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1 SUMMARY AND INTRODUCTION 

Since the invention of the alternating gradient principle there has been * 
rapid evolution of the mathematics and physics technique! applies ble to charged 
particle optics. In this publication we derive a differential equation and a matrix 
algebra formalism valid to second-order to present the basic principles governing 
the design of charged particle beam transport systems. A notation first intro­
duced by John Streib is used to convey the essential principles dictating the 
design of such beam transport BJTSterns. Far example the momentum disper­
sion, the momentum resolution, and alt second-order aberrations art expressed 
ad simple integrals of the first-order trajectories (matrix elements) and of the 
magnetic field parameters (multipole components) characterising the system. 

These integrals (listed in Tables I, II, and III) provide direct physical insight 
into the design of beam transport systems. From them one obtains an Intuitive 
grasp of the mechanism of second-order aberrations, For example, the effects or 
magnetic symmetry on the minimization or elimination of the aberrations It im­
mediately apparent. In fact it is demonstrated that all second-order aberrations 
will vanish under appropriate symmetry conditions. 

It has oHo proved convenient to express the magnetic fields via a multipole 
expansion about a central trajectory. In this expansion, the constant term, pro­
portional to the field strength at the central trajectory, is chc dipole term. The 
term proportional to the first derivative of the field {with respect to transverse 
dimensions) is the quadnipole term and the second derivative is the sextupote 
term, etc. 

At high energies, a considerable design simplification results if the dipole, 
quadrupole, and Bcxtupole functions are physically separated such that Cross 
product terms among them do not appear, and if the fringing field effects are 
small compared with the contributions of the roultipole elements comprising the 
system. 

At the risk of oversimplification, the basic function of the multipole elements 
may be identified in the following way: 
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The purpose of the dipole elements is to bend the central trajectory of the 
system and to generate the first-order mementum dispersion. The quadrupolc 
elements provide the first-order imaging. In addition to their fundamental pur­
pose, dipDlcs and quadrupolcs will alaa introduce higher-ordei aberrations. If 
these aberrations are second order, they may be eliminated or at least modified 
by the introduction of sextupole elements at appropriate locations. 

Dipoles irtroduce both second-order geometric and chromatic aberrations. 
Quadrupoles ao not generate second-order geometric aberrations but they do 
have strong chromatic (energy dependent) aberrations. 

In regions of zero momentum dispersion, a sextupole will couple with and 
modify oiiiy geometric aberrations. However, in a region where dispersion is 
present, scxtupoles will also couple with and modify chromatic aberrations. 

Quadrupole elements may be introduced in any one of three characteristic 
forms: (l) via an actual physical quadrupole consisting of four poles such that a 
first field derivative exists in the field expansion about the central trajectory; (2) 
via a rotated input or output face of a bending magnet; or (3) via a transverse 
field gradient in the dipole elements of the system. Clearly any one of these 
three fundamental mechanisms may be used as a means of achieving first-order 
imaging in a. system. Dipole elements wilt tend to image in the radial bending 
plane independently of whether a transverse field derivative does or daw not 
exist In the system, but imaging in the plane perpendicular to the plane of 
bend is not possible without the introduction of a first field derivative. Like 
the quadrupole element, a sextupole element may be generated in one of several 
ways; first by incorporating an actual sextupole, that is, a six-pole magnet, into 
the system. However, any mechanism that introduces a second-order derivative 
of tlie field with respect to transverse dimensions is, in effect, introducing a 
sextupole component. 

We have included in the report a discussion of linear (first-order) optics as 
it relates to beam transport systems and to the design of circul \r machines and 
to the relationship between the two. Also included is a discussion of the basic 
optical building blocks that are most often used in the design of such systems. !r. 
addition we have provided some applications of Becond-order optics to the design 
of chromatic corrections in beam transport systems and circular machines. 

It is our hope that the information supplied will provide readers with the 
necessary tools to design any beam transport system suited to their particular 
needs. 

For the study of details beyond second order, computer ray tracing programs 
or higher-order formalisms such as i* * Lie algebra techniques developed by Alex 
Dragt and his students should be ex\ ired by the reader. 
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2 A GENERAL FIRST- AND SECOND-ORDER 
THEORY OF BEAM TRANSPORT OPTICS 

The fundamental objective is to study the trajectories described by charged 
particles in a, static magnetic field. To maintain the desired generality, only 
one major restriction is imposed on the field configuration: Relative to a plane 
that is designated as the magnetic midplane, the magnetic scalar potential $ is 
an odd function in the transverse coordinate y (the direction perpendicular to 
the midplane), i.e. <j>{x,y,t) = — #(*,-y, i ) . This restriction greatly simplifies 
the calculations, and from experience in designing beam transport systems it 
appears that for most applications there is little, if any, advantage to be gained 
from a more complicated field pattern. The trajectories axe described by means 
of a Taylor expansion about £ particular trajectory (which lies entirely within 
the magnetic midplane) designated henceforth as the central trajectory. Re­
ferring to Fig. 1, the coordinate s is the arc length measured along the central 
trajectory; and r,y, and s form a right-handed curvilinear coordinate system. 

y 

j u y 

ARC Length 
(O-C) of 
Arbitrary 
Trajectory 
ARC Length 
(0-A) of 
Central 
Trajectory 

Central Trajectory 
lies in magnetic\ 

midplane I 

.Magnetic Midpiane|S 

5-8* 
U 43DAM 

Fig. 1. Curvilinear coordinate system used in the derivation of the equations of 
motion. 
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The results a n valid far describing trajectories lying dome to and makmc small 
angles with the central trajectory. 

The bask steps tn formulating the solution to the problem are as fotknni: 

1) A general vector differential equation is derived describing the trajec­
tory of a charged particle In an arbitrary static magnetic Geld which possesses 
mldplane symmetry, 

2) A Taylor aeries solution about the central trajectory is then assumed; this 
is substituted Into the general differential equation, and terms to second order 
in the initial conditions are retain*-J. 

3) The first-order coefficients of the Taj lor expansion (for monoenergetk 
rayj) satisfy homogeneous second-order differential equations characteristic or 
simple harmonic oscillator theory; and the first-order dispersion and the second-
order coefficients of the Taylor series satisfy second order differential equations 
having driving terms. 

4) The Ant-order dispersion term and the scrond-ordcr coefficients are then 
evaluated via a Green's function integral containing the driving function of the 
particular coefficient being evaluated and the characteristic solutions of the ho­
mogeneous equations. 

In other words, the basic mathematical solution of beam transport optics 
is similar to the theorv of forced vibrations or ID the theory of the classical 
harmonic oscillator with driving terms, 

It is useful to express the second-order results in terms of the first-order 
coefficients of the Taylor expansion, These first-order coefficients have a one to 
one correspondence with the following five characteristic first order trajectories 
{matrix elements) of the system, 

1) The unit elnellke function s«(s) in the plane of bend defined by st{o) = 0 
and«',(0) = l. Set Fig. 2. 

2) The unit cecme-llke function c,(s) In the plane of bend defined by cz(0) = 
1 and c»(0) = 0, See Fig. 3. 

3) The dispersion function d*(s) in the plane of bend defined by d,(0) = 0 
and d's(0) » 0 and a momentum p such that (p - po)/po — 1. See Fig. 4. 

4) The unitauwUfce function ev(a) in the nonbend plane defined by «y(0) = D 
aad«V(0)ai . See Fig. S, 

5) The unit cosineuke function «p(s) in the nonbend plane defined by c,(0) = 
l andcV(0 ) -0 . See Fig. 6. 
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Fig. 2. Sinelilce function aa(t) in the magnetic mldplane. 
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Fig. 3. Carinefike function « (̂*) In the gngiMik mtdpfaae. 
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Fig. 4. Dispersion function dx[s) in the magnetic midplane. 
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Fig. 6, Sinelikc function 5y(s) in the nonbend plane. 
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Central 
Trajectory 
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Fig. 6. Cosinelike function cw(u) in the nonbend plane. 

In the first-order Taylor expansion for the. transverse position of an arbitrary 
trajectory at position • in terms of its initial conditions, the above five quantities 
are the coefficients appearing in the expansion for the transverse coordinates x 
and y as follows : 

and 

*(•) = CX(E)X0 + sx(s)zb + ds(a)6 

v(«) = <:i(«)yo+«v(»)yb 
where XQ and j/o axe the initial transverse coordinates and x\j and yb axe the 
initial slopes of the arbitrary ray with respect to the central trajectory. 
6 — Ap/po = (p - Po)/po is the fractional momentum deviation of the ray from 
that of the central trajectory. 

2.1 THE VECTOR DIFFERENTIAL EQUATION OF MOTION 

We begin with the usual vector relativistic equation of motion for a charged 
particle in a static magnetic field, equating the time rate of change of momentum 
to the Lorentz force: 

p = e(V x B) 
and immediately transform this equation to one in which time has been elimi­
nated and we arc left with only spatial coordinates. The curvilinear coordinate 
system used U Bhown in Fig. 1. Note that the variable • is the arc distance 
measured along the central trajectory. With a little algebra, the equation of 
motion is readily transformed to the following vector forms: 
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Let e be the charge of the particle, V its velocity, V its speed, p its momen­
tum magnitude, T its position vector and T its distance to the origin. The unit 
tangent vector of the trajectory is dTfdT, Thus the velocity and momentum of 
the particle are, respectively, (dT/dT)V and (dT/dT)p. The vector equation of 
motion then becomes: 

d jdT \ „/dT "iea-•"(?-) 
or 

rf*T dT/dp\ fdT _% 
PdTt+dT\dT)=e\dTXB) 

where B is the magnetic induction. Then, since the derivative of a unit vector 
is perpendicular to the unit vector, d'T/dT2 is perpendicular to dT/dT. It 
follows that dp/dT = 0; that is, p b a constant of the motion as expected from 
the fact that the magnetic force is always perpendicular to the velocity in a 
static magnetic field. The final result is 

2.2 T H E COORDINATE SYSTEM 

The general right-handed curvilinear coordinate system {x, y,s) used is illus­
trated in Fig. 1. A point O on the central trajectory is designated as the origin. 
The direction of motion of particles on the central trajectory is designated as 
the positive direction of the coordinate B. A point A on the central trajectory 
is specified by the arc length s measured along that curve from the origin O to 
point A. The two sides of the magnetic symmetry plane are designated the pos­
itive and negative sides by the sign of the coordinate y. To specify an arbitrary 
Voint B which lies in the symmetry plane, construct a line segment flora that 
point to the central trajectory (which also lies in the symmetry plane) intersect­
ing the latter perpendicularly at A; the point A provides one coordinate s; the 
second coordinate x is thti length of the line segment BA, combined with a sign, 
[+) or (—) according as an observer, on the positive side of the symmetry plane 
and facing in the positive direction of the central trajectory, finds the point on 
the left or right side. In other words, x, y, and s form a right-handed curvilinear 
coordinate system. To specify a point C which lies off the symmetry plane, 
we construct a line segment from the point to the plane, intersecting the latter 
perpendicularly at B; then B provides the two coordinates s and x; the third 
coordinate y is the length of the line segment CB. 

We now define three mutually perpendicular unit vectors (£,£,§). I is 
tangent to the central trajectory and directed in the positive s direction at the 
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point A corresponding to the coordinate e; x is perpendicular to the principal 
trajectory at the same point, parallel to the symmetry plane, and directed in the 
positive x direction, y is perpeadiculas to the symmetry plane, and directed 
away from that plane on its positive side. The unit vectors (£,$,3) constitute a 
right-handed system and Batisfy the relations 

i = 5 x 9 , 

e = xxy . (2.2) 

The coordinate s is the primary independent variable, and we shall use the 
prime to indicate the operation dfds. The unit vectors depend only on the 
coordinate a, and, from differential vector calculus, we may write 

x' = ha , 

3 ' = - f t £ , (ZT3) 

where h(s) = l/po Is the curvature of the central trajectory at point A defined 
as positive, as shown in Fig. 1. 

The equation of motion may now be rewritten in terms of the curvilinear 
coordinates denned above. To facilitate this, it is convenient to express dTJiT 
and d^T/dT2 in the following fonnE: 

dT _ (dT/da) T ' 
dT (dTjds) 2" ' 

dT1 ~ T' ds\T') ' 
or 

dT3- 2 T ' 1 da V ' ' 

The equation or motion now takes the form 

T " _ I l i £. [T*) = t T ' (T ' x B1 . (2.4) 

2 T ' 3 da y ' p v ' ^ ' 

In this coordinate system, the differential line element is given by 

dT = idx + ydy + (l + ftx)srfs 

and 
(rfr)1 = dT • dT = dx2 + dS

2 + (1 + hxfdf . 
12 



Differentiating these equations with respect tc s, it follows that 

1 A(2*' 4 ) = x'K" + y*y" + (l + kz)(hx' + h'x) , 

T " = xx" + x'x' +$y" + y'y' + (1 + kx)s' + [hx' + ft'*)? . 

Uabg the differential vector relations of Eq. (2.3), the expression for T " reduces 
to 

T " = x(s" - h[l+hx)) + yy" + S(2ftz' + ft'x) . 

The vector equation may now be separated into its component parts with the 
result 

&{(*"-A(l + kx)) - ^{x'x" + y'y" + (1 + hx){hx- + h'x))} 

,+ Q{y"-^s{x'x" + y>y" + {l + hx)[kx' + h'x))} 

+ 6{(2ft*' + k'x) - yrt (x'x-'+y'y" + (1 + kz){hx' 4- h'x))} 

= -r'(T'xB) 
p 

- -T'{x{y'Bt - (1 + hx)B9) + g((l + A z ) ^ - x'B.) 

+ &(x'Ev-y,Bx)}. (2.5) 

Note that In ttua form, no approximations h\m been made; the equation 
of motion (2.5) la still valid to all orders In the variables z and y and their 
derivatives. 

If now we retain only terms through second order in % and y and their 
derivatives and note that T ' 1 = 1 + 2kx + - • -, then the z and y components or 
the equation of motion beccme 

s"- &(1 + hx) - z'{hx> + h'x) = ~7*'(y •#. - (1 + hx)By) , 

y" - y'(kx'+k-s) = - f ' ( ( 1 + hx)Br - x'B.) . (2.6) 
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The equation of motion of the central orbit is readily obtained by setting x 
and y and their derivatives equal to zero. We thus obtain 

A=-B y (<MM) or fift,*^. (2.7) 
po e 

This result will be useful for simplifying the final equations of motion. R> is 
the momentum of a particle on the central trajectory, Note that this equation 
establishes the sign convention between h,e and B v . 

z.3 EXPANDED FORM OF A MAQHBTIC FIELD HAVING MEDIAN PLANE 
SYMMETRY 

We now evolve the field component? of & static magnetic field possessing 
median or midplane symmetry. See Fig. 7. We define midplane symmetry as 
follows. Relative to the plane containing tlie central trajectory, the magnetic 
potential ^ is an odd function in y : ije. <£(z,y,s) ~ ~^(*i~Vi*)- Stated in 
terms of the magnetic field component* Bs, Bg, and B% this is equivalent to 

st* DlPOLE QUADRIPOLE SEXTUPOLE ?«»» 

Fig. 7. Illustration of the magnetic midplane for dipole, quadrupole, and sex* 
tupole elements. 
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It follows immediately that on the midplaue Bx = B9 = 0 and onl> Pv remains 
nonzero; in other words, on the midplane B is always normal to the plane. As 
such, any trajectory initially lying in the inidplane will remain in the midplwie 
throughout the system. 

The expanded form of a magnetic field with median plane symmetry has 
been worked out by many people; one of the rjost convenient and comprehensible 
references is provided by Teng/ 

For a magnetic field in vacuum, the Geld may be expressed in terms of a 
scalar potential <j> by B = V^. The scalar potential will be expanded in the 
curvilinear coordinates about the central trajectory lying in the median plane 
1/ = 0. T i e curvilinear coordinates have been defined in Fig. 1, where x is the 
outward normal distance in the median phuie away from the central trajectory, 
y is the perpendicular distance from the mediaii plane, s is the distance along 
the central trajectory, and h = H(B) is the curvature of the central trajectory. 
As previously stated, these coordinates (z,y,s) form a right-handed orthogonal 
curvilinear coordinate system. 

As has been stated, the existence of the median plane requires that 4> be 
an odd function of y, i.e. <j>(xty,a) = - ^ ( J S , - y , s ) . The most general expanded 
form of 4> may be expressed as follows: 

0(s ,y ,s) = ( A 1 0 + Anx + A^tf/V) + -M**/3! ) + ---)y 

+ {Ax> + Mix + Av{3?/2\) + • • V / 3 ! + . . . 

m=D»=0 v * 

where the coefficients Ajm+i.n are functions of z. 
The differential line element dT of the coordinate system is 

dT1 = dx7 + dy7 + (1 + hxf ids? (2.9) 

and the Laplace equation has the form 

* ~ (1 + hx) 3x\( ]dx) + dyi + ( l + hx) di\[l + hx) da ) 
(2.10) 

Substitution of Eq. (2.8) into Eq. (2.10) gives the following recursion formula 

(1 For convenience, we omit the minus sign since we are restricting the probbm 
to static magnetic fields. 
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for the coefficients: 

-•^2mJ-3,n ~A'^mH,n + nhA ' t j m + l , » - l ~ Ttk'Aim+l.n-1 + Mm+l,n+i 

-?• (3n.+ l)hA2m+i,n+i + n(3n- ljV/ljm+i.n 

+ fl(fl - i jVj l jm+l .n - l 

+ 3nftA2T,+3,n-i + 3n(re — 1)A j4im+3,„_j 

+ 7t(„ - 3)(rt - 2)fc 3A 2 m +3, n-3 (2.11) 

where prime means d/ds, and where it is understood that all coefficients A with 
one or more negative subscripts are zzro. This recursion formula expresses all 
the coefficients in terms of the midplane field £,(x,Q,s) via the coefficients Ai,»*. 

Ai,„ = \-Q^T) ,=„ = functions of a . (2.12) 

Since <j> is an odd function oF y, on the median plane we have Bx = B,= 0. The 
normal (m z direction) derivative:! of By on the reference turve defines Bw over 
the entire median plane, hencs the magnetic £cld B over the whole apace. The 
components of the field are expressed in terms of $ explicitly by B = V<p or 

2m+l 

m=011=0 v ' 

n _ w _ v* v̂  A ** vZm 

m=0n=0 v ' 

_ 1 H _ 1 v * v > x* ir*»+l 

where 5 , is not expressed in pure expansion form. This form can be obtained 
in a straightforward way by expanding 1/(1 + Ax) in a power scries of fix and 
multiplying out the two aaries; however, there does not seem to be any advantage 
gained over th > form given in Eq. (2.13). 

The coefficients up to sixtU-degree teims in X and y are given explicitly below 
as deri-ed from Eq. (2.11). 
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AM = - A*\n - A« - AA»i , 

Au = - A«u + 2AA'V> + h'A\a - AM - UAa + A*An , 

A« = - A 'ia + 4AA*U + 2A»Afc - 6A*A'\a - 6AA*Aio - AM 

- AA:a +2A*A« - 2ft3An , 

A> - --A*ia +6&A'1J + 3ft'Ah - l*AaA'ti - 18AA'Ah 

+ 24A3Alo + 36A2fc'A fe - ^15 - hAu + Zh3Ai3 

-6AsAia-!-6&4An , 

ASO =A'"*o + 2A»„ -2&A',i + A "An + 4h2A'\0 + Shk'A\0 

+ An + 2fcAi3 - A'AJS + A3Ax! , 

An =A"'\i -4KA"'\Q - 6h>A«U -Ah"A'\a - A"'A^ + 2A'fc) 

-6hA»i2 - 2h'A\i +A"Au -i I0A2A'\i + 7AA'Aii - 4hk"An 

- 3h'3Ait - 16A3A'h - 29AaA'A'io + Ait + 2AAn 

- 3A*Aia T 3 A J 4 B - 3A4A, i . (2.14) 

In the special rase when the field lias cylindrical symmetry about y, we 
can choose a circle with radius Po = 1/A constant for the reference curve. The. 
coefficients Ajm+i,n in Eq. (2,8) and the curvature A of the reference curve are 
then all independent of B. Epilations (2.1<f) are greatly simplified by patting alt 
terms with primed quantities equal to zero. 

2.4 FIBLT) 'EXPANSION TO SECOND ORDER ONLY 

If the field expansion is terminated with second-order terms, the results 
may be considerably simplified. For this case, the scalar potential 4> a n d the 
field B = Vy become 

il(x,0,8) = (Aio + A ua; + ^AK^ + •••)'/ + [Am +•••)— + '•• , 
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and 
Aaa^-lA'^o + hAii+Avj) 

where prime mfe&na the total derivative with respect to s. Then B = 7 £ gives 

da, 
QX I 1 

&,{** V»») - g T ~ ^w + Ann. + ^Aaz* + g-AMy2 + * - - , 

^^'{vh^^^whj^^^^^' ( 2 1 5 ) 

By inspection It is evident that BXt B% and B„ are all expressed in terms of 
Aio, An, and An and their derivatives with respect to a. Consider then Bt on 
the midplanc only; 

Bs(x, 0, s) = Aw + A H S + 51 J*IJXJ H 

dipolc quadripole sextupole etc. 

' | S 0 

The successive derivatives identify the terms as befog dipole, qusdrupole, 
Fextupole, octupole, etc., in the expansion of the field. To eliminate the necessity 
of continually wilting these derivatives, it is useful to express t ie midplane Geld 
in terms of dimonsiorless quantities n(«), /?(»), etc., or 

Bv(xt 0, s) = By (0,0, s) (1 - nftar + jSftV + -ffcV + - 0 (2.17) 

where, as before, h(a) = 1/po, and n, 0 and 7 ore functions of s. Direct com­
parison of Eqs. (2.16) and (2.17) yields 

—Incffi)]3 - '-WsOOls- » 
We now make use of £q. (2.7), th.« equation of motion of the cenL-al trajectory: 

B,(0A«) = * ( ? ) -

Combining Eqa. (2.7) and (2.18), the coefficients of the fiold expansions become 

Ato=B»(0 ,0 , s )= f t (^) , 
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A \i m - (2nkk' + B-n») ( ^ ) . (2.19) 

To second order the expansions for thb magnetic field components may now 
)>e expressed lit the form 

*•<«,».•) ={*)(-"*» + W*v + •••)-

-i(fc»-BA»+a JjfcV + - ) . 

B . ( * , y , 9 ) = ( * ) ( f t , y ^ , h s + 2 i t W » ' + hh')zy + " - ) , (2.20) 

whsre po 1B the momentum of the central trajectory. 

2.5 EXPANSION OF THB MAGNETIC FIELD AS A FUNCTION OF 
MULTIPOLE COMPONENTS 

The magnetic field on the midplane may also be expressed as follows: 

CO 

3f{x,Qtt) = £ p £ !&,(•)** (2.21) 

when Bfi = B/h = m/e is the maenotic rigidity of a particle of momei.tum po 
and charge t alony the central trajectory. From Eq. (2.21) it follows that 

*«-(i)(a)0)w « 
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and 
L 

o 

where Sn ts the Integrated strength of an nth order maltipole component of 
length L. 

2.5.1 Multipole Strengths for Pure Multlpole Fields 

Consider the scalar potential of an nth-order (2(n + l)pole) pure multipole 
element: 

where 
s = rzcs8 and j/ = rsin0, 

Ba i3 the field at the pole and a is the radial ,'iatance io the pole from the central 
trajectory. 

Expanding ^ as a function of x and y and differentiating, vie have 

B,.f*. *(,*• + ...) * By a»K ' 

from which 

and 

where L is the length of the multlpole element. 
For a dipole (n = 0), the dipole strength is 

where a is the angle Oi~ bend of the central trajectory. 

«-(5)(i) M 

[2 Note that in most European publications the nwj.omial Kn(B)z" in Eq. 
(2.21) would be replaced by -•jt„(B)2n/n!, which would result in a change 
of dign and the introduction of the factor »l in the definition of Kn in Eq. 
(2.25) and Sn in Eq. (2.*G). 
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For a Qiwdrupole (n — 2), 

for a sextupole (n = 2), 

*-©)(*)• 
and so on for higher-order multipoles. 

2.5.2 Muitipole Strengths foe a Non-Uniform Field Expansion 

Consider the midplane field expansion of a non-uniform field: 

5,(x,D,fl) =fi,{O,0,s)(l-nnx + p,(fc*)s H- i(hxf V...] 

=flp(& - n&8s + /Jft3*3 + c'^s 8 + • • •) 

«** £ * „ ( • > » . <2'2 7' 
The multipolc strength factors are 

K 0 = a , Jfi . • - ! * ' , Ks = j3fcs 

Th« integrated strengths Sn are 

6o - hi = a , St m -nft'L , 5j = 0A5L , . . . . 

2.5.3 Multipole Strengths ka a Contoured Entrance or Exit Boundary of 
a Dipale 

A third method of introducing multipolc components is * m a curved entrance 
or exit boundary of a dipole TZAgne1-. To calculate the multipole strengths in 
this case, we integrate Bq. (2.21), holding x constant. The shape of the exit (or 
entrance) pole Face Is introduced by lotting the limit of integration L[x) vary 
with x. Thus we have the following relation; 

J B,(x.0,i)<fe * i t p £ * » J Kn{,)dB = BpY,Sn** • (2-28) 
0 0 
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We assume Bt ti» be a> constant inside the effective fietd boundary and zero 
outside (the finite extait of thu fringe field is ignored). In this sharp-cutofF 
approximation, tin* *eld boundary L{x) ia given by 

L(x) = ^ - y B,(x.0. B)A « 3 * + ^ a » + . . - (2.29) 

where h = l/p. 
The slope of the boundaiy at x = 0 i* Si/A. ff wo deno;« the boundary angle 

fcy 0, the slope is also - t?n0 . The minus sign dennes the positive orientation 
of the angle. Thus we have 

jS| = - f t tan#. 

A positive 0 implies radial (x-pl&nc) defbcuaing and transverse (y-plane) focus­
ing. 

The boundary defining a sextupole <omprsneat is parabolic. It Is convenient 
(from a construction point of view) to relate the sextupoii: strength to the radius 
of curvature R of the parabola at r = 0: 

i. g " . - 2S* 
R ""(l + Z*) 3/* AseTJ? 

or 

* ~ "*2K ' 
From Eq. (2.28) we conclude that a positive multipcle component oT the field 
Increases the value / Bda as x increases. Thus a positive eextupole is represented 
by a concave surface at the boundary. Figure 8 shows the sign conventions used 
in the TRANSPORT program for fi and R. 
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Fig. 8. Field boundaries for bending magnets. The quantities illustrated in 
the figure have a positive sign when using the convention of the TRANSPORT 
program. 

2 . 6 THE EQUATIONS OP MOTION IN 1'HBIR PINAL FORM TO SECOND 
ORDER 

Having derived the expressions (2.20), we are now In a position to substitute 
them into the general second-order equations of motion (2.6). We find for z 

*"-A(l + ft*) - x '{A** + h '*) 

= ( J ) T ' { { 1 + * * ) ( - * + nk*z - 0 & V + |(fc« - nj»» + 20ks)A 

and for y 
ya-9'{hz' + htx) 

= ( f ) T *<-** '* - G+**){«**» - w**»)+»•). 
Note that w* hare vlumufcd the charge of the particle t to the equations of 
motion. This has resulted fans the use of ft). (&7)» which ii the equation of 
motion of the central trajectory. 



Inserting a second-aider expansion for 

and letting 

y-afiu-1-'*'1*'" { m 

we finally express the differential equations Ibc * and y to second order as fbl-
knra: 

*" + (!- n)h** ~h6 + (2» - 1 - flfcV + ft'**» + JA*** 

+ (2 - n)h**5 + ±{k» - »&* -f 2?AV 

+ A'VV' - j ^ ' 9 - W a + higher-order terms , 

+ higher-order terma , (2.31) 

From Eqi. (2.31) the familiar equation! of motion Tor the first-order terms 
may be extracted; 

x" + (l-n)h**~hS and y" + nA*y«0. (2.32) 

Substituting JTi - -na* into Eqs. (2^1), the equations ofraotion far a pure 
quadruple field result by taking the limit A -> 0, ft* -* 0, and Js a -* D. They 
arc 

» - - « ! » —Jfrffi, 

whet* 

Similarly, to find the equation* of mothm for a pure sextupote field, we substitute 
Kt = ffk* into Eos. (2.31) and take the fruit & -» 0, ft' -* 0, and ft- - » 0 . The 
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equations are 
x» + fa{!i?-V2)=0t 

where 

* - ( 5 ) ( S ) - ( 5 ) ( K ) - «-' 
2.7 THE DESCRIPTION OF THE TRAJECTORIES AND THE 

COEFFICIENTS OP THE TAYLOR EXPANSION 

The deviation of an arbitrary trajectory from the central trajectory la de­
scribed by expressing * and y aa functions of*. The expressions will also contain 
xo, Jo, *b» !/bf and 6, where the subscript 0 indicates that the quantity is evalu­
ated at s = 0; these five initial values will have the value 0 for the central trajec­
tory itself. The procedure for expressing x and y as a fivefold Taylor expansion 
will be considered in a general way using these initial values, and detailed for­
mulas are given for the calculations of the coefficients through quadratic terms. 
The expansions are written 

V = £(v|*gv 0 **b'W c )*Svfcb' , y fa"'* • (2.35) 

Here, the parentheses are symbols for the Taylor coefficients; the first part 
of the symbol identifies the coordinate icpresented by the expansion, and the 
second indicates the term in question. These coefficients are functions of s to 
be determined. The E indicate? summation over zero and all positive integer 
values of the exponents ie, A, JJ, e, %, however, the detailed calculations wil1 

involve only the terms up to the second power. The constant term is zero, anu 
the first-order terms that would indicate a coupling between the coordinates z 
and y axe also zero; this results from the midplane symmetry. Thus we have 

W l ) - ( | f j l ) = 0 1 

(arjlta) =(v|so) = 0 , 

(*l»b) =(»)*») = 0 . (2.36) 

Here, the first line is a consequence of choosing xo — pa = 0, while Ihe second and 
third Hues follow directly from considerations of symmetry, or, more formally, 
from the formulas at the end of this section. 
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As mentioned in the introduction, it is convenient to introduce the following 
abbreviations for the first-order Taylor coefficients; 

(x\xo) = CZ(S) , ( l | * * ) = * , ( S ) , (Z|«) m dz(B) „ 

(vllto) = <=„(«) , (ifafc) =S,(B) . (2.37) 

Retaining turns to second order and using Eqs. (2.??} sad (2.37) t the Taylor 
expansions of Eqs. (2.35) reduce to the following terms: 

z = (Z\ZQ) XQ 

+(*W)*o 
+ (*|*b')zb J 

+ (*|*b)*o 
+(z[*czb)ze*h 
+(*]*b5)*b^ 
+(*l¥otfb)vaVfe 

+ {x\6)6 
+(tx\x^6)xaS 
+(«|*»)*» 

and 
(2.38) 

(fflsto) Vo 

+(y|=b!/b)a:bVb 

+ (y|yb)sb 
+(s|*ovb]*ovb 
+(y|»*)wo* 

+(vl*bvo)*b!fo 
+(y|y.b«)vb* • 

Substituting these expansions into Eqs. (2.31), we derive a differentia] equa­
tion for each of the first and second order coefficients contained in the Taylor 
expansions for x and y. When this is done s systematic pattern evolves, namely 

*•" + **c, = 0 , e," + k\ev = 0 , 

J i " + k\s9 = 0 , V + * ! * » ° 0 i 

fe" + fcJffx = A , ftN + ^ f r - / B ( 
(2.39) 

where kl = [i ~ n)h? and jfcj = ttft9 for the x and y motions, respectively. The 
first two of these equations represent the equations of motion for the first-order 
monoenergctic terms ss, « s , s y , and cv That there are two solutions, c and *, is 
a manifestation, of the fact that the differential equation la second order; hence 
the two solutions differ only by the initial conditions of the characteristic • and 
e functions. The third differential equation for g is a type form which represents 
the solution for the first-order dispersion d* and for any one of the coefficients 
of the second-order aberrations in the system where the driving function / for 
each aberration is obtained from the substitution of the Taylor expansions of 
Eqs. (2.38) into the general differential Eqs. (2.31). 
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The coefficients satisfy the boundary conditions: 

«(0) = 1 , c ' ( 0 ) = 0 , 

* ( 0 ) = 0 , o'(Q) = l , 

d(0) = 0 , d ' ( 0 ) = 0 , 

« ( 0 ) = 0 , 9'(0) = 0 . (2.40) 

The driving term, / is a. polynomial, characteristic of the particular q whose 
terms are coefficients of order less than that of q, and their derivatives. The 
coefficients in these polynomials are themselves polynomials in k, k', . . . , with 
coefficients that are linear functions of n, 0, ... . For example, for q = {x\z\), 
we have 

/ = {2» - 1 - 0)hzc\ + h <cst 'X + i/ie ',* . (2.41) 

In Table I are listed the / functions for the remaining linear coefficient, the 
momentum dispersion dx{*) and all of the nonzero quadratic coefficients, shown 
in Eqs. (2.38), which represent the Becond-order aberrations of a system. 

The coefficients « and a (with identical subscripts) satisfy the same differ­
ential equation, which has the form of the homogeneous equation of a harmonic 
oscillator. Here, the stiffness k2 is a function of a and may be of either sign. In 
view of their boundary conditions, it is natural to consider e and s as the analog', 
of the two fundamental solutions of a simpk- harmonic oscillator, namely cos us 
and {sinws)/w. The function q is the response of the hypothetical oscillator 
when, starting at equilibrium and at rest, it is subjected to a driving force / . 

The stiffness parameters k\ and fcj represent the converging powers of the 
field for the two respective coordinates. It is possible for either to be negative, 
in which case it actually represents a diverging effect. Addition of k\ and *J 
yields 

k\ + fcj = ft3 . (2,42) 

For a specific magnitude of h (within one dipole magnet), k% and A'J may be 
varied by adjusting n, but the total converging power is unchanged; any increase 
in one converging power is at the expense of the other. The total converging 
power is positive. 

A special case of interest is provided by the uniform field; here h = const 
and n = 0; then k\ = h? and A:J = 0. Thus, there is a converging effect for 
x resulting in the familiar semicircular focusing, which is accompanied by no 
convergence or divergence in y. 
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Table I. The Driving Terms for the Coefficients 

rf,= <*]*) h 

M*8) + ( 2 n - l - j S ) h s c * +A*e,e*. + s A e ' » I 

(ilror'd) +2(2n - 1 - 0)hsc„a„ +h'K, »'. + £'.»«) +**',«'. 

Wu>«) (»- »)*'«. +2(2n - I - /J)tfe,(t +h'(f»rf; + c'.d.) +fcc',rf'. 

t=l**oa> ;2n-l- /J)fc»,9 +h'»,*'. +3**' . ' 

( i | i ' o f ) ( 2 - n ) h a j . +2(2n-l-j9)fc 35,dl J 1 +/>•(*.<('. + «'.d,) +A# W . 

<*!**) -A + ( 2 - njft'rf, +(Zn - 1 - /3)A3dJ + W . d * . + i W , a 

M*S) £f>"-nf t 3 + 20fc9)e; +h'cllc'y " i ^ i r 3 

(*|stoy'o) (A"-nA 3 + 2#f>)c l rJ 
r +'> ' ( '« • ; +'»»i,) -*«V*V 

("Is/'o') i(fc"-nh 34-2flfc')ij +*'»>*', - i * » ' , a 

(silioyo) 2(/S - n)h3excy +fc'(r«e '„ - c '*=,) +ht «.c', 

(iFoy'o) 2tf-M)*»£b., +fe'(»»• ' v - «'««,) +Ac '.i', 

(s|*fc!Ai) 2(0 - n ) * . 3 ^ . +h'(*.e'„-»'.«*) +**'.«'• 

(slr'oV'oJ 2(0 - ojft 3*,*. +ft '(<"*'« - »'.t») -t-fca',«', 

(V!K>*) n/i3*,, +209 - r.)fc*Cllrf, - fc'(«i r f ' - -«»4») +**»«'• 

Mtf'o*) nfc1*,, +2(0-n)A 3 s 1 ,d I - fc ' {M' . -» '»<t i )+A«W. 

Another important special case is given by n = 1/2; here, ft* = A;' = /L*/2. 
Thus, both coordinates experience an identical positive convergence, and cx = Cy 
and ss = s v ; that is, in the linear approximation, the two coordinates behave 
identically, and if the trajectory continues through a sufficiently extended field, 
a double focus is produced. 

The method of solution of the equations for c and s will not be discussed 
here, since they arc standard differential equations. The most suitable approach 
to the problem must be dc-tennined in each case. In many cases it will be 
a satisfactory approximation to consider h and n, and therefore ft1 also, as 
piecewise constant. Thus, c and a are represented in each interval by a sinusoidal 
function, a hyperbolic function, a linear function of s or simply a constant. Using 
Eq. (2.39) it follows foe either the i or y motions that 

-rlcs'-e's) = 0 . 

Upon integrating and using the initial conditions on c and $ in Eq. (2.40) we 
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find 
c V - eb = 1 . (2.43) 

This expression is jost the determinant of the first-order transfer matrix 
R^iscntmeeifliftrthexw^eQtttttMiaflfmetkm. It can be demonstrated that 
the bet that the determinant ts equal to one Is equivalent to Lfoorilfe's theorem, 
which states that phase areas am conceived throughout any first-order system 
in both the x and the p plane motions. 

The <Meffirients q are evaluated ttstag a Green's function integral 

« 
« - / / (OQ(« ,r )«V (2A4) 

0 

where 
C7(s,r).«(s)c(f)-s(T)«(s) (2.45) 

and 
t • 

q = a(s) / /(r)Bfr)dr - e(i) j f(r)*{t)o> . (2.46) 
0 0 

To verify this result, it should be noted that this equation, In conjunction with 
Eq. (2.43), reduces the last of Eqs. (2.30) to an Identity, and that the Last pair 
of Eqs. (2.40) follow readily from this propoiad solution. In particular, if / = 0 
then 9 = 0. Then it will be seen from Table I that several coefneinnts are absent, 
including the linear terms tint would represent a coupling between s and y . 
Frequently, the absence of a particular coefficient Is obvious from considerations 
of symmetry. 

Differentiation of So. (2,46) yield* 

9' = *-{*)] /(rMr).V - e"t») / / I ' M ' ) * (*•«) 
a o 

anil 

«" = /+«"<•) J fitW\^ " « - ( • ) / WW?}* . (2.48) 
0 0 

The driving terms tabulated ia Table I, combined with Eqs, (2.46), (2.47), 
arid (2.4ft), complete fhesohitioftafttaG^^ The explicit 
soJutioiui for specific systems at element of systems cam be foutd in the report 
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SLAG 75 by Brawn? It ts useful to Integrate the driving terms tabulated in 
Table I for a separated function lattice* so tbat the dipole, quadnipole, and 
sextupole terms ate separated. The results ore shown in Table n for point 
to point imaging (***(•) - 0), and in Table HI for parallel to point iroagmg 
(c«(j ) = 0). The fringing, field terms containing «*(•) have been dropped- Thi» 
is % reasonable approximation at high energies where /»{•) is very large compared 
with the beam dimenshms. 

Tables 1, H, and HI are especially Hatful for o^ternnin^ the synimetry con­
ditions needed to make a given aberration or group of aberrations vanish, or 
to determine the ceopKng eoefBslentr ot the tenni wtth respect to the moltipole 
strengths S*j for the J* element. Where n b the order of the ranltipole and j 
identifies distinct tndtrpom magneto. 

Table H. The Integrated values of the second-order matrix elements for a 
separated function lattice for point to point Imaging (« S,T(S) = 0); flinging 
field terms are not Included. 

Dipole Sextupole Quadnipole 

(>l*t) S - |„ , ( s j / • oVe.t'a: +«,(•) £ , $*«•*• 

(wl̂ oxb) a -e,(s) J*0*<',*'•scdo+2e1(i) E/Sa/c.sJ 

(z|ioO ^ -c,(s) JJ> t a dV 1 da+2« s ( i) £ ^ ^i>c»«id«-c*{8) £ 7 Syc*»« 

(*|*n-") S -ieg( B ); 9

, sV»j,ftV*+s.tl)E y ft ; 4 

(S|IB >i) S -c,(a) / 0 ' J ^,s (<!a+2e,(i) £ y fyj'd, -e a (a) £ y ffu.* 

(»l*a) S - W W Jft *»*••** +"s W T.i S»/#.dJ -«a W Ey Sij«,d, 

MM- 8) *&(•)£*'»**»** -M»)E,«VS»-
(pfoa>) * -£*(») /J e»,e V*, da -&*(•) £ * S»i*»<V»» 

{ s N ' » J ^ -e^») JJa^VV«"-*»(»)Sy«iy»^f»ir 
fe|*»*»V) at -e,M£*V*Va f nV.-2*,(n)£,S W *»$ 
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*febfeOL The integrated values of tlwsccond-order matrix elamei..* for 
a separated fiintltoi* lattice fat passSe! to point imaging («*#(») = 0); 
fringing field terms are it l inclined. 

Drpole Sextupole Qufidrupole 

(x|*g) a H-iMs) J0V,*e»<io -*«(«) E ; ^ 4 

(xt^sb) ffl +••(•)/ 0

,«;iio 1dft-2« a(fl}S >s a i e;j, 

{xfo-f) at 4*(«)£«U*V^^M2^flzj^«VM4£rf<u4a4 

(a|*oyo')« +*iW/o,«'««to<k+2sf(s)£jsJ>*aev«,f 

W*o *«>) « +•»(•) Jo • *« Vtfrfa+to.W S j 6V«e» 

(y|sp 'w') a +«i(•) J? «'»* *«»**+2^» (•) E i %'.<T*V 

3 FIRST-ORDER OPTICS 

3.1 NOTATIONS AND DEFINITIONS 

ThtBchapterbdeve^edtothedetailedstudyaffiiBt-ordsTo^ties. The results 
are derived from those obtained in Chapter 2, and in particular from Eqs. (2.35) 
to (2.40), 

In order to simplify the natation, the following convention is adopted: 
The variables *, aft y, y\ J, 6 will be denoted by i j t gj, 13, X*, St, x«. 
Using this Dotation and restricting ounwlves to first order, Eg.. (3.85) can 
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be written in the following: *onm 
e 

1 ~ lC f l^ ,J * ' = I ' 2 6 {3.1) 

where WB have adopted for tata,) the notation Jty as u«ed in linear algebra. 
Equation (3.1) can also be rewritten in compact matrix notation as 

3.1.1 Geometric Term), Chromatic Terms, and Phase Space 

In optica studies it it customary first *» study the properties of a. set of optical 
element* by restricting the momentnm of the test particles to one value (called 
the refinance momentum), and then to study the properties u the momentum 
ia changed. The element* &$ of the matrix R that contain one subscript with 
the nrine Sere called chromatic terms. The elements J^/for which no nbacript 
is equal to 6 are referred to as geometric term*. 

The condition expressed by E»js. (2.36) and (2.37) simplify the matrix R to 
the following expxessiom 

0 0 0 <(,(•) \ 
0 0 0 dt>(t) 

evifi] 3v[a) 0 0 
<y(s) v(«) <* 0 
flw HE4 J&JJ AM 

Jfe Jfo Jfe £ w ' 

Because then b no coupling between the •nriablec *itxa and **t*i (resnKhnj, 
from mWrplane aymmetry) it » cenvenient, when one b not fifmairiieHni the 
chromatic terms, to retain only the two by two matrices datertbtnt the notion 
in the plana denned by die coordinates XJ,*J ox X,J? and by the coordinate: 
'9»X4 or y,e*. The mat plane m the horizontal phase space or the (*»«•) phaee 
plane, and the second is the vertical phase plane or the (iMf*) phase plane. The 
matrix R, called the transfer matrix, then reduces to the simple 2 x 2 form for 
each plane: 

"ftiM ftiWl [•(•) •(•)] 

R = 

( «»(•) 
«-'(•) 

0 
0 

••*(•) 
o 
0 

flta 

* w -
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3.2 GREEN'S FUNCTION ENTERPRETATION 

Consider two points in a beam line defined hy the positions r and a (assumed 
in increasing order) of the longitudinal coordinate, as illustrated in Fig. 9. An 
interesting problem Is to determine at the point • the effect of a punctual (zero 
length) magnetic element located at coordinate r. It is understood that only 
angular kicks can he achieved by such elements. 

U-
* ' ( T ) 

' T , S -

Fig- 9. Green's function interpretation; an angular kick at position r 
results in an effect at position •. 

Let x'(r) denote the angular kick produced at position r. The values of x(s) 
and i'(s) denoting the effect at position a are given by 

(*{a)\=R, ( ° W* 1 1 **\ ( ° ) 

where R is the linear transformation matrix between positions r and s. 
Since the matrix 

R[r) Mr) *(T)\ 

transfers data from position 0 to position r, the transfer matrix RjA between t 
and s b obtained as follows: 

frma which one gets 

or, in explicit form, 

fl(a) = ^ R[r) 

Rr* = FWJJ(r)-1 

/ A t Xn\ = / e ( i ) *< f )W ••(!•) -» (r ) \ 
\Rti Rn)i>t \c'{B) *>{»)) \-t>lr) e[r) ) 
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from which 

and 

(«SS)M = -<?'(«)«(') + *'(*)*(*) . 

(KW)T^ B the Green's function for *{a) and ( f lu ) r # is the Green's function for 

3.2. 1 J&ampJe of tfae [be ot the Gteea'a Function 

Find the expression for the first-order dispersion in terms of the c and s 
functions and find the condition (in terms of the same functions) for firat-order 
achroinaticity (a dispersion-free system). The dispersion function dt(a) ia the 
solution of the equation 

dSi + fc*dx = M») = (iM>). 

In this equation H(B) IS the driving term / for the dispersion d^ then., from Eqt, 
(2.46) and (2.47), we have 

• * 

<*.(•) * J f(T)G(r,s)dT = J k{T)G(T,B)dr 
0 0 

-«.(•) / c,(r)B(f)ir - e,(a) f Sxtfh.^ . 

Denoting dr/pa by da, the differential angle of bend of the central trajectory, 
we obtain 

* a 

o"*(s) = aa(») / «*(r)<tar - e,(n) f »x(r)da 
o o 

and 
• * 

d£(s) = a,'(n) / c,(r)(fQr - d'(«) / aa(r)rf« . 
o o 

From these two formulas defining the dispersion and its derivative in terms of 
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the e and « functions we get the achromatieity conditions aa 

• • 

/ sx(r)da =0 «= / Au{r)eto. 

3.3 LINEAR BEAM OPTKS 

By the word kom we mean a set of a particles when nbalaigeintegsr. The 
behavior of beams can he studied by the tracing of a tags number of individual 
particles or by studying the transfer properties of algebraic curves which are 
assumed to bound the particles contained in the beam. It Is a property of linear 
algebra that the only curves that axe simple to transfer are the conies (second-
degree curves). Therefore, as a simplification decision, it will be assumed that 
beams restricted to two dimensions ars adequately described in linear optics by 
an ellipse. 

3.3.1 Elliptic*} Beam Envelopes 

Let us first consider the two-dimensional case In the- horizontal phase plane 
x,x'. 

The general equation of an ellipse, centered on the origin, Is 

aa? + 2bxx' + c*'* = m 

which can be written in matrix form as 

XiBX = m 

where£ te a rratwe definite ayminctrkmetrbt denned by Uie CM 
as follows: 

•-(!!) -" *-(.*) 
and X* b the transpose of X. The multiplication of all four coefficients by a 
common factor does not change tin ellipse. One has then the choice of either 
letting m = 1 or det fl = 1. In the Gist instance the area of the ellipse is given 
by v/vdet B and in the second instance the area equals arm. 
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Let iu adopt the definition 

and denote o as the inverse of matrix B 
on on • B- 1 (oil ffn\ 
on va) 

(3.2) 

(M) 

One raa prove, by taring techniques of 4ml apace* in untax algebra, tha* /̂Su 
and^sfe are tite tangential p»jecftw<>f the extreme f i o ^ 
the axes x and at' respectively, as shown in Fig. 10. 

*ma«»yo^\ 

^„,.y^r slopes-^ 1 -

Stain " 
Cefttrold 

«*0fAlS 

Fifr 10. AbesmefllpstbasedontheaniatrbL, The maximum 
extent of the «Wpa* end He orientation are shown as a, function 
ofthematrfxi 

With this definition the equation of the ellipse may also be expressed as 

or attentatfaetjr as 
Oil*1 - SffjiH^+ona** = det a 

and its axes Is A B «Vdet«. 

M 



This definition may be extended in a straightforward way u> m-dimensions. 
An n-dimensional ellipsoid Is defined by <r, a positive definite symmetric matrix, 
and has the equation 

where now X stands for an n-dimensUmal vector. The volume enclosed by the 
ellipsoid Is given by 

In particular for dimensions 4 and 0 the volume of the ellipsoid is given by 
(ir a / 2)Vaot -? and by (ir9/8) V'SeT? respectively. 

3.3,2 Baa ElUpat Trans/brmatfon 
Assume a beam to be defined at a longitudinal position s ( by the matrix a^. 

Its equation is 
X\o?Xi = 1. 

Consider the point sg and assume that R it the linear transfer matrix from a t 

to f3. The coordinate transformation satisfies the following relations: 
Xi = RXi and Jf, = R^Xz. 

This linear transformation will change the ellipse o\ at point $i into another 
elllpis og at point tg. The equation of the second ellipse is 

XfalXt - 1. 
WB need to find the relation between oj and <r\. To do so we express X\ and 
Xi in terms of X\ and X\. We obtain 

XitftfRXi - 1 
from which WB conclude 

o f l - R^R 
and, by Inverting! 

<FI - R-lV3{R*yl 

or equivalently 
PU w RtriR*, 

Note that stoce det R = I (Lfottvtthft theorem) it follows that 
det ff| • det v- , 

•bpwfcBf that the transformation has preserved the phase volume of the beam. 
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Before pursuing the study ©f the tranamfsetoii of helms through a ay* tern we 
shall kmk at theiaramks that govern filfigte»parttcle motion in dosed machines, 

3.4 SWGLE-PAKnCLE OPTICS FOR A CLOSED MACHINE 

The Eret-onkr equations of motions ate giv«n by 

In a closed machine the functions M'M^t 1 ) and P(') v * poilodle functions 
of s . Let vs consider solutions for the nondisperslve {6 » 0) stable caw. The 
theorem of Floquet states that there exist two periodic functions £(•) and ^(i) 
in terms of which the general solution «(•) can be expressed; 

s(i)-vOT««(* (•) + *) 
where e and 4> are two arbitrary constants and the two functions /?(*) and \fi(s) 
are not independent, but are litilced by the relation 

*M f dr 

'(m 
>̂(s) is called the ^machine phase shift" between points 0 and • . Differentiation 

of x(s) with respect to • yields 

where ire define the function dc(») by 

Alternatively a/(e) cam be written in th* form 

»'{») = \/S(aT«*tx(») + *) 



when x{') satisfies the relation 

or eqoivalently 

and the function I(B) is defined by 

Let as note once again that ALL Che functions i{*) 4 x'(*}, &{*), «*(»}» l(«). and 
$(t) are periodic with the period L where L is the length of the closed machine. 
Consider now the values of the solution x and its derivative at successive revo­
lutions at a. fixed point i. We can-describe the motion at position » by plotting 
the values of x and i* in the "x-phase plane". Eliminating the trigonometric 
functions from the expressions of x(s) and z'(s) yields, after some manipulation, 

7 ( B ) * 3 + 2a(a)*x* + 0(s)* ' 3 = « , 

which shows that the positions (*,x') of a particle at the coordinate b jpon 
successive turns lie on an ellipse, This ellipse can also be written in matrix form. 

The parameters a, 0, and f are sometimes referred to in the literature as. 
the Twlss parameters. 

3.4.1 The Machine Ellipse 

Let T denote the matrix 

, / f l s ) -a(a)\ 
V-«(B) 7(«) ) (3.4) 

where T has a determinant equal to 1. The equation of the ellir.e characteristic 
of the machine may then also be written in the matrix form 

X'T-^X = E . (3.5) 

The area of this ellipse is ire. As was shown ft-, the beam ellipse in a previous 
paragraph, we can compute the maximum z excursion x m l ) t and the maximum 
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x' excursion x 'mix- They are givin by the expression*: 

Ecom the explicit equation of the ellipse one can also obtain the coordinates of 
the intercepts with the axes: 

*i»lw = V? ' * w = v? 
FVom these expression one can deduce alternative expressions for the area of the 
ellipse: 

Area = we = *%tva&'\xur — ^^iotttl'mw -

This result can also be generalized to dimension n. For n dimensions t is the 
pioduct of one intercept ,one maximum and (n — 2) maxima of siibspace inter­
cepts. Figure It illustrates these points in two dimensions. 

slopes - -s 

5 - H J9IMI 

Fig. 11. An ellipse based on the machine parameters /?, a, 
IT, illustrating single-particle motion In a, closed machine. The 
area of the ellipse leA — ire, 
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OwnUer now too potato e\ and 5* an the reference orbit of the dosed 
Let 2i amd I ] denote the machine ellipse matrices aft OMSK two points 
i titBtGet matrix from pomt5i to point &Y As for the beam ellipses, 

liimtiwfcllowaigtTaBsteinatlwielatingj^toTi: 

( * : ) • ( -

Jin An 
-2BuBu 

- J * 1 5 * K J I « i J 
4 / Wf 

(3ig 

3.5 THE RELATIONSHIP BETWEEN THE BEAM ELLIPSE AND THE 
MACHINE ELLIPSE 

Having defined eHipaea both for beami of particles nnd for single-paiticle 
motion In doted machine*, we now turn our attention to the relationship between 
the two. Consider a closed machine that ii characterized by the ellipse Et with 
emltttnce e and area A\, a* ahown In Fig. 12. Let ft denote a point on that 
elllpie and let O denote the origin of the axes. After successive turns around 
the machine the point ft will reappear at ft, ft, etc, Since the transformation 
JZ governing this motion ta linear and area preserving, the area OT\P2 is cqi-al 

J - M 

Fig, 12- The avperposition of team ellipse 
Btm&Ba wHIi m maehint ellipse fy. 
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t o a i e a O j y ^ e t c It abo follows that these a»as and ^satJs&tbetoUnwiiis 
rebtmn: 

wbece mooXxil) denotes thsfractkuial past of s . Hen we hams introduced {ha 
new notation jt, defined as 

whkh is the phase shift for one complete revolution of a dosed machine, where 
£ to the length of the closed machine. The ratio itfar k denoted by v and it 
called the tuae of the machine- Consider now aa eiBpte Eg inscribed in Bi with 
a contact point at Pj, Let the olttpso^ represent a beam of par ttdes circulating 
in the machine. Ellipse S3 becomes, after one turn, ellipse £3 with contact point 
Pi. Ellipses Et and £3 have tho same ana. 

When the beam ellipse Et la concentric and similar to the machine ellipse 
£1, the beam is said to bo matched to the machine. In this instance the beam 
reappears on successive turns as the same ellipse, but the individual particles in 
the beam rotate around the ellipse aa did the points Pi etc. This observation 
shows that the phase space area (and consequently the physical aperture) needed 
to accommodate a given beam la minimum when the beam la matched to the 
machine. We shall now use the above properties to define beamttnea In various 
ways which prove useful in practice. 

Let us End the transfer matrix which transforms the ellipse defined by the 
input values 0i and c<i at position t\ Into an ellipse with, the values ft and 01 
at position S3. 

Consider the solutions as given by the Floquet theorem: 

z(s)*V /W«»M»)+0). 

Expanding the trigonometric functions and simplifying the notation gives 

x=V^(ee««>cce>—skne^atad) . 

i* = - Jgtacott^cos^-asln^sln^ + ain^cos^ + cos^sln^). 

The point hanng 0 = 0 b assumed to be associated with the values A and «i 
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and ax and *i'; these values then satisfy the following, relations: 

*i* = - i /y (a icos^+sin^) 

Denoting by A , 02, ij> and x'i the values associated with \fr nonzero, and 
eliminating cm at and sineS from the previous four equations, one gets 

. -ascos^ - sini&-«2«isin0+oncost , . / A , , . ,, 
vPaPi V " ! 

From the above equations we deduce the transfer matrix between position 1 and 
position i to be 

R> 
l / y l eosA^ + aisinA^) v/^i^sinA0 * 
V/>1 

(1 + egoa) Bin Aqfr + (ag - aQ cos ATJ /ft", „ A . . . . . 

(3.7) 
where A^ Is the phase iihift between position Sj and Sj. 

In the particular awe where the input values (Qi, 21) arc equal to the output 
values (A ( aj) the transfer matrix becomes 

(C0S/J +aainjx (J sin ft \ 
—'yain̂ i cosit- aslnitj 

where we have defined 

^ = A = A i «=;/*, = oti t jl *= A$ , 

and 
l + a J 

1 = — -

Formula, (3,7) expresses the elements of the transfer matrix R in terms of the 
Input parameters ft, <»i, the output parameters 0 j t a j , and the phase advance 
A$ between positions e* and «j. 



It iB also possible to express the output Twiss parameters and the phase 
advance in tenia «I the input Twiss parameters and the matrix elements. The 
first part of this inversion process is achieved in formula. (33) which we reproduce 
here: 

* \ f *ll -2*11*18 * ? 8 

The phase shift A$ is derived from formal*. (3.7) as 
< ) ( ; ) 

or 

t a n^=^ksr ( 3 - 9 > 
™^=i ( 8- l°) 

or equivaler.tly by the formulas relating V(s) and £(•) 

* * - / & • 

Let us look at some elementary configurations and determine their phase 
shifts: 

a) A. thin lens is characterized by Si — sj so that A^ = 0. 
b) If # 1 3 = o (point to point imaging] then A^ = mr. 
c) Ii # . . = 0 (parallel to point imaging) then tan A^ = -1 /a i . 
d) For a drift of length i , RK = L and sin A0 = Ljy/ffl£. 

S.SA Introduction to an Alternative Notation far Beam JDefiaftfon 

In obtaining Eq. (3-3) we hare shown that a beam contained is an ellipse 
can be characterized by the matrix 

Let ua recaQ that the square roots of the diagonal terms give the T h r i f t 1 

extent of the beam, and that the number e = y/dttc {s called the omittance 



of the beam. The ana, of the beam ellipse is then xc. With Ibis notation the 
equation (SJ(J of the boundary elapse is 

wtei«£b tfaetaveneofaa£ditft«>t«iminastb*iual to< - 1 . Let es multiply 
each element of the matrix B by the scalar c asd let us denote the aewly obtained 
matrix by E sad let 

• • C O - ( 3 i i » 
Observe that 

det£ = te-o' = l 
and the Eq. (3.2) of the ellipse becomes 

# 3 t f « « . (3.12) 
The above results show that a beam contained in an ellipse may be defined in 
two equivalent modes! either by the four parameters: 

»I1 Vu Ptt * 

asd the relation 
Vdet a • t 

or by the parameters 
a b e t 

aud the relation 
be — a* «a 1 . 

Let us now turn our attention to Eqs. (3,4) end (3.5), in which we defined an 
ellipsa associated with the transfer matrix for s'ugle-partick motion in a dosed 
machine. This ellipse has the form 

X*T'lX » t 
where 

r-(-'. 7) 
and 

The mathematics! similarity between the relations (3.14), (3.13) and (3.11), 
(3.1?) is clear* This has led many designers to use the parameter 0, a,-y, andc 

IS 

(3.13) 

(3.14) 



todefi^eab«aineiGpse»if^»todAfiaeatraiisteeu1p»tiar&c]o^inai(MM. 
Tins habit are lead to some confarion. ft Is certainty mathematically comet, 
but the taterpvetatkm of the physics la dearly diSereat. 

To ilhiBtrate this mathematical equivalence let us consider an optical ««U 
characterised by the machine transfer matrix 

fco3P+<esm#t £sm# \ 
^ -Tsiaj* eosp-otshiji / 

and an input beam characterised by (he matrix 

* • ( : : ) • 
Ei will be transformed as follows: 

A = (Jl')- l£?iJr l . 

With the explicit multiplication of the above matrix relation one can show that 
E% = £"] when the ^sam defined by E\ is such that 

61 = 0 . ai • <* . «l = 1 • 

When these conditions are met one says that the beam is matched to tho cell. 
This alternate notation for a beam defining ellipse gives a very simple foira to 
the matching conditions. 

This fact alone justifies the usefulness of the alternative notation presented 
here. 

4 OPTICAL BUILDING BLOCKS 

Having studied the behavior of beams In a general context, we shall new 
turn our attention to the study of special elements or sets of elements which can 
be used to design modules with specific functions in beam optic?. The following 
sections are devoted to the study of a few simple and practical modules that 
occur frequently as lattice building blocks. 
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4.0.1 A Drift Space or Kicid-fVee Region 

The transfer matrix of a drift is 

- ( I t ) 
from which one derives 

Aa; — x? — x\ ~ Lxi' and x-i' = x i ' = a constant , 

The Twisa parameters transForm as foUows according to formula (3,8)-. 

Q i = 0 1 - L I *, 

From this relation one obtains 

A Q = ay — a; = - i f i and ifj = *ji = a constant . 

The relation (3.10) applied to the drift gives 

showing the relation between the phefle advance and the length. The relation 
(3.S) gives 

taniti- = ^ = - . 
RnPi - ^ u « i 0i - £<*i 

Consider the extreme point on the beam ellipse shown in Fig. 13. 

As the beam travels through the drift space, this point will be displaced by 
A s given D;T 

where 0m is the 0 value achieved at the point where the beam has a waist. 
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x 2 = x ' l = c o n s l Q n t 

x'= constonl y =constant 

x'maiC-/y* r constant 

% ( • / * ~ : constant 

Fig. 13. The transformation of an ellipse through a drift (field-free) apace. 

4.0.2 A Thin Lena 

A. focusing thin Lena haa the following transfer matrix: 

\-l/F \) 

from which one derives 
X| 

i 2 = xi = a. constant and Ax' = x j ' — z\' — —=r 

The Twisu parameters transform according to formula (3.8), 

' & \ / 1 0 0 \ / f t ' 
a, j = L/f 1 0 1 I at 

which givt* 

PJ e= 0i -- s. constant and Aa = a» - aj = 0i 

The relation (3.9) gives 

tanA^ — rt» 
RuPi - J l«ai 

= 0 
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and IO &a) - 0 btCMHM the integral 

ft 

emce the tMn Ion Iwtfaigtl i equal to seta. The transfonnatioaofanelBpse 
through a focusing thin tens ts ilhwlxated hi Kg. M. 

a! 

*trt*v^*°ew»»»*»» 

i? 

-y F *g 

• /B« = COnsiant 

x • constant 5 * eenitant 

Fig. 14. The transformation of an ellipse through a focusing thin lens, 

4.0.J A Qmdrupo'i 

The thin lens quadrupole behaves in each phase ^lanc ( i , i ' ) and (y>sr') like 
a thin lens of opposite signs. If the lens is focusing in the x-plane, the matrices 
can be written as follows: 

I l °V 
We have assumed here that the quantity F is positive. 

The phase advance la zero in both planes, and 0 is tanskuat. in both planes. 
The change in o b given by 

In these expressions the upper sign applies to the (*,*') focusing plane and the 
lower sign to the fay') defoaising plane. 



^ j M n w i y w * * * 

4JL4 AthinDipoh 

A wedge dipofe with the field index n equal to 0 0 * a. nmToim field) tan 
ba smralated a» a thin dement (having n o length), located at its middle, and 
tuning \ba following transfer matrix: 

Jf< 
/ 1 0 O X 
I -riaafp 1 sUet I 
V 0 9 1 } 

where a »tire deflection angle of the central trajectory and whew the thbd tew 
and column describe the part of the transformation awoetated with the energy-
dependent parameter 6 = (Ap/p). The wedge dlpolo behaves like a thin lent 
of focal length F = p/stnet in the (*,*•) plane. In the (iMf') plane the wedge 
dipolc behaves like a drift tor a sharo cutoff Sold boundary. The matrix R give* 
us 

As' • ia' - BI' « —i + eilaa . 

1 0 
aln a/fl 1 

ka!ns a/p1 2 sin a/p 

and Aa =» e* - ai ' 

An for the thin lens, the relation (3.10) shows that Alt' = 0 for the sere length 
dipole. The transformation of an ellipse through a wedge dlpole magnet Is 
illustrated in Fig. IS, 

xi = x\ 1= a constant an 

The formula (3.8) becomes 

(02\ ( 
<* - ' 

U*y v»i 
which gives 

fo ~0\ = a constant 

SO 



p l P 2 

Fig. 15. A wedge dipole magnet from input to output principal planes. 

4.1 STUDY OP SIMPLE USEFUL COMPOSITE MODULES 

Using the basic elements discussed in the previous section we shall now 
explore some typical composite modules. 

4.1.1 Basic Focusing Module 

If a focusing thia lens of focal length F is placed between two drifts of length 
F, the transfer matrix for the composite system is 

* \0 l)[-l/F l j \0 l) 

V-i/r o) 
From the matrix R we observe that angles are transformed to displacements and 
displacements to angles as follows: 

xt = Fxi' and z%' = —-^ . 
t 
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From the relation (3.8) we have 

from which 
02 = FSTfi 

Relations (3.9) and (3.10} yield 

ajid a 2 ~ ~ai 

tan Atfr = and sin At/) — 
v/K/5 

from which we can conclude the following result: If ori = a3 = 0 then, since 
sin Â fr > 0, we must have Aifi = JT/2 and F =s y/0t0i. 

This relation linlta the lens focal length F and the length L = 2F of the 
module to the magnitude of the /? values. 

Practical two-dimensional modules based on this concept are typically achieved 
by symmetric triplets or by quadruplets, as shown in Fig. 16. 

For the triplet, the focal length is different in the two phase planes (*,£*) 
and {y,y') because of casic properties of triplets. 

If it is required that F a = F>, then asymmetric quadruplet array of quadrupoles 
may be used as illustrated in Fig. 16. 

1 F X * F V 

H-H •vFv 

6-84 f t f 2 *2 ' l 4W0HA2S 

Fig. 16. A triplet and a quadruplet lens system pos­
sessing parallel to point and point to parallel imag­
ing in both planes. 
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4.1.3 Tie FODO Array 

The FODO array is perhaps the most common building block used in the 
design of machine lattices and beam lines. Its structure is illustrated in Fig. 17. 

T 

L/2-iH-p 
6-84 48Q9A2( 

Fig. 17. A FODO array as a building block for 
lattices- 1) The transformation for one cell be* 
tween the centers of the tenses. 2) The trans­
formation for one cell between the centers of the 
drift regions. 

It is informative to study the FODO array at two different observation points 
in order to better understand its basic properties. 

1) First ease: The cell begins and ends at the center of a lens, then the 
transfer matrix for the z and y planes is obtained by the following multiplication: 

A~{*lt2f iJio lJU 1 / / t)[o l)[*l/2f J 
where again the upper sign applies to the (z,s') plane and the lower sign to the 
(V.y') plane-

If we assume that ft = 03 = 0 and QJ = a 2 = a, then 

\ —7* e — ttaj 

53 



from, which 

sin 

cos|i«« = ( l ™ j , 

( ? ) . i / I E ~ l _ . i 

"** = 2Xr 
l±»inQ*/2) 

ship 
and 

a,,, = 0 , 

and, using cytometry arguments, the ratio of the beta functions In the focusing 
and defocusing lenses is given by 

Ada l-ain(M/2) ' 

Note that this ratio is independent of the length of the cell. 
2) Second case: If we now begin the PODO array in the middle of one 

oF its drlftB, the transfer matrix for one cell is given by 

(l L/2\f 1 0\(l L\( 1 o W l L/2\ 
R={o i JU// iA° t / U iJU 1)'' 

then 

^ —Ifs e — as j L 
7 2 

from which we obtain 

COS p. = V1" 2p) ' 

'(f) = 2?' 
whkh is the same as in case 1, but 

^ , = - j ^ ( 2 - ^ / 2 ) } 

M 



and 
ax,v —I : 

The last two relations show that at this location we have the interesting relations 

Pt = Pf and at = —as , 

which is the same property possessed by a thin lens quadrupole. 
A particular case of interest is obtained when /i = TT/2. This corresponds 

to (Lff) = \/2, This FODO cell is then often referred to as a 'quarter-wave' or 
^/4 transformer and is shown schematically in Fig. 18. 

• L / 2 - • L / 2 -

* - 14 
= ir/2 

Fig. 18. The A/4 transformer. 

The transfer matrix R of this quarter-wave transformer is 

_ / T V 5 3L /2 \ 
*™-\-VL ±V2J 

and we have the interesting property flu = -flaj and flu, and flj2 both change 
signs between the x and y planes. 

We shall use alt of the above properties later when wc discuss the problem 
oF matching between two dissimilar FODO arrays. 

4.1.3 A Telescopic System 

The optical system illustrated in Fig. 19 is called telescopic. 
Its transfer matrix is given by 
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— (F| + F2) — 
\ 

r ^ -̂̂ j-1 * s 
F, F £ 

«-m 
x 2 - - M x | 

*HaW 

J - H 

a= constant 

A^ = w = Phase Shift mio 

Fig. 19. A one-Uimenaional telescopic system. 

fl FAS 1 o W l F 1 + F 1 W 1 o W l F A 
\o 1 J \-l/Ft 1/ VO 1 J ^-l/fl 1/1,0 I ) 

l, 0 -F^Ft} \ Q -lfM) ' 

From the R matrix we obtain 
* i " zj = —Mx\ and z j ' = —— . 

The relation (3.8) becomes: 

JjA /Af 1 0 0 > 
ai = I 0 1 0 
W V 0 0 1/M 1 , 

which shows that 

/?2 = A^SA a 1 1 *! a2 ~ "l = a constant < 

at 

(4.1) 
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Since Jti* = 0, t tr relations (34f) and (3.10) reduce to 

tan A^ = 0 and sift At> * 0. 

Using the formula (3.7) rewritten as 

fi: 

we deduce that cos A^ < 0, and consequently that A^ - Jr. 
A telescopic system has an optical magnification M given by 

It also has the proparty that the transfer matrix R is an invariant if a drift 
length situated to the right of the lense* is transported to the front with the 
multiplication factor M s . To prove and illustrate this property, consider the 
telescopic system having the transfer matrix of Eq. (4.1) and let h be preceded 
by a drift of length (i and followed by a drift of length l*. The total matrix is 

Rr 

- ( 

-M 
0 

0 
-(1/Af) Xifl 

0 -(1/M) ) • 

The matrix Rp is equal to the matrix oT the original telescopic system if and 
only if the '©Mowing condition holds: 

or eqaivaksntty 

MU+liJM*0 

h - -M% 

In. practice, to achieve a telescope In both planes one needs at least two 
quadrupoles to simulate each lens of the telescope. Figure 20 shows such a 
solution. 
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i 

4tef*tf 

Fig. 20. A two-dimensional telescopic system. 

The magnification may be different in each plane; therefore, the general 1x4 
transfer matrix of the system become* 

or 

JJ = 

/-Af, 0 0 0 \ 
0 -1/tf, 0 0 
0 0 -M9 0 

V 0 0 0 -1/Af,/ 

h 01* 

B = 
0 

0 

-«/£* 0 03* 

0 

0 
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4.1.4 Repetitive Cells 

Consider the following transfer matrix: 

(eo3/i + a sin ji 0 sin it \ 
—Tsra fj «M t* — asm ix J 

If the cell characterized by this transfer matrix is repeated n times, the total 
transfer matrix becomes 

/ctis(njt) + asin(np) £sin{n#) A 
^ -*ysin(«ft) cas(nfi) — asin(np) y 

such that after each successive cell 

ft =fo = ...~0n = p 

and 
c«i = r«2 = •••--= a n = a . 

This system is .-lonmagaifying in 0. 

4.1.S Repetitive Magnifying Cells 

How can one obtain a ret o£ magnifying cells that would have the properties 

e«i - o j = • • • » a n 

and 

!E_ /S- S I = r 
in other words each cell has a transverse magnification equal to r? Since phase 
space areas must be preserved, the transverse slopes will be subjected to a 
magnification of 1/r, Consider then the following matrices RA and M*. 

(cos/i + QiflJn/t ft ship \ / r 0 \ 

' W = 1 „ , 1 • -7iBm^ cosj*-ajsin/*y \Q i/rj 
If the first cell in such a sequence has the matrix 



and the successive cells are defined by a similarity transformation 

then the total matrix Tor a sequence of n cells becomes 

RT = Rn"-Ri~MnB!A 

or 
' r" (cos tip + «i sin nji) r*ft sin nil 

^r - I -yt siring cosriff-Oiiaiftnj* 
) 

In the particular case where p is chosen so that rip = ir, the total matrix J?r 
becomes 

T \ 0 -l/r*y ^ 0 -y/K/KJ 
and the set of n magnifying cells becomes a telescopic system with an optical 
magnification of r*. 

4.2 CELL MATCHING 

In a previous paragraph we derived the conditions under which a beam 
contained in an ellipse is matched to a cell. It was also indicated in paragraph 
3.5 that when the matching conditions were satisfied between a beam and a set 
of repetitive cells the aperture required to contain the beam is minimized. 

All lattices, bo they bearnlines or segments of circular machines, are made 
by the juxtaposition of a scries of cells having different transfer properties. One 
important problem facing the designer can br. expressed in the following way: 

Consider a section £2 which is to follow a section Si. Suppose the beam is 
matched to the section S%. Generally this beam will not be matched to section 
S 3 . Is it possible to design an intermediate section Su so that the beam, is 
matched from Si to S%1 The problem of finding such a section Sn is called the 
section matching problem. 

Many design programs help the designer in solving thts problem in its gen­
erality. It is, however, important to have some rational guidelines on how this 
matching can be achieved. The following paragraphs indicate two general meth­
ods for matching one FODO array to another FODO array. 
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42J General Cbnstferaiiofts on FODO Cell Matching 

Consider the matched symmetric FODO cell that was described in paragraph 
4 4 A ff we choose the beginning of the cell to be halfway between the two 
qwdntpolee, the following conditions hold at this point in every cell: 

& = fig and tr* - - a , . 

Consider now two sets of FODO cells characterized by the two sets of rela­
tions 

As •» fat «ld CO* = ~«ly , 

Pa* ™ Ay *nd a a , = - a j v . 

What properties should a matching section have in order to transform the 
•values 0i, 01, fl into the values /Jj, ora, 72? If the transfer matrix of the 
matching section for the x,d plane is 

then the following relation exists: 

{0i\ f R\i -2RiiRn Rh \ ffa\ 
I oj 1 = I -fluBat RuRn + RnRn -RnRu «i • (42) 
\na) \ Rlt -2RnRn RU ) U J 

Let us note the following: 
If at the Input of the matching cell we have 

fat - 0\v and ait - -ori, (4.3) 

and If the transfer matrix R of the matching cell is such that the underlined ele­
ments in Eq. (4.2) change sign from the (s, ar*) plane to the (y, y') plane and the 
other elements do not change sign, then it follows from the Twiss transformation 
that: 

A* = A> and «jj = -CLit . 

When audi a situation is created, then the values of a FODO cell are matched 
to the values of another FOOO cell. This, however, does not mean that the 
above procedure matches any FODO cell to another arbitrarily chosen FODO 
cell, The following procedure will exemplify and extend the preceding one. 
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The fast condition can to realized generally in two ways; efthftf the matrix 
£ in such that 

or it is such that 

R = (Rn Ra\ 

where we have underlined the elements that must change sign as one switches 
from plane (x,x*) to plane (jrV). An example cf a practical matching system 
is the following. 

4,2.2 Beam Matching with a Quarter Wave Trutsforratt 

Consider the quarter-wave transformer defined In the FODO array section 
of paragraph 4.1.2 and illustrated in Fig. 21 . 

+--1 H+ 
Qj f f Og 

0-9' 4I0MII 

Fig. 21. A quarter-wave matching transformer. 

The matrix element of this ceil can be written as 

-ca 
where, according to our convention, the underlined elements chango ilgn when 
switching frc.-'.p. the {x,x?) plane to the [y,\f) plane. , 

The transformation of this cell gatisfies the condition of the previous para­
graph, and this cell will match pairs of FODO celb whose parameters both 
satisfy the relation 

/0i\ / a* z2Sb o n / A \ 
a 3 I ~ I ££ - a ' - be & I I «i I . 

Using the A/4 cell, which matches specific pairs of FODO cells, one can obtain* 
1^ the addition of two elements, a cell whkh will match any two pairs of FODO 
cells (with some constraint on the range of ft). 
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Consider a quarter-wave transformer to which we ;:AA a quadrupole Q] at 
its entrance and another quadrupole Q% at Us exit. 

The insertion of quadrupole Qi does not change the exit value ft> but will 
change the value aj of the planes Kx,3?) and (y,y'J in opposite directions and 
BO preserves the condition fti* — — a2V, 

The insertion or quadrupole Qi at the entrance does not change the value 
01 or the relation ctja = — <xiy but it does change the absolute values of a\x 

and a i s . The Twiss transformation, Eq. (3.8), Tor the quarter-wave transformer 
shows that this variation of Q\ will change the values of both 02 and a 2 while 
preserving the conditions 0\s = 0iy and a.\x = - « i y 

Using the transformation matrix of the quarter-wave transformer and con­
sidering ai to be variable (via variation of the strength of Q\), one can show 
that the value ft that tan be matched by the preceding ceil has a minimum 
value equal to I?/0i, as follows: 

The expression for 0% is 

02 =a20i - 2abav + &Si 

Pi 

The first and second derivatives with respect to ai are 

dfo _ , , 26V 
dai 0i 

and 

Therefore, a minimum will be achieved if 

<x„ 

and the value of this minimum is 

B - * 
PI 

The procedure of adjustment of the matching cetl then becomes: 
The quadrupole Q\ is adjusted so that, given the input values 0\, a\, the 

required output value 0% is achieved at the exit. Quadrupole Qi is then adjusted 
to obtain the required a j , and the match is accomplished. . 
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4.2.3 Beam Matching with Half-Wave Transformers 

Telescopic "systems which have a phaae shift of IT may also be used as match­
ing transformers with the restriction that aa = «i and 0% = M20i, where M 
is the optical magnification of the transformer- Their most obvious application 
is to match between two points where oti = cr3 = 0 (the location of an erect 
phase ellipse). They have the advantage that Afs does not have to equal Mf. 
They also have the property of minimizing the higher-order optical distortions 
because of their optic*! symmetry. Half-wave matching transformness are Illus­
trated schematically in Fig. 22. 

-M x ,y ° ~| 

" L° -id 

tffl HE-fci 
Fig. 22. A half-wave matching transformer 1) using doublet!; 2) using triplets. 
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5 SECOND-ORDER OPTICS 

In Chapter 2 we introduced a general notation for the coefficients of the 
Taylor expansion of the solution of the equations of motion. The notation of the 
first-order terms was simplified in order to conform with the standard matrix 
notation. For example, 

flu = (*|zo) . tfn = O ' M . *3* = Uly'o) • 

la order to ease the writing, a similar simplification of notation is introduced 
for the second-order terms: the tensor T,jt can be defined in a similar way. For 
example, 

2 m = ( i f o r y , T w = Wo*) -

The following discussion will frequently use the adjectives geometric and 
chromatic to describe the optical properties of beam lines. 

All terms for which no subscript is equal to 6 will be referred to as geometric 
terms or alternative!/ as geometric aberrations because they depend only upon 
the central momentum Po. 

Any term Rij or T̂ -jt where one subscript is equal to 6 will be referred to as 
a chromatic term (or Aromatic aberration) by virtue of the fact that its effect 
depends on the momentum deviation 6 = Ap/po of the particle. 

5.1 SECOND-ORDER PROPERTIES OF BASIC ELEMENTS 

In Chapter 2, table I gives the driving terms which generate the various 
second-order coefficients for a general magnetic element , From this table it is 
possible to deduce the contributions to second-order terms from the following 
basic elements: dipole, quadrupole, and sextupolc. 

For a pure dipole « = 0 and /3 = 0 with A(s) = (l//>o) ^ 0-
For a pure quadmpole let 0 = 0 and take the lim(h) = 0 and lim(nfe2) = 

-k\ = -Kt. 

For a pure sextupole let h s= 0, nh2 — 0 and take the lim(0A.s) = K2. 
A careful examination of Tables I, n, and 111 will show that the following 

Statements are correct, 

Dipoles introduce both second-order geometric and second-order chromatic 
aberrations. 

Quadiupolcs do not introduce second-order geometric aberrations. 
Quadnipoles do introduce chromatic aberrations. 
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Sextupoles introduce both second-order geometric and chromatic aberra­
tions. 

The chromatic aberrations of a quadrupole can be interpreted limply in the 
following way: 

The magnetic induction of a quadmpole is a linear function of either vari­
able x or y. In other words the gradient of the induction is constant within 
a quadrupole. A particle with momentum p will be affected differently than 
a particle with momentum PQ. The corresponding strengths of the quadrupole 
K\(p) and JTI(PO) satisfy the relation 

*i(p) _ P° 
KI(PO) P 

In other words, the focal strength of a quadrupole decreases as the momentum 
of the particle increases. 

The chromatic properties of a sextupole may be interpreted in a similar 
fashion. 

The geometric properties of a sextupole may be understood in the following 
simplified way: 

The magnetic field of a sextupole varies quadratically with the variable x. Or 
the gradient of the held varies linearly with x. In the immediate neighborhood 
of x the sextupole can be considered to be a quadrupole whose gradient varies 
linearly with the variable a. This intuitive view of the sextupolar field will be 
helpful in the understanding of the undertying principle of chromatic corrections 
in beam lines to be discussed later. 

5.2 OBJECTIVES IN SECOND-ORDER OPTICS STUDIES 

Second-order optica studies come as a complement to the first-order studies 
and serve to detect and correct deviations from the results obtained in first-
order studies. These deviations, generally called aberrations, are of two types: 
cinematic and geometric. In some cases, as for example in resonant extraction* 
the second-order properties of a lattice are an essential feature. 

5.3 CHROMATIC CORRECTIONS 

As described in a previous section, chromatic effects occur because particles 
with different momenta respond differently to a given magnetic field. Consider 
a lattice made up entirely or quadrupoles, as illustrated schematically in Fig. 
23. 
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Fig. 23. Schematic representation of a lattice with quadruples. 

A particle with nominal momentum PQ and initial c£H»-dinates a = o follows 
the axis el the system. The linear motion of neighboring particles of the same 
momentum is described by the functions j?[e) and 0(a). These two functions 
determine the amplitude of oscillation and the phase advance of individual par-
tides. A particle with the tame Input coordinates but a different momentum pi 
(Its ilxth coordinate 6 £ 0) will follow the same central axis in the quadripoles, 
and the motion of neighboring particle* having this new momentum pi is de­
scribed by the function* ^(M) and 0{s,$). The difference in the values of 
the functions Is the rault of the fact that the particles with momentum p% see 
the quadripoles with strengths different from the strengths experienced by the 
particles with momentum po-

To compensate fur this chromatic difference a lattice may be designed where 
particles of greater momentum encounter an extra quadrupolar field to com­
pensate for the Increased momentum. This is achieved by the introduction t>f 
dtpoles and sextnpolef Into the lattice structure. 

Figure 24 shows a lattice nude up of quadripoles and dipoles which has the 
potential for chromatic corrections because particles of different momenta Follow 
different trajectories. 

Fig. 24. A chromatic correction lattice. 

A particle Jfc with sera initial coordfewUa and nominal roomentmn fcttowa 
&e central trajectory (vds of the figure). The particle F\ with zero initial coar-
dinates hut wttk $ j * 0 win follow the trajectory defined by the function fr^fe). 
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This function is nonzero after the first dtpole of the lattice. Consider porition 
1 in the lattice. At this point particle Pi will ham encountered quadrnpolar 
strengths that ate sfightly different from the strengths encountered by partkte 
f»o_ Letm introduce at poutt ft a sextapdar element with its axttcoinctdentto 
the reference axis «f the lattice. Particle Po and neighboring partkks wIQ not 
experience any first-order distwl>antft4tf their mOtka from the taxtnpolB (asex-
tupole field has *ero gradient on tte axis). However, particle Pi will experience 
a gradient that U proportional to tU displacement fend therefore Es proportional 
to the quantity 5. If the strength of the sextupote is appropriately chosen, the 
extra gradient Vift exactly compensate the difference in gradient experienced by 
particles with different moments in the preceding quadripoles. By progratslog 
along the lattice it seems fewihle to e*t up a family of sextupoles that would 
exactly compensate Tor the chromatic aberrations arising from the quadrupolar 
fields. 

However, in this process, the sextupolea will in general introduce geometric 
distortions. In the next section we describe a simple procedure that eliminates 
the chromatic aberrations to second order without Introducing second-order ge­
ometric aberrations. 

5.3.1 Module for Sextupolat Chromatic Correction 

Consider two FODO cells Bet up as In paragraph 4.1.2 and tuned so that 
jtZ | V = go degrees for each cell. Such a setup is often referred to as a - J telescopic 
transformer because its transfer matrix in both the x and y transverse plant* U 

"•"-'-("o 1 -°i) 
In Fig. 25 is a schematic representation of such a -I transformer. Let 1 and 3 
denote the entrance and exit positions. 

AK 

J~ 
2 

- I — — — 
^ AK 

Fig. 25. Principle of a. -I transformer. 

A particle at position 1 with coordinates d , ^ will emerge at position 2 with 
coordinates 2 3 ^ given by 

x? = —xj and x% *• —a{ . 

ImagpieiiowthatwepJaceatpostttolatfciainagn^ 



an-*ngle kick to the particle, say AJT. The particle of momentum po will iiow 
arrive at position 2 with the coordinates 

X2 = —*i and a£ = —*f — AK . 

If we now submit the particle to another angle kick equal to Alf at position 2, 
we Bee that the exit coordinates are the same as they were without kicks. In 
conclusion, when particles are submitted to equal angle kicks at the entrance 
and exit points of a —J transformer, there is no visible effect on their behavior 
outside the -I transformer for monoenergetic particles having momentum po. 

Let us apply this principle, using some of our elementary building blocks. 
1) Dlpoles: DIpoles are even-order elements in the sense that the angle 

kick they Oliver to » particle is an even function of the late/al displacement (in 
this case a constant function]. Thus, if we place two identical dipole magnets 
(one at the entrance and one at the exit) of a - 7 transformer, there will be no 
net angular deflection experienced by particles of momentum pa outside of the 
—I transformer. 

2) Quadrupoles: The angular displacement produced by a quadrupole 
is an odd function of the lateral position z. (In this case the angle kick b 
proportional to x.) Consequently two identical quadrupoles of opposite polarity 
placed at the entrance and exit of a —J transformer will have no net effect 
outside the transformer. 

3) Sextupoles: Sextupoles are even-order elements . The angular kick 
they produce is proportional to x3. In this Instance pairs of equal strength 
sextupoles will have no net effect outside the - / transformer. 

Thus, in summary, all odd-order elements (quadrupolcs, octupoles, etc.) will 
have to be introduced in pairs of opposite polarity, and all even-order elements 
(dipoles, sextupoles, etc.] have to be introduced in pairs with the same polarity 
in order for the cancellation to be effective. 

5.9.2 A - 7 Transform SextvpoUr Chromatic Correction 

Consider now a -I transformer with two sextupoles of equal strength placed 
at the entrance and exit, and suppose that dipolcs have been inserted in each 
cell of the - / transformer. From the previous discussion we know that the 
acxtupoles will not introduce geometric aberrations. The presence of the dipoles 
between the sextupoles ensures that there will be coupling between the sextupole 
strengths and the chromatic behavior of particles. Having thus demonstrated 
the principle of the chromatic correction, let us analyse its feasibility in greater 
detail. 
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Li practice one must do at least one chromatic correction per phase plme, 
and sometimes two or more per plane. The ideal situation, from the point of 
view of the second-order geometric aberrations, is to assemble enough —I trans­
formers so that the different aextupole pain (placed —/ apart) do not interfere 
with each other. This condition is often prohibitive in its space requirement and 
in its coat. So let us analyze the effect of interlacing sextupole pain ussd in 
chromatic corrections. 

Consider, as shown in Fig. 26, two consecutive —/ transformers containing 
two interlaced pairs of sextupoles Si and S3. 

S 2 H 

t-nt 

8| 
— T -t-nt 

Fig. 26, Interlaced aextupole pain. 

If the sextupoles are pure second-order elements, no additional second-order 
aberrations are introduced by the coupling between the svxtupoles of the two 
pairs. 

Suppose a particle arrives at the first sextupole Si with displacement si-
Aa it reaches the first sextupole of the pair St, Its motion, within the - / trans­
former that separates the pair Si, is perturbed, and the particle will reach the 
second sextupole of the Si pair with a displacement that is not equal to -x i . 
Consequently the second sextupole of the Si pair will not exactly compensate 
the geometries introduced by the the first aextupole. However since the distur* 
bance introduced by the sextupole £3 is of order two, the uncorrected geometric 
aberration of the pair £j is of order three and four. 

In a. following paragraph we shall show a complete practical setup of a cor­
rection scheme using interlaced families of sextupolcs. 

5.4 GEOMETRIC CORRECTION USING REPETITIVE SYMMETRY 

The second-order aberrations are obtained by the computation of integrals 
rontatning the sinelike and cosinelike function (see, for example, Tables H and 
IH). The first-order condition that a lattice be stable implies that the sinelike 
end crainelike Function; 'jjcillate in a manner similar to the circular functions. 
Symmetries introduced in the design of a lattice may have the desirable effect 
of canceling some second-order aberrations. Among the important symmetries 
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to be considered are mirror symmetry, rotational symmetry, (x,y) symmetry, 
repetitive symmetry, and repetitive symmetry with magnification. 

Let us look at a general approach to the study of the effect of some of these 
symmetries on the secoB&order aberrations. 

Inspection of Tables I, B> and Ul shews thai the second-order geometric 
aberration terms can be expressed as 

h 

o 

where Ko is the dipole strength per unit length and K% is the sextupole strength 
per unit length. Pun quadrupoles do not generate second-order geometric aber­
rations. 

Since the AQ(S) are linear combinations of sin k$ and cos £d?, we ea» write 

o 

where the functions Ff are equal to the strengths K% multiplied by some power 
of the p(t) function*. Adopting a complex variable notation, we obtain the 
condition for having all second-order geometric terms Z ^ vanish, namely, 

L I 
J Fpt*1*** - 0 and J Fpe*"* A = 0 . 
o o 

The Integral of the expressions F,« ±' l f and Fpe*46* for each separate element 
of a lattice can be represented geometrically as a vector b the complex plane, a* 
shown in Fig. 37. The integrals over the total lattice become the vector sums or 
all the complex vectors representing the geometric aberrations of the individual 
elements, namely, 

£ j%s<* and £ i ^ e 8 f * » . 
l l 

Kor reasons chat should appear clear hi the next paragraph, one generally places 
the vectore corresponding to ty . one diagram and the vectors corresponding 
to 3*^ in another. The secxndKttder geometric aberrotiona are aero if both these 
soma an zero. 
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W« shall now icstncl our study to the case of repetitive symmetry. 

I I 

2 

<>- 84 

^ 3 ^ ' 
4flO«Ai3 

Fig. 27. Complex plan« diagram for second-order aberrations, 

5.4.1 First-Order Repetitive Geometric Correction 

For repetitive symmetry (i,«. when the lattice ia made of the juxtaposition of 
equal cells), the beta functions are equal from cell to cell and BO are the element 
strengths. 

In this case the functions Ff(*) are equal la value at the same location from 
cell to cell. Let us analyze two special cues: a lattice containing Tour identical 
cells and a lattice containing three identical cells, and such that the iota] phase 
advance for the lattice is 2ff In both cues. 

Consider the $ plot of Fig. 28. The vectors correspond to the number of 
the cell to which they belong. In the ij> plana they appear in consecutive order 
with in angle of 90 degrees. Their sum obviously U ura. In the 3i/i plane the 
angle between consecutive vectors becomes 270 degrees, and their sum will also 
be zero. 

In conclusion, in a lattice made of four equal cells with total phase shift of 
2JT, the second-order geometric aberrations originating la Individual elements 
will cancel. 

Consider now the i» plot of Fig. 2t. The three vectors display an angle of 
120 degrees, and so their sum is also sen. However, In the %4> plot they will 
have an angle of 3S0 degrees and wiH *U coincide. Their sum Is not sero unless 
their amplitude is zero. 

m conclusion, for & lattice with One cans and a total phase shift of 3a-, 
some geometric aberrations do not caned. 

Vht can now formulate the foUowmg impoTta&t tJMorem; 
InaIattiwmadeofnio>nticalcelbvW*b* 

shift of 2wwr, all secocd-order geometric aberrations will canceL 
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Fig. 28. Complex plane diagram TOT second-older aberrations in a four-cell 
lattice with repetitive symmetry and a 2n phase shift. 

\ z 

"-v 120° 
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G-84 / 3 4HQn,\ if. 

Fig. 29. Complex plane diagram for second-order aberrations in a Lhree-cell 
lattice with repetitive symmetry airl a 2TT phase shift. 

5.5 T H E S E C O N D - O R D E R ACHROMAT 

Modem high energy machines ,-equirc long beam lines to transport the team 
from one region to another or to perform specific functions within a lattice. 
These beam lines are expected to transport the beam achromatically to a3 high 
an order as possible without introducing appreciable geometric aberrations. We 
call an achromat a line that would meet that goal perfectly. We qualify the name 
with n th order when the goal is met tip to the order n in the Taylor expansion 
of the motion. 
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In the following sections we restrict our analysis to repetitive tell structures. 

5.6.1 The First-Order Achromzt 

Consider a lattice made of n identical cells having the following transfer 
matrix: 

The total transfer matrix T will he 

[AT* Afr"_1i(; + Af*-ato + . . . + w \ 

The dispersive vector of the total transfer matrix T can be written in the Fol­
lowing form: 

J= (M*" 1 + M B ~ J +~- + I)w = ( M n - I ) { M - I ) - * w . 

From the above expression one can deduce the following theorem: 
A lattice made of rt identical cells is achromatic tD first order if and only if 

1) Mn = / 
or 

2) w = 0 . 
In other words, it is achromatic if and only if each celt u achromatic, or 

the total transfer matrix is the identity matrix (equivalently if the total phase 
advance is Znw for any integer m). 

This first-order result is the basts for the building of achromatic beam lines. 

5.5.2 A Practical Second-Order Achromat 

Figure 30 shows a possible layout for a four-cell second-order achroraat. 
The labels BD stand Tor bending dipoles, The labels QF and QD stand for 
horizontally focusing quadrupoles and horizontally defocusing quadruples. We 
assume that the quadrupoles have been tuned to provide a total phase advance 
of 2JT. 
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Fig. 30. Example of a practical second-order achromat with four colls. 

Sextupol'js have been introduced so that the chromatic correction procedure 
can be perforii.cd in both the {x, rf) and the (t/jir1) plane. 

The sextupoles of the Family SF wilt couple predominantly with the x. plane 
because they are located close to the focusing quadrupoles, where the values of 
the j3x function are greater. 

Similarly the sextupoles of the family SD will couple predominantly to the 
y motion, where 0t h larger. 

Once the quadrupoles have been tuned to provide a 2ir phase shift, the 
second-older geometric aberrations introduced by the dipoles and by the sex­
tupoles cancel exactly. 

One 1'ien tunes the sextupoles SF and SD so that one of the second-order 
chromatic terms 2 I J B or Tya and one ofT^-Q or T4 je are zero. It has been shown 
previously that all the second-order chromatic terms except Tseg then bcr ,-e 
simultaneously zero. 

We now have a system that is completely achromatic to second order with 
the only exception being the momentum dependence of the path length. 

5.5.3 ^Application of the Achromat Concept to Chromatic Corrections 

The second-order achromat as described above Is an optical system whose 
transformation matrix is the identity matrix to a precision of second order in 
ait of the phase space variables x, z', y, y', I, and 6 except for the second order 

atrix element relating the path length to the square of the momentum. 
White the second-order achromat may not be directly applicable to the do-. 

,n of circular machines, the optical principles evolved For its development are 
definitely useful when formulating thesextupole configurations necess?ry for th 
chromatic corrections in circular machines and in particular ^> jtu 0 . w 

where the interaction regions have very email beta functions. Let us review the 
salient features of the second-order correction theory developed above that are 
applicable to this problem. 
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1) Any family of .-extupoks instiled into a lattice such that their-vector sums 
cancel in the (£> and 30 tiiagrarr.3 described above will not introduce second-order 
geometric aberrations. 

2) The interlacing of two or more scxtupole Families, each of which satisfies 
criterion l ) , does rot introduce second-order geometric aberrations. 

3) Interlacing of one sextupole family with another scxtupole family will 
introduce third- and higher-order distortions to the lattice. 

4) It should be noted that in order for the sextupoles not to introduce second-
order geometric distortions, the tune shift per cell of the lattice in the region 
of the sextuj Jies must remain Uxcd and must be equal in both the x phase 
plane and the y phase plane. The quadrupoles in this region must not be used 
to vary the tune of the machine. The variation in tune must be achieved in * 
'sextupole-free1 region. 

It follows from the above that a simple recipe for the introduction of sex­
tupole families to correct for chromatic effects and at the same time minimize 
the optical distortions at the interaction regions may be evolved by following 
the guide Urea contained in the preceding paragraphs. This has been discussed 
in previously, and has been implemented in the design of many of the new ma­
chines in the last decade. Some examples are the LEP machine at CERN, the 
EROS ring at Saskatoon, the SLC at SLAC, and the CEBAF ring at SURA. All 
of these machines have a lattice design that permits these important principles 
to be implemented. 

The baste procedure is the following: The sextupole families are choicn 
according to t V e above rules, and their strengths are then adjusted to correct 
for the second-order chromaticity inti nduced by the quadrupoles in the lattice 
and to cornet locally for the momentum dependence of the beta functions. 
If there are enough (at least three) independent families in each phase plane, 
the strengths of the famiVicn can be adjusted relative to each o*her so as to 
minimize the optical distortions caused by the cross coupling between families. 
This is not a trivial exercise, and special programs have been written to handle 
this particular problem. Examples air; the program HARMON developed by 
Donald and the program PATRICIA developed by Wiedemann. 
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