they are located close to the focusing quadrupoles, where the values of
the f#; function are greater.

Similarly the sextupoles of the family SD will couple predominantly to the
y motior, where fy is larger.

Once the quadrugoles have been tuned to provide s 2r phase shift, the
second-orde:- geometric aberrations intreduced by the dipoles and by the sex-
tupoles cancel exactly.

One iien tunes the sextupoles SF and SD so that one of the second-order
chromatic term.fs Tije or Tyjg and one of Ty or Tyje ate zero. It has been shown

prewously that all the second-order chromatic terms except Tggs then bec e
simultaneously zera.

We now have a system that is completely achromatic to second order with
the only exception being the momentum dependence af the path length.

5.5.3 Application of the Achromat Concept to Chromatic Corrections

The second-order achromat as described above Is an optical system whose
transformation matrix is the identity matrix to a precision of second order in
all of the phase space variables x, z°, v, y*, {, and 6 except for the second order

‘atrix element relating the path length to the square of the momentur.

While the second-order achromat may not be directly applicable to the de-
4 of circular rnachines, the optical principles evolved for its development are
definitely useful when formulat.ing the sextupole configurations necessery for th
chromatic corrections in circular machines and in particular v ww . . sa,
where the interaction regions have very small beta functiona. Let us review the
salient features of the second-order correction theory developed above that are
applicable to thiz problem,
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1) Any family of "extupoles inserted into a lattice such that their vector sums
cancel in the ¢ and 34 diagrams described above will not introduce second-order
geometric aberrations,

2) The interlacing of two or more sextupole families, each of which satisfies
criterion 1), does rot introduce second-order geometric aberrations.

3) Interlacing ol oue sextupole family with another sextupale family will
intraduce third- and higher-order distortions to the lattice,

4) It should be noted that in order for the sextupoles not to introduce second-
order geometric distorticns, the tune shift per cell of the lattice in the region
of the sextu; »es must remain h.ied and must be equal in both the = phase
plane and the ¥ phase plane. The quadrupoles in this region must not be used
to vary the tune of the machine. The variation in tune musi{ be achieved in &
‘sextupole-free’ region.

It follows from the above that a simple recipe {or the introduction of zex-
tupole families to correct for chromatic effects and at the same time minimize
the optical distortions at the interaction regions may be evolved by following
the guide lires contained in the preceding paragraphs. This has been discussed
in previously,g and has been implemented in the design of many of the new ma-
chines in the last decade. Some examples are the LEP machine at CERN, the
EROS ring at Saskatoon, the SLC at SLAC, and the CEBAF ring at SURA. All
of these machines have a latlice design thet permits these important principles
to be implemented.

The basic procedure is the following: The sextupole families are choten
accarding to t“e above rules, and their strengths are then adjusted to corrct
for the second-order chromaticity intinduced by the quadrupoles in the lattice
and to corsct locally for the momentum dependence of the beta functions.
If there are enough {at least three! independent families in each phase plane,
the strengths of the famiVies can be adjusted relative to each o*her so as to
minimize the optic1l distnrtions caused by the cross coupling Fetween families,
This is not a trivial exercise, and special programs have been written to handle
this particular problem. Examples are the program HARMON developed by
Donald' aud the program PATRICIA developed by Wiedemwn.'®
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