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Abstract

Ultraviolet spectrophotometry of two dwarf novae, CN Orl and RX And, at

various phases of their outburst cycles confirms that the far UV flux increases

dramatically about 1 - 2 days after the optical outburst begins. At this time

the UV spectral line profiles indicate the presence of a high velocity wind.

The detectability of the wind depends more on the steepness of the spectrum,

and thus on the flux in the extreme ul’draviolet, than on the absolute value of

the far UV luminosity. The UV continuum during outburst consists of (at least)

two components, the most luminous of which is located behind the wind and is

completely absorbed by the wind at the line frequencies. Several pieces of

evidence suggest that the W emission lines that are observed in many

cataclysmic variables during quiescence have a different locatior. in the binary

than the wind, and are affected very little by the outburst.
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1. INTRODUCTION

Ultraviolet spectroscopy ha8 shown that high velocity winds emanate from

❑any cataclysmic variable (CV) stars (cf. references in Cordova and Mason

!984; hereafter, CM84). These stars are binarX systems in which a low-mass red

star overflows its Roche lobe and transfers material via an accretion disk onto

a degenerate dwarf. The winds are seen only in CVS with high luminosity such

as the dwarf novae during outburst and the novalike stars. In systems in which

the disk is viewed face-on, broad, shortward-shifted absorption lines with

terminal velocities of 3000 - 5000 km S-l are observed. The terminal velocity

is similar to the escape velocity from the surface of a white dwarf, suggesting

that the wind emanates from near this star. In many CVS some of the line

profiles also have emission components, hence the common appellation “P Cy@

profile” after the well-observed mass-losing O star that has coarsely similar

line profiles. When the disk is seen edge-on, as in the eclipsing novalike

systems UX UMa (Helm, Panek and Schiffer 1982; King et al. 1983) and RM :crf

(Cordova and Mason 1985), the line radiation from the wind is observed entirely

in emission. The line profiles in RW Tr~ and UX UMa are asymmetric, peaking at

wavelengths longer than the rest wavelength of the line. This may result from

partial absorption on the blueward side of the line. An il~terpretation of

these profiles is that they are formed in an accelerating flow that is not

projected against a UV continuum source. The UV emission lines are not

eclipsed to the same degree as the continuum; therefore the emission line

forming region is ‘lar~e compared to the UV continuum emitting region. These

properties are consistent with a wind which 16 accelerated from the inner

disk/white dwarf region ●nd which extends substantially ●bove the disk.
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The only estimates for the mass-loss rate due to the wind are in the range

10-11 to 10-10 M@ yr-”l , or about “10-3 to 10-2 of the mass accretion rate that

is deduced by fitting disk models to the continuum (cf. refs. in CM84). The

only vi~ble mechanism yet proposed for acceleratirig the winds in CV to the high

velocities observed is radiation pressure In the lines, analagous to the

driving mechaliism of winds in OB stars. This view is supported by the fact

that the ❑omentum rate of the radiation from the disk, Ltot/c = 1024 g cm S-2,

is of the same order as the momentum rate of the wind (Cordova and Msson 1982).

It is difficult, however, to determine either quantity to within at least a

fac:or of ten: the spectrum, and hence the radiant energy, in the EUV is as yet

unknown, and the mass loss rate is extremely uncertain becwse of lack of

knowledge of the Ionization structure of the wind and the wind-s geometry and

homogeneity. The material in the wind is thought to be photoionized rather

than collisionally ionized (King ● t al. 1983; Cordova and Maaon 1985),

although the origin and shape of the photoionizlng spectrum is unclear (cf.

Kallman 1983). The detection of mass outflow during a brief flare of the slow

magnetic CV rotator TV Col (Szkody and Mateo 1984) suggects that the origin of

the wi~d ❑ay be mechanical rather than a radiative in some cases.

Because cataclysmic variables as a class undergo dramatic changes in

brightness, they offer an unique opportunity to study the effects on the wind

of cha?ges in the rad~ation field. This is particularly true of the dwarf

novae, which have dramatic outbursts of a few magnitudes amplitude lasting

several days and recurring on timescales of a few weeks. The outburst in a

dwarf nova Lo believed to be cauoed by ●n increase in the rate of mass

arcretion through the disk.

..
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We and other groups have been engaged in programs to measure the

ultraviolet spectra

All the observations

(-6 A) spectrometer

Ultraviolet Explorer

of many dwarf novae at various stages of their outbursts.

presented here have beep made ~sing a low resolution

with a wide (10” x 20”) aperture on

(IUE) satellite. The UV data were

ourselves or are from the IUE archives. In this paper we

preliminary results of the investigation into the behavior of

the International

either taken by

present some new,

the line spectrum

in two CVS as a function of outburst epoch. A more complete analysis,

including studies of several additional CV systems, is in preparation by the

authors.

II. THE IUE SPECTRA: Observations, Deductions

1. Spectral Lines—..

A comparison of the spectra of dwarf novae in quiescence reveals that they

fall Iuto two types: those having emission lines of considerable equivalent

width (5W as high as 80 A), and thooe having weak or no detectable emission

lines (EW <8 A). The bottom panels of Figures la and lb show examples of both

types of

plotted in

RX And in

being C IV

spectrum. Here the spectra of the dwarf novae CN Ori and RX And are
. ,.

the wavelength range 1200 A - 1600 A. The ultraviolet spectrum Of

quiescence exhibits a number of emission lines, the most prominent

1550 A, Si IV 1400 A, and N V 1240 A. The quiescent-state spectrum

of CN Ori exhibits no lines.

The remaining panels in Figure 1 show these utars at various stages in

their outburst cycles (Q denotes the quiesc?nt phase; R, the rise to outburst;

P, the peak of the outburst: and D) the decline from outburst). The optical

state of the ata~ at the epoch of each spectrum 18 illustrated in Figure 2,
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where we have marked the time of each IUE spectrum on a plot of the vieual

light curve of the star composed from data of the American A6aociation of

Variable Star Observers (AAvso) . Figure 1 illustrates that in the brighter

states both ctars develop broad absorption lines which are shifted ahortward of

the rest wavelength. RX And”~ C IV line profile hae a distinctive emission

component, but none of CN Ori-s lines have such a feature.

Various parameters of the spectral lines are listed in Table 11, These

include the equivalent width (EW) of the emission and absorption components,

the (interpolated) continuum level at the rest wavelength of the spectral line,

the “blue” edge velocity (vB) of the absorption component when it is present,

and the “red” edge velocity (vR) of the emission component; vB represents an

approximate estimate of the terminal velocity under the assumption that a wind

is present.

Table 1, in combination with the information

Figure 2, reveals how the flux and EW of the line

shout the outburst

components vary ad

of outburst phase and UV and optical continuum brightness levels.

state from

a iunction

The flux

and EW of the absorption components correlate positively with the continuum

brightness level; however, the flux in the absorption component grows faster

than the continuum. The flux in the emission component of RX And-s lines does
. .

not change by more than a factor of three during any phase in the outburst

1 The errors on the quantities given in Table 1 are roughly 10% for the

Equivalent widths, Line fluxes, and Continuum fluxes; 30% for vb for the

outburet spectra ad 50% for vb for the quiescent epe(.tra; and 50% for all

measurements of Vr. A full diacuselou of the error analyais ie given In a

paper in preparation.
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cycle; but, on average, this flux 1s somewhat higher when the continuum is

higher. The EW of the emission component inversely correlates with UV

continuum brightness.

Inspection of Figure lb shows that the flux level at the bottom of the

absorption component stays about the same during the OLItbIJr.St. This Buggests

that there m,ly be two sources of continuum flux during the outburst: a

.nt that dominates during quiescent ?hases and may increase somewhat

dllring the outburst, and an additional, steeper component that arises during

the outburst and contributes most of the far UV outburst light. The wind ❑ust

be in front of the latter component in order to absorb all the continuum of

this component at the wavelengths of the UV resonance lines.

The following evidence suggests that the emission and absorption

components originate in different places:

(a) The ratios of the line fluxes and equivalent widths of different

elements are not the siame for the emission and absorption components,

suggesting that they are formed in regions of different physical conditions.

(b) Theoretical mass-loss models don-t fit the ab~orption and emission

component oimultaneouely. This could be due to a non-spherical geometry for

the wind, andlor to the superposition. of an added emission component arising
-.

elsewhere than in th< wind.

(c) The data presented here together with similar published data on other

dwarf novae (e.g. Hassall et al. 1983) reveal that the stare that chow

prominent emission ,lineS during quiescence also display emimsion line

components during outburst , while those stars having no emiesion lines during

quiescence exhibit no emlaeion line components during outburst. Yet the

velocity-shifted absorption components seen in CN Ori behave like those in



-8-

RX And, AB Dra and other stars which have emission components. Thus it appears

that the wind produces the absorption, and the emission is extra.

Emission lines appear to be abaent in those stars tliat have steep (a >2.0)

spectra in quiescence. Such a steep spectrum could indicate a relatively small

disk, i.e. little contribution by lower temperature emission fror the outer

disk to the near

flatter spectra

disks than stars

UV spectrun. Then stars showing emission lines and having

in quiescence (e.g. RX And) could be expected co have larger

with no emission lines and steeper spectra (CN Ori). The

maximum size of the disk is set by the orbital period and the mass ratio, so

that if our hypothesis were correct, we might expect a correlation between the

presence of the emisgion lines and these parameters. However, the dwarf novae

VW Hydri and WX Hydri have very similar mass ratios and orbital periods (see

references in Ritter 1984), yet the latter hcm strong UV emission lines,

whereas the former does not (Hassall et al. 1983). An additional

consideration is the mass accretion rate: it will affect both tb,e size of the

disk (cf. Frank and King 1981) and the temperature of the white dwarf. If

CN Ori

may not

systems

2,

To

data in

and VW Hyi have much lower accretion rates than RX And and WX Hyi, they

only have smaller disks, but the spectrum of the white dwarf in these

may be too cool to photoionize the UV resonance lines.
.

Continuum Slope

determine the continuum slope of the UV spectra, we have integrated the

bins between 25 A and 100 A wide, avoiding spectral lines. Me have fit

each spectrum with a power law (i.e., FA = A‘a) modified by reddening (E(B-V)

= 0.0 and 0.02 for CN Ori and RX And, respectively). The results of these

fits, together with the value of the continuum at C IV and the V ❑ag and
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outburst state of the star, appear in Table 2. Some examples of the continuum

spectral fits are shown in Figure 3.

For RX And the spectral slope becomes systematically steeper as the

luminosity increases. The power-law slope, a , varies from 1.0 in quiescence

to 1.9 near the peak of an outburst. In the case of CN Ori the slope of the

continuum during quiescence is indistinguishable from that at the peak of the

outburst, in both cases being about 2.0. A spectrum of CN Ori taken during the

rising phase of the outburst, however, has a much flatter distribution, with a

slope of 1.0. The flattening of the spectrum during the optical rise to

outburst has been reported for another dwarf nova, VW Hyi, by Hassall et al.

1983, and is interpreted as &n initial brightening cf the outer (i.e. cooler

parts of the) accretion disk.

III. TRIGGERING THE WIND

The shortward-shifted absorption lines appear only during the outburots of

the dwarf novae, indicating that che onset of t$e wind is a function of the

star-s luminosity. The presence of C IV, N V and S1 IV ions requires a

substantial flux of ionizing EUV radiation, sc we would expect these lines to
-.

correlate with the amount of EUV flux emitted by the star. The data on CN Ori

and RX And presented here support this view.

The visual magnitude of the star does not, in general, provide a reliable

estimate of the luminosity at higher energies. For example, the maximum UV

flux we have detected from CN Ori occured on 1982 Jan 4, when the star was

undergoing an optical outburst and had a V mag of 12.6. Two weeks later,

CN Ori was detected at a somewhat brighter V ❑ag of 12.4 on the rise to its

next alkrh~~rrnr. Thm fmr IIV fliiw m~ ➤h{m tlmu hmum..a- u--- --1 . . ---—L.? e .L-
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level during the Jan 4 observation. A second Illustration of this 16 provided

by RX And. The visual magnitude during the 1980 Feb. 28 observation (on the

rise to outburst) was two

observation (quiescence), yet

most of the diBcrepancie6 in

magnitudes highek than during the 1982 Aug. 9

the far UV fluxes are nearly the same. In fact,

comparing the UV and visual light curves occur on

the rise to outburst. The inference from the data presented here is that dwarf

novae brighten at optical vavelengtha before they brighten in the far UV , and

this is supported by the observed change in the slope of the spectrum during

the rise to outburst (e.g. CN Ori-s 1982 Jan. 16 spectrum).

the spectrum flattens, the far UV flux increases dramatically by

order of magnitude. A delay of 1 - 2 days is indicated from the

(Hassall et al. 1983; this paper). The spectrum at this time

Sometime after

at least an

available data

can be much

steeper than during quiescence (e.g. RX And) or the same as during quiescence

(CN Ori)o During the decline both UV and V fall together (cf. Table 2).

Two things argue that it is the EUV flux that is important in determining

wt,ether the wind is present: (a) the development of the wind-like profiles in

the spectral lines is associated with the steepening of the spectrum after the

initial flattening, and (b) the presence of the wind (I,e. shortward-shifted

absorption) is not a smooth function of the local continuum flux, For

instance, spectra of RX And taken on 1980 Dec. 10 and 1982 Aug. 5, both far

down on the decline from ❑aximum outburst light, have far IJV continuum levels

that differ by lees than a factor of two, yet the former spectrum shows marked

ehortward-shifted absorption, whereas the latter spectrum exhibits no evidence

for any

a= 1.4

is only

absorption. The elope of the UV r.ontjnuum, however, is very different,

for the former apeczrum, and a = 1.2 for the latter. In fact, the wind

observed in FX And when a >1.4.
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In the previous Section we suggested that there ❑ight be two separate

contributors to the far UV flux. One is observed during quiescence and changes

very little during the outburst. The second contributor la responsible for

most of th ‘ increase in the far UV luminosity during the outburst. The

spectral lines demonstrate that the wind is apparently in front of che latter

UV source; when the source tarns on near the peak of the optic&l outburst, the

wind is ionized and absorbs all of the er’’rce”s continuum flux at the resonant

line frequencies. When this far UV source diminishes, there is nothing for the

wind to absorb (the remainder of the UV radiation, i.e. that which we gee

during quiescence, coming from a different location], and we are unable to

detect the presence “Z the wind.

This work is supported by the US Dept. of Energy and the UK Science and

Engineering Research Council. The authors are grateful to Dr. J. Mattei for

supplying the AAVSO data, and zo Dr. P. Szkody for supplying IUE tapes with

the 1980 December data on RX And.
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Tabh la: Spectral Line Dsta for CN Orionls

Line: NV (1240A)

U.T’. Date of fmsdoll+ Absorption+ Continuum Flux++ ‘blue ‘red
SUPObservations Eli Flux Ew Flux at,Line Center (km S-l)

19)9 Oac 13.38 -- — 3.9 8.3 2.1 5000 --

1982 Jan 4.36 -- 3*5 20 5.6 2500 --

Jan 6.40 -- -- 2.5 7.4 3.0 3600 --

1962 Jan 15.18 .- — .- 0,35 .- --

Jan 16.18 .- - -- -. 0.39 -. --

Jan 18.22 -- -- 4,8 17 3.4 4300 .-

Llne: Si Iv (1400 A)

U,T. Date of Emiaaion+ Absorption+ Ccmtinuum Flux- ‘blue
SW? Obmrvntions zw— FAUX EW Flux

‘red
at Line Cbnttr (km S-l)

1979 MC 13.38 -- -. 4.5 7.6 1.7 4600 --

1982 Jan 4.36 -- . . 4.1 19 4.6 2800 --
Jan 6.40 -- -. 6.1 15 2,5 4200 --

1982 Jan 15.18 -- .- -- -- 0.2? -- --

Jan 16.18 -- -- 6.7 2.0 0.30 2700 --
Jan 18.22 -. -- 2.9 11 2.8 3000 --

Line: c IV (1550 A)

U,T. Date of Emission+ Absorption+ Continuum Flux++ ‘blue
SUP Observations EW Flux EW F=

‘red
at Line Center (km ●-l)

1979 DaC 13.38 -- -- 4.4 6.6 1.5 4400 -.

1982 Jan 4.36 -- -- 4.2 6.0 3.6 2500 --

Jan 6.40 — .- 3.6 608 . 1.9 4100 --

1982 Jan 15.18 ..- -- -- -- 0.17 -- --

Jh. 16.18 -. -. -- . . 0.32 -- --

Jan 18.22 -. . . 4.6 11 2.3 2900 ~-

+~qu~valen~ width (Ew) in ~~tr~c; tp.ctrd lifI@ flu% in ~nitt of 10-13●rc C--2●-l”

‘+continuutn flux in unito of 10-13 ●rg cm-2 ●-i A-’. ‘
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Table lb: Spectrel Line Deta for RX Andromadee

Line: NV (1240 ~)

U.T. Date of Enimaion+ Ab~orptlon+ Continuum Flux++ ‘blue
SWP Obcervetlons EU Flux EU Flux

‘red
●t Line Center (km ●-l)

1980 Feb 28.16 9.1 17 -- -- 1.8 -- 1700

1980 Dec 8.33 0.4 4.2 11 130 12 4700 3500
Dec 9.40 2.7 14 5.7 30 5.3 4100 3300
Dr. 10.31 2.2 7 1.3 3.7 3.0 4100 3400

1982 AuE 5.38 9.2 18 -- -- 2.0 -. 2800

1982 Aug 9.69 7*7 10 -- -- 1.4 -- 3700
Aug 13.04 -- -- 11 180 17 4000 --

AW 13.96 -- -- 11 240
Aug 14.78

22 3300 --
-- -- 12 240 20 4600 --

Aug i6.94 -. -- 6.6 63 9,6 3800 “-

Aug 16.82 -. -. 10 !05 10 5000 -.

Line: S1 IV (1400 A)

U.T. Date of Emiaeion+ Absorption+ Continuum Flux++ ‘b! ue ‘red
SWP 0h~rvation5 EW Flux EW Flux ●t Line Center (km e-l)

—..— —

198: F@b 28.16 9.8 1.3 -- -- 1.4 -- 1200

1980 Dac 8.33 0.5 4.2 8.9 7b 8.8 5400 2100
Oec 9,40 1.3 6.2 7*J 34 4,8 5300 2100
Dec 10.31 1.1 2.9 5.0 13 2.7 3900 2400

1982 Aug 5.38 3.4 6.7 -- -- 1.9 -- 1600

1982 Aug 9.69 6.7 7.2 -- -- 10I --

Aug 13.04
141[1

-- . . 9*3 110 12 4700 --

Aug 13.96 -- -- 801 120 15 4600 --

Aug 14.78 -- -- 10 140 14 4800 --

AUK 16.04 -. . . 9.6 98 10 46CNJ .-
Au~ 16.82 0.7 5.6 8.4 66 7.7 4700 --
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Line: C IV (1550 A)

U.T. Detc of Emfosion+ Abmorptlon+ Continuum Flux* ‘blue ‘red
SWFObetrvations w Flux EW Flux ●t Line Center (km S-l)

1980 Feb 28.16 43 45 - -- 1.0

19ao Dmc 8*33 8.6 58 8.8 63 6.7 5400
Dec 9.40 12 62 7.7 35 4.3 5100
Dec 10.31 6.8 17 3.2 7.8 2.5 2600

1982 Au.g 5.38 19 29 - - 1.5

1982 Aug 9.69 24 22 - -- O*9 .-

Aug 13.04 4.8 49 b,9 95 io 5000
h~ 13.96 3.4 42 11 150 13 4300
Aug i4.78 4.0 45 12 140 12 5400
Aug 16.04 3.2 26 :0 90 8.4 4500
Aug 16.82 9.1 57 8.5 55 6.3 4700

2600

2100
2000
3200

2600

2600
1800
2400
17(’0
230b
3100

. .
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U.T. D8te

1980 Feb 28.16

1980 DOC 8.33
Dec 9.40
Dac 10.31

1982 Aug 5.38

1902 Aug 9.69
Aug 13.04
Aug 13.96
Aug 14.78
Aug 16.04
Aug 16.82

Table 2: Spectral Slop. Compared with Other Parameters

RX Andromedee

Power law Slope, ● Continuum Flux ●t 1550 B. ~ Outburst State

(FA = A-) ●rg cm-2 .-l A-l

1*1 1.0 II*5 k

1.8 6.7 11.4 D
1.8 4.3 11.9 D
1*4 2.5 12.6 D

1.2 1*5 12.6 D

: ●o 0.9 13.3 Q
1.6 10.0 11.4 R
1.9 13.0 10.9 P
1.8 12*O 11.1 D
1.7 8.4 11.3 D
1.7 6.3 11.5 D

Wind ?

no

yes
yee
yes

no

no
yee
yee
yes
yen
ye e

CN Orionis

1979 DMC 13.38 2.0 1.5 13.25 D yes

1982 Jan 4.36 2.1 3.6 12.6 P yea
J#n 6.4(J 2*O J .9 12.85 D yes

1982 Jan 15.18 2*1 0.2 14.0 Q no
Jim 16.18 1.2 O*3 13.65 R no
Jen 18.22 1.8 2.3 12.35 R yes

. .
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FIGURECAPTIONS

E4d Theultraviolet line spectra in various outburst states from 1200 A

to 1600 A: (a) CN Ori, (b) RX And. The legends indicate the dates of

the IUE obeervatlona. The letters In parentheses following the dates

indicate the viaiual outhuret aitate: quiescence (Q), rise (R),

decline (D), and peak (P).

Fi6. 2 Vi@ual light curves from AAVSO data. Circled crosses indicate times

of IUE observations: (a) CN Ori, (b) RXAnd.

Fig. 3 The ultraviolet continuum spectra in various outburst states with

model power law fits: (a) CN Ori, (b) RXAnd. The legends are

ordered in descending flux level. The spectral slopes are given in

Table 2. Other legend designations are same as in Fig, 1.
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