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1. Introduction

Tracer diffusion technique has been extensively utilized to investigate diffusion

phenomena and has contributed a great deal to the understanding of the phenomena.

However, except for self diffusion and impurity diffusion, the meaning of tracer diffusion

is not yet satisfactorily understood. Here we t i / to extend the understanding tv con-

centrated alloys. The problem of tracer diffusion in concentrated alloys was recently

reviewed in detail by Bakker.1 Therefore, our major interest here is directed towards

understanding physical factors which control diffusion through the comparison of

results obtained by the Path Probability method (PPM) and those by the Monte Carlo

simulation method (MCSM). A brief explanation of the background of the PPM as

applied to transport problems is given in Ref. 2. The MCSM as applied to diffusion

kinetics was also reviewed by one of the authors.3'4-5
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Both the PPM6 and the MCSM are basically in the same category of statistical

mechanical approaches applicable to "random processes." In these methods, the change

of state is evaluated based on appropriately defined probability. Therefore, the treat-

ments are also basically the same as the "Master Equation Method."

The advantage of the Path Probability method in dealing with phenomena which

occur in crystalline systems has been well established. The method uses a consistent

and well-established (in equilibrium statistical mechanics) method of approximation.

As applied to transport problems, the PPM can derive a set of linear equations

corresponding to the Onsager equation for diffusion analytically from microscopic vari-

ables so that relations among measurable quantities, the meaning of cross terms, etc.

can be clearly understood from an atomistic point of view.2 This makes the method

quite useful in understanding the overall situation of complicated phenomena of mul-

ticomponent diffusion. However, the approximations which are inevitably introduced to

make the analytical treatment tractable, although their meaning may be well-

established in equilibrium statistical mechanics, sometimes inroduce unwarranted conse-

quences the origin of which is often hard to trace. On the other hand, the MCSM

which can be carried out in a parallel fashion to the PPM provides, with care, the

numerically exact results. Thus a side-by-side comparison can give insight into the

effect of approximations in the PPM. Therefore, with these two methods combined, it

is expected to be able to obtain a far clearer picture of the mechanism of diffusion

phenomena.

In the following, we first examine the concept of the correlation factor of diffusion in

concentrated alloys in Section 2. In Section 3, a brief account of the characteristics of

the ordered binary alloys treated by the pair approximation of the Cluster Variation

method7'8 (CVM; the equilibrium counterpart of the PPM) which are the basis of the

treatment of diffusion in ordered alloys by the PPM is given.2 In section 4, concepts of

jump frequencies and local activation energy which are the basis of dealing with
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diffusion in concentrated alloys are explained. Actual derivations of results by the

PPM and by the MCSM are given in enough detail in Sections 5 and 6. Comparisons

of these results are discussed in Section 7.

2. Concept of the Correlation Factor in Concentrated Alloys

In tracer diffusion study, the concept of the correlation factor is often used. It

should be reminded that the concept was originated from the study of self diffusion. As

such, if the concept is used in a more general case of diffusion, it is necessary to extend

the concept accordingly. Because the extension to individual cases has not necessarily

been unique, there exist some confusions with respect to its usage.

The correlation factor was originally defined empirically as the ratio of the tracer

diffusion coefficient (using an isotope of the same species as tracer) DT and the self

diffusion coefficient, Ds, as9"12

DT/DS = f. (1»

The self diffusion coefficient Ds is defined as the hypothetical diffusion coefficient of the

total assembly of particles of the same kind if the appropriate driving force were given.

Therefore, this is equivalent to the charge diffusion coefficient, Dc, of the assembly of

charged particles which is connected to the ionic conductivity o by the Nernst-Einstein

relation

where n is the total number of charged particles per unit volume, e is the charge, and T

is the temperature.
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Therefore, if the value of f is known, the self diffusion coefficient Ds, which cannot be

evaluated directly from diffusion experiments, can be estimated through the measure-

ment of D T . In nearly perfect crystals, the number of defects through which atoms

move is negligibly small, and the motion of the total assembly of atoms is represented

by the random walk. Hence, D s is supposed to be equal to the diffusion coefficient of

the system D R whose constituents are making the random walk. Therefore. Eq. (1) can

be replaced by

D T / D R = f <3>

The value of D R can be calculated uniquely if the jump frequency w of the consti tuent

particle is given. For three dimensional systems, D R is given by

DR = } /*nw, «)

where / is the jump distance and n is the density of moving particles (in the case of

vacancy mechanism, n represents the density of vacancies). In nearly perfect crystals,

the correlation factor for self diffusion f is known to be uniquely related to the mechan-

ism of diffusion and the geometry of the crystal lattice as long as the concentration of

tracer atoms is negligibly small. Because of this relation, the measurement of f is used

to investigate the mechanism of diffusion such as th3 vacancy mechanism, the intersti-

tialcy mechanism and the interstitial mechanism.

In general diffusion problems, the situation is not as simple. There can be a large

number of vacant available sites,13'14 a coexistence of different types of available sites

such as normal sites and interstitial sites,13'14 or the environment o( moving atoms is

different from place to place such as in concentrated alloys. L. such cases, the

classification of diffusion mechanisms as mentioned above is almost meaningless. The

self diffusion coefficient can also deviate from DR. The definition of by Eq. (1) which is
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exemplified by the measurement of such as the Haven ratio HR = DT/DC, and that by

Eq. (3) can be very much different.13'15 Therefore, for generality, we prefer to use Eq.

(3) as the definition of f. Based on this definition, f indicates the degree of deviation of

the motion of tracer atoms from the random walk (for the random walk, f = 1 by

definition). Thus defined f is generally less than unity. However, in some cases, f can

be larger than unity. In such a case, the motion of the particle can be called t j ^ chan-

nelling.

We deal with concentrated binary alloys composed of A and B atoms here. An iso-

tope of B, or B,* is added as tracer. Then, according to Eq. (3), the correlation factor

fB. is Jefined to be2-16"20

Here, Dg» is the diffusion coefficient for B* whereas D B ^ is the hypothetical (or calcu-

lated) diffusion coefficient of B* which is making the random walk. In the case of ordi-

nary binary alloys, we can generally assume that the number of vacancies is negligibly

small and the jump distance / can be taken as constant. However, the jump frequency

of tracer atoms can depend on the environment and the problem can arise with respect

to how Dg-R can be defined. In the linear range of diffusion, in which the Onsager

equation for diffusion is valid, the flow is evaluated based on the equilibrium distribu-

tion of atoms, and, hence, the average of the jump frequencies based on the equilibrium

distribution can be taken as the reference jump frequency. Theoretically, because the

B" atom has the same statistical characteristics as the rest of B atoms, the jump fre-

quency automatically drops out when the ratio (Eq. (5)), is taken, and fB. is uniquely

determined as shown later.

In the case of alloys, since the environment of moving atoms is different from place

to place, the rr.otion of B atoms inevitably deviates from the random walk. Therefore,

the diffusion coefficient Dg of the total assembly of B atoms is related to DBR( = Dg^)
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by

DB = DBRfi- ( 6 a )

The factor f{ is often called the physical correlation factor,13'21 while the correlation fac-

tor fG defined by

DB./DB = fB./f, = fG
 (6b )

is called the geometrical correlation factor and corresponds to the correlation factor

defined in the self diffusion.

3. Ordered Binary Alloys

In Ref. 2, a brief account of the calculation of the correlation factor fB. in disordered

binary alloys by the pair approximation of the PPM is given. The extension of this

treatment to ordered alloys has oeen given in several publications by us,16"18 and it

would be relatively easy to follow them if one notes the following characters of ordered

alloys as treated by the pair approximation of the CVM.6'7'14

In order to avoid unnecessary mathematical complications, we limit ourselves to the

treatment of binary alloys of the bcc structure (or more generally structures with two

sublattices). Except for differences derived from the difference in ordered structures,

the results are qualitatively the same for alloys with the fee structure and the

differences can be reasonably well estimated.

We assume that interactions among atoms are limited to nearest neighbor pairs. In

the ordered structure (the CsCl structure), the crystal lattice is divided into two sublat-

ticesv and-th« one is predominantly occupied by A and the other by B. Further, a

jump of an atom into its nearest neighboring vacant site is always from a site of one

sublattice to that of the other.
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In a static treatment of order-disorder transformations, only a combination e of pair

interaction potentials among atoms

eBB) <7>

appears as the necessary parameter, where —ey is the pair interaction potential (attrac-

tive) between i-j neighbors. For systems with ordered distribution of atoms, the rela-

tion e > 0 should be satisfied. Because of this reason, in static treatments, it is often

assumed that

On the other hand, in the treatments of diffusion (or of kinetics in general), in which

jumps of atoms into nearest neighboring vacancies by breaking bonds with its nearnest

neighbors are to be considered, individual values of e ^ and egg are to be taken into

account.16 '20 In other words, an extra parameter U defined as

is to be used. Further, in our treatment of diffusion by the vacancy mechanism, vacan-

cies are taken into account explicitly. Here, interaction potentials involved with vacan-

cies v are, however, generally assumed to be zero;

«Av = «Bv = cvv = 0- ( 1 0 )

This means that interactions with vacancies are indirectly taken into account through

U, because vacancies tend to distribute in the A-rich or in the B-rich neighborhood

depending on whether U is positive or negative and the segregation of vacancies on

different sublattices occurs in the ordered state. The energy parameter €y is always

defined as positive.

The energy parameter e gives the measure of the critical point T c of order-disorder.

In the pair approximation of the CVM, T c at the stoichiometric composition
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(xA = Xg = —) with a negligible amount of vacancies is given by20

it

2€/kTc = la
w-1

( i i )

where 2w specifies the coordination number of the crystal lattice (2w = 8 for the bcc

structure and 2u> = 3 for the two dimensional honeycomb (2Dhc) lattice). Eq. (11) also

serves to normalize the value of e with respect to kTc. If the composition deviates from

the stoichiometric composition, the critical point is lower and the phase diagram thus

predicted which indicates the existence range of the ordered state is shown in Fig. 1.

The phase boundary at T = 0, on the other hand, is given by the values of xg as

xB = l / 2 ± a <12a>

where

a = ( w l ) / 2 w ( 1 2 b )

In the following treatment, the temperature is given by the reduced scale T/T c . There-

fore, if T /T c < 1, a certain composition range of the alloy system is in the ordered

state.

The pair approximation of the CVM determines the equilibrium values of y^, which

indicates the probability of having a constituent i on a lattice site and a constituent j

on a nearest neighbor lattice site, as a function of x, and T. The long-range order S

and the (Bethe) short-range order a can then be derived from yjj for the case of binary

alloys as

s = yjfe - yB°A
 (13)

where the superscript o indicates the values of y;j in the ordered state, whereas in the

subscript, such as AB, the left symbol indicates the species of atom on the one (A) sub-

lattice and the right hand symbol indicates that on the other (B) sublattice. In specify-

ing the short-range order, because the concept is used mostly in the disordered state, no



distinction between the sublattice is made. Then the relation such as

_ yJfe + yJA (H)

holds, and a is defined as

_ yAB ~ UABJrand (15)

~ iyAB)rand

Here, (yAB)max means the maximum possible value of y ^ and (yAB)rand means the value

in the completely random state for the given composition. In Fig. 2, the temperature

dependence of y^ for xA = Xg = 1/2 as well as the composition dependence of y^ at tem-

perature T / T c = 0.5 are shown. In Fig. 3, on the other hand, the temperature depen-

dence of S and a also for the composition xA = Xg = 1/2 is pven. The value o j below

Tc is calculated under the restriction of S = 0 .

For the convenience of treatment, yfj is also expressed in terms of two site variables

(which indicate the value of a single site independent of the surroundings) q; and qj as

y.. = q.q. K-71 <16>
J'IJ 4i4j "-lj

where

^ij) {0 = 1/kT) (17>

and Q; and Qj, as normalized value of q; and qj as

-l
(18)•r

In the completely random state, q; tends to X;. These variables indicate the probability

of finding a species of atoms on the neighboring site of a lattice site being considered

irrespective of the species of atoms on it when there is a finite degree of short-range

order, but no succint physical explanation can be given. In Fig. 4, the composition

dependence of QA and QB at T/Tc = 0.5 is given.
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Diffusion is not a phenomenon in the equilibrium state. However, as is known in the

Onsager equations for diffusion, linear deviations from the equilibrium state due to the

existence of driving forces are treated as flows and hence the equilibrium distribution of

atoms has to be known. This information is given by the (pair approximation of)

CVM. Some useful variables utilized in the pair approximation of the CVM are sum-

marized for reference in Table 1.

4. Jump Frequencies of Atoms in Concentrated Alloys

In order to describe the phenomenon of self diffusion atomistically, the so-called

jump frequency w s defined as

Here, 9 indicates the attempt frequency and u indicates the activation energy of

motion. In a general case of diffusion such as that in alloys, however, it is necessary to

introduce individual jump frequencies for A and B atoms which also depend on the

environment of moving atoms. The activation energy is determined collectively by the

total assembly of particles, and theoretical calculations of such jump frequencies and

the activation energies are extremely complicated. However, in order to extend the

treatment of self diffusion in terms of w in Eq. (18) to the case of alloys in the pair

approximation of the PPM, it is convenient to split u to include the local contribution

explicitly and define w as composing of two terms (in the case of self diffusion) such as
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p - 1/kT

In other words, as is shown in Fig. 5, it is equivalent to take the activation energy as

composed of a constant value plus a term contributed by interactions with nearest

neighboring atoms. Because of this reason, the second term, [exp(-/?€AA)]2a'~1, is called

the bond breaking factor. Then, in the case of (disordered) binary alloys, we can like-

wise define two jump frequencies

W; = 9fi (i, j = A, or B) (20)

Here, x; is the probability of finding an atom of the i-th species on one lattice site and

vji = vij ' s tQe Pr'"bability of finding an i-j pair on nearest neighboring sites as defined

in the CVM. In ordered alloys, it is necessary to extend the definitions to include two

sublattices.

The activation energy determined by experiment is thus represented by a certain

average value of that given by Eq. (20) depending on the distribution of atoms. In the

ordered case, the activation energy of diffusion generally increases. This can be

explained as follows. Suppose we are dealing with the tracer diffusion of B*. When the

B* atom is on a site of the B-sublattice, the surrounding atoms are predominantly A

atoms. Therefore, the bond breaking factor increases due to the attractive interaction

f̂ B- In addition, under such condition, even if the B* atom could jump out from the B-

site by exchanging with a vacancy on the A-site, this B* atom tends to go back to the

original site, being pushed back by the surrounding B atoms on the B-site (resulting in

a small correlation factor). These two factors contribute to a low diffusion coefficient in

the ordered state as will be seen later.
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5. Tracer Diffusion Coefficient and the Correlation Factor in Binary Alloys

by the Path Probability Method

i. Disordered Binary Alloys

Theoretical treatments of tracer diffusion in ordered binary alloys can be easily

extended from those in disordered binary alloys. Therefore, succinct features of the

treatment which are the basis for the extension to ordered systems are repeated here

although these are explained in somewhat detail in Rei. 2 or in Ref. 21. The motion of

atoms is assumed to occur via the vacancy mechanism and the number of vacancies is

assumed to be negligible. In deriving the Onsager equations for diffusion by the PPM,

a stationary state is treated. In other words, flows of atoms under the driving forces in

one direction aA, org and aB . (a; = // |/kT indicates the generalized chemical potential

//; divided by temperature) are treated which do not change the distribution of atoms

with time. In deriving the Onsager equation by the PPM, the reference system is a

laboratory frame fixed at a lattice plane. In other words, a reference plane fixed at a

spatially fixed crystal lattice plane (actually a plane at a half distance between the two

crystal lattice planes is treated) perpendicular to the direction of the driving forces is

taken and flows across this plane is calculated based on the equilibrium distribution of

atoms which is supposed to exist in the reference plane.

The flow of atoms of the ith species, $; across the reference plane in the direction of

the driving force (taken as the +x direction) is defined as

$ = Y ^ - Y <21>

Here, Y i ± are path variables used in the PPM, which represent the probability of atom

of the ith species jumping across the reference plane in the +x and in the -x direction,

respectively, during a short time interval At at a time instant t. By calculating Yi +

and Y;_ explicitly under the driving force by the PPM and expanding the results
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linearly with respect to the driving forces, we obtain an equation [Eq. (A15), Ref. 2]

*i = -"i + E Qj^ji

Here, ¥; is the normalized flow defined as

(23)

Here, Y; is the probability of an atom of the ith species which jumps across the refer-

ence plane either in the +x or in the -x direction under the equilibrium condition (in

the absence of the driving force, Y; = Y i+ = Y;_). The term -a; represents the driving

force acting on the ith species expressed as the generalized chemical potential (ft) gra-

dient (a-x = /?/<;). The quantity Qj indicates the probability of finding an atom of the

jth species at a nearest neighboring site of a specific site (a site occupied by an atom of

the ith species in consideration) as explained earlier. On the other hand, ijjyt indicates

the deviation of the distribution with respect to j-i pairs from equilibrium in the direc-

tion of the driving force and is proportional to dj, and eventually concerns the

exchange of i-j pairs. In the absence of the second term, Eq. (22) indicates the random

walk of the particle of the ith species by the driving force av and, hence, the second

term indicates the effect of flows of other species on the flow of the ith species which

deviate the motion of the ith species from the random walk. As indicated by the

existence of Qj, the second term is highly dependent on the nature of the diffusion

path. The analysis of the nature of the second term is thus one of^central problems of

dealing with transport phenomena by the PPM.

Because Eq. (22) represents a linear equation in terms of the driving forces, a-'s,

this expression eventually leads to the Onsager equations for diffusion. The correlation

factor for the species i, fj (or the deviation of the motion of particles of the ith species

from the random walk), is then calculated if one can transform Eq. (22) into the form
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The ^irivation can generally be made in the limit when the concentration of the ith

species is negligible. However, in dealing with tracer diffusion in binary alloys, the

derivation of Eq. (24) for the species B* was achieved at any concentration of B* by the

assumption of a specific steady state condition. First, we assume that the concentra-

tion of the species A is kept constant in the specimen. Because the macroscopic flow of

A does not exist and the distribution of A (with respect to B + B*) is the same as in the

equilibrium state, the condition

aA = 0 M

holds. Secondly, the existence of the Gibbs-Duhem relation between B and B* is

assumed which leads to

The application of the boundary conditions, Eqs. (25) and (26), to Eq. (22) then leads to

The boundary condition, Eq. (26), gives the value of fB. which is independent of the

concentration of B* and constitutes a very strong restriction for the flow of B and B*

(see Ref. 2). Although the validity of this relation for high concentrations of B* is

debatable,2 in the limit of negligible concentration of B*, the relation is applicable, and

the boundary condition, Eq. (26), will be retained for the convenience of handling of

equations beyond Eq. (22).

The correlation factor fB. in Eq. (27) has the following form

=
3 2(l

where
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7 _ Q A A , Q B B Q B B , - _ -
ZB. - + + (wB - wB.)

wA + wB.

The expression for ZB. follows from a more general expression

VQj (30)

in terms of Y' s because of the relation

w, = -^ - <31>
qiqvAt

2

which connects the path variable Yj and w ;. The value Yt or w-, thus gives the average

value of the jump frequency of the ith species.

The meaning of ZB. in Eq. (29) can be given as follows. In Fig. 6, a vacancy, its

surrounding atoms and a (tagged) B* atom are shown. This should be interpreted to be

a time instant at which the tagged B* atom has just jumped out from the central site,

replacing a vacancy at its neighboring site. Therefore, the probability of jumping back

of the tagged atom into the vacancy it has just replaced is being calculated here in

competition with other atoms on the surrounding sites. The quantity Q= specifies the

species of atoms on the surrounding sites as defined ea'rlier. As is clear from Eq. (29),

the quantity 1~ZB« represents the jump back probability of the tagged atom (which

corresponds to the return probability Pr) while ZB. is the probability that any other

atom (specified as j), which forms the pair with the tagged atom B* across the vacancy,

jumps into the vacancy and represents the escape probability of the vacancy

Pe = (2ur-l)ZB. or the probability of the forward jump of B*. In the PPM formalism,

however, the jumping back of B* atom is treated as if the B* atom jumps from the cen-

tral site into a vacancy at a neighboring site as is seen from Eq. (29). The quantity fB.

in Eq. (28) thus indicates the efficiency of the forward motion of the B* atom as defined
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in the random walk theory.10 12

That the calculation of fB. is reduced to the calculation of ZB., Eqs. (27), (28) and

(29), in a way represented by Fig. 6 is extremely useful in extending the creatment to

more complicated cases. The actual expressions for W; in Eq. (29) are given by

wA =

2u-l
(32 >

The expression such as YAA/xA indicates the probability of finding an A atom at

the neighboring site of an A atom. The expression for wB. which appears in the denom-

inators in Eq. (29) is for the tagged atom. It is to be noted at this point that the sur-

roundings of the tagged atom are evaluated as if it jumped from the central site rather

than from the surrounding site as shown in Fig. 6. In the disordered alloys such as

above, because all sites are equivalent statistically, there is no distinction between the

jump frequency from the central site and that from the surroundings. However, this

distinction is important in dealing with ordered alloys which will be seen later.

Because, under the boundary condition, Eq. (26), fB. does not depend on the concen-

tration of B*, QB. = 0 can be assumed or QB can be rewritten to indicate the sum of

QB and QB- to simplify the relation.

Eqs. (27) and (28) can be rewritten as

2 ( 1 " Z y ) (33)

The second term of the coefficient of aB» indicates the normalized return probability
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p r

T( = ——T-£~)- By comparing this expression with Eq. (22), one obtains

' ' 2 " Z )

under the boundary conditions of Eqs. (25) and (26). In the calculation of JjQjV'ji by
j

the PPM, this return probability is calculated from the comparison of the jump of the

B* atom from the central site and the jump of an atom whose species is specified by Qj.
,1,1'

Therefore, for the tagged atom to jump back, its surroundings are yM specified by Qj in

the calculation as mentioned earlier.

ii. Ordered Binary Alloys

The extension of $,Yfe tracer diffusion in disordered alloys to that in ordered alloys

based on the treatment in the previous section is relatively easy. As poiuted out in

Section 3, in the ordered state, the bcc lattice is divided into two sublattices and the

jump of atoms from a site in the one sublattice should always be into a site in the other

sublattice. In this respect, the normalized flow *; can be divided into two contribu-

tions, *iA and *iB. It is easier to see this relation if one takes the reference plane which

includes the A sites and the B sites in equal amount13'23 such as the {110} plane rather

than the {100} plane which includes either the A sites or the B sites alternately. In our

earlier publication in which a {100} plane is taken as the reference plane, a concept of

the transposed lattice is introduced to reach the above conclusion.18 Here, ^,A indicates

the flow of atoms of the ith species from the A sublattice (into the B sublattice) and
B is that from the B sublattice. Then the following relations follow:
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* A = -* A +
j (35)B W

Under the same boundary conditions, Eqs. (26) and (27), as bofore, we obtain similar

expressions

(36)

(2w-l)Zo.

2(l-ZB.)+(2u^l)ZB.

and

-1- = i f jL + _i_] (38)
ZB. 2 ( Z B \ ZB

B .J

The correlation factor fB. in the ordered state then follows from Eq. (28) using ZB. in

Eq. (36). Here, Zg\ means, in Fig. 7, the central site from which the tagged B* atom

has jumped out is the A site and ZB. is the corresponding quantity for ths B site. On

the other hand, QjA, etc. in Eq. (35) indicate parameters related to the probability of

finding an atom of the jth species at the nearest neighboring site of an A site (hence the

site is in the B sublattice), etc. In order to avoid the confusion, therefore, the following

rewriting is made:
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QiA = Qj(B)

and

(39)

Qf = Qj(A)

so that Q:(A) and Q;(B) indicates the probability of finding a j atom on the A and the

B site, respectively at the surrounding of a vacancy (on the B and the A site, respec-

tively). If so, based on Fig. 7, Zj£, etc. and wA(A), etc. are obtained simply by inspec-

tion as

'A -
QA(B)W A (B) ^ QB(B)wB(B)

B -

wA(B)+wB^A) wB(B)+wB^A)

QA(A)WA(A) ^ QB(A)WB(A)

(40)

where wA(B), etc. indicate the jump frequency of an A atom from the B site, etc. and

wA(A) =

(41)

wB(B) = w

The existence of Eq. (38) means that, between the two processes, that having the
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smaller ZB is the rate determining process.

In terms of path variable Y;, the expressions for ZjA and Z;
B are

(42)

Between Yj' s and W;' s, the relation, Eq. (24), holds:

- A Y,
W: =

qi(A)qv(B)At (43)

B Y:
W; =

q;(B)qv(A)At

Qs(A) = qi(
m (44)

Qi(B) =

These quantities are derived from the definitions of pair variables y^' s in the ordered

state. From the relations, Eqs. (43) and (44), the relation

(45)

follows. The quantity Y; is the probability of the jump of atoms of the species i across

the reference plane (in one direction) in the equilibrium state and includes jumps from

the A site and from the B site. Under the equilibrium condition, the number of jumps

for the ith species from tbe A site to the B site and in the reverse direction is always

balanced. Therefore, a relation Y-* = YjB = Yj holds.
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In Fig. 8a, the composition dependence of the correlation factor fB. for a binary

alloy in the bcc lattice and in Fig. 9a that in the 2Dhc lattice are shown as examples.

The calculation is for U = 0 for the sake of simplicity. The temperature is set at

T/Tc = 0.5. Furthermore, 0A = 0g and uA = uB are assumed. Therefore, only the

influence of the surroundings is calculated. A sharp decrease in the correlation factor in

the ordered range is found. The upper curve in each figure in the ordered region shows

the effect of the short-range order (a^) only so that the effect of the existence of the

long range order can be evaluated. The short-raage order below Tc is calculated by

artificially keeping the long ranger order zero as explained in section 3. The results

agree qualitatively well with experiments. The decrease is mainly due to the blocking

of the diffusion path by ordering (long-range order) and, hence, the decrease is mainly

due to the decrease in the so-called percolation efficiency (the physical correlation factor

fj introduced in the calculation of the ionic conductivity in ^-alumina). In the ordered

case, when the isotope B* atom is on the B site and exchanges places with a vacancy on

the nearest neighboring A site, this B* atom tends to go back immediately to the origi-

nal B site, being pushed back by nearest neighboring B atoms on the B site. This effect

is equivalent to a small correlation factor but is of physical origin (physical correlation

factor). Some calculations for cases U * 0 are found in our previous publications.1618

iii. Instantaneous Distribution Conversion

Although the PPM gives a reasonable and systematic treatment of diffusion prob-

lems in disordered and ordered alloys, some systematic deviations from the results of

Monte Carlo simulation were reported.25-26 These troubles have since been traced to

some inadequacies with respect to the formalism of the PPM as applied to transport

problems.
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As is explained in Ref. 2 with respect to the formalism of the PPM, the original for-

malism of the PPM is designed to follow the time dependence of the state. A state is

defined in terms of the state variables at a time instant in the PPM just as in the

CVM. Hence, the state variables at a time instant t /8 first determined, and appropri-

ate transition probabilities of these state variables to lead to state variables at t + At

are evaluated by the PPM. In transport problems, the change of state variables with

time is associated fee flows'2. In other words, the PPM is designed to follow the time

correlation of the assembly of particles. On the other hand, in transport problems, the

time correlation of individual particles rather than that of the assembly of particles is

at stake as is easily viewed from the calculation of the correlation factor which is

derived from the drift motion of a single, tagged particle. This difference in ̂ statistical

nature of transport problems has prompted us to convert some of the averaging

processes of the original PPM in calculate <g transport properties.22 This situation was

also briefly explained in Ref. 2. Here, we discuss these conversion processes in two

different ways; the instantaneous conversion process and the time conversion process.

The purpose of the following two sections is to handle these conversion processes

specifically for tracer diffusion in binary alloys for the purpose of comparing results

with those of the Monte Carlo simulation.

The situation is most clearly seen in the flow equation, Eq. (22)

* i = - Oi

3ased on the formalism of the PPM, the equation represents a flow at a time instant t.

iowever, because the equation applies to the steady state, the equation is also valid at

my time instant. In other words, the equation means that, as the tagged atom of the

-th species moves with time, its surrounding is always specified by the distribution Q;.

Fhis occurs because the distribution is specified by the equilibrium values, or the aver-

ige over a long time period. The consequence is that the tagged atom makes a random
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walk in the homogeneous, averaged latticr although the surrounding of the tagged atom

varies from place to place, and hence the physical correlation factor never deviates from

unity unless the lattice is separated into sublattices. In order to avoid this trouble,

therefore, it is necessary to use the instantaneous distribution of atoms for the sur-

rounding of the tagged atom instead of using the time independent specification Qj.

Without changing the formalism of the PPM, it is yet possible to convert the situa-

tion within the pair approximation. The quantity Qj specifies the surrounding of a site

occupied by the tagged atom assuming that the probability of occupancy of any site is

equal. However, the pair approximation of the CVM specifies two different kinds of

surroundings; the surrounding? of an A atom and that of a B atom, or the quantity

called the short-range order <r. By doing this, the problem is converted to calculate the

(ensemble) average of flows of a tagged atom of the ith species jumping out from the

surrounding of an A atom, Qp and that of a B atom, Qĵ , just as the average of flows

from the A sublattice and the B sublattice in the ordered alloys [Eqs. (35), (36), (37)

and (38)]. The procedure is to convert the formalism of the PPM to utilize the aver-

aged state variables at each time instant to that which includes the fluctuation.

The conversion relation in the present approximation is then represented by

If the flows out of the surroundings of Qja and Qf, respectively, are designated by * "

and Vf, respectively.

holds just as in the treatment of ordered alloys in the previous section. In such a case,

we can derive
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(48)

= a? = af

where

Qj° = /Aj/AA (49)

This rewriting, Eqs. (48) and (49), is justifiable because only the jump to the nearest

neighbor is taken into account in the pair approximation of the PPM. Under the boun-

dary conditions equivalent to Eqs. (26) and (27), we obtain

(2ur-l)ZR. .., ,
* — = -fn. <51a)

where

J _ = I± + 2LB_ (51b)
Z i a 13

B* ^R* ^R*

Here
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z& = XA

and

wA =

W

XA

XB

XA

WB

WB

2w- l

fiw-1

= wA(a)

(52a)

(52b)

In Eqs. (52), QB» = 0 is assumed for the sake of simplicity.

Since this conversion is based on the nearest neighbor relations and not on the sub-

lattices, it is not necessary to change the expression in the ordered state as long as we

replace y^' s with the corresponding values in the ordered state such as y®. It is to be

noted, in the ordered state, the following correspondences

rP_ (53)

exist between the corresponding pair variables in the disordered state and the ordered

state.



- 2 6 -

As mentioned earlier, in the ordered state, y® is defined in such a way that this

specifies the probability of finding an i-j pair with an i atom on the A site and a j atom

on the B site. For a pair with an i atom on the B site and a j atom on the A site, the

symbol y:° is used. Then y® = y£ holds. In the disordered state, y^ = y^ holds, and

no distinction need be made.

In Figs. 8b and 9b, the results of the conversion are shown. The major difference

between a (the original PPM) and b (after instantaneous distribution conversion) is a

marked drop in fg. by the development of the short-range order. The tendency is espe-

cially conspicuous for the two dimensional honeycomb lattice where the fluctuation is

important because of its low dimensional character. Also, in this case, the effect of the

long-range order over that of the short-range order is extremely small. The difference

between a and b is attributed to the decrease in the percolation efficiency (the physical

correlation factor ft) by the development of tfre short-range order.

iv. Time Conversion

In connection with the time correlation of individual particles in transport problems,

there is one more important problem to solve.

Diffusion problems are essentially percolation problems (kinetic percolation prob-

lem). This feature is clear if one thinks of tracer diffusion problems. Here, we ask how

a single, tagged atom percolates through a solid with time. Therefore, if we view this

situation in the four dimensional space including time, there exists an unbroken chain

of the motion of tagged atoms through the solid. In other words, we are seeking for the

"long-range order" of the motion of tagged atoms in the four-dimensional space. On

the other hand, the PPM is a technique to seek the time correlation for a short period
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of time At. In other words, we evaluate the "short-range order" of the motion of the

tagged atom in the time axis here. Under the assumption of the steady state condition,

we eventually assume, however, that the "short-range order" was the same as the

"long-range order." This has caused the lowering of the degree of approximation in

evaluating the correlation factor by the PPM.22 In actual measurements, the average of

the flow of particles over a long period of time (compared to At) is utilized. Therefore,

the conversion from the "short-range order" to the "long-range order" in four-

dimensional space with respect to the motion of tagged atoms corresponds to the

conversion of the ensemble average at a time instant to the "time average."

In the linear range in which the Onsager equation for diffusion is valid, the flows are

evaluated based on the equilibrium distribution of atoms. Therefore, the ensemble of

states used in the PPM to determine the flow at a time instant is equivalent to the

ensemble of states with the evolution of time (time ensemble). Because of this reason,

by adding appropriate requirements in the selection process of states in the time ensem-

ble, it is possible to convert directly the result of the PPM based on the ensemble

averaging at a time instant to that of time averaging. If the diffusion trajectory in the

four dimensional space is projected along the time axis to the cross section at a time

instant, the projection represents the actual diffusion path in the three dimensional

space. Because the PPM corresponds to cheese tne diffusion path (selection of Yj) at a

time instant, the task is to convert the result into the projected path.

The essential feature is to convert the expressions rk and Zk in the PPM to the time

average <Tk> and <Z k > utilizing the following simultaneous equations.

< r k > = (54)
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Yk/Qk + £ Y m ( l - < r m »
(55)

m

where k or m specifies the species of atoms summarily just as i or j . The quantity rk is

defind in the original PPM in terms of the escape probability Pe and the return (jump

back) probability P r of an atom of the kth species as

« = ^ (56)
k P + P1 r * e

and indicates the normalized probability of jumping back of the tagged atom. There-

fore, in terms of Zk defined in Eq. (30),

\ ^ ' (57)
k l + (2ur-2)Zk

The time average of Zk, < Z k > , is obtained from Zk by replacing the ensemble average

of Yj in it by its time average

The conversion relation, Eq. (58), represents what we called the projection of the jump

probability, Yj, along the time axis. Interested readers may refer to Ref. 22 for details.

Important results achieved by this conversion process include the fact that the correla-

tion factor for self diffusion evaluated by the pair approximation of the PPM changed

from

f = J J C L (59)
B 2w + l
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in the ensemble average to a more reasonable value

fB. = 2^2 . (60)

in the time average.22 In addition, the appearance of the percolation limit for the tracer

diffusion of B (the composition where fB. —• 0 for wB/wA = oo) in the completely ran-

dom binary alloys at

X B =

is noticed.22 This value is the same as that predicted by the pair approximation of the

CVM. The original PPM failed to predict the appearance of the percolation limit.22

The extension of the conversion process to the ordered state is straightforward and

the conversion equations are shown here without explanation. For the two sublattice

treatment of the original PPM, the converted formulae ar (the parenthesis indicating

the time averaging is removed)

Y;/Qi(A) +
j (62)

Z; B T =

where
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l - Z j A T

1-ZAT

l - Z i B T

1-Z ;
B T

and for fB.

(64)

B ~ _,. _ TV ! •""

On the other hand, for the tratment with the instantaneous distribution conversion, the

converted formulae became

V A A - ,; .••

XA

-'A) + ^
XB

VBA • /, . ,
- — WA(1-*A) + -— W B ( 1 - ^ B )XJ XJ (65)

^ A ( A ) ^
XB XB

VAA - ,, > . yAB - ,. ,

W(1^A) + ——wB(l-rB) (66)
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(67)

In deriving fB, first Z# is obtained likewise by

J _ = _?£_ _*B_ (68)

Z«T

and

f (2^1)ZA ( 6 9 a )

The quantity fA can also be obtained similarly as

2(1-ZT)

where

•I V . V _

(69b)



- 3 2 -

fhe results with the time conversion for the body centered cubic lattice and for the

2Dhc lattice are shown in Figs. 8c and 9c, respectively, and those with both the instan-

taneous distribution and the time conversions are shown in Figs. 8d and 9d, respec-

tively. In addition to the decrease in the correlation factor for the self diffusion, the

addition of the time conversion further decreases the overall correlation factor. The

decrease of f due to the time conversion is more conspicuous for cases with the instan-

taneous distribution conversion and also for low dimensional honeycomb lattice. The

decrease is due to the decrease in the percolation efficiency along the diffusion path due

to fluctuations.

6. The Monte Carlo Method

The application of the Monte Carlo method to diffusion has been reviewed in detail

recently and we refer the reader to those treatises.4'5 For the ordered alloy particular

care must be taken that the starting configuration has been prepared correctly.

Although long-range order extending over the entire lattice can be generated in princi-

ple by starting with a disordered distribution, this process is very slow because several

ordered regions invariably occur which are separated by antiphase boundaries. These

boundaries anneal out extremely slowly (this is in itself an interesting process)27 but for

our purposes their existence in nonequilibrium concentrations can provide short circuit

paths for diffusion.

Accordingly, in these calculations we started with a fully ordered stoichiometric AB

lattice of A and B atoms without a vacancy. Here, the relation e^ = 6Bg = 0 [Eq. (8)]

is assumed. For speed to equilibration,the grand canonical ensemble was chosen. In

this, a site was chosen at random and a possible occupant, i.e., an A atom or B atom,

was also selected. If the selected site happened to have the same occupant as was gen-

erated, the next state was, accordingly, identical with the old state. Otherwise, the
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quantity

was computed, where #A and //g are the chemical potentials and N A ^ I ^ , , ^ is the

number of A atoms in the old (new) state. The quantity 4« here specifies the energy of

the system and is equivalent to that given in Eq. (7) multiplied by the number of AB

pairs. If this quantity was ^ . 0, then the new state was accepted (this involved the

change of a B atom to an A atom or vice versa). If this quantity was > 0, then the

quantity

P = exp[-4enew - (/iA - A*B)NA,newAT]/exp[-4eold - (ftA -

was calculated and compared with a random number, R, uniform on the interval [0,1].

The new state was accepted only if R < P.

Our alloy with periodic boundaries contained approximately 10,000 sites. The sys-

tem was shuffled for 200,000 states. At this point, the system was frozen and this

became the starting point of the diffusion simulation. For this part of the run, a single

vacancy was introduced by removing, for convenience, a B atom. Diffusion was simu-

lated by directing moves of the vacancy rather than the atoms. This is clearly more

efficient. A random direction from the choice of (8 for b.c.c. and 3 for honeycomb) was

chosen. The identity of the nearest neighbor atom i in that direction was ascertained.

The normalized exchange frequency w; based on bond-breaking for that atom was

determined by a scan of its environment. The calculated value of w; was compared to

a random number, R, uniform on the interval [0,1]. If R < w;, the jump attempt was

deemed successful and atom i and the vacancy were interchanged. If R > w;, the jump

attempt was deemed unsuccessful and a direction was once again chosen at random.
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The correlation factor for atoms of type i was calculated from the Einstein expres-

sion

fi = < Ri2 >/n-J2 i = A,B (72)

where <R;2> is the mean square displacement of atoms of type i after an average of n;

jumps each with displacement /. The definition of f; given in Eq. (72) is equivalent to

that given in Eq. (5). We chose n; to be > 5. This was sufficient for convergence.

The calculation of fB. was thus made for binary alloys with the bcc structure and

the 2Dhc structure and the results are shown in Figs. 10 and 11, respectively. The data

points show the scatter of calculated results. The temperature is given by T/Tc = 0.5

where Tc is specified by Eq. (11). Here, Tc only serves to normalize the value of e in

the simulation. Figs. 10 and 11 are to be compared with Figs. 8d and 9d, respectively.

The agreement of results between these two methods are very good in view of the rela-

tively simple approximation (the pair approximation) adopted in the PPM.

7. Discussion

The pair approximation of the PPM has been applied to the problem of tracer

diffusion in binary alloys which undergo an order-disorder transition. The treatment

here is limited to the composition dependence of the correlation factor at a fixed tem-

perature. However, other properties such as the temperature dependence of the correla-

tion factor at a fixed composition can also be obtained by the same kind of calculation.

The major interest of this article is to clarify physical factors which contribute to tracer

diffusion in concentrated alloys by comparing the analytical results by the PPM espe-

cially through its development of the approximation with those of the MCSM. The

coupling of diffusion and atomic ordering is especially expected to make this com-

parison more instructive. Because of this reason, the development of the PPM as
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applied to tracer diffusion in ordered alloys is treated rather in detail.

The calculations based on the pair approximation of the original PPM for the bcc

and 2Dhc structures are shown in Figs. 8a and 9a, respectively. The results show a

sharp drop of fB. in the region where the long-range order exists. This sharp drop is

ascribed to the appearance of the physical correlation factor fj (or the percolation

efficiency) which deviates from unity.13'16'18 The overall decrease in the composition

range in the middle, however, is due to the decrease in the mobility (the jump fre-

quency w;) of the tracer atom due to interactions with surrounding atoms (the increase

in the bond breaking factor, Eq. (20)). The appearance of the physical correlation fac-

tor or the percolation efficiency is due to the deviation of the motion of the assembly of

atoms from the random walk. The deviation here is due to the existence of two sublat-

tices. The contribution of fj in the ionic conductivity in superionic conductors was first

pointed out by one of the authors based on the treatment by the PPM.13

Results obtained by the pair approximation of the PPM for tracer diffusion in con-

centrated alloys,18"18 and for tracer diffusion and ionic conductivity in superionic con-

ductors13"15 were found to explain experimental results at least qualitatively. However,

the comparison of these results with corresponding results of MCSM later developed

revealed a systematic difference between these supposedly equivalent two methods.25'26

However, because the PPM had given a satisfactory description of phenomena such as

the kinetics of order-disorder transformations, where the time evolution of averaged

macrovariables such as the degree of order was involved,20 it was not expected to find

the origin of the trouble in the procedures of the PPM.

The feature of general tracer diffusion problems is clearly shown in the expression of

the diffusion coefficient
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DB. = awB. VfB. = awB. VWfB. (73)

where a is a numerical factor, V represents the probability of a vacancy available to the

diffusing atom or the vacancy availability factor and W represents the bond breaking

factor (effective jump frequency factor13). Among these three factors, V, W and fB«, V

and W are essentially determined by the equilibrium distribution of atoms, but the fac-

tor fB. represents the time correlation of atomic motion and hence is determined

through kinetic processes. Comparison of the PPM and the MCSM with respect to V

and W showed an excellent agreement while fg predicted by both methods sometimes

shows discrepancies.25 The source of the discrepancy had thus been traced to the

difference in evaluating the time correlation process in both methods. This finding

eventually led to the instantaneous distribution2'24 and time conversion22 processes in

applying the PPM to transport phenomena. These conversion processes are to change

the averaging processes from that characteristic of the PPM to that required to evalu-

ate the time correlation of the motion of a single particle characteristic to transport

phenomena. In the MCSM, the averaging is not divided into steps as in the PPM.

This division of averaging process into several steps in the PPM represents an approxi-

mation.

In Figs. 8 and 9, the changes due to the application of the conversion process are

shown. The result of the application of the instantaneous distribution conversion (Figs.

8c and 9c) indicates that the existence of the short-range order is as effective as the

existence of the long range order in lowering the value of fB.. In other words, the

diffusion process is very sensitive to the existence of fluctuation in distribution of atoms

(the process having the smallest Z is the rate determining process). The application of

the time conversion further enhances the effect (Figs. 8d and 9d). This conversion pro-

cess emphasizes the fluctuation along the diffusion path as the tracer atom moves in a

long time period. The effect of fluctuation is more important in low dimensional solids
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(or solids with low dimensional diffusion paths), because, in such cases, diffusion paths

are very easily blocked. Diffusion problems are essentially dynamical percolation prob-

lems, and hence the percolation efficiency, in addition to the effective number of

diffusion particles and the mobility (jump frequency), is an important factor. The

mixed alkali effect in glasses and in /?-aluminas is believed to be closely connected to

the problem of the percolation efficiency.23'28

After the time conversion, the expression for the correlation factor in terms of Z

(the conversion from Z in Eq. (30) to < Z > in Eq. (55)) becomes very close to the

expression by the "random walk theory."10"12 This is due to the fact that the random

walk theory is set ap to follow the motion of the tracer atom for a long period of time.

Such similarity has been noted, especially by Bakker29 and Stolwijk,30 in developing the

theory of diffusion in concentrated alloys.

Between the bcc structure and the 2Dhc structure, the change for the latter by the

application of the conversion processes is especially remarkable. This is due to the fact

that 2Dhc is low dimensional and the development of fluctuations by the formation of

the short-range order is predominant. For both the bcc and the 2Dhc structures, the

pair approximation of the PPM, with the two conversion processes, can provide a rea-

sonable reproduction of the behavior of fB. as one can see from the comparison of Figs.

8d and 9d with Figs. 10 and 11. The degree of approximation for the pair approxima-

tion is yet rather poor and the statistical fluctuation is not well taken into account.

Nevertheless, the agreement of the results of the PPM with those of MCSM is rather

remarkable. This type of agreement with analytical calculations also indicates the reli-

ability of the MCSM method adopted for this calculation.

The comparison on Figs. 8d and 9d with Figs. 10 and 11 shows yet a systematic

deviation of fB. on the B rich side. The lowering of fB» in this region is far more pro-

nounced in the MCSM. This is due to the fact that, in the pair approximation of the
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CVM, the distribution in the completely random state is regarded as homogeneous

(without fluctuations), ?.nd hence, the fluctuation in distribution is not well represented

in the PPM. These examples thus show clearly how the comparison of analytical

results with carefully carried out calculations by the MCSM guides the progress of

theoretical treatments and gives insights into the mechanism of diffusion.
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Table 1

Glossary

V

n

%

0
xj

Qi

Qi

Wj

probability of having constituent i on a lattice site. In disordered alloys, x;
indicates the density of ith species.

probability of having a constituent i on a lattice site and a constituent j on a
nearest neighbor lattice site.
index for a plane through lattice points perpendicular to the concentration
gradient in the [100] direction of the bcc lattice (atomic plane) (see Fig. 1).

index for a plane through the center of two atomic planes v and i/+l (bond
plane) (see Fig. 1).
interaction energy between a nearest neighbor pair of constituents i and j .

= (kT)"1; k is the Boltzmann constant; T the absolute temperature,

the concentration gradient of constituent i.

= Kjj = exp

y;j =

= /?0; represents the chemical potential of the ith species,

coordination number of the lattice. For bcc, 2w = 8.
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Figure Captions

Phase diagram of order-disorder in the bcc structure calculated by the
pair approximation of the CVM.
The temperature dependence of the pair variables y;j for xA = xB = 1/2
in the bcc structure.

The composition dependence of y;: in the bcc structure at temperature
T/Tc = 0.5.
The temperature dependence of the long-range order S and the short-
range-order <r for the composition xA = xB = 1/2 in the bcc structure.

The composition dependence of QA and QB in the bcc structure at tem-
perature T/Tc = 0.5.

Effect of bond breaking as the ith atom on the t/th atomic plane jumps
into a vacancy on the (t>+l)th plane (Ref. 22). Springs indicate the
bonds.
Definition of Z in terms of Pe and P r in a concentrated, disordered alloy.
The species of the neighboring atoms around the vacancy is specified by
Qj (Ref. 22).

Definition of Z î and Zg3. for a binary ordered alloy. The species of the
neighboring atoms around the vacancy is specified by Qj (B) and Q: (A),
respectively.

Fig. 8a. The composition dependence of fB. in an ordered binary bcc alloy at
T/Tc = 0.5 calculated by the pair approximation of the PPM.
The same quantity as shown in Fig. 8a after the time conversion process.
The same quantity as shown in Fig. 8a after the instantaneous distribu-
tion conversion process.
The same quantity as shown in Fig. 8a after the instantaneous distribu-
tion conversion and the time conversion processes.

The composition dependence of fB. in an ordered binary 2Dhc alloy at
T/Tc = 0.5 calculated by the pair approximation of the PPM.
The same quantity as shown in Fig. 9a after the time conversion process.

The same quantity as shown in Fig. 9a after the instantaneous distribu-
tion conversion process.
The same quantity as shown in Fig. 0a after the instantaneous distribu-
tion conversion and the time conversion processes.

The composition dependence of fB. in an ordered bcc alloy at T/Tc = 0.5
calculated by the MCSM.
The composition dependence of fB. in an ordered 2Dhc alloy at

T/Tc = 0.5 calculated by the MCSM.
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Phase diagram of order-disorder in the bcc structure calculated by the
pair approximation of the CVM. Arrowy ineti<^tJ\. k i t
The temperature dependence of the pair variables y^ for xA = xB = 1/2
in the bcc structure.

The composition dependence of y;: in the bcc structure at temperature
T/Te = 0.5.

The temperature dependence of the long-range order S and the short-
range-order a for the composition xA = xB = 1/2 in the bcc structure.

The composition dependence of QA and QQ in the bcc structure at tem-
perature T/Tc = 0.5.

Effect of bond breaking as the ith atom on the i/th atomic plane jumps
into a vacancy on the (i/+l)th plane (Ref. 22). Springs indicate the
bonds.

Definition vVZ f̂ta terms of Pe and P r in a concentrated, disordered alloy.
The speciesSioHe neighboring atoms around the vacancy is specified by
Qj (Ref. 22).

Definition of Z£> and Zj* for a binary ordered alloy. The species of the
neighboring atoms around the vacancy is specified by Qj (B) and Qj (A),
respectively.

Fig. 8a. The composition dependence of fg. in an ordered binary bcc alloy ar
T/Te = 0.5 calculated by the pair approximation of the PPMcC frtve O) ^
The same quantity as shown in Fig. 8a after the time conversion process.

The same quantity as shown in Fig. 8a after the instantaneous distribu-
tion conversion process.
The same quantity as shown in Fig. 8a after the instantaneous distribu-
tion conversion and the time conversion processes.

The composition dependence of fg. in an ordered binary 2Dhc alloy at
T/Te = 0.5 calculated by the pair approximation of the PPM.

The same quantity as shown in Fig. 9a after the time conversion process.

The same quantity as shown in Fig. 9a after the instantaneous distribu-
tion conversion process.

The same quantity as shown in Fig. 9a after the instantaneous distribu-
tion conversion and the time conversion processes.

The composition dependence of fg* in an ordered bcc alloy at T/Tc =0.5
calculated by the MCSM. Atrrou/s i i&UuJt* -Hie. / W i /

The composition dependence of fn. in an ordered 2Dhc alloy at
T/Te = 0.5 calculated by the MCSM.





<r

M l

CVJ

-L
§

JL
d

o
d
§





UJ

UJ
Q

O





y\ V

n-l n



2OJ-I
9-7
P e "Z

Pr= I -



. -7



o
u

5
UJ

tr.
oo

QO 0.4 0.6 0.8

COMPOSITION (KQ~)

1.0



0.4 0.6
COMPOSITION

0.8 1.0



a:o

LU
a:a:oo

1.0

0 . 8 -

0 . 6 -

0 . 4 -

0.2 -

0.0

—

1

1

Vo

1

1

D

/

/

1

I

/ —

—

1
0.0 0.2 04 0.6

COMPOSITION

0.8 1.0

a



o
u

UJ

ccoo

0.0 Q2 0.4 0.6 0.8
COMPOSITION <LXQJ

1.0

K



1.0

0.8 -

<

g
5

O
U

0.6 -

0,2 ~

0.0

—

—•

1

1

\

1

1 \D

\°
f

1

<

1

1

^

—

1
0.0 0.2 0.4 0.6

COMPOSITION
0.8 1.0



p

FA
C

1

zo
Si

C
O

R
R

E
L

0.8

0.6

0.4

0.2

on

I

—

-

—

•

i

i

\

\

\

\

1 \D

\ ,
lo/
V

1

/

1

1

—

—

. —

—

1

0.0 0.2 Q4 0.6
COMPOSITION

0.8 1.0
cx8;)



a:
g<

_ l
LLJcrenoo

I.U

0.8

0.6

04

0.2

on

v I

- \
\

• M M

immm

1

1 1 1

—

—

Q0 0.2 0.4 0.6
COMPOSITION

0.8 1.0



o
o
2

LLJ

8

0.0 0.2 0.4 0.6
COMPOSITION

0.8 1.0

K



0.0 02 0.4 0.6 0.8
COMPOSITION CX8 \

1.0



00
0.4 0.6

COMPOSITION
0.8 1.0

\


