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,Abstract

Future electron-positron colliders, with center-of-mass energies above 1/2 ']:eV,
must be of the linear, single-pass type, since the energy loss to synchrotron ra.dia-
Lion at ,_ storage ring would be unacceptably high. The single-pass configuration
requires extremely dense particle bunches, which will have very strong collective
electromagnetic fields. As the bunches cross, the field of each disrupts the other,
and the electrons and positrons radiate photons under this transverse acceleration.
This radiation is called beam,s_rahlur_g. Beamstrahlung can Lake away a large frac-
tion of the available collision energy at such machines, but it also makes it possible
to study electron-photon and photon-photon interactions.

This dissertation is a detailed study of several aspects of beamstrahlung and
related phenomena.. The problem is formulated as the relativistic scattering of
an electron from a strong but slowly varying potential. The solution is readily
interpreted in terms of a classical electron trajectory, and differs from the solution
of the corresponding classical problem mainly in the effect of quantum recoil due to
the emission of hard photons. When the general solution is expanded for the case
of an almost-uniform field, the leading term is identical to the well-known formula

, for quantum synchrotron radiation. The first non-leading term is negligible in all
cases of interest where the expansion is valid.

- In applying the standard synchrotron radiation formula to the beamstrahlung
problem, the effects of radiation reaction on the emission of multiple photons can
be significant for some machine designs. Another interesting feature is the helicity
dependence of the radiation process, which is relevant to the case where the electron
beam is polarized.

The inverse process of coherent electron-positron pair production by a beam-
strahlung photon is a potentially serious background source at future colliders, since
low-energy pairs can exit the bunch at a large a.ngle. Pairs can also be produced
incoherently by the collision of two photons, either real (from beamstrahlung) or
virtual (emitted by a.passing electron or positron). The rates, spectra, and angular
distributions for both the coherent and incoherent processes are estimated here.
At a 1/2 TeV machine the incoherent process will be more corr_mon, resulting in

roughly 106 pairs per bunch crossing. One member of each pair is always pushed
outward, at nn angle determined by its energy, by the field of the oncoming bunch.q

In addition_ a small number of pairs are initially produced with a comparable or
larger angle.
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1. Introduction

" Consider a hypothetical electron-positron collider with a center-of-rnass energy
of 1/2 TeV or more. Synchrotron radiation would make a storage ring of this energy

. impractical, so such a machine would have to consist of two li.ne_r a.ccelerators,
aimed at each other. Since each pair of bunches has only one chance to cross and

interact, the luminosity per pulse must be very high. The electromagneti_ fields
inside the electron and positron bunches would be very strong, causing the particles
to bend inward as the bunches cross (this phenomenon is called disruption). As
they bend, the particles emit synchrotron-like radiation, called beamstrahIung.

The phenomenon of beamstrahlung was recognized several years ago! _3 Much

work on the subject has been done in the last few yearsl 2-93motivated by the

serious attention now being given to future line_,r colliders t_°'_land the large effect
that beamstrahhmg will necessarily have on their performance. Most recently, the
inverse process of electron-positron pair production by beamstra, hlung photons has
been recognized as a source of potentially serious detector backgrounds, and has
also received a great deal of _ttention! _2-141

This dissertation treats many aspects of the beamstrahlung and pair production
- processes, both formal and practical. It is intended as a pedagogical review of the

subject, and no prior knowledge of these phenomena is assumed.

Chapter 2 briefly describes the relevant parameters for two specific hypothetical
machine designs, for use in later examples throughout the paper. C,hapter 3 is a
detailed review of the beamstrahlung process, simplified by the use of classical
radiation formulae. Both of these chapters should be of generM interest.

Chapter 4 then delves into formalism. It contains a derivation (based on the
work of Blankenbecler and Drell I_'71)of the standard formula for quantum syn-
chrotron radiation, and also of a generalization of this formula to motion in nonuni-
form fields. The first correction in field gradients to the standard formula is com-

puted explicitly, and it is concluded that the standard formula alone is sufficiently
accurate in all cases of interest.

Chapter 5 uses the standard formula to compute the electron and photon spec-
tra in the presence of beamstrahlung, including the effect of radiation reaction on

. subsequent radiation. This part of the paper follows the outline of Ref. 8, sup-
. plying more details on the shapes of the spectra in different regimes. Here we

also examine the polarization of the electrons and photons in tlm case where the
incoming electron beam is longitudinally polarized.

The inverse process of coherent pair production is discuzssed briefly, with an
emphasis on applications, in Chapter 6. Chapter 7 then concentrates on order-

of-magnitude estimates of background processes at the next gener_tion of linear

1



colliders. Because of the spectra of the pairs produced, the coherent pair production
process is less of a background problem here than the various incoherent processes
involving direct collisions of electrons, positrons, and photons. We discuss both
the spectra and angular distributions for ali of these processes. p



2. Machine Parameters

" Some possible parameters for future linear colliders are listed in Table 2,1.
Parameters for the existing Stanford Linear Collider (as projected for 1993-4) a,re

" listed for comparison. We will consider two imaginary future machines. The "Next
Linear Collider", with a center-of-mass energy of 1/2 TeV, is now considered _m
attainable next step beyond the SLC whose design could be complete by 1992.
The "Futuristic Linear Collider" is much more hypothetical; its CM energy of 5
TeV would allow it to thoroughly study the energy regime that will be opened by
the SSC. Both of these designs are taken from a recent review article by Palmerl 1°1
which also contains several other parameter sets, and which explains in detail how
the fundamental parameters are chosen.

The NLC design given here (machine G in Ref. 10) represents one extreme in
the design of a 1/2 TeV collider. The aspect ratio R is relatively small, and has
been chosen to give tile highest possible luminosity consistent with a reasonable

(but arbitrary) limit of ,-_0.3 on the fractional energy loss due to beamstr_hlung
(denoted _¢). Other designs in Palmer's paper have R as high as 180, which yields
/_ _ ,.4 x 1033 cm-2sec -1 and t_ _ .04. Since this dissertation is about beam-

" strahlung, I have chosen the example for which beamstrahlung is most importa, nt.

The FLC parameters in Table 2.1 (machine K in Ref. 10) are of course very
" specula.tive, but Pahner's analysis makes it clear the beamstrahlung energy loss is

a dominant consideration in any machine with an energy above 1 TeV. To obta.in

the required luminosity (about 1034 cm-2sec -1 times the square of the energy in
TeV) at the lowest possible cost, one is forced to the largest acceptable value of _.
We will see, however, that the beamstrahlung photon spectrum is much different
at 5 TeV than at 1/2 TeV.

The shapes of the electron and positron bunches at the interaction point a.re

generally assumed to be gaussian; the rms dimensions ctx, cry, and crz are listed
for each machine in Ta.ble 2.1. In much of what follows it will be more convenient

to work instead with bunches of uniform density. An "equivalent" machine with
uniform cylindrical bunches (of either round or elliptical cross-section) would trove
dimensions

• Bz = 2az, By = 2ay, and Lcre = 2v/3az . (2.1)

" (All factors have been chosen to keep the mean square dista, nee from the center

of the bunch fixed.) For round beams we will use the symbols B = Bz = Bu a,nd
drb --" O'x _.. Cry.



Table 2..1. Machine Parameters

SLC NLC FLC

Ecm (TEV) 0.1 0.5 5

Z: (cm-2sec- 1) 2 × 1030 9 × 1033 3 × 10a5
N at IP 5 x 101° 1.67 x 101° .215 x 10l°

Nb i 10 125

rep. rate (Hz) 120 130 170

az (cre) .105 .011 .002

ay (cre) 1.5 × 10 -4 6.5 x 10-7 2 x 10-8
a_ (cm) 1.5 x 10-4 1.7 x 10-s 2.7 x 10-6

R = o',/a_ 1 25.5 136

Dy 0.7 19 9
HD 1.9 3.4 2.07

T(edge) .002 .56 25

Nc'r(edge) 1.0 6.0 4.7
6cl 4.5 X 10-4 .78 27

61 4.5 × 10 -4 .26 .24

5u 4.5 x 10-4 .21 .22 "

5g .... ,26 .26
6d --- .35 ,26 "

The first nine parameters, except for £, are taken from Ref. 10. The rest are computed
in terms of fundamental parameters a.sexplained in the text.

The luminosity per bunch crossing is given approximately by

N 2 N 2

£o = 47ra._au 7rB, Bu (2.2)

where N is the number of particles per bunch. This formula is approximate because

c,f disruption: tile bunches "pinch" inward as they cross, increasing tlm luminos-
ity by a pinch enhancement factor III). The actua,1 luminosity of the collider is
therefore

N2HDf
£ = £oHf- , (2.3) .

47ra, ay

where f is the frequency of collisions. The NLC arid FLC designs employ groups
of 10 and 125 closely spaced bul_chcs, in order to extract more of the RF energy;

thus the collision rate f at these rnacllines is equal to the number of bunches (Nb)
times the "repetition rate" listed in Table 2.1.



8b_di, ,,

The remaining quantities listed in Table 2.1 will be defined and discussed later

in this paper. In brief, they are as follows. The disruption parameter, Dy, is

a dimensionless measure of the amount of pinching (in the vertical dimension).

The classical or quantum nature of the be_mstrahlung is determined by T; when

" T _; 1, individual photons carry away a significant fraction of the beam energy

and classical radiation formulae break down. The number of photons emitted by

each electron, in the classical limit, is given by Nc7. (The previous two quantities

are depend on position within the bunch, and are here evaluated for an electron

at the edge of a uniform cylindrical bunch,) Finally, 5 is the average fractional

energy loss due to beamstrahlung. It is computed here in five approximations, as
discussed in Sections 3.3 and 5.4.



3. Classical Beamstrahlung

" Almost M1 aspects of' beamstrahlung can be understood cl_ssica,lly. Before
plunging into a full quanturn-mecharlical treatment, therefore, we will carry out a

- detailed classical analysis of tile problem irl this section. In the next section we

will see that quantum effects, though numerically large, can be incorporated with
little additional difficulty.

3.1. Disruption

First consider only the motion of the electrons arid positrons, in the absence
of radiation. As the bunches pass through each other, the particles bend inward,

due to the attraction of opposite charges. This phenomenon is called disruption.
lt is most easily understood by working in the rest, frame of one of the bunches,
where there are no magnetic forces between the bunches. In the rest frame of

the positrons, the length of the positron bunch is .L = 7Lcre " 100 1:.eters. (."['he
symbol 7 will always denote the lengtll contraction factor in the CM frame of the

colliding bunches.) Since the final-focus area and interaction region are length-.
• contracted by 7, only a tiny fraction ._.["tlm positron bunch is focused at a.ny

given time. The electrostatic repulsion within the positron bunch therefore has

a negligible effect. An oncoming electron, however, traverses the entire length of
" the positron bunch when it is fully focused; the electron is therefore bent inward

by a significant amount. Furthermore, since the length of (,he electron bunch is
L/(2")'2), the electric field due to the electrons is 272 times stronger than that of
the positrons and therefore the positrons are sew_rely disrupted as well. (In the
laboratory frame where both bunches are moving, each bunch has a magnetic field
that is nearly equal in magnitude to its electric field. The electic and magnetic
forces within a moving bunch nearly cancel, while its electric and magnetic forces
on the oncoming bunch add.)

To understand disruption more quantitatively, consider a single electron pass-
ing through (,he positron bunch. First assume, for simplicity, that the bunch is

a uniform cylinder, and that the electron enters parallel to its axis with impact
parameter b0. lib a first approximation, wc can assume that the positron bunch is
stationary. Neglecting end effects, the electric field is then

Net
') _",b where V0 _- . (,3 1)E(b) = -,,,.u , _., .Lt _

9

(We use units in wllich h = c = 1 and c): = e'/<l_. A factor of-e/4_r has been
absorbed into E; in other words, E is really tl_e force i'r'lt by tlle electron.) The



electron's trajectory is therefore

D z (32)b(z) = b0 cos - ,

where
2NaL Nrecrz

D - x/_m72B2 - 73_ (3.3)

is a dimensionless measure of the disruption. (Here re = 2.82 × 10-13 cm is the
classical electron radius.) If D << i, the distortion of the pulses is very slight.

For flat bunches we must define two disruption parameters, D, and Dy. Con-

sider a mAform b,,mch with elliptical cross-section. The electric field inside is t151

2Na
Ex -2VI x Y where Vi = . (3.4)

= ---'Bx Ev = -2Vi B--y' L(Bz + By)

By considering the "wavelength" of the path of an electron along either axis of the
bunch, we arrive at the definitions tl_l

O

4NaL ._ 2Nr_cr_ B v
Dv

_/_m72Bv(B_ + By) - 7°'v(a= + av)' D_ = ---BxDv. (3.5)

The values of Dy for the SLC, NI, C, and FLC a.re listed in Table 2.1. In order
to maximize the pinch enhancement, D (or for flat beams, Dy) should lie roughly

in the range from 1 to 20!_'_81 (The luminosity enhancement fa.ctor HD depends
on the bunch length, the depth of focus at the interaction point, and any offset in
_,hebeam positions, as well as on D. The only known n ethod of computing HD
reliably when D is large is by computer simulation.)

When D £ 1, the effect of disruption can be computed analytically. Expanding
the trajectory (3.2) to lowest order in D and averaging over the collision time, we
find that the average dimension of the bu::ch is reduced by a fa.ctor of

O'effective D
= 1 t-0(1)2). (3.6)

o 4v_

Although this formula does not _pply to the vertical disruption of ma,chines like
the NLC and FLC, it is quite accurate for the much smaller horizontaJ disruption,

_

7 :-

E=

__



3.2. Classical Synchrotron Radiation

" As the electrons undergo this transverse acceleration, they radiate photons;
this radiation process is called beamstrahlung. The amount of beamstrahlung radi-

• ation is conventionally characterized by the _verage fractional energy loss, 5. We
normally want $ to be small.

We can easily 1hake a classical estimate of 5. At any point r along its trajectory,
an electron feels an electric field E(r), and its trajectory can be approximated as
a circle with radius

P

p = iE(r)l, (3.7)

where p = 2,'/2m is the electron's momentum. Since the trajectory is circular we
can now apply the standard formula, tlgJfor synchrotron radiation'

oo

di --=2v% p [ d_ K,_/3((). (a.s)
alap 79"_CdC J

2W/wc

Here w is the frequency of the radiation, wc is the critical frequency,

_ 3p3 3p2lE(b)[
Wc-. ma p ma , (3.9)

and I is the energy radiated by the electron during one revolution about the circle.

Over any small distance Az the electric field is approxima.tely constant, and
the electron travels a fraction (Az)lEl/27r p of a revolution, so for classical beam-
strahhmg,

d__/
= __v/3alE(r)l(Az ) __c° / d{ K5/3(_). (3.10)d/.o 71" m cOc

2_o/wc

Since the modified Bessel function diverges as _ -+ 0, it is more convenient to write
this formula in terms of the Airy function: t2°l

OrO

d-7_-_dIc_m2 (az)c°/-_i af { 2v= -- dV\u- 1]_ Ai(,,), (3.11)
u

where

,7, = .
A plot of the Airy function is shown in Fig. 3.1. The spectrum extends out to
co _ wt, beyond which it falls off exponentially according to the fedl-off in the Airy

8



Ai(v)

0.4

0.3

0.2

0.1

-- : : ..... - -:--4 .I li- li ...... : V

I 2 3 4 5

Figure 3,1. The Airy function, Ai(v). At v (),Ai(f) = '_-"/alI'ro / _2/',1) _ .355 aitd

Ai'(v) = 3-_/3/F(1/3) _ .259, At large v, Ai(v) --,(1/2)r-1/2v -1/4exp(-2va/_/3).

functior., lt is sometimes more convenient t,o write Eq. (3.1i) a,s

oo b

[ / ]di a.r;a(Az)w 2 Ai'(u) dv Ai(v) , (a.la)
dw p2 u ,

lt p

where we have used the differential equation Ai"(v) = v Ai(v) to integrate the first
term.

To compute 6 we must integrate this expression over ¢o and z. The w and ._

integrals can be interchanged and the oo integral readily performed to give

oo

9 crpZ(_z)lE[ _"/I = 4 rn4 dvv 3 Ai(,,). (3.14)
0

Evaluating the remaining integral and dividing by p, we obtain an expression for

the fractional energy loss c5c(in the classical approximation) of a single electron at
position r,

dSc(r) 2 o,plE(r)[ 2
d--7-=5 ,,4 .

This result can also be obtained directly from th.c relativistic generalization of the
Ii,armor formula! TM

9



The classical synchrotron radiatiorl formula (3.8) follows from a much more
e _ , [22]

genera] lornlul&, which includes the angular and frequency distributions for clas-
i,

sica] radiation from e_charge undergoing an _rbitrary acceIera,ted motion:

2

d2/ - f x (i,',x O)e (3.16)dwdfl 4 rr2

Here/3 is the particle's velocity vector, and k is a. unit vector pointing from the

particle to the (distant) observation point. In the next chapter we will set'. that

t,his general reslllt., and also t.he sp,..'cifi.c formula (3.11), have simple counterpa.rts

in quantum mechanics.

3.3. Application to Specific Bunch Geometries

lmt. us a,s.,;,.,me that t.he disruption is negligible, and that, t,he bunches are uni-

form in the z-direction. 'I'hen the electric field felt by a.ny electron is constant over

the length L of t,he bunch, and del)ends only on its impact t)a,l,un.tei'""(' '" b. Thus

" Eq. (3.15) becon_es

2 ,:_.pLIE(b)[ 2
. cS_l(b) = 5 m 4 ' (3.17)

_ , _ _ _' ,

The. subscript 'c d.notese• " classlca.l , whi]o 1 signifies tlia.t this formula is a first

approximation, obtained by neg.lecting.,, radiation reaction (i.e., the (.lcl)endence'"' of
t' on z).

For a. round cylindrical bunch shape we can use. :xplessu)Ii (a.:l) for the electric
field to obtain

S ctaN ', 9"ph"

bcl(b)- 3 rn.4LB 4 ' (3.18)

Averaging over impact parameter gJyes

! A.cvlinder ,1 aaN'2p N2 7'r_¢

" "A =3 ro'l LI3 2 = 3v/_o-zc.rzo-,a (3.19)

li

or( t/hat il is possible to have large disrlll)tion with negligible I).alnst,i a.hlllng, or
ViCC veI'S_.

Next consider a. _lniforll} t:,lncll wit.h ollir)lical cro,'s:_.-section. According to

Eq. (a...i), _h,:, magnitude of [El is consla_t, o_ a._y interior ,llil)tical surface; i{.

10
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depends only on the quantity

x 2 y2

B--_x_ + %-_, (3.20), B u

and is less than at the corresponding point within a round bunch of the same
cross-sectional area by a factor of

Bx + By ,.. 1 B_vG - 2v/-B-xBu B,_B_ "2__"
(3.21)

Since 6cl is proportionM to E2, the _verage fractional energy loss of an electron
going through a uniform elliptical bunch is

ellipse _ l_l_,_cylinder _ 4N27rS,
cl - G2"cl - 3v/3&rz(cr, + ct,)2' (3.22)

This is the formula used to compute the values of 6cl listed irsTable 2.1.

Nearly all proposed machine designs have a very large value of the aspect ratio
R = o'x/av; in this case field strength (and hence the beamstrahlung energy los,_)
is independent of a u. This simplification is fortunate for our treatment of beam-
strahlung, since the effective value of a u changes significantly in the presence of
disruption. Although the distortion of the bunches under large disruption is much
more complicated than a mere reduction in au, at least this leading-order eft'ect
can be neglected in beamstrahlung computations. Unfortunately, the particular
NLC design given in Chapter 2, with its unusually small aspect ratio of 25, has a
non-negligible horizontal disruption a.s weil. The effect of this horizontal disruption
is neglected in all the calculations and plots of this paper, but is discussed at the
end of Section 5.4.

Real bunches are of course very different from ideal uniform cylinders, but the
l_onuniformities have little effect on $. Suppose, for example, that the bunch is
uniform in the z direction, but gaussian in b (with cylindrical symmetry). The
charge density is then

b2/2_ Ncx
p(b)-= poe- , wl,ere Po = 27rLc%' (3.23)

The electric field (ignoring end effects) is therefore

lE(b)[ = 4_rpoa_ (1 -e -b2/2a_) (3.24)b

From this we can compute 6c1(b) from Eq. (3.1'7).

11



Now the question arises, what is the proper way to average over impact param-
eter when the charge density is not uniform? To compute the average energy loss

' by an electron we would weight, 6(b) by p_(b), the electron charge density. But if
we are interested in the electron energy that is available for a subsequent reaction,
we should also weight each electron by the probability that it will participate in
such a reaction. In other words, we should also weight 6(b) by p+(b), the positron
charge density. The appropriate average is therefore

6average= f d'zbp-(b)p+(b) 6(b)
f d2bp_(b)p+(b) " (3.25)

For the present calculation we will assume that p_(b) = p+(b) = p(b) (up to a
normalization constant that depends on the frame of reference), so the average
becomes

_avera.ge f d2bp2(b)6(b)
- fd2 bp2(b ) . (3.26)

For our classical computation, 8(b)is given by Eq. (3.17). Using (3.23) for the
charge density a_nd (3.24) for the electric field, and defining/_ - b/B = b/2ab, we

• find for a bunch with transverse gaussian profile,

OO

,_gaussian _ ,qcylinder [ e-4fl_
" __ = ,qcylinder

- × 16 2 ×Slog(9/s). (3.27)
0

. The average energy loss is reduced by a factor 8 log(9/8) _ .942 relative to that
for a uniform cylinder.

If, instead of using Eq. (3.26), we were to weight a(b) with only one factor of the
charge density (and thereby compute the literal average energy loss per pa.rticle),
we would obtain a factor of 41og(4/3) _ 1.15 relative to the average (3.19) for a.
uniform cylinder. Since these two definitions of _ differ by 21%, it is important
to remember, in any calculation for nonuniform bunches, which definition is being
used.

Finally, suppose that the bunch has a gaussian profile in the longitudinal di-
rection. Multiply the charge density everywhere by a factor

4

Pgaus:sian _- .._z2/2a 2
-, (3.2s)

. Ptiniform
i

: (Itere a = "_crz = L/'2v/3 is the length scale in the rest frame of tile positron

b_tnch. The constant _/rr has b_?er_chosen to keep the total c'[_a,rgefi::ed.) Si_cc'

12



the longitudinal variation is negligible on the scale of the width of the bunch, the

electric field is very nearly transverse, and is altered by the same factor. According
to Eq. (3.15), the energy loss d6/dz is proportional to the square of this factor,

Inl2
gaussian 6 _2/_2 (3.29)

[E[2 = -e .uniform

Integrating over z, we find that 3 is reduced, relative to Eq. (3.17), by a factor of
_ .977.

3.4. Radiation Reaction

Equation (3.17) and a,ll the results that follow are obviously wrong, since by in-

creasing L sufficiently we could easily make 6ca, the fractional energy loss, exceed 1.
This is because we have neglected radiation reaction.

Accounting for radiation reaction is quite ea.sy. Imagine slicing the bunch into
several thin pieces, through which the electron travels in succession. We can use
Eq. (3.17) to compute the energy loss within each slice, then subtract the lost

energy to obtain the electron's momentum p as it enters the next slice. Taking the
continuum limit, we obtain the simple differential equation for the momentum

d _c](b) p2
_z p(z' b) = poL ' (3.30)

where po is the electron's initial momentum and 6c1(b) is given by (3.17) (with
p = p0). The solution of this equation is

p(z, b) = po , (3.31)z

1 + (_)/_cl(b)

giving a new expression for the fractional energy loss t2al,

_cl(b) (3.32)
be(b) = 1 + $c1(b)'

The symbol 6c denotes the exact classical value of ¢5,including the effect of radiation
reaction.
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3.5. Limit of the Classical Regime

, Even after accountirlg for radia,tion rea,ctiorl, ii, :s ha,rd to dc,',ign a macl_ine

with Lc,n _ 1 TcV _md a toicrably srnall value of 5c. Iortuna,tcly, tile beam-

. strahlung energy loss is furtller reduced by the effects of qua, ntum mechanics. We

can easily see whether our classical computation is valid by looking a.t the classical

spectrum (3.11). The intensity is sizeable for frequencies up to 0.,c. But for a,n

electron at, tlm edge of a uniform ellipticM bunch, we have

we(edge) 12pNa'= (a.aa)
__ p m 3L(B_ + l_y)'

At a. machine with sufficiently large energy and/or luminosity, this qua.ntity ca.n

ea.sily exceed 1. If we try to interpret, the classical si)ect, rum in terms of photons,

this says that a. single photon ca.n ca,try away more energy than the electron has.

r ; S o1 bus a proper qltantum-mechanical calcula.tion is necessa, rv iri this ca,so.

lt is coilw:;nierlt to introduce a dimensionless quanl, ity T tllat cllaracterizes the

classical or quantuna na,Lure of the radia.tion. The sta,nda.rd definition is

q.

:r = o.,.:= plEI (a,a4)
3p ma '

so t,he classical results a,re valid when T << 1. _.[bchara,cterize a machilm by a single

nu_nbcr we co111d evaltmte T a,t a typica.l point within the bunch. For a, uniform

elliptical bunch, a, suitable chara,cterization would bc the va,llue of T at t.lle edge,

4-pArrx 27.Nrc ke

T(edg,,)= + = + (a.as)

(|lcre Ae = 1/rn _ ,3.86 x 10-11 cm is the electron Comptol_ wavelellgth.) 'I'[lis
q_lantity is listed for each of our machine examples in Table '2.1. Alternatively,

= following Rcfs. 5 and 7, we c.an use the quantity

maLB
c =

_ 2t)/Vn: '

which is the reciprocal of T(B)fora rollnd cylilldrical btlnch. For uniforni elliptical

buncl_es, T(edgc) = I/(_.;'C. Thus when G(7 _> 1, the classical ra diatioll fox'iJlulac

are vali(t, wllilo wl_cn (,'(/ _ 1, wo arc in l,llc, qlla.nt/lln regilne.

14
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A B C

Figure 3.2. One instant during the crossingof uniform bunches. When the radiation

is classical and 6 << 1, the center-of-massenergy of the colliding particles is tile same
everywherealong the line from A to C.

3.6. Luminosity Spectrum

To the experimental physicists who are using a linear collider, the quantity of
most interest is not the electron's energy loss, but rather thespectrum of relative
luminosity as a function of the center-of-mass energy of the colliding particles. In
tile absence of bea.mstrahlung this spectrum would be a delta function located at

the nominal machine CM energy. In the presence of beamstrahlung the spectrum
is smeared toward lower energies.

To obtain a very crude approximation to the luminosity spectrum, let us neglect
disruption, radiation reaction, and quantum effects, and assume that $ is large
enough to measure but much less than 1. (These assumptions are almost never
met, so the following naive analysis is almost never sufficient. But it is still a

valuable departure point for subsequent refinements.) The energy of an electron or
positron at any given time then depends only on its impact parameter and on how
much of the oncoming beam it has passed through. The situation for cylindrical

bunches is shown in Fig. 3.2. Electrons at point A still carry tlm full beam energy,
but the positrons _hey are colliding with have lost a, fraction (z/L)_5 oi"their energy,
where _ depends on the impact parameter b. The CM energy ecru of these electrons

and positrons, expressed as a fraction of the nominal maci_ine CM energy E,:m, is

,,v

X -_- ecm - _ --(z/i)_ _ l- _. (3.37) '-EC Ill

Electrons farther to the right have lost a small fraction of their energy, but the
positrons have lost correspondingly less. At point B, for instance, tl_e elecl,rons

and positrons have each lost a fraction (z/2L)_5, so the fractional CM energy is
still 1 - (z/2L)_5. At point C the positrons have lost no energy, but the electrons

15
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l'8(b) 1

Figure 3.3. Luminosity spectrum for ali particles at a fixed impact parameter, in the

classical regime, for 6 << 1. The average fractional loss in the CM energy is 6(b)/2,

have lost a fraction (z/L)di, so the CM energy is again given by (3.37). In the limit

. where di is small, ali collisions at this instant and at a fixed impact parameter have
the same CM energy.

The relative amount of luminosity that comes from this instant is proportional
to z. As z increases, the luminosity increa.ses linearly, as does the CM energy
loss, until the bunches overlap completely. The CM energy loss then continues to
increase linearly as the amount of overlap, and hence the luminosity, decrea.ses. At
tile last moment of overlap, the fractional CM energy reaches its minimum value,
1 -di. For a fixed value of the impact parameter, therefore, the luminosity spectrum
has the triangular sha,pe shown in Fig. 3.3. In particular, the mean loss in CM

energy is 6(b)/2. (When di(b)is finite, the mean loss in CM energy is slightly
more.)

Now consider the effect of changing the impact parameter. Near the axis of the
bunches the energy loss is small, but there are relatively few particles. Away from
the axis the energy loss and the number of particles both increase. (Jomputing a,

properly weighted average of the luminosity spectrum over impact parameter (for
a round or elliptical bunch), we obtain

4 1-X

c__/__£ )_r-_ax(log 2 (_max) for 1 di,nax< X < 1.;• = 2 - - (a.3s)
dX 4 {1-X l-X\ dimax

6m_x 2

16
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Figure 3.4. Luminosityspectrun:, averaged over impact parameter, in the classical

regime, for6 _ 1. The average fractional loss iii tile CM energyis 6_ver,g,./2.

This result is plotted in Fig. 3.4. Itere 6max is the maximum value of 6, that is,
the energy loss of an electron at the edge of the bunch. The average value of 6, as
we computed in Eq. (3.22), is 6max/2. The mean fractional loss in the CM energy
is 6m_/4, half the average value of 6. The luminosity spectrum is quite broad in
the classical case, since every electron and positron is continuously losing energy
during the bunch crossing. In the quantum case, where radiation is a probabilistic
process, and situation is quite different' there is often a considerable peak in the
spectrum at X = 1.

3.7. Number of Photons Radiated

Before discussing quantum beamstrahlung, we can extract one more piece of

information from the classical result (3.11). If we a.ssuTne that the radiation is
made up of photons with energy w, then the classical expectation for the total
number of photons is

(DO (DO

w dw = d_ p2 --_ - 1 Ai(v), (3.39) .
0 u

where u = (rn3w/p2lEl)2/3. Interclaanging and evaluating the integrals, we obtain

5c,.LIEI (3.40)
NJ = ".

17



Notice thatthis expres,_ion is independent of p, and therefore 111dcp:ndcnt of r,_(li-
ation reaction. For _n electron at tile edge of an elliptical buncll,

10Na 2 5(_ y
Z

• Ng(edge) = g_rn(B, + By) V'_ G' (3.41)

where G is tile ratio defined in Eq. (3.21) (eqtml to i for roun¢l bunches) and we
have introduced the dimensionless quantity

Nc_

, y= (3.t2)

from Ref. 5. The values of NeT(edge)for the SI, C, NLC, and FLC are listed in
• Table 2.1.

We can interpret g/G'as fcllows. The radiation emitted by a. rela.tivistic elec-
tron is contained in a forward-pointing cone opening at an mlgle ,-.,rn/p. As the
electron curves along its trajectory, tile radiation emitted from two different points
will overlap only when the transverse momentum acquired by the electron between
the two points is less than m. The maximum distance between two such points is
calle(1 t.he coherence length, and is given by

Til,

t oh= IE±I' ' (3.43)

Numerically, ii, is generally the ca,se that/col, << L. For an electron at the edge of
an elliptical buncll,

rnL( B_ + B:,/) LG
, /cob(edge) = 4N(r = 2'!; (3.,14)

Thus y/G is approximately the nurnber of coherence !eng"olls in the lengtll of the
bunch. Our result (3.40) for tile nltrnber of photons radia,ted can a,ltcrna,tively be
written

• 5a L

Ng: 2v<q

and says tlla.t the l)robability of radiating a, photon within one coller('_llcc lengtll is
roughly a. Note that y >> 1 for any reasonabl(_ s(.'t of Ina.(:.llillepa,rmnctcrs, since
y = (a/m)V'-_£0, and any linear collider must h_ve a large lt_minosity I)(.'r buncl_.

18
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If N "twere always much less than 1, then 5 could be calculated directly from

the probability P(w) of emitting a single photon with energy w:

= 1/dwwP(w). (3.46)51
P J

When N _ _ 1 arid 5 ,,_ 1, this expression gives only a first approximation to 5.
The true value of 5 can then be obtained just as in the classical radiation reaction

computation above: Divide the bunch into several short slices, and apply tlm one-
photon result to each slice. This procedure is always valid, since N "_<< (L/lcoh);
we can make the slices small enough that the probability of radiating more than
one photon per slice is negligible, but still make the slices larger than the coherence
length.

19
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4. Quantum Beamstrahlung: Formalism

" Let us now turli to the problem of quantum beamstrahlung. We will derive
several expressions for the probability that an electron, while traveling through a

. bunch of positrons, will radiate a photon. Some of these expressions will be more
general, while others will be more useful. Ali of them, however, will be c.loscly
analogous to the corresponding classical results reviewed in tlm previous section.

?
Our methods will be similar to those of Ref. 5 in many ways. Lven those parts of
the calculations that are identical, bowever, are repeated here for completeness.

4.1. General Treatment of Radiation in an Extended Field

Our starting point is the distorted-wave Born approxlmatmn, in which pa,rr

of the interaction (the emission of photons) is treated to lowest order only, and
therest (the interaction between the electron and the positron bunch) is 'tI¢.,_tI,.,t"_" (_¢ .

exactly. Thus our first simplifying assumption is that only a single photon is
emitted. In this approximation the matrix element is

M = (,bT*ll-Iintl¢+), (4.1)

where g,+ and _/2f are the initial and final electron wavefunctions in the prescnce
of the external potential, satisfying outgoing and incoming boundary condil, ions,
respectively, a,n:t Hint is the interaction H.amiltonian for emission of a photon, I Ilo:

. , Pmatrix can be represented by a Feynman diagram, shown in Fig. 4 1 Lxplicitly,
for scalar electrons,

=,i,z . -++v+i'l,34

where k is the momenturn of the photon arid e is its polarization vector. We will
work with scala.r electrons for now, postponing the generalization t,o I)irac electrolis
until the end of this section.

.Approxima,te Wavefunctions for Small Disruption

()tit' first task is to evaluate the wavefunctions ¢+ and Cy. Lath must satisfy
- • ' "I

the Klein-Gordon equation,
z

• [(E-- V(r))2 + V :_- m2],/)(r)= 0, (4.3)

in the presence of the potential V(r) of the positron pulse. If we write eax:h waw:-
function as

¢(r) = ei¢(_), (,1.4)

= 2o



k = (k l, (1,-x)p)

e-, _ v v v _ -.... ..-- .. ,-. :, - ,, .. A r ,e

(E.,p) /= (p£,xp)

Figure 4.1. Feynman diagram representing tile matrix elemeut (4.1) for the beam-

strahlung process. The x's on the electron lines signify that the electron interacts with

a strong external field, and its wavefunction is "distorted" accordingly.

then the phase function ¢(r) satisfies

' (E - Y(r))_ - m_--IV¢(r)l _ + lYre(r) = O. (4,5)

Of coursewe cannot solvethisequat'onexactlyforany realisticpotential.We

thereforemake the high-energyexpansion

1

¢(r) = p.r - x0(r) -- ]-p_[Xl(r) 4- ix2(r)] 4" O(p -2) (4.6)

for each wavefunction. The first terrn represents the free-particle plane wave solu-

tion, while the second term (X0) gives the usual eikonal appr0ximation! 251For our

problem it will be necessary to keep X1 as well, since terms of lower order in 1/lp]

will cancel in the squared matrix element. We may discard X2, however, since it

gives only a small correction to the amplitude of the the wavefunction.

For the initial wavefunction we h_ve pi = (P_L, P), where p = 272m is the initial

energy of the electron. (We assume that the longitudinal components of pi, py,

and k are ali much larger than their transverse components.) Plugging (4.6) into

(4.5) then gives

z

= /xe(b, z)
lt/

--00

(4.7)

Xl(b,z) = { dz' [lynx,oi2 2P2' V.LXO].
--00
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The limits on the integrals are determined by the "outgoing" boundary conditions'

The wavefunction must be a simple plane wave as z "+ -co. Since V±V = -E±,,

" we can write the phase of the initial wavefunction explicitly a.s
i

• Z

¢_= pz+ p_. b- f ez'V(b,z')
--OO

, _, (4.s)

_ 1__ / dz' dz"El.(b,z") + 2 clz" p__. E l_(b,z") .
2p.._ -oo -oo

The phase of tile final wavefunction can be found in the same way. Let x be the
fraction of its energy that the electron keeps:

Ipll
x _=__ipil. (4.9)

• Setting pl = (P//., xp), we have

OO

¢I = xpz + PI' b + f V(b,z')
z

(A ln'_

+ 2Tp dz' ez"El_(b,z") -2 dz"p_.Ez(U,z") .
Z Zt Z t

We can now check to see when our expansion in powers of 1/p is valid. For an
electron at the edge of a round cylindrical bunch (with E± given by (3.1)), the
ratio of the O(p -1) terms to the O(p °) terms in these expansions is roughly

LaVo2B 2p-1 L N c_
= ,,,ro, (4.11)

LVoB 2 pB 2

where D is the disruption parameter (3.3). We are therefore assuming in two places
. that the disruption is small' in approximating the electric field of the positrons a.s

fixed, and in making the expansion in powers of D.

With these expressions for the wavefunctions, the matrix element (4.2) ta,kes

22
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the form

M =ie/dz/d2be*.P(b,,z)e '(_'-¢j'-k'r), (4.12) "

where

P(b, z) = V(¢_ + ¢:). (4.a3)

(It will not be necessary to ret_dn the O(1/p) terms in P.) The tota,l phase c_m be
written as

OO

Ctot(b,z)= ....q.r- /dz'V(b,z')

t,b

+ O(1/p), (4.14)
--OO

where q = p: + k- Pi is the momentum transfer from the pulse, and the O(1/p)
terms are given by (4.8) and (4.10).

Stationa_r_2 Phase Evaluation of the Transverse Integ_l

Tile second term of the total phase changes very r_pidly a,s b varies' For a

pulse of length L and diameter B, tile potential is typically ,-_Nc_b2/LB 2, so tha.t

VI. / dz' [-V(b,. z')] "_--ffNa_> rB'1 (4,] '.5) '
--OO

We can therefore evaluate the b integral by the method of stationary phase. The
only appreciable contribution comes from the stationa, ry point bst, defined by

OO

0=V.LCtot(b,Z)[b, =--q.L+ /dz'E..L(bst, z')+O(1/p). (4.16)
--CK)

Note that bsr depends on z only through the O(1/p) term (which we will not,
need to evaluate explicitly). It will be useful to introduce a symbol, b0, for the
z-independent part of bst; that is,

OO
/.

q±.- /dz'E£(bo,z')=O (exa,ctly). (4.17)
--OO

In evaluating the integral over b we obtain a factor

2_i
iJ - , (4.18)

,/d/ " '1et dz' OE,(b, z'
Obj bo

where the determinant is of the 2 x 2 matrix obtained by setting i and j equal t.o
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x or y. We then simply replace b by bst in the integrand, with the result

" .,'td= -eJ fdz e*. P(b0, z) e i¢'°`(b"''z).
(4.19)

We will need to retain the difference between b0 and bsr (a quantity of order l/p)
in the phase, but not in the pre-factor.

Since only a small range of b-values contributes to the matrix element for
a given value of q±, we carl meaningfully say that the electron has a classical
trajectory as it travels through the bunch.

Manipulation of the Squared Matrix Element

_ib make further simplifications we must square the matrix element:

oo

IMI2 - 4_raJ 2 / dzl dz2 e. P(zl)e' P(z2)e i[¢'°'(z')-¢'°'(z2:i. (4..20)

(For notational convenience we define (tot(Z) -_ (tot(bsr, z) and P(z) _ P(b0, z).)
The phase carl be simplified by noting that

, Z2

(tot(Z1) - ¢to,,(z2) =/dz dCtot (4.21): dz '

zl

Explici'dy, the derivative is

oO

dCtot _ dbst / ddz -- -qz - q±" dz dz' ._zV(bst(z),,z ')
-- Cw:9

Z 2 Z

, .,>]+,/.z,., z,>)2p ±" "

'(Ii >, + _ dz'E±(bo, z') - 2 dz'pf. E±(b0, z') . (4.22)
z z

" The difference between bsr and bo is significant only in the second and third terms

, of the first line. Moreover, these two terms cancel to crder l,/p. The z-dependent
part of bsr h;±sdisappeared from our expressions, which .now invoh, e only b0.
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It is useful to eliminate qz a,nd pf in favor of other kinenlatic variablv.s. This
can be done by using the relations

cP

,n2(1--x) Ik±l2 lp_.l2 p!cl'2
- : (4.23) .

qz 2xp + 2( l " x )p + 2xp 2p

and pf = q_L-- k± + p_, ms well as the relation (4.17) between q_Land Ek. After
a page of tedious algebra one finds

dCtot m2(1-x) 2+ Ik_,.(z)l2
dz - 2x(1-x)p ' (4.24)

where
Z

k_(z) _--km- (1.-x)[pi I -t:"f d.¢ E.i_(bo,z')]. (4.25)

The quantity in brackets is just the momentum of a classical electron at position z;
thus k_ is just the transverse monaentum of the photon, minus the transverse
momentum that it would have if it were ernit.<,edparallel to the electron. Note that
all terms in s of lower order than 1lp have cancelled, and that the only dependence
on z is through k_.

We can simplify the outside polariztion factor in (4.20) by summing over the
two transverse photon polarization vectors"

Z_. P(z,)e. P(z2)= P(z_). P(z2)- [k. P(z,)] [k. P(z2)]

Ik_l_12,-,,
= Pm(z1). P.k(Z2) + _.2x-'zkzl)Pz(z2)

k_L k.L
-_-" Pmtzl)l_(zT)- --k--. Pm(z2)Pz(zl)

--=(Pm(z,) - _-Pz(zt)). (Pm(z2)- k-i-Pz(z,.)).(4.26)

(In the second line we taave used the relation ],:z= 1 -Ikmi2/2/,:r_.) We need only
keep the leading-order terms in Pz and Pm; from Eq. (4.13),

P

& = (1+ x)z,;
Z OO "
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Z¸

< = 2piL kj_ + 2 f dz'E.L(bo, z'). (4.27)

" (That we only need these expressions to leading order iri 1/p justifies our using
b0 rather than bsr(Z) in the pre-f_ctor of (4.1.9).) Plugging these expressions into
Eq. (4.26), we find simply

4 k__(Zl)" k_L(Z2) (4.28)
Ee' V(zl)e. P(z2) = (l_x)2

where k_l(Z ) is given by Eq. (4.25).

Using Eq. (4.24) for tile phase and Eq. (4.28) for the polarization trace, we
find that the squared matrix element (4.20) takes the form

17 (] /I_._IMI2 16_aJ2
e -- (l_x)2 dzk[L(Z ) exp i dz' s(z') , (4.29)--oo 0

b

where for notational convenience we define
%

m2(1-x) 2 + Ik_.(z)l2
s(z) :=_ . (4.30)

2x(i-x)p

(The lower limit on tile integral in tile phase is of course arbitrary.) Notice that, due
to our expansion in powers of 1lp, all dependence on the longitudinal component
of the electric field has disappeared; only the transverse component EL enters

Eq. (4.29), through its appearance in the definition (4.25) of k_.

Phase Space Integrations

To compute the cross-section for beamstrahlung we must integrate the squared
matrix element over the final-state phase space variables. Conservation of energy
leaves five unconstrained momentum components, which we tnke to bc k and q_L.
Thus we have

'i"'k1i<'2<,1152iMI,.,"= 2-_ (,2.)a2_ (2_.)29.xl,m

= 2-7 ss,2:,.(l.-,) (2_-)_ (2,,-)2_ I.,Vf (4.al)
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The q.L-integral can be changed into an integral over b0 using (4.17)'
d

(2,_)2- j-_ e_b° (4.32) .

The awkward factor of j2 in the squared matrix element is exactly cancelled.

If the flux of electrons were uniform over the width of the positron bunch, the

probability that any one electron would emit a photon with energy k = (1--x)p •
would equal de divided by the area over which the electrons were spread. But since

our expression for da involves an integral over impact parameter, we can interpret
it to mean that tile probability for any particular electron with irnpact parameter
b0 to emit such a photon is given by the integrand. Thus we arrive at our most
general result for the probability P that a scalar electron with impact parameter

b will emit a photon with fractional energy (l-x):

(])dP(b) a [ d2k.t. 2
d---_ = p2x(1-x)a J(27r) 2 dzk[k(z ) exp i dz' s(z') , (4.33)

- 0

where k_(z) is given by Eq. (4.25), with EL ,.valuated at the desired impact
parameter b. To obtain the expected fractional energy loss 6(b) we sirnply weight
this probability by kip = (l-x)'

(/)d6(b) a / d2k± 2dx = p2x(1-'x)2 (2"--_)-'-_ dzk_(z) exp i dz' s(z') (4.3-t)
- 0

4.2. Connection with Classical Radiation Formulae

Equation (4.34) is similar in form to the general classical forrnul_ (3.16) for
radiation from an accelerated charge'

d2r - -_°-_2. dt_× (_×_)_,_(_-k_(_// (4:_,_)
dwdfl 4rr2 ' ' ,

The factor dZkL/p2(1-x) 2, for instance, is precisely equal to df_ when the a,ngle. of
the outgoing photon is small.
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To compare the formulae more closely, let us expand the phase and pre-fa,ctor
of Eq. (4.35) in powers of 1/p. The unit vector k points in the direction of the
photon momentum k, so

/¢ = (k'l" 1 'k'l-12) (.t.36). , 2k 2 '

The electron's transverse momentum, to sufficient accuracy, is

t

pi.l- + f dt' E.l_(Z = t'), (4.37)p±(t)
Iii

--OO

and its transverse coordinates can be found by integrating this quantity. Its longi-
tudinal coordinate is

t

z(t)=fdt'(l m2lp±(t)'2)2p2 2p2 , (4.3S)
0

in a coordinate system where z(0) = 0. The product k. r(t) in the phase of (4.35)
* is therefore

t

" Ic.r(t) : fdr' (k±.p±(t') m 2 ,kt[ 2 [p/(t')[ 2)pk + 1 (4.39)2p2 2k 2 2p2 •
0

The 1 term is cancelled by the t in the phase, leaving only terms of order 1/p. Wc
can now substitute t _ z to this order. Setting k = (!--z)p, we find tha.t the phase
of Eq. (4.35) is

Z

r(t))=fdz' m2(1--x)2-t-Ik'_a(z')l 22(1-x)p ' (4.40)
0

Except for a missing factor of x in the denomina,tor, this is identical to the phase
.pin the quantum expression (4.34). (See the definition of s(z), Lq. (4.30).)

Now consider the prefactor in Eq. (4.34). Writing out the double cross-pro(ltlct,
we have

1

wit x (k x _)= _p[(k.p(t))k-IklZp(t)], (4.41)

where p(t) is the electron's momentum, ttere we must keep terms within the

brackets proportiona, l to pa and p2 but no smaller. The largest terms cancel
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leaving us with

wi- × (i: × ft)= k£- (1-x)px(t)= k_.(z). (4.42)

So again, expressions (4.34) and (4.35) agree except for a factor of x.

Reversing the preceding argument, we can write the quantum result (4.34) as

d2_ - ap2(1-x)2 dt k x (k x _)ei(_-k'r(t) )p(1-x)/x (4.43)dxdfl 47r2x '

This agrees with the classical expression (4.35)in the classical limit, where x -_ 1

(that. is, the photons are soft compared to the electron's energy). Of course our
derivation of (4.43) is not valid for a general trajectory r(t); we assumed that the
disruption is small, or, roughly, tha.t the electron's trajectory does not bend enough
to carry it into a region where the field strength is significantly different from its

value along a straight trajectory. Nevertheless it is tempting to speculate that
Eq. (4.4'3) might hold more generally.

if

Equation (4.4,3), or somet.hing very close to it, appears to have been previ-

ously derived, although the references are elusive. Chen and Yokoya 1281quote a
formula involving the same phase as in (4.43), but with a pre-factor that is in- "
dependent of kt.. They attribute their formula to Baier and Katkovl 2n although

it does not appear explicitly in that paper. Bell and Bell I281quote the same for-

mula and attribute it to the textbook of Berestetskii, ct. al!2_1(whose treatment

of synchrotron radiation follows Baler and Katkov), although the formula does not
appear explicitly there either. Both Refs. 26 and 28 use the formula to derive
results in agreement with those of Section 4.5 below. The formalism, of Baler and
Katkov involves no explicit expansion in powers of the disruption parameter, so

their derivation (whatever the result) is probably more general than ours. In any
case, Eq. (4.4,3) has not received the attention it deserves_ in light of its very close
resemblance to the well-known classical formula (4.35). The present derivation,
based on the scattering-theory method of Blankenbecler and Drell, is entirely new,
and has the advantage of being very concrete and explicit in its assumptions.
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4.3. Expansion for Almost-Uniform Bunch

Our general result for quantum radiation, Eq. (4.33), is not yet very useful,
since it involves an infinite integration of an oscillating function. _ib remedy this,

. let us first write out the squared integral, labeling the integration variables Zl and
Z2:

oo

dx - p2x(7-x)_ (23)2 dzldz2k'_(zl).kk(z2)
z, (4.44)

x exp(,if ,tz, r'_'2(1-z)2-Clk_(z')]2)2x(1-x)p
Z2

Next, change Variables to the sum and the difference,

Zl + z2 .
2 = 2 and w _=.zz - z2, (4.45)

. so that dzl dz2 = d_ dw. The integrand depends on 2 and w only through the

field strength E±(z) (which enters the definition (4..25) of k__(z)). As long as
Ez(z) is not changing too rapidly, we can expand it. about 2 and then perform the
integration over' w.

Let us therefore write

_, dEk]
= +..., (4.46)

= Ez(z) E±(2)+(z-z)__

so that

1 dEj
k__(z) = k__(2)- (l-x)[(z- 2)E±(2)+ {(z- 2)2-_z + ...]. (4.47)

' Inserting this expansion into the integrand of Eq. (4.44), we find for the factor
outside the exponential,

" k2(zl)' k2(z2) = Ik__(2)l2-(1-x]:_f-[E 1.(2)[2 (l-x) w2 c/E± "-
i " 4 - Tk2(_) ' d--jTfr_-_.... "

• (4.48)

In comparing the various terms in this expansion, we need rough estimates of
the magnitudes of w and k_(2). We will soon find that the integrals over w and
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k.I. are dominated by the regiens

/n

w ,,_ l¢oh(2) = E L(2)' k_(_) ,,_m. (4..49)

For a reasonably smooth bunch shape., we can also approxhnate

d/dz ,,,, 1/L. (4.50)

Thus our expansion is in powers oflcoh/L. This ratio is (almost everywhere)
roughly equal to G/y, or about 1.0-3 for the NLC and FLC parameters given irl
Chapter 2. (Since y is determined by the luminosity per bunch, it, must be large for
any realistic machine.) By the end of this cha.pter we will see precisely where our

expansion breaks down. Applying the estimates (4.49) and (4.50) to Eq. (4.48),
we see that the last term is one power smaller than the first two and ca.n therefore

be neglected to leading order.

The phase in Eq. (4.44) can be expanded in the same way. Expa.nding about
z = 5, we ,'a,n write

_+w/2

I :(")'"'Idzs(z) = w.s(2)+ -_ _ --_z2 +.... (4.51)
_-w/2

Differentiating s(z) twice gives

d2s 1( 2 dE.L(z)) (4.52)d--z-_ = 7pp (1-x)lE.l.(z) - k_(z), dz '

The second term is smaller than the first by a factor of rouglily/coh/L, and can be
neglected, as can the higher-order terms in Eq. (4.51). Our complete expression
(4.44) then takes the form

CK) OO

dP pr'x(l-x)3" i i,,,,, w,d"-x= d2 dw ( 2- (1-x)2--_ -- E_L(Z)I
(4._3)

×exp[i(sw+_r3w3)],

withs givenby (4.30)atz = 2 and

/,3 _ (l-x)E_t.(5)l 2
8xp " (4.54)

The integral over w is now in the form of an Airy integral, which we can
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evaluate using the identity t3°l

0o

f dwei(sw+½r3w3) = 27r Ai(s/v). (4.55),. r

-- oo

When powers of w occur inside the integrand, simply differentiate with respect to s
and use the differential equation satisfied by the Airy function,

Ai"(v) = v Ai(v). (4.56)

Applying these formulas to Eq. (4.57.), we obtain

,rx)

dP 27ra f d2kl_ f1 (l-x) 2

d%-- p2_(1._)a JJ(2_)2 d'_-( 1k_-(2)12. -- IE±(z)12_ ) Ai(s/r)- r 4 _ '
--00

(4.57)

To perform the integral over k.L, we move it inside the 2 integral, shift from

kt to k_(2), and change to polar coordinates. The angular part is then trivial.
To simplify the integration over the magnitude of k_(2), we change variables to

8

v - -. (4.5s)
¢ r

A bit of algebra then reduces our expression to the simple form

f)o (3_3

dP (yTTt 2

- P d2 dr\u- 12 Ai!v), (4.59)dx

where

. _ = v(kk = o) = _g2-[_l = g -2- ' (4.6o)

This is our final result for bearnstrahlung from scalar electrons. Notice that when
" the photons are very soft (that is, (l-x) << 1), this definition of u reduces to the

classical definition (3.12), and our result (4.59) agrees with the classical synchrotron
radiation formula (3.11).
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It is generally more useful I,o write the coetTicient of Eq. (4.59) irl terms of the
par.xmeters Icoh and T. Our re.rult then becomes p

oo

d2p - c_ /dv(2V 1) Ai(v). (4.61)dx dz T lcol_ u
tl

The angular dependence of the radia, tion is still present in the in'gegrand of

Eql (4.61); v = u corresponds to k_(_) 0, while v increases as ikO(5)[ increases.
Specifically,

_v _._1+ IkS-(s)12 :4.62)
u m2(l-x) 2'

Since the Airy function falls off exponentially when v > 1, this quantity can be
large only when u << 1. In this case the 1 ternl in (4.62) can be neglected. Inserting
the definition (4.60) of u, we find that for most values of T, the distribution falls

off exponentially when Ik_.(_)l > m. In other words, the radiation is contained
in a cone, centered on the electron's local direction of travel, with opening angle
,'., m/p. When T >> 1, however, this result is slightly modified; the same analysis

then shows that. the maximum value of Ik__(e)l/mis roughly T 1/3. Up to a possible

factor of T1/a, therefore, our rough estimate for Ik_(5)l in Eq. (4.49) is justified.

(Recall that even for the FLC parameters in Chapter 2, T l/a _ 3.)

To justify our estimate for w in Eq. (4.49), notice that the integral over w in
(4.53) begins to converge when

1 /toa (1____) '/aw ,,- - ,-, _- =/_ot, T 1/3 x (4.63)
r v/_

So our estimate w ,,0 /cob is valid except when v/U is very small. This happens at
the extreme soft end of the photon spectrum, and a.lso over most of !".hespectrum

when T >> 1. Neither situation is relevant for most machine pa.rameters, since the
quantity lcoh/L(1-x)l/3 typically remains small until (l-x) ,,010-'s, while T 1/a is
quite small in current designs, a.s noted above. In a.ny case, we have now shown

that the estima.tes (4..49) always give the correct power of lcoh/L, our expansion
parameter. We also see tha.t the coef[icients in this expansion might very well
involve powers of "I"1/3 arid (l-x) 1/3 |n the Section 4.5 we will explicitly compute
the next-order term in this expansion, and examine where and how the expansion
can break down.

Our earlier expansion in powers of the disruption parameter D is somewhat

more troubling. In the phases (4.8) a.nd (4.1.0) we kept terms through order 1/p,
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;.rod <:sl,imat, ed tl_e rnagnittlde of ttlese terms a,s roughly Na'l), Many cancellal;iolls

llave occurred since tllen, how<:ver, Ali lower..order t,erms lla,ve cancelled, and .T_ow

" we have s<'<,',,_lt,llat, everz t,he O(l/p) terms cannot, grow nlucl_ larger titan 1 before

t,he integral over u_cuts off:. The largest, terms of O(l/p2), which we would naively

ex _<'c.t t,o lla.w, agnitude Nc_'D 2 could exceed tlle 1/p t,erms even for small D.' ' 1.... Ill

And as we sa,w in Chapl, er 2, D could be as large a,s 20 at the next; linear collider.

Pllysically, l_owever, we should not expecl, our results to break down when D

is larger t,]_a,ll i or ew_n 20. The. <tlsrupl, ion pa,ramet, e.r measures l,he bending of an

ele<:l,roll's t,raject,ory on the scale of t.tle length of l,he bunch, whe.reas l,he radiation

(al, lea,sl, for small D) is coherenl, only over a much snmller scale, Icoh. A breakdown

'ill ',:.)til"forrlll.lla.e for la.rge D could only result from a, <'oherenl, e,frect over a large

fraction of tile bunch length, which seems physically 'implausible,.

'l'llese i_and-waving comnlents are of course no subst, itul, e for a,proper treat, me'ni,

of beamsl, ra:hlllng in the presence of large disrupt, io11. q"lle direct; api)roach of tltis

paper, ttsing explicil; wavefuIl<:I.,ions, seems very difficult to apply in (,his case. The

only work I know of t,ha(, may be applica.b.le is t,hat, of Baler and I(al, kov! 2rl

4.4. Dirac Electrons

m,

'l'he cxtellsi<)n of tills derival, ion to Dirac elecl, rons involves more computa.l, ion

1)lit, no new ideas. In this c.a.se the ma.l, rix element for emission of a l>]mton is

The wavef,,n<:l, ions ¢,+ and _/,f are solulions of the. I)irac equation,

= ( - v(,,)),l,,

with o_tl,goitlg arl<t in<,olning I)<)_zn<lary conditions. We will _ls<!_'a chiral ha,sis for
l,he. l)irac ltla.l.rices:

(o0) (0,)0 -or 1 0

. . '.I_) find l,l_e wavefi_c.tio_s ,_/.,+a.n<l _l,_,we wril, e l,hem in t;l_e form

" _/'(r)="_(r)ei+(")-(u"(r)) t_iq'(r)''lzl(r) (4.(i7)

wllerc 'l,,, attd I+lare I.wo-<'oml>o_let_l,spinors al td <_(r) is t/le ,_a_l_<;pl_a.se that solves
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the Klein.-Gordon equation, The upper and lower t,wo.,'ot %mnent spinors satisfy

i-i,,, V + a. (rc) - (E - V)] u.,, + "_ut = 0,
(4.68)

[ia' V - o'. (rC) -(E- V)]ul + muu = O. ,I

Combining these equations and using the fact that ¢(r) obeys Eq. (4.5), we obt,_in
the second-order differential equations

iv_+ 2i(v¢).v -,:_. e],_,,= 0,
(4.69)

iv _+ 2i(v¢).v +i_,.El,,,= 0.

Solving these equations to order l/p, we can easily find the Dirac wavefunc-

tions. Let us introduce the notation v+ =_ v_, + ivy and v_ =_v_ -- ivy for the
components of a,ny transverse vector V_L. Wc will also abbreviate f dz r E:t:(b,z _)
as f E+. For the initial state, the phase ¢(r) is given by (4.8); the Di,ac spinors
of definite helicity are therefore

1 0
, Z

rn/2p ; ULH= V/'2-7 --_(Vi+ f_ZooU_ ) ' ,
0 1

(We use relativistic spinor normalization.) For the final state, the phase ¢(r) is
given by (4.10), so the right-handed and left-handed spinors a.re

1 0

' (p{ fFE+) ._/2,_:v
,,,/2xp ; = , , .oo .L E_)

0 1

Since the matrix element involves the s_trne pha.se as in the ca.se of sca.l,_r

electrons, the b-integral can be evaluated by the method of sta,i,iontuy pha,se a,s
before. The rest of our calculation ,also goes through uncha,nged, except for the
evaluation of the polarization trace. As in Eq. (4.19), the ma.i;rix element is

/dz e* • P(b0, z) ei4''°', (4.70) .
.M ieJ

but now the vector P(b0, z) is given by

P(b0, z)= uf*(b0, z) a ui(b0, z). (,1.71.) "

In the Dirac ca,se the photon's polarization vector is potentia, lly interesting, so we
will not sum over e. Since the photon, iidtial electron, and fina,l electron can each
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have two different polarization states, we must evaluate tile matrix element for

eight different sets of polarizations.
ta

Consider first the case where both the initiM and final electrons are right-
handed. The components of P(z) are then

t,

Pz = 2v'_p;

1(<+': i i-k_+. E_);
--C.'O --C,wO

,. Z Z

- +L.+x .
--t2<) --00

(Iri the last two expressions we have again used P/_L= q_L--k_L-t-p_ and Eq. (4.17').)
The polarization vector for a right-handed or left-handed photori with lllOll:leilttlFo
k is (to lowest order in small quantities)

" 1
e= ._o(1, i,-k+l/_) (right-t, anded)

V,a

• 1 (4.73)
or e= ---_(1,--i,-k_lk) (left-ha,nded).

x/2

It is now easy to work out the polariza.tion-dependent pa.rt of the squa.rcd
matrix element. For a right-handed photon we find

1 4
__ . /I 7;'

e. P*(zl)e*. P(z2)= 2,r, (l-x) 2 ,+(zt)e._(z2). (4.74)

In analogy with Eq. (,1.33), therefore, the probability for a, rigtlt,-ha.ndcd elect.'oli
to emit a right-ha, nded photon without flipping its helicity is given 1)3,

. dP(b) ox 1 / d2k± .,dx - p2x(1.-x)32-7, _ dzk+(z) exp i dz's(z') , (4.75)
- li

where ,s(z') is defined in (4.30). (Noto the close similarity to the corrcsl,onding
¢ 4 % '

formula for sca.lar electrons, Lq. (4.33).) l_,xpa.nding to lowest ord,.;r iii l,:oh/L a.s ii_
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the previous sect,ion, we obtain the more explicit re_"!t

(X) ¢XD •

<ta: p 2x u
O0 'R

• ?where u is the same as in Lq. (:1.60). This is just 1/2x times the corresponding
scalar result, Eq. (4.59). By parity invariance, this expression also holds in the
case where initial electron, final electron, and photon are ali left-ha.nded.

Similarly, ii' the initial and finM electron are right-ha,haled but the photon is
left- ti anded,

x 4

• -. ],? (Zl)k_+(z ",). (4.77)
e.P*(zl)U P(z2)= 2 (l--x) 2 -

The probability for a right-handed electroi_, to emit a left-handed photon without
flipping its helicity is therefore given by

e_ z ]2(lP e,, x i d21+±i dz1,t(z) exp(i f dz, )d-7= p2x(1-x)3? _ - ,_(z') . (4.78)
--oo 0

,b

Expanding aga,in to lowest order in lcoh/L, this becomes
1,

rX) OO

d,,--7- ;v 2 u- 1 Ai(v). (4.79)
-- O0 lt

Notice that this is x2 times the above expression for a. right-handed photon. Again,
this expression also applies to the parity..reversed situation of a left-handed electron
and a right-handed photon.

Finally we must consider the case where the electron flips its helicity during
the radia, tion process, sa,y froln right to left,. The coniponents of P(z) (to order
l/p) are now sirnply

,,,,(1-x) im(1-.x)
= ,, - . (4.80)s': 0, P'- _ ' "- 47

If tjlc. I)]ioton is right-handed, we ininiedi'_tely fin_t

2.,,2(.i-x)2
e. P*(zi)e*. P(z,,) = , (4.81) .

37

while if the plioton is left-halid_.,t, tlm squared matrix element is zero. Tlie proba-.

bility for ari eleclron to flip its l:lcliciiy while emii, i,il:lg a, photon (wliich must ha.ve
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the same llelicity as the init, ia] ,,lcctron) is therefore

. 4,. U;P- dz i (4s2)
- 0

1,Bxpa.nding to lowest order in lcoh/L now giw.'s

CEa OO

d-7= _, 2a, 45 (l.,.,Ai(v). (4.sa)
--OO U

Slltnnlirlg overt all possible flnal-state he.licities, we obtain the total prolmbility

for a Dirac elect.roll to enliL a. pho[,on of energy (1-zr)p:

OO OO

- / / ,dP c_'7_l." dz (h, Ai(v) \ u 2a: '
-- O0 ?t

r_ _ .wllerc. isthesanlea,sinthesca,la,rcase(,I.60),Ih_:.la,stterm insqua,rebra,cketsis

tl_esr)ill-tilp coJ_tribution(4.83),forwllichl,hc photon must have tl_csame Imlicity

" as the irlitia.1 elecl,ro11. ']'he fir:d, term correspo.llds t,o helicit,y-pre.serving emission,

with 1,1_(,1 rel)resenl,ing a photon he]i(:il,y l,tl(. sa.n_e a,s Llla.l,()f l,he ('...l('.ct,to[.,'" and the
q,

:c" repr(.cllt, i;lg a. l)hol, on }lelicil,y opposite l,o LhaL of l,he el(.'ci,ron. NoLice tha, L in

ti;e classical lili-!il, ((l-z) << i ), l,}le helicity-flip t,ernl va,nislles, while the non-flip

l.ern_ (a,s in t.bc sc_._.larca.se) rr,d_ces I,o t,l_e classical res_]l, (3.11),

()llr final rose,lt (,t.8,1) is _ot, new. lhc earliest full trca.t_nent of ql_antum

. svn<:lJrot.ron l'a._lia,t,ion is (lue t,o I{lepikovl 3'1 wh()(tcrivc_l an (;quiva.lent but, _n_ch

nlore c()li_l_li(:a.t_,d forn_ula,, assu:l_i_g l,ha,t, the ('.:1(,(,"l.ron n_ov(..'s in a, u_iforrn mag-

i_(_l..icficl(l. _l'l_e l_ch sirnt)Icr t'orn_ (4.8,l) is (1_(; to Nikishov and l{,itus! '_1 A similar

tl'(';:t[.l/l(,lll l'lOtll this vicwl)oint, is glycol in l,t_e t,extb(_ok of Sokolov a._(l _ernov. A

later t(_ivat, ion pr]: -. < '" made ii, cl(_a,r l,ha,t, l,}le,(;I" '_.(.c(,ron s (,rajecl, ory ca._ 1)e l,re.ated cla.s-

si(:alJ5,, ail,t tle))r'(, (.t_esource of its a(,c(qera),ion, wll(;l,l_cr elect, ric or nlagnctic field,

is li)li)l)porl.a)_(.. ('l'tlis deriva(,io)l ca_ also I)e found iri (..})el,ex(,1)ool,: of l:l(.'restcl, skii,

, t,ifshil.z, arl(l l>il..a<rvskiiP'_l.) More rc'creli,J5,, (ll_en a._(1 Nol)](; I:'41t_a.v(..,x.'eritied Lhat,

tl_ forn_la al)pli_.s in the <;ase, of a,_ elect.ric ral, l_cr t,llai_ _nagnet, ic fi<eld, l:'i_ally,

,, Blal_k_,_l_(,cl,,r al_l l)rell I''rl l_a\'e (Icrive_,l t,t_e fonl_la (_ore l_r_,ciscls,, a,_ average

of 1]_, t',_r_l_lla over a _lit'onl, cs'li_ldrical I_rlcl_) usil_g tl_e smrl_, l,e(:llrliq_es as l,llis
l,,'._t_:r. _l'l_,. cq_ivalcIlce of t,l_';l' r(,sult i,o l,]lal, of ,qol,:o]ov all(1 'l'(
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essentially the same method to study the regime where T > 1. The present paper
is the first to apply the scattering-theory formalism of Blankenbecler and Drell to '
more general bunch geometries for general values of T, _nd to derive the local form
(4.84) directly by this method.

4.5. First Correction for a Nonuniform Bunch

In Section 4.3 we expanded the integrand of our general formula (4.44) in
powers of Icoh/L, keeping only the leading order. This parameter is numerically
small (typically l0 -a ) throughout most of the bunch for any reasonable set of

machine parameters. But since/coh = m/lE Lt, we should not expect the expansion
to converge near the edges of the bunch where the electric field is very small.
Furthermore, we saw at the end of Section 4.3 that. the true expansion parameter
is probably lceh/Lv/-ff, which is much larger than lcoh/L, when (l-z) << 1 or T >
1. It would therefore be a good idea to check the validity of our lowest-order

formula,, by computing the next-order correction explicitly. We will find tha.t the
first nonva,nishing correction term is smaller by two I)owers of lcoh/L.

This correction term for radia,tion in a nonuniform field was first calculated by
Chen and Yokoyal TMusing the formalism of Baler and Katkov! _'1 The correction

term in the limit T >> 1 has also been calculated by Bell and Bell! TM Chen

and Yokoya integrated the correction term over 5 and over the photon frequency,
and found the result to be negligible compared to the leading term for most sets
of machine parameters, but considerable (roughy 30% of the leading term) for
a parameter set suggested earlier by Himel and Siegrist! zl We will discuss these
conclusions at the end of this section.

The computation of the correction term is extremely straightforward, requiring
only that we keep higher-order terms when expanding the elecl,ric field about 5 as
in Eq. (4.46). lt is nevertheless quite tedious, even for scalar electrons. The electric

field enters our master formula (4.44) through k__(z), which appears both in the
phase and outside the exponential. It is necessa.ry to keep terms tha.t are smaller
than the leading terms by one or two powers of l_:oh/L, according to the estima, tes

in Eqs. (4.49) and (4.50). lt is not hard to see that this is equivalent to retaining
up to two z-derivatives of E± any given term.

#

The outside factor, to the needed accuracy, is

9

k'j(zl).kk(z.2) = Ik_.t2 -(l--x)k_. (w'..TE_L+'")

2 ' lr4 • 9 tv 4

+ +7.TIr:,l-. ,- •E± + .. "/,
/
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where the dot denotes d/dz, and Ez and k_ are to be evMuated a,t z = 5. ltigllcr-
order terms in the phase are l)resmn.ably small COml)ared to 1, and can t,herefore

, be brought down by Taylor-expanding the exponential _. The e,xtra factor we thus
obtain is

iw a 1 ," wa r 2

+/wS(1-x)1920xp(31e l +....
Expressions (4.85) and (4.86) should now be multiplied together, dropping terms
with more than two z derivatives of Ez. The resulting expression can be simplified

somewhat by noting that terms odd in k_ will wmish when we integrate over

k_, and that terms of the form (k'±.l_±) 2 are, after integration, equivale, nt to
12Ikk[211_.LI2.

After these manipulations, our expression involves a.n 8rh-order l)olynonlial

in w, multiplied by the same exponential as in Eq. (4.53). The integra.l over w ca.n
again be evaluated iii terms of the Airy t'unction using Eq. (4.5.5), a,lid the reslllt
simplified using the differential equation (4.56). When the smoke fina,lly clears, we

, obtain the following exwession for the correction term, P'2, to t,he l_roba,bility of
radiation from a scalar electron:

. d2p2 2edcoh { ]E_L]2[ 8 10 ]dx dz = 90T _-E_12 -u Ai(u) - --u2Ai(_s) - --u Ai'(u) (4,sv)
El'

6 Ai(u)]},t-. ]-E2_ [t-3uAi(u) + --u2

where u is again as defined iri Eq. (4.60). We now see explicitly gha.t tlm ra,tio of
the correction to the leading term (4.611)is of order (Icoh/L) 2. Furthermore, when
u is sma,lI, we t'i_d that the largest terms in the ratio a,re of order (lcoi,/Lv/_,)_ , as
anticipated in Eq. (4.63). Equation (4.87) actually has a noll-integrable sirlgula.rity
at u = 0 (or z = 1). We should not ta,ke it too seriously, however, since our
expansion in powers of lcoh/Lv/77t is not expected to converge in tills region. Tile
total energy loss, equal to (l--z) times the above expression, is still fixlite.

The case of Dirac electrons is entirely analogous. Ilere we fin¢l, for tile. tloll-fli I)

radiation probability, and expression identical to (4.87), bul, tntlltip[icd (as wa.s l,]le
" leading term)by (1.+.x2)/2z. There is also a. correct, ion to tl_e spi_-flil)l,erni,

dmdz = ,<.t0T 2z IE_L_+ 3 {j_--]_.,. ,,Ai(u)+ .,,.Ai'(.,,.) . (.1.<,

lt is not hard to check that tile SHill of the flip alld noll-flip correctioil Ix;rrris agrc(,.s

4O



precisely with the result of C,hen and Yokoya! 3_] (In the Dirac case there arise

additional terms, smaller than the leading term by only one power of lcoh/L, that
areproportional to E± x E±. These terms vanish if the field is always parallel to
its z-derivative, or if the bunch has a mirror symmetry and we average over impact
parameter, or if we average over the initial electron helicity. Since at least one of

these conditions is generally satisfied, we will neglect these terms.)

Let us now consider the total correction to 5, the fractional energy loss. Mul-
tiplying Eq. (4.87) by (l'x), and changing variables from x to u, we find

oo

dg2dz_ _/¢ohT30/du(1 +Tua/2),a{l_[-u3Ai(u)-8ai(u ) - 10uAi'Cu)]
0

i

E-L" E'L [-3ua Ai(u) 6 Ai(u)] } (4.89)+ i :;F + '
Notice that when T << 1, the factor (1 + Tu3/2) -3 can be expanded and the
integrals evaluated explicitly to whatever order desired. The first term in this

expansion vanishes identically when integrated, so the integral is proportional to
T when T << 1. Thus the correction term is very strongly suppressed, relative to
the leading term, in the classical limit.

To examine the correction quantitatively, let us specialize to the case of a
longitudinally gaussian bunch (but uniform and round in the transverse direction,

for simplicity). The electric field is then given by Eq. (3.29):

E±= 2Nc_ _/_e-z_/2_ 2- LB-----ff b. , (4.90)

where a = L/2v/3 = yaz is the length scale in the rest frame of the bunch, and
B = 2o'r is the bunch radius. The ratios that appear in the correction term arc

IELi2 (z/a) 2 E±" E± (z/a) 2 - 1

lE±I" - a 2 ; lE.L}2 - a2 . (4.91)

Equation (4.89) for the correction to the energy loss therefore becomes
Oo

d52 ")'re t(

_ /du(1..t-Toe-C2/2,u3/2)-3_(3ua__6)Ai(u)d( 15Sz d I,

o (4.92)

+ (2 [-4u3 Ai(u)- 2Ai(u)- 10 Ai'(u)] },

where .( = z/a and T = 2.'oe-c2/'"
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l_k)rcomi)arison, the leading term (,4.59) takes Lhc fornl

OO O0

d--(-- 87r_z_ _ a:- d,,(l+T0e:- .-2',Ai'(,u)-u 2 dv Ai(,,).
0 u

(4.93)
We now see explicitly that tile ratio of t,he correction term t,o t,he leading term is
of order

O.r 2 ~ , (4.94)
)

where V = Na,/rn.B is tile pa.rameter introduced in Eq. (3.41), proportional to the
square root of the luminosity per bunch crossing. Since :q is large (typically 103)
for any realistic set of machine parameters, the correction term is always negligible
near the center of the bunch. On t,he ottier hand, no matter how large V is, there is
always a (large) value of Z/cr beyond which the correction is larger t;han the leading
term. For most machines, the correction term will be small even here (compared Lo

the leading term evaluated at z = 0), since T is suppressed by a factor of e"-z2/2_2.
If T ;_ 1 even with this suppressior, however, the correct, ion term can become

• large. The condition for t.his to occur is

. __T°_ 1 or 9C <_1' (4.95)
Y

," ' .where C _ l/T0 is the pa,rameter i_troduc¢;d in Lq. (3.,_6) (Tl_eseexpressions

assume round bunches. For elliptical bunclles, subst, itut,e ?l _ _,l/(,; and C _ CG,
where G is the quantity detined in I:!2t.(3.21), roughly equa.l to the square root, of
the aspect ratio. The f_ctors of G happen t,o cancel in t;he condition yC _ 1, which
still holds.)

Alt,hough most, l)roposed machine paratnet,ers c(_me far from sat,isfying condi-
tion (4.9,5) there are except, ions. t'ollowlng _,,l(:na.nd Yokoya, let us consider the
l)arameters suggesl, ed by lIinlel and Siegrist for a 5 4-5 TeV collider:

7= .98 x 107.

N = 1.2x 108;
. (4.96)

czz = 4 × 10-so,m;

. o,. = '2.5 x 10-8('nl.

This is a machine with round beanls, ,q = 680, and C = 1.34 x 10 -4 . (It relies on a=

very large value of T to suppress t:_ea.msl,ra tllung, a qllil,e,dif[eront philosophy ft'ore

_
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Figure 4.2. The differential fractional energy loss, d6/d(z/tr), is plotted against z/tr,

for the IIimel-Siegrist parameters given in Eq. (4.96) and b = a,., 'I'he solid curve is tile

correction term (4.92), while tile dashed curve is the leading term (4.93) _'" es. 1.li _SC CII rves

are for scalar electrons.

the FLC design in Chapter 2.) Condition (4.95) is therefore met, so we expect the
correction term to be substantial. The leading term (4.93) and the correction t(wm
(4.92) are plotted vs. z/cr in Fig. 4.2, for b = cir (and therefore T0 = 5100). If we
were to integrate |)oth terms over z, we would find (a.s Chen and Yokoya. di(l) tha,t
the total correction term is a large fra.ction of the leading term. (For simplicity, the
formulas plotted in Fig. 4.2 are for scalar electrons. The results arc' qltalitatively
the same for Dirac electrons, the case considered by Chcn and Yokoya.)

Since the large contribution to the correction term comes from tlm regio_ z ,_
3-5 ct, where it is many times larger than the leading term, ii, see'ins, lason'(.... al)l(,
to conclude that our expansion is breaking down and neither f()rnlula is vali(l. \,Vc
might expect on physical grounds that no al)preciable ra.dia,tion sllo,lld O(;Cllr at
z _ 3-5 ct, but timre remains the possibility of a nonloca.l "end effect" tha,t callsc's
the electron to radiate as ii; enters (and l:.a.v(_s)e" the bullcho 'l'llis possil)ilitv., has '

_ [a61
been examined by many authors. Most relevant, pcrhal)s , is tlm latest work

of Jacob and V_Zu[arl, who have independently point,cd out Lhc ina.l_l>lica.l_ilityof

,t3



our expansion in the region of large [z], and have examined the radiation in this

, region using other methods; they conclude that the nonlocal contribution to the

radiation is not large. It seems safe to conclude that the leading term in our

expansion, the standard formula for quantum synchrotron r_diation_ is sufficient

• whenever yC >> 1, and that it may be sufficient even when this condition is not
met.

j,=
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50 Quantum Beamstrahlung: Applications

The previous chapter was devoted to the derivation of the standard formula
(Eq. (4.84)) for quantum synchrotron radiation. I'o summarize, the differential
probability for a relativistic electron with energy p in a transverse electric field E±
to emit a photon with energy k = (1-x)p within a distance Az is

oo

-- / [ l+x2'_ (l--x)2] (5.1)dP_.m2(Az) dvAi(v)(2___ l)(__j__x] + 2x Jdx p
u

where

_. _,t = r[ _t3 x/ " '

In this chapter we will put this formula to use, at a variety of levels of sophistication.

As discussed in Sections 4.3 and 4.5, the accuracy of formula (5.1) in all cases of
interest has not been rigorously established. It is pos=ible that there are additional

effects when the electron enters and leaves the bunch, and also when the disruption
parameter D is large. Since neither type of effect has been estimated reliably,
and since both are very likely negligible for our purposes, we will neglect these

" complications in this chapter and the rest of this dissertation.

5.1. Properties of Quantum Synchrotron Radiation

It is useful to rewrite Eq. (5.1) as

dP a(Az)
= ---R(x, T), (5.3)

dx /coh

where /coh = m/IEj_l is the coherence length and

OX3

. --TIi [Zr(, ] \---_x,(l+x'] (1-,._)2.].2x j (5,4)R(x, T)- dv Ai(v) \-Z'. - 1/ +=

lt

. The coefficient a(Az)/Ico h will appear ubiquitously in this chapter, so it is conve-
nient to give it a name, K'

y.

 (Az)
" It" =- lcoh (,5.5)

This quantity is just a times the number of coherence lengths that the electro_
travels; it is typically of order 1 when Az equals the burlch length.
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Figure 5.1. The relative number of beanastrahlung photons, as a function of their

energy, for T = .01, 1, and 100. The precise quantity plott.ed is R,(x,T) Eq. (5.4),

which gives the diffe.rential prcd_ability of radiating a l_hot,on divided by the coefticient

I< = _ (/Xz )/ t_oh.

When one is not concerned with the fina,1 heiicil, ies of the electron and phot, on,

,_ (5.4ii, is generMty more convenient to write Eq, ) a,s

oo

= v ( )-T-, ,--7,-- + d_,Ai(_)). (5.(;)

The function t_(z, T) is plotl, ed in Fig. 5.1, for T in the extreme cla,ssicM, extreme

quantum, and transition regions. When T K< 1 only soft; photons are ra.di,%ed,

wl_ile for T _., 1 the spectrum is nearly fla,t except t0 very la,rge a,nd very smMl z.

Note tha.t form:_la. (5.3) ,xluc,:s'e-,' to the cla,ssica, l re.suit (3.11) when (l-a:) << 1,

regardless of the va.lue of T.

It, is often necessa,ry to ha,ve sinlple _malyt, ic al_proxilna,l, ions of the beam-

sl,rahlung i)lloton ,Sl)eel,rum..... In l,he absense o[' radial, ion re.a.cl.ion, t,h_,c_s, can be "

obta, ine(t direcl, ly from lsq. (5.6). 1 Irst, collsider t,}le sofl, end of tlm l_llol,on Sl:tac-

iturn. \Vh' e.ll "a <,2,:.l we C_LllSC[, 11 -'- 0 everywllcre ex_.el)l, in the (Ic nolnil,a.tor of the

,16
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Figure 5.2. Various approxilnations to the beamstrMllung photon spect,runl, shown
r.

for T = 1. The d_.ushedcurve is the leading l,erm of.Eq. (517), tlm dot-dashed curve is

t,he leading term or gq. (5,9), and Ll_edotted curve is the interpolal.ing form (5.10).

first term. If, in addition, (l-x) << 1 (as is mll;oma.tically the case except when

T >> 1), the spectrlml tM_es the form

_2 ni_(0)

1
('u_''} for (l-z) << ! u ,<,<1 (5.7)

R(a:,T) = Tlla(l_x)213 aT -t-OkT} ' '=

At, the high-energy tail of the photon spectrum, where 'u,is very large, we ca.n a,pl>Jy

the a.symptot, ic expmlsion of the Airy function,

1 [ (,)], _---=e x l+O (5.8)
Ai(v) .,,-_oo2V/_--v_.; v '

, to obta, i n

. ,
/_(:_"_')= 2,/_,,/2 _1-:,:) -3"r ,T (,r,.o)

" '_:T (1-a: )
X [1+O(_)] ro,, >>12: "_r '

At in,crmcd_atc (and sm_dl) values of 'u, the [ollowing i_terpolaLing form (due 1,o
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, Figure 5.3. The expected nmnber of photons radiated, divided by tlm coc(tlcient K, "
is plotted as a function of T. The dashed line shows the limiting classic.al value 5/2x/3,

r'v31 (while the dot-dashed line shows the lea,ling term in tile quantum (T >> i) limit, .Ln_

dotted line is the approximate expression (5.12), with a = 1,5.

Blankenbecler and Drell [_l) is generally quite accurate:

2c (l+x 2 ) ltS(x, T) _ _ 2x 1 + _T_-u c2,,3/2/3, c = - Ai'(0) - .2588. (5,10)

(This approximation has the correct exponential dependence wll(.'n u >> 1, but llot

the correct power multiplying the exponential.) Ali of these a,1)proxilna.t(: forms,

along with t;he exact spectrum, are plotted for T = 1 in Fig. 5.2.

Figure 5.3 shows the integral of I_ over ali va,ltles of x, as a t'llIl(:tion O1' T.

This quantity is the expected number of l)tlol,olls radiated in every 1/(_, coller(_llc(.'.

lengths. The integrals can be evaluated analytically for very large mid very small

values of T; the results in these limits are
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Figure 5.4. Beamstrahlung energy spectra, as a, fun tion of photon energy, for three
" values of T.

1 / 5

__1.443 forT<< 1;
N._ _ dz R(x, T) (5.ll)I," 14r(2/3) _ 1460

0 _-::_i7_T_/3_ T_/_' for7 >>1.

The first, result, is of course tlm same ns Lq. (3 45). As T grows beyolld l into the
qua.ntum regime, the rmmber of photons dccre_-t.s"cs.A u,s'eful a pl)ro×imation ow,r
ali T is

5 ) -l /3
.N_ = K. _-_q (1 + aqf' (5.12)

When the parameter a is 1.5 (the ca,se shown in Fig. 5.,3), tllis furlcl, ion is accur;_tc
to better than 10% for T _< 25, and better than 20% for T < I04, T[_¢:;fit Call be

improved over n_trrower ranges of T by ilicreasing or decreasir_g a.

?
Multiplying Lq. (5.3) by (l-x) gives the differential l,ra,ctioilal energy loss asq

a function of phot, on energy. This quatltity (again divided by l,]le cooffici¢zllt I() is

plotted vs. x, for three values of T, in l'hg. o. 1. Integr_tting t,llis i_owcr SlmC.:trllrn

ow_r x gives the expected fractional energy loss, 6. We will call l,}lis quaJitity bl,
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plotted vs. T. The dashed and dot-dashed curves show the asymptotic forms (5.13)

in the classical and extreme quantum limits (to lowest order in each case). The dotted

curve is the interpolating fbrm (5.14).

since it is actually the one-photon approximation to _, valid over distances (Az)
that are small enough that the probability of emitting more than one photon is
aegligible. For limiting values of T, it takes the form

1 [ 2 55 ,T2

_1 J[dx(l-x)R(x,T) = / 3T 8x/'-3 for T < 1;

= 32 I'(2/3) 1 .3709 (5.13)

0 _-i.'_1--7_ TI/3 _ Til----_ for T >> 1.

Palmer [_°]h_ts i)ointcd out, that't,he interpolating form
#

b1 _ "T (5.1.4)
/co), 3 i + 1,34T2/3 "

is remarlCably accura, te for al', va,lues of T. Ali of these approximate expressions,

l,ogether with tt_e exact fc)rmula for 51, are plotted in Fig. 5.5.
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Table 2.1 lists Lhc values o[ 51, averaged over impact, pa,ramel,er assuming uni-

form bunches, for the SIX.,, NLC, and f LC. from Lhe first, (llla,ntum correcLion
1L

iii i,q. (5.13), one can show tha, l, t,he qua.ntum suppression t,o ¢51al, t,he SL(; is

abouL 1_). lilt. ot..her Lwo va]ues were computed by numerical illtegrat, ion of Lhe

' funct, ion (1-;r )1_( ',r, T).

.... e , such con>Since ii, is awkward t,o alwa_ys average over impact paaa.In-..tcr in

t)utaLions, it is l.empt, ing 1,o inl,roduce a,n "average" value of T, from which one

could evaluate _51(and other quant;ities)directly. Noble (al and others have done

so, defining the average value to be some enlpirical coemcienL times T(edge). The

dm_ge, r in this practice is thai, tlle _ppropriat, e coefIi('ient depends (weakly) on the

magnitude of T, and (strongly) on what quantity one wants I,o cotnpute. We will

see in (,]).e,](-'.xi,c}_a,pl,er, for example, t_hat using an average wdue of T to estimate

ttle rat.e of coherent, pa.lr production can give grossly erroneous result, s, The only

safe procedure is to compute aw_rages sepa.raLely in each case, frollTl first principles,

and ttds is what we. will do l,}lroughout, Lhis paper.

The angular depth'' ¢tcnce,' of beamsl, ral_lun 3 radiation is not, w_ry. inl,e vesting, As

shown in _e.c_a)_l 4.3, the radiation lies within a forward-pointing cone, centered

a,boul, the elect.ron's local direction oi" trawd, with opening angle ,-_m/p in the tesi,

" frame of tlm po,,sil,ron bunch or _-, 11./7in the CM frame. (Wlle.n "/" >.>1, the angle is

electron s moInentum changeslarger by a facl, or of T]/a.) Bul, t,lle direction of the '

• by roughly this amount within one cohm(.n.e ._• , c, length /cob, and the ra.rio L/lcoh is

typically a few hundred. For ali practical purposes, therefore, the opening angle of

the coae is zero, and the angular dependence of l,he ra,dial;ed phol;ons is determined

entirely by thed, of the radial, ing elect, rons.

5.2. Beamstrahlung from Polarized Electrons

. lasl
lt is well Known that classical synchrotron radiaJ, ion has a. st;fong linea.r

polarization; iri the direction of t:he electron's acceleral, ion. ltere we will investigate

t,he l)olarizat, i()n of the radiat, ion, and of ttw. ra,dial, ing electrons, in the quantum

regime. Since the electrons at, a ful,ure linear collider are likely to be longitudinally

polarized, we use tlm helicity basis o1"polariz_iLion st,ares.

As wt' saw in Section ,l.,I the various terms in [.q. (,5.1) correspond Lo the

ditFerenl, poasil)le hclicities of the o_lt.going ele¢'.l,rol] and t>llot,on, 'l'he first term

,, wit,}li1_ tile bracket, s gives t,]le l_roba.bilit,y for t.he eleclron I,o emit a, photon wit,h-

out cha_ging its helicity. \Vil,]_in the second fact, or of this l,erln, Lhc 1/2x l,et'm

corrcspo_]ds to emission of a photon wil, l_ }]elicil,y l)ara.]lel to l,]le electron's, w]]ile

1,}_(,:e:"/2a, ler_ cori'esl)onds t,o c_nission of a phol,on with Ol>posil,e }_elicits,. (This

,r-depc_d(::_ce is tile sa.n_c' a.s ix_l,}_eWeizsii.cker--\Villia[_s _[ist,rib_t, io_.) The second

le.tin wii l_i_t l,]w l_ra.cl<et.sgives t.,]]e i_robabilit.y for l.Ile elect._'on I,o e,_nit a photon
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Figure 5,6. The relative probability of helicity-flip beamstrahlung radiation is plotted

vs. the photon energy for three values of T. As in tile preceding graphs, the vertical
scale is normalized to units of K.

while flipping to the opposite helicity; in this case the photon's helicity is always

the same as the initial helicity of the electron.

The helicity-flip term of R(z, T) is plotted in Fig. 5.6, again for three different

values of T. The integral of this term over z, which gives the total probability of

helicity flip radiation divided by K, is plotted in Fig. 5.7. The total helicity-flip

probability is negligible when T << 1, and quite small even when T _. l. At the

NLC, for example, a typical electron has T _ .4 and K _ 3, so the probability

that it will flip its helicity by the time it leaves the bunch is about 2.5%. The

average beam polarization over the entire bunch crossing is reduced by t_alf t.l_is

much, just over 1%. For the FI.,C the depolarization is slightly less. Furthermore,

the electrons t.hat flip tend to be those that emit very llard photons, losing most of

their energy. The dilution of the polarization of the electron beam from this process

is therefore unimportant for all practical purposes whenever 6 is tolerably small.

One can conceive of experiments that would require better than 99% polarizationl '_1

although no one has yet conceived of an electron source that could deliver anything
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Figure 5.7. The total probability of helicity flip bcamstrahlung, divided by K, as a
" function of T.

close to 99%. Our analysis indicates that even if the machine could deliver 100%

polarization, helicity-flip beamstrahlung would reduce ii, to rougllly 99%! 4°1

A more interesting consideration is the polarization of the ('.nlitted photo1_s.

From the x-dependence of the various terms in p 5. ""Lq. ( 1}, we soc that soft i)hotons

(with (l-x) << 1) have no longitudinal polarization, while hard photons (with

(l-x) --_ 1) tend to have helicities pa,rMlel to the initial electr(m. Al, tl:e FI,C,

for example, a typical electron (with T = 18 and K = 2,a) emits .2 l)hOtOns with

(i-x) > .5, and 92% of these have pa, rallel helicity. Figure 5.8 shows the I)hoton

spectra for T = 1 and T = 100, broken into parallel a,ll(l anti-parallel helicity

components. Thus whenever the electrons are polarized, and tl-mre is a significmltz

ha,rd-photon spectrum, the hard plmtons are polarized. Beca, llse of the spin-fill-)

term in Eq. (5.1), the polarization of hard beamstrahlung photons is solnewllat

greater than that of hard virtual photons (ft'ore the Weizs'/icl<er-Willia_ns distribu-

tion). One possible use of polarized photons at a, linea, r collider is to _nea.sllre rh(;

•. polarization a,symmetry of the reaction c7 --_ I,Vu, in order to stlldy t,ll(_.W-photoll

coupling! 4'1
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Figure 5.8. Beamstrahlung photon spectra, for two values of T, broken into helicity

components. The solid curves are for photons with helicity parallel t,o the (initial) elec-

tron, while the dashed curves are for photons with helicity antiparallel to the electron.

5.3. Multiple Photon Emission

When aL/lcoh _ 1, a.n electron has a significant chance of emitting more

than one photon before leaving the bunch. If, in addition, _1 is more than a few

percent, then radiation reaction is significant' the electron's energy loss will reduce

subsequent radiation. In Section 3.4 we treated radiation reaction in the classical

regime, where ali the photons are very soft; Imw let us turn to the general case.

From Eq. (5.3), we see that the probability of emitting a photon within one

coherence length is ,-,ct. This ilnplies that multiple photon emissioll is an incoherent

process: int,:lfet(nce(.... " • between the photons can be neglected, taollowlng' Ref. 8, we

will tllerefore at)ply formula (5.1) locally l,llroughotlt the electron's trajectory.

l,el, p be l,}le initial energy of the electron, and suppose that at some point

along its trajectory ii, has eile,rgy xp. It ca.li then make a. transition to energy x_p

by emitting a, photon with energy (x- x')p. _15 find the probability for such a

transition we substitute p -, a:p and x -+ x'/a: ill Eq. (5.1). Thus the probability
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per unit length is

d2p C1772,2

i [(5'vdv Ai(v) - 1/\ _xx-_ ] + 2xx' , (5.15)T(xle - x) =--dxtd z -- x2p
,, U

where

[ [1"= -T;.r-JJ = Yt JJ "
We have defined T = plEI/m a in terms of the initial energy p. In general T can
still depend on z, through the electric field strength E. The coefficient m2/p is
equal to 1/T/_oh, but is clearly independent of z.

Let P_(z,x)dx be the probability that at position z, the electron has energy
between x and x + dx. Initially, this distribution is just a delta-function at x = 1:

Pe(O,x) = 5(x- 1). (5.17)

As z increases, I_(z, x) will increase due to transitions from higher energies down
to x, a.nd decrease due to transitions from x down to lower energies. More precisely,
Pe evolves a.ccording to the "master equation"

1 x

dz = dx' P_(z, )T(x _- x')- dx' P_(z,x)T(x'_- x), (5.18)
x 0

where the two terms on the right-hand side represent the "source" and "sink" of

electrons at momentum fraction x. It is trivial to check that the total probability
f t_ (z, x)dz is conserved.

Similarly, the photon probability distribution P_(z,x) is governed by the equa-
tion

1

dP_(z,z) i x'dz = dz' P,(z,x')T(x'- x +--- ). (5.19)
T,

From Eqs. (5.18) a.nd(5.19)it is easy to show l,lint the tota,l energy, J x(Pe+ P._)dx,
is also conserved.

From now on we will assume that the bunch is uniform in the longitudina.l
direction. (We sa,w in Section 3.3 tha.t this a,pproximation introduces only a 2.3%
error in the classical value of 6.) Also, a,s always, we will neglect disruption. Then

T is a, constant for a.ny given electron, and the kernel 7'(.z"_+-- x) is independent
of Z.
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Equation (5.18) can be solved analytically in some regimes! TM The simplest
example is at x = 1, where it reduces to

1

dPe(z, 1)L

= -P,(z, 1)/dz'T(x'_- 1) (5.20)

j ,

dz
o

The integral on the right-hand side is just the expected number of photons radiated
per unit length, NT/L. The solution of Eq. (5.20) is therefore simply

P_(z, 1) = Pe(0, 1) e -1%z/L. (5.21)

In other words, the probability that the electron has radiated zero photons after

traveling a distance z is exp(-NTz/L ). The value of Nv in any particular case can
be estimated frorn Fig. 5.3, or Eq. (5.12).

When x is very close to 1 (precisely, (1-x)/T << 1), the solution is only slightly
more difficult. In the source term of (5.18) we can assume x _ x r _ 1; irl this limit
the kernel (5.15) becomes

/'am2'_--2 Ai'(0)T 2/3 To
T(x _ x') _ -_ = (5.22)\pi (X t- X)2/3 (X t- X)2/3'

The constant 7]_ is roughly of order 1/(Ta/3Icoh). In the sink term of (5.18)we can
set x equal to 1 in the limit of the integral and in T(x _ _ x), so that the integra,l
again gives N v/L. The rate equation thus reduces to

1

, [ To

dPe(Zdz'_l) = jdx' Pe(z,x') . (x ' _ X)2/3 -- Pe(z,x) " NTL
(5.23)

Thesolution of this equation can be written abstractly as

z 1

, -- J'dz' N'_z'/L/ Pe(zt xr)" (xr x)2/3. (5.24)
Pe(z x_l ) e -N''z/L e dx' , To

0 x

This equation can be solved by iteration, using Pe(z,x) = 6(x- 1)e N',z/L as a first
trial solution. The result is

7hz _0°
Pe(z,x_l) = e -N',z/L 6'(x - 1) q- (1._x)2/3 q- (.9 (1_x)1/3 . (5.25)

The second term in brackets represents electrons that fall in energy from E to xE by
radiating a single photon, while successive terms represent electrons that make the
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transition by radiating successively more photons. If the chance of ra,dieting very
soft photons is sufficiently large, several terms irl the expansion must be ewfluated

* before it begins to converge. Referring to the definition (5.22) of rib, we see that
the first term of (5.25) dominates when

l_o_,-f <<1. (5.26)

The shape of the electron spectrum near x = 1 is interesting beta, use many
experiments require a substantial peak in order to investigate a narrow resonance.
The relevant values of (l-x) are determined by the width of the resonance in
question. Using (l-x) ,-_.01 as a typical value, we see that the expansion (5.2,5)
does not work well for the NLC (T _ .4), but does work fairly well for the FLC
(T ,,_ 20). To study the former case we will resort to numerical inethods. Iii
Section 5.5 we will carefully evaluate the usefulness of these machines for studying
resonances.

5.4. Numerical Computation of the Multiple-Photon Spectra

To solve Eq. (5.18) numerically, first introduce a. discrete grid of x values, x,,,
where n runs from 0 to N. The grid points can be equally spaced for most purposes,
though this is by no means necessary. In practice, N _ 100 works well except wherl

" T is very small, in which case the grid spacing should be at lea.st a. few times smaller
' than T. Now approximate the transition rate by

TI,--. 1

r'(__-z.)= _ 7;_,._(x-x,,,), (,_,27)
m-----O

where the coefl:icient Tmn is approximated well enough by .T(xm _- xn) times the
grid spacing. Since T does not depend on z, these coefficients are constant. Tl,e
electron probability distribution then reduces to a sum of delta funct, ions,

N

&(z,x)= _ P.(z)e(x- _.), (,_.2s)
n--0

and the differential-integral equation (5.18) reduces to zt set of co_lpled ordi_lary
, differential equations,

dP, N ,,-1
" dz - _ ;'_,(z)V;,,,-P,,(_)_ v,,,,. (:_.'2_)

,ro=n+ 1 m.=0

The sum in the sink term is just a consta,nt, which we will call s,,.
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Figure 5.9. Evolution of the electron probability distribution, for T -- .2, In this

example the bunch is takerl to be unrealistically long (with a fixed field strength), to

highlight the effect of radiation reaction The peak at x = 1 is essentially gone by the

time Z/lcoh = 600.

Given the boundary conditions

PN(O)= 1, P,,(0)= 0 for n ¢ N, (5.30)

We immediately obtain the solutions to Eqs. (5.29),

z N

PN(Z) = e -'_uz, Ph(z) = c -s"z f dz'c s''z' E Pm(z')Tnm. (5.31)
0 m=n+l

Starting with PN(Z) and working down one by one to lower n, we ca,n find all the
solutions by direct integration.

Figure 5.9 shows the ew_lution of the electron probability distribution with z
for T = .2 and z/lco h ranging ut) to 1200. This is in the qua,si-classical regime,

and the behavior is somewhat like that of the classical result (3.31). The peak of

the distribution moves down in energy, but more slowly a,s the energy decreases.
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Figure 5.10. Electron and photon spectra for the NI, C machine described in Chap-

" ter 2. These spectra are the finM probability distributions after the collision, averaged

over the transverse coordinates of the bunch. The solid curve is the final electron spec-

trum, the dmshed curve is the final photon spectrum, and the dot-dmshed curve is the

photon spectrum when radiation reaction is neglected. The average fractional energy

loss computed from these spectra is 5 = .211. (Note: disruption hms been neglected in

these calculations; see the text for a discussion of its effects.)

The width of the distribution also decreases with energy, since the higher-energy

particles radiate more and catch up. Of course these effects would hardly be
noticeable in a realistic machine where 5 is small, lt should be noted tha,t radiation
rea,ction will never cause 5 to increase, since the absolute amount of energy lost (not

the fracti¢ nal amount) in any small time interval is a strictly increasing function
of the electron's energy.

The effect of radiation reaction is less dramatic for the ma.chine designs de-

" scribed in Chapter 2. Figures 5.10 and 5.11. show the final (z = L) electron and

photon spectra at, the NLC and FLC, averaged over all electrons, after the bunch
• crossixlg is ow__r. Also shown is the photon spectrum in the absense of ra,diation

- reaction. We see that radiation reaction reduces the hard-l._l_oton Slmctrum by a

substantial factor (but less than a factor of 2) at both machines. 1 lie differences
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Figure 5.11. Electron and photon spectra for tile FLC machine describedin Chapter 2.
Conventions are the same as in Fig. 5.10. The averagefractional energy loss computed
from these spectra is $ = .216.

between the spectra for these two machines are striking. Even though _ ,_ .21 in

both cases, the photons tend to be much harder (since T is 50 times larger) at the
FLC. For the same reason, the peak in the electron spectrum at x = 1 is larger
at the FLC. Although many electrons at the FLC lose more than half of their

energy, most of this energy goes into hard photons that may themselves be useful
for high-energy experiments. Because of these features, the maximum value of

that can be tolerated at a linear collider is probably an increasing function of T.

The prospect of using beamstrahlung photons for physics experiments makes
it interesting to compare the beamstrahlung spectrum with the familiar virtual
photon spectrum. Figure 5.12 shows both spectra for the NLC and FLC. The

beamstrahlung spectra are averaged over the duration of the bunch crossing and
over impact parameter. The virtual photon spectra are taken from the Weisz£cker-
Williams distribution,

n_(x) = 1 + (l-x) 2 . __°'log472. (5.32)x 2_r
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Figure 5,12. Comparison of beamstrahlung and virtual photon spectra, The solid

' curves show tile bearnstrahlung photon sl)ectrurn, averaged over the entire bunch cross-

ing, for the NLC and FLC. The dashed curve shows the virtual photon spectrum (from

the Weisz_icker.-Williarnsdistribution) for the NLC. (The virtual photon spectrum for

the FLC is approximately 17% larger.) Again, disruption has been neglect,cd in corn-

puting the beamstrahlung spectra.

This function is always larger th_n the beamstrahlung distribution ,_.t very large

and very small x, but at the .FI,C both of these regimes are quite narrow and l.lle

beamstrahlung spectrum is 2-3 times larger over a very wide r,mge in between. Al,

the NLC the beamstrahlung spectrum dominates ft'ore very small x tlp to abo,lt

x = .58, above which it falls exponentially while l,he virtua.l pllotoIl spectrum

remains relatively flat! *al

Going back to Figs. 5.10 and 5.11, we can comp_u'e the vaJues of (5 compllted

from these spectra Lo (51, the value that we would obtain by neglecting r_tdiatioll

reaction. We find that 6 is less than 6'1 by al)out 17% for the N LC and 1 1% for the

" FLC. The values of (5 (denoted (Su, since they are (:omI)lll;ed for /lnil'orl_l l,un(:lles)

for both machines are listed inTable 2.1. Wh(;l, her (5or (51is tile more al)propriat('.

quantity is not clea, r. The percent (.,ft(mt of radiation re_cl, ion on l;lle average energy
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throughout the bunch crossing, for instance, would be roughly half as Inucll as on
the final Value of 6.

,.

Of course we have still neglected many factors in computing 6: disruption,
nonuniform bunch shapes, the spread irl the initial particle nlomenta, errors in
beam Mignment, and so on. To include these effects, Monte-Carlo simulation
codes have been developed by Noble TMand independently by Yokoya! 1_'"1 Since it

is impractical to simulate the behavior of 1010 particles, these (:odes use a smaller
number (104 for the computations described here,) of "macro-particles", which are

given a proportionally larger electric charge for the purpose of computing the field
strength. The macro-particles are randomly located with a gaussian distribution in

all three dimensions. Whether a,particle radiates a photon during a small time in-

terval is coinputed randomly, according to the sylmhrotron radiation formula (5.1).

Yokoya's simulation code, called ABEL (for Analysis of Beam-beam Effects
in Linear colliders), has been run for the _NLC and I LC, parameters used in this

paper! *_1 The resulting values of 8 are listed in Table 2.11as _Sg(for a gaussian
bunch shape, with the disruption turned off) and _5,t(with the disruption turned
on). (The effect of the initial transverse momentum spread was also examined and
found to be negligible.)

i

When disruption is turned ofF, we find for both the NLC and FLC that _g
is roughly 20% larger than _5,. This difference is almost certainly due to the

transverse gaussian bunch shape. The simulations define 3 as the average energy
loss per particle, neglecting the likelihood that the particle will participate in a
collision (when tra.nsversc momenta are present, it. would be extremely difficult to
define or compute, a properly weighted _). But we saw in Section 3,3 that with this
definition, even the classical value of (_comes out 15% larger for a gaussian bunch
than for a uniform bunch.

When disruptiorl is turned on, there is no significant change in the value of _;for

the FLC. For the NI.,C, however, _ increases by another 35%, to the alarming value
of .35. The natural explanation for this increase is the hig!_er _tverage field strength
in the presence of horizontal disruption. For the FI_C this effect is negligible, since
Dx = .07. But for the NLC design used here, with its unusually small aspect ratio
and reasonably large value of Dy, the horizontal disruptiorl pa.rameter is Dx = .74.
.According to Eq. (3.6), the average horizontal beam dimension is therefore reduced

. by roughly 11%. The average field strength increa.ses proportionally, as do the

parameters T and 1/Icoh, wllich are prol)ortional to the field strength. 1 he expected
i,

va,lue ot c5,according to Eq. (5.I) and Fig. Li(i,depeIlds linearly on 1/lcoh but less
ctt',,(,ts we would expect roughly a 14% increase instrongly on T; combining the "f,' '

_; frorn an llC_ c,'_,lecr,asein crz. Thus we can account for nea,rly half of the ,35%
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disruption effect in the simula,tion, but not a,ll. Tile reason for the remaining
difference (or tile error in the preceding analysis) is not known.

- Because the effect of horizontM disruption is 1lot well understood, it has been
completely neglected in the rest of this paper, except in it,s effect on the pinch

. enhancement HD (which is much larger for the NLC than for any machine with
very flat, bunches) and thus on the luminosity. This inconsistency in hardly fair,
since the plots in this chapter could easily give the impression that the be_m-

strahlung energy loss at the NLC is much smaller than it actually is, These plots
are unquestiona.bly wrong; the only uncertainty is over how rquch. This issue re;
quires careful investigation before machine designs in this pa,r,ttneter rvgirne can
be properly evaluated.

There still remains thequestion of how to ])est define di. We have seen in
this section that radiation reaction reduces 6' by 17% at the NLC, but tile effect
of this reduction on the average available collision energy will be smaller. We
h_ve also seen that there is no obviously correct definition o[' di when the bunch is
nomlniform. Both of these ambiguities are avoided if we discuss only the spectra

of CM energies at which actual collisions between particles occur. We now turn to
the computation of these spectra.

5.5. Luminosity Spectra

, In Section 3,6 we saw tht_t the luminosity spectrum in the classicM case can
: be crudely approximated with very little efrort. In the quantum (:ase, however,
' the probabilistic nature of the radiation requires us to treat the comI)utation more

properly.

First imagine a collision between two relativistic particles with well-defined
energies xlE and x2E. t,et Ecru =: 2E be the 'hmminal" center-of..mass energy,

and ecru the total energy in the true c.enter of mass, The ratio e_m/Ecm is then

_,. __ ecru
.f_'cm := _/Xl:/:2. (5.33)

Next let the energies of these particles be distributed _ccording to probability

distributions P_(xl) and P2(x2). Then the differential luminosity as a function
of X is given by

: " l 1

(lfr_, _ /dxl /dx2 Pl(3:l) ])2(x2)di(X " - _). (5.34). dX ,
• 0 0

This distribution is normalized to 1 provided tlla,t ._21 a,Ild t)u are norlnalized to 1.

!
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Figure 5.13. One moment during the bunch crossing, and one point at which to
evaluate the contribution to the luminosity spectrum,

Now consider the situa:tion depicted in Fig. 5.13, and concentrate on collisions
occurring at point A. Electrons located at a distance zl behind the front of the
electro1_ bunch are colliding with positrons located at a distance z2 behind the front

of the positron bunch. Since the electrons have passed through a length z2 of the

positron bunch, their probability distribution P1 should be evaluated at z = z2; "
conversely, the positron probability distribution P.. should be evalua,ted a,t zl. The
luminosity spectrum coming from this instant is therefore

1 1

dX A
0 0

The distributions P_ and P2 can be computed using the methods of the previous
two sections.

Finally we must integrate over ali places and times in the entire bunch cross-

ing. Since the electron encounters positrons throughout the length of the positron
bunch, we must average over values of z2 from 0 to 1. And since the electron could

have been at any point zl within the elect_on bunch, we must also average over

values of z_ from 0 to 1. The luminosity spectrum for the entire btmch crossing
(but still for a, single impact parameter) is therefore

L L 1 1

d'-_-J L _ dzl dx2Pl(z2,xl)[_,2(Zl,X2)5"(X-x/_). (5.36)
o o 0 o
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The integrals over zl and z2 are most easily performed first. Defining

L

-p(x)=f (5,37)
,. 0

we have simply

1 1

0 0

Using the delta function to perform the m2 integral, we obtain the less symmetrical
but more useful formula

1

[ 2xdC __ dxl _ -'til(x1) -P2(X2/xl). (5.39)
dX j xi

X 2

Either (or both) of the distributions P1 and P2 appearing in the above formulae
could he for photons rather than electrons or positrons. Thus we can compute the

. luminosity spectra for e+e '-, cT, and "77 collisions. All Lhree spectra, computed
numerically from the probability distributions of the previous section, are shown

for the NLC irl Fig. 5.14 and for the FLC in Fig. 5.15. Here we have averaged over
impact parameter, assuming a uniform elliptical bunch shape. The dependence of
the spectra on the transverse bunch shape is shown in Fig 5.16, which compares
the NLC spectra of Fig. 5.14 to the corresponding spectra for a gaussian bunch
shape. The difference is negligible for most purposes. (For simplicity, the field
strengths used to compute the curves in Fig. 5.16 are actually for a round bunch,
with _rrchosen so that the corresponding round uniform bunch has the same field
strengths inside as the elliptical uniform bunch. In any situation where these tiny
differences might matter, one should compute the spectra properly for a flat bunch
with a gaussian profile in ali three directions. Of course by the time the bunches at
a linear collider reach the interaction point, they are probably no longer gaussian
anyway.)

Notice from Figs. 5.14 and 5.15 that while the luminosities a_,.large X for e7
and 77 collisions are non-negligible, they are still quite a bit smaller than the
e+e - luminosity. It should be emphasized, however, that, the parameters of these

machines were chosen under the assumption that a larger beamstrahlung energy
loss could not be tolerated. Higher photon luminosities could certainly be obtained

65

=



\i

2

-._

0 0.2 0,4 0.6 0.8 I
lp

X = Fractional C,M. Energy

Figure 5.14. Luminosity spectra for the NLC parameters given in Table 2,|. The

solid curve is for electron-positron collisions, the dashed curve is for electron-photon or

positron-photon collisions (either separately--not the sum of both), and the dot-dashed

curve is for photon-photon collisions. The spectra are averaged over the duration of the

bunch crossing (assuming a uniform longitudinal bunch profile) and over the transverse

coordinates (assuming a uniform elliptical cross.-section), neglecting disruption. See the

end of Section 5.4 for a discussion of the effects of disruption.

if desired, by redesigning the machines or (to a lesser extent) by changing the final-
focus optics to obtain a smaller aspect ratio. As wa,s first pointed out in Ref. 8,
the prospect of using beamstrahlung photons for physics experiments should be

seriously considered in the design of a linear collider.

As discussed at the end of Section 5.3, it is important to know what fraction

of the luminosity of a collider is within a small range of the maximum CM energy.
We are now in a position to answer this question. Define ((X) to be tile fraction of

the luminosity at a fractional CM energy grea,ter than or equal to X. First let us
calculate g(!), the lumino:;ity that is exactly ai, file CM energy, which comes from

electrons that have not radiated at all. Inserting the delta function term (,5.21) of
the probability distribution intx) Eq. (5,38), we find
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Figure 5.15. I,uminosity spectra for the FLC parameters given ill Table 2.1. Conven-

• tions are the same as in Fig. 5.13.

N-r ' (5.40)

' The expected number of photons N.f carl be estimated from I Ig. 5.3 oi' Eq. (5.12).

Since N_ depends on the transverse coordinates within the bunch, we must average

over those coordinates. Eva,luating the average for a uniform l)unch, one obta.ins

.12 for the NI, C; (5.41)ce(l) = 38 h)r the FLC.

(The computer simulations discussed at the end of the previous se,ction yield mucl_

. sma,ller values for this quantity, especially for the NI, C, even when disruption is

turned off. The reason for the discrepancy is not known.)

- In practice, the releva.nt quantity i::;not g.(l), but g(X) for some X that is fairly
' 'O " ( (close to 1, sa.y .99. According to our ana,lysis at the end of Sect1 n 5.3, g.(.,)0) should

be close to _'(1) at !.he FLC but not a,t the NLC. Indeed, a numerica,1 evalu_tion
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Figure 5.16. Comparison of luminosity spectra for a uniform bunch profile (dashed
curves) and a gaussian transverse bunch profile (solid curves), for the NLC parmeters.
The dashed curves are identical to those of Fig. 5.13.

gives

= _'.24 for the NLC;g(.99) (5.42)L.46 for the FLC.

Since only a quarter of the luminosity for this NLC design is within 1% of the peak,
it is not well suited for investigating a narrow resonance. Other 1/2 TeV machine
designs in Ref. 10, while having a lower overall luminosity, do not have this short-
coming, and ma), therefore be preferable for such experiments. Of course an ideal
machine would be one at which the a_spect ratio could be varied to yield a higher
total lurninosity or a sharper peak, whichever the experimental situation demands.
To what extent this may be possible has not yet been carefu]ly investigated! _°]
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6. Coherent Pair Production

• Coherent pair production is the inverse of beamstrahlung: a photon, in the
presence of a strong electromagnetic field, converts to an electron-positron pair.

. The process is illustrated in Fig. 6.1.

e-

q

"--_ p+ e+

Figure 6.1. Feynman diagram for coherent pair production.

The rate of this process is simply related to that of beamstrahlung by the

" crossing relations

, k _ -k, p.f _ p_, pi .._+_p+. (6.1)

Let us make the following definitions:

kE_l_ ( 1 ) 2/a
x = p-" Tk = ' u - . (6.2)

k ' m 3 ' Tkx(1-x)

Thus x is the fractional energy of one member of the pair (the electron), Tk is
like T but evaluated for the photon energy k, and the new u is obtained from the

previous one (5.2) by the crossing relations (6.1). In terms of these quantities and
Icoh = m/E.l_, the differential probability for coherent pair creation in an electric
field is

d2P a

d_dz = t_oh'S(_,Tk), (6.3)
where

_. OO

1/ 1S(x Tk)- _ dv Ai(v) (---i)(x2-, "4-(1-x)2_' _ _ )7(_--:;i-J + 2x(1-_)
U
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Note the close resemblance to the synchrotron radiation formulae (5.1) and (5.6).
The precise correspondence under the crossing relations (6.1) is explained fully in
Refs. 29 and 14.

The history of Eq. (6.3) is almost identical to that of the synchrotron radiation
formula (5.1). Tile first full treatment of the problem, using explicit wavefunctions

in a uniform magnetic field, was given by Klepikov 1311,while our relatively sim-

ple form of the result is due to Nikishov and Pdtus! "_21Baler and Katkov t2_ilater
obtained the same result by more abstract methods; a nice treatment from their
viewpoint can be found irl the textbook of Berestetski, Lifshitz, arid Pitaevskii! _91

Most recently, the formula has been derived using scattering-theory formMism (sim-
ilar to that of Chapter 4 of this dissertation) by Blankenbecler, Drell, and Kroll! '(1

The importance of this process in beam-beam interactions was first recognized by
Chenl _21and has been discussed in more detail by Chen and Telnov! '3'4_)

The implications of Eq. (6.3), however, a.re quite different from those of the

synchrotron radiation formulae. The pair production spectra for several vah|es
of Tk are plotted in Fig. 6.2. The most striking features are the symmetry under

x -_ (l-x), the exponential suppression as either x or (l-x) goes to zero, and the
exponential suppression in the total rate when Tk < 1.

To verify the exponential suppression, note that the new u, defined in Eq. (6.2),
grows large compared to 1 whenever x, (l-x), or Tk is small. In any of these three

circumstances we can use the asymptotic expansion (5.8) of the Airy function to
obtain

S(x, Tk) .-_ I (l-x(1-x))e_(._/.3).,/,[l+O(1)]. (6.,),,-, 4;()-x)
The conditions for this suppression to occur can be stated more directly if we define

p+E±
T - p-E.L = xTk T+ - = (1-x)Tk; (6:6)77/3 _ * rl_ 3

these are just the usual quantity T, evaluated for the momenta of the outgoing
electron and positron. The exponential suppression of the pair production rat(:
occurs when ell,her T_ or T+ is small (:ompar(.,d to 1. In other words, very soft

particles are never produced by this process. To emphasize (,his fact, Fig. 6.3 shows
: an expanded view of the soft end of the sp :.ctlum for tlm sanl ..' (..... (' values of Tk as in

Fig. 6.'2.
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Figure 6.2. Coherent pair production spectra for several values of Tk.
4

When Tk << 1, the spectrum is strongly dominated by the region near x =

1/2. Expanding about this point and integrating over x, we obtain the total

p rob ab ili ty129J

dP _ [27 e_S/(3Tk ) (6.7)d-7
Coherent pair production is therefore completely negligible when T << 1. For

example, even if there were one very hard photon for each electron in the bunch,

less than one coherent pair would be produced per bunch crossing when T < .1.

We will make some more careful estimates below, taking the beamstrahlung photon

spectrum into account.

When both T_ and T+ are of order 1, the pair production rate is comparable

to the synchrotron radiation rate for the same field strength; that is, the probability

. of pair creation within one coherence length is of ordcr 1/a. When both T_ and

: T+ are much greater than 1, we can set u = 0 wherever possible in Eq. (6.4) to
obtain

- Ai'(O) x 2 -4-(l-x) 2= T) (6.8)
u(1 ,v,l/3 xl/3(l__x)l/3"_k
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Figure 6.3. Expanded view of the leftmost 5%of Fig. 6.2. No matter how large Tk is,
the spectrum is exponentially suppressed when T_ = xTk <C,C1.

Although this expression is never valid when x or (l-x) is very small, we can still
integrate it over x from 0 to 1 to obtain the asymptotic total rate in the Tk _,>1
limitt29_:

dP c_ 5.32/3r2(2/3) (_ .380

d--_-_ , _,1/3 7 r2(1/3) -- /coh T 1/3' (6.9)Lcoh_k k

The rate falls off as T-l/s, just as it does for synchrotron radiation. Figure 6.4
shows the total pair production rate over a wide range of Tk.

Coherent Pairs from Beamstrahlung Photons

So far all of the expressions in this chapter are for the number of pairs cre-
ated per photon. In the beam-beam interaction, however, the photons are created

continually at a rate determined by the synchrotron radiation formula (5.1). To
estimate the number of pairs, therefore, we should fold the pair production rate -
with the beamstrahlung spectrum.

As in the previous chapter, let us consider the idealized situation in which the

bunch is uniform in the longitudinal direction and the disruption is very small.
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Figure 6.4. The total probability of coherent pair production, divided by the coefficien_

-* ol(Az)/lcoh, is plotted vs. T_. The dashed curve shows the limiting form (6.7) for Tk << 1,

and the dot-dashed curve shows the limiting form (6.9) for Tk >> 1.

Then the electric field along any given electron's trajectory is consant, so T and

/coh are constant. Finally, let us neglect radiation reaction; this will cause us tc)

over-estimate the number of hard photons, and hence the number of coherent pairs,

by several percent in most cases. With all these simplifications, the spectrurn of

pairs produced by a single incident electron is obtained simply by folding the pa, ir

production rate (6.3) with the beamstrahlung spectrum (5.3). If x represents the

fractional energy of one member of the pair, as a fraction of the energy of the

incident electron, then the differential probability is

L 1

--// ° oz,/dP dz dy 1S(x/y, yT) _ . 1-y,T)dx _ y
o z

= - dy- S(x/y,yT)n(1-y, T). (6.10)
'_ 2 lcohJ Y

7C

tlere S is the pair production spectral function (6.4), R is the beamstrahlung
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Figure 6.5. Coherent pair production spectra, taking the beamstrahlung photon spec- t
tra into account, for three values of T. Ttle curves were computed by numerical inte-

gration of Eq. (6,10), divided by the normalization constant K 2, where K = o_L/lcoa.

The curve for T = 1 has been multiplied by 10 for clarity,

spectral function (5.4), and y is the fractional energy of the intermediate photon.

The factor of 1/y arises from the f_ct that Eq. (6.10) is differential in x, rather

than x/y. The total probability of pair production by this electron can be found

by integrating over x'

P = eyn( -y,T) , yT). (6.11)
0 0

p.
The inner integral is just the function plotted in i:.lg. 6.4, proportional to the total

probability of pair creation by a single photon with fractional energy y.

For a more accurate treatment of the beamstrahlung photon spectrum, one

can use the rate equations (5.18) of Sectiorl 5.3. It is straightforward to a source

term to the electron master equation representing pair production. Similarly, the

photon equation would now have a pair-production sink and a second source, from

the positrons. Finally, there is now a third equation, identical in form to the
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electron equation, for the evolution of the positron spectrum. The rate equations
can be solved numerically as in Section' 5.4. We will not do so here, however,

' since accuracy of this order is not necessary for our purposes. For the NLC in
parti(:ular, ina.ccuracies due to assumptions about the bunch geornctry are much

- more significant, as we will see in Section 7.2.

Equations (6.10) and (6.11)simplify considerably in the limit T << 1. Inserting
the approximate expressions (5.9)for R and (6.5) for S, we find that thedifferential

probability (6.10) h&s a.n exponential suppression factor of the form
: 1

2 y

d._Pdx"_i dy ("')exp[--3-'T(1_--_"j-x(y:-xi)], (6.12)

The exponent has a maximum at y = (l+x)/2. F,xpanding about this point, we
obtain the asymptotic tbrm

: V 2,Tx, a2(l+.):, '
(This formula is accurate to within several percent up to T 1.) To find the total

, number of cohere.:t pairs in this limit we integrate over x, expanding about the
maximum of the exponent (which occurs at x = I/3). The result is

P ,-_ e (6.14)\1 ohJ

_ (This result can also be obtained by plugging Eq. (6.7)into (6.11)and then inte-
grating over y.) Notice the very strong dependence on T in this formula: a 13%

: error in the value of T would change the ,'esult by a factor of 2,

-: Of perhaps more interest is the form of the spectrum (6.13) when x << 1 (that--7,

is, when one member of tlm pair is very soft), Setting x = 0wherever I)ossible, we
obtain simply

We a,re generally interested in machines for which T > .l and c_L/lcoh ,'-' 1, For
. order-of-rrlagnitude estima, tes in these cases we (:an use l,he expression=

_dI) ,,_ _1 e.._U/(aT_,). (6.16)- ,. dz v&
lrIi! "S 't.tlll,: is the. same (..xpzesslon'.... we would have obtai|led (lir(;ctly from Eq. (6.5), n..-('
glecting the photon spe(:torum.) The total proba,bilil,y of creating _ pa,lr with x < x0

_
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is given by the integral of dP/dx, which in this case is roughly

P(x < xo),,, x_/2e -2/('_r*°). (6.17)

When T = 1 and x0 = .03, for example, the total probability is of order 10-12.
We will make more numerical estimates in the next chapter.

Angular Distribution of Coherent Pairs

The angular distribution of coherent, pairs is no more interesting than that of
beamstrahlung photons, The electron and positron come out at an initial angle
of order m/kl _71which is roughly 100 times smaller than the typical angle of the
initial photon (which it inherited from its parent electron). The pairs can, however,

acqmre a much larger angle as they exit the bunch, especially if their energies are
much lower than that of the beam electrons, We will return to this subject in the
next chapter.
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7. QED Backgrounds at the Next Linear Collider

' In the preceding chapters we llave seen tliat the combination of high energy and
high luminosity per bunctl at linear colliders gives rise to several important beam-

• beam effects: disruption, beamstrahlung, and coherent pair production. Another

important process is incoherent pair production, in which an electron-positron pair

is produced in a direct collision of two 1)hotons, either real (from beamstrahlung )

or virtual (emitted by a passing electron or positron)! 4"1

Pairs created by the incoherent processes tend Lo be very soft, simply because
the cross-section for '7")'_ e+e- fa,lls off like 1/E2m, In the CM frame of the t.wo
photons, the cross-section is not strongly peaked in the forward direction. Fur-

thermore, these soft pairs are disrupted very strongly by the field of the oncoming
bunch, with one member of tlle pair always being pushed outward. If too many
charged particles enter the detector during ca,cb bunch crossing ' much of the de-
tector is rendered useless. The energy spectra and angular distributions of these
processes therefore merit careful investig_d,ion.

Because of the large number of processes and the wide range of energies and
angles that must be considered, this subject does not lend itself to _ simple, general,

' and accurate analytic treatment. We will tlwret'ore sacrifice accuracy and genera, lity
in favor of simplicity. We will COllt:ineour attention to the "next linear collider",

a machine wil,h an energy of 1/2 TeV. I)_r specific numerical examples we will use
the NLC parameters in Chapter 2, alwa.ys bearing in mind that other NLC designs

tend to have lower luminosity and fewer (and softer) bearnstrahlung photons. (A
1 TeV machine, on the other lie,hd, would haw_ a, slightly higher luminosity and
slightly harder photons,) Furthermore, we will make no attempt to col,npute tlm
rates of these processes to better than a, t'ttctor of 2.

7.1. Outgoing Angles and Interaction Region Geometry

Before 1,,.untiring into corllputatiolls o| pair production rates, let us ask what the
detector can tolerate. One tentative prol_osal taglfor the interaction region geometry
is sltown in Figs. 7.1 and 7.2. In this desig11,tile t:in,d focusing quadrupole magnet is
1 meter from tlm interaction point, and has a.pole tip aperture of about 1 mm. The
beams cross at an mlgle of 6 millira.(limls, a.lld t,lw. outgoing bemn leaves through a.
larger hole to the side of the qua,drllpole tips. (Some. designs have a crossing angle

as large as 50 tared, whicll allows for a.llatlcll larger exit hole.) Surrounding the final
" quadrupole and extending down toward the i)lteract, ion point is a conical tungsten

mask, designed to sl)ield the detector t'roln any radiation tha,t might originate in
tlm vicinity of the quadrupole.
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Figure 7.1. A very tentative sketch of tile interaction region of the next linear collider,
The vertical dimension is oxaggerated.
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Figure 7.2. A face-on view of the final focusing quadrupole. In this design the crossing
angle, and therefore the exit hole, are relatively small.
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In Section ,'.3.I we saw ttlat til<., trajec,,<_,'y of a I>e_.tinelectron wit,tlin _t uniform,

cyli1_dric._t, ulldisrupte.d bunch of l)OSitroils is

. t,,,y(..:)= v I, " '

llere all qli_mtitiesa.re eva.lua.l,ed in the rest frame, of the positron bunch. From

t,',Jis '"e ca,n t'illd the _na,ximum ¢lisrul)l.ion angle o1"ml electron witll the full beam

energy, at,_,;dned when t,]ie electron enters at the edge of the bunch and exit, s as it,

crosses _,,_¢ :is. The ma.xil_nlr_l di q'upl, ion a.Jlgle in l,he verl, ic_l direction, (..va,lu,._l,cd

in tlm(.. ._-t_ne, is

Oy oy Dy _ 4 rco'y

1._= o._ v _ -- ,VS_7, ,.rr .; = .28 ,,,rad for the NI,C. (7.2)

(litre a11d l,tlrotlghoul, tills cllapl,er we will write expressio!ls ill t.c'r_ns of _,, cyv, and

cra, a,lt,hough most of the derivat, ioiis are for IJwliforI_lcylindrical bunches. Wherever

t:;,.;-ssil)le,expressions a.re simplil'ied 1_3' assullling o'z 2:> o v. Nun._bers for the "NLC"

, a,re for l,l_e para,meters given il_ 'I'al_le '2.1.) l_y tile same a.rg_me_ll,, the m_tximun_

horizonta.l disrupl, ion angle is

o=V v'a

(Not,ice t,h.a,Lthis expression is i_dopendel_l, of _r, _.md o'v. ) .Since D_ is generally

less than 1, however, the bunch crossing is over before this angle is ever attained.

: For our NLC parameters, D_ e¢l_mls .74, so l,]le acl, ual maxinmm horizontal angle

is about, 1.0 mrad. For designs with a. larger a.spect ,'a.tio t.he actual angle would

be still smaller. In any case, we see t,ha,t an exit, l_ole witl_ radius 2-3 mm at a

: disi, ance of 1 m from the interaction point, as in Fig. 7.2, is la.rge enough to _ccept

ali disrupted electrons t,ha.t still carry l.,he full beam energy.

-- An electron that has l:sse" than the full beam energy will also oscillate wil,hin

. the positron bunch, b_t wil,l_ a. slmrt, er wa,velengl,}_ a.nd therefore a, la,rger m_ximum

',c " disruptiona.ngle. If the elect, ton carries a t'ra,ctiol_ a' of the bea.m energy, it,s eJtc.l,_ve

_. al, ,,. . -_ _,, ,.._ . _,• I _tta.m_:t,c_is incre_sed by a, factor of l/,r, and hen_._, the maxii-l_um outgoing a,ng] s

-- am increased by 1/v _. Equal,ions (7.2) and (7.3) t,herefore become

' _/ 'IN_'ec,_ _ .28 mrad

/

0_ : ,V:3a,_cr_a, - v_; for the NI, C; (7.4)
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_/ 4Nre _ 1.4mrad0_) = x/_xTa_ - x _ for the NLC. (7.5) ,

For example, an electron with x - .01 at the NLC could acquire a vertical angle
of tlp to 2.8 mrad, and a horizontal angle of up to 14 mrad. (If the aspect ratio

, ax/O'y were larger, the vertical angle would be smaller but the horizontal angle
would be the same.) For the design shown in Fig. 7.2, such an electron would have

good chance of hitting the face of the final quadrupole. It would then create an
electromagnetic shower, with some of the resulting photons (and possibly electrons
and positrons) heading back toward tile interaction point. In this particular case
the problem could be avoided by using a larger crossing angle and larger exit hole.

Next consider the trajectory of a positron with fractional energy x traveling
in the wrong direction_against the oncoming positron beam! 5°JIt will quickly get
pushed 111) oi" down to the edge of the beam, beyond which the field is very strong
and relatfively constant out to a. distance of ,,_ B, = 2az'

4Nc_

IE(°utside)[ _ LB'--"_x" for y _ Bx. (7.6)

If its energy is relatively large, ii. will reach the end of the bunch before leaving
this strong-field region The condition for this to occur is

4:,: L £ 1, (7.7)

where z is the distance traveled by po,_itron from its cre,_tion until it reaches the

end of the bunch. When this condition is met, the positron's final angle is

X O"z :g

Note that for our NLC parameters, with D_ = .74, condition (7.7) is met only for
fairly h_rd positrons.

When condition (7.7)is not met, the positron leaves the strong-field region
before reaching the end of the bunch. Outside of this region the field f_lls off more
quickly, so any additional angle it acquires will be relatively smaJ1. The angle it

' a,cquires while in the strong field is

' 8Nre 2.0 mrad0 _ v/3a_T* - vG for _,heNLC. (7.9) .

Several commeIlts a,bout this formula are in order. First, it was derived under the

very crude etpproxirnation of cutting off the field at a height of 2ax above the bunch;



since the machine design may depend on the precise coeffic;ent in this formula, it
should be checked against the more realistic situation of a gaussian bunch with

' the field extending to infinity. Second, the formula depends only on the positron
energy "ga:a ,d tile linear Charge density N/_rz, and is independent of ct, and _rv; it

• is therefore relatively independent of tile particular machine design. Finally, it is
almost identical to expression (7.5) for the m_,ximum horizontal angle of a trapped
electron oscillating within the positron bunch. This is no accident, since both
results depend only on the potentiM difference ft'ore the center of the bunch to far

outside. Aside from the factor of x/2-, the main difference between Eqs. (7.5) and
(7.9) is that only a small fraction of the trapped electrons exit with such a large

angle, whereas almost every soft positron is pushed out to the same angle (7.9)! _1

According to Eq. (i'.9), sufficiently soft positrons can leave the interaction point
at very large angles. Referring t,o Fig. 7.1, we see tha.t many will hit the face of
the final quadrupole and the luminosity monitor, tl lie, ma.sking must be sufticient
to block the showers from these pa.rticles almost completely. On the other hand,
very soft positrons (at the NLC, witl, a: ;g 4 x 10-4 or a,n energy of 100 MeV)
will have an angle greater than 100 mrad, and will therefore hit the outside of
the masking. These also create showers, witll the backward-nloving photons from

• these showers going straight iltto tile drif't claanalr)erof the detector. A fraction
of the photons tj:en Compton-scatter orr the gas in the drift chamber, aald the
resulting free electrons (if there are too many of them) flood the ctla.nlber with
tra.cks. Preliminary computations with tlm ,_,-,et_,v,._Monte-Carlo (:ode indica.tc (with
a very large factor of uncertainty) tllat for every thousa,nd .50-MEV electroiis or
positrons that hit the outside of the masking al an angle of 10°, a, few hundrod
electrons are found in the drift chamber! '21

A fina.t colriplication (but a welcome, one) is tlle solenoidal magnetic field of the
detector. 'i he radius of curvature of a cllarged particle with transverse momentum

Pr in a constant magnetic field B is (irl SI IIzlits)

:-- 1II/'

" e--B' (7.10)

For the design of Fig. 7.1, any particle with a, radius of curvature less than 1.5 cm
will curl so tightly that it enters the openillg in the nlasking, rega,rdless of its initial

r_ *angle. Let us assume the typical value of l Icsla for the field strengtll; l,he critical

. value of Pr is then 4.,5 MeV. Returning to l/I. (7 9), we find l,hat for low-energy
positrons,

,_ p_. _ ,500 MeV for the N ,C, (7.11)

and therefore that positrons with a: < 8 x 10-'_ will enter the opening in the
masking. A more careful analysis, taking the precise trajectory into ;recount, raises
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this limit very slightly, to 9.3 × 10 -5, and also lowers the limit of the preceding

paragraph from 4 × 10-4 to 3.7 × 10-4 .

The conclusion ft'ore this analysis ix that for a 1/2 TeV collider with N/ez

[ , 'jas irl the NLC design of _Ia)le 2.1 an interaction region geometry as in. Fig. 7.1

and a solenoidal field strength of 1 T, there exists a small but significant range of

energies for w]lich a positron traveling in the wrong direction is pushed out to a

large angle and hits the outside of the lnasking. That range is roughly

9 x 10-5 < z < 4× 10-4, or 25 MeV < E < 100 MeV. (7.12)

Iligh-energy posit.rons, above the upper limit, acquire tot) small an angle as they

exit the bunch, while low-energy positrons, below the lower limit, are contained in

the solenoidal field. The upper limit could be reduced by increasing the angle of the

conical masking, while the lower limit coul_l be raised by increasing the solenoidal

field strengthiSal or increasing the dialnetc'r of the opening iri the masking. 'fire

disadvantage of the latter approacll is tllat tile lnasking must shield the detector

from photons created by higtl-er|ergy po._dtrons (and electrons) hitting the face of

the quadrupole magnet, as well as fronl showers i11itiated by synchrotron radiation

emitted by the beam as it is bent by the quadrupoles. Monte Carlo simulations to

study the effectiveness of various lnaski||g designs are currently underway.

The analysis of outgoing angles ill tllis section has neglected any intrinsic angle

that an electron or positron nlight lta ve wllen ii is initially created. As we will see

below, a small ft'action of the pairs created by the incoherent processes have angles

that are comparable to, or larger tllan, tlm acquired angle (7.9). In this case

Eq. (7.12) no lollger applies, and any eleclron or positron with

0 > 100 lnrad alld Pr > ':1.5 bleV (7.13)

is potentially dangerous. AgaiI_, lmwever, tllese limits are sensitive to the geometry

of the masking and the solenoidal field strenglh.

7.2. Coherent Pair Production

We saw in tile previous chal)ter tllat in tl_e NLC regime where T ,,% 1, the

-- coherent pair production rate depen_ls exponelitia!ly on T. This process is therefore

completely dominated by the region of space altd time during tile collision where

' the field strength attains its higllest vallm, while the nuznber of coherent pairs is

extremely sensitive to tlm ma gzlitude of tl_is value:. Because of this sensitivity, we

will estimate only orders of nlagl_ilude in this section. A more accurate analysis

would require a careful t reatme.n( of l lie precise bunch geometry, including the
effects of disruption.
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The value of T(edge) for the NLC in 'Fable 2.1 is .56; this is the value of T at

tlle edge of a uniform cylindrical bunch. Wllen the bunch has a transverse ga.ussian
" profile, tile maximum value of T is slightly (and negligibly) less. A gaussian shape

in the longitudinal direction, however, has a large effect. We saw in Eq. (4.90) that
" tlm lnaximum field strength in this ca.se is larger than that of a uniform bunch

by a factor of 6V'6V'_. Another significant effect for this NLC design is horizontal
pinching (since Dr. = .7,-1is relatively large), which increases the average tiel(.l
strength by about 10%, and increases the maximum field strength by much Inore.
The maximum field with pinching, however, is only felt by the tail of the oncoming
bunch. For our present order-of-magnitude estimate, therefore, let us use the
aw'rage value of 10%. Our estilna.te for t,he maximum value of T is therefore

Tmax = .56' V_/.9 = .86 for tl,e N LC,. (7.14)

To conlpute the total number of colwrellt oair._ we can use Fq. (6.14). In the
coefficient al,/lcoh, we should set L e(lual to the length over whi(:ll the exponent
exp(-16/3T) is reasonably close to its l_laxinmnl value, say within a factor of 2
(or _ field strength wit.lain 13%); this l(nlgtll is rouglily .3 times the bunch length.
" le '(, . factors as. 11. coherence length lcoh is (,_,l,an( d by tile sama T, relative to its
maximllm value in a. uniform 1)lln(:l_. (',olnl)illing ali the factors, we find

,b oL

- 1.3 for t1),(:'NLC,. (7.15)
/cob

'_ •\V(_can li()w evaluate Lq. (6 14) to ol)(aill i,ll(, total t)robability for coherent pair
creal ion,

P _ (i x 10-5, (7.16)

Sliglltly less tllan a, third of the electrons l)ass tllrough the region in which t,h(: fiel(l
(:()llles withill 13% of its Ina.xillltlnl value, so file total nunlber of pairs i)er bunch
crossing is rougllly N/3 times this aural)or:

Number of pairs ,,_3 x 105 per bunch
(7.17)

3 × 106 per t:)urlch train.

( I h(.sc numbers are for pairs going in only one (lirection.) lt must be empha,sized
; that tills result is uncertain by at least a factor of 2.

_" The spectrum of these pairs is apl)roxi_nate,J closely enough by tlm curve for
T = 1 ill Fig. 6,5. The peak occurs near a'= .3 (or E = 75 GEV), with the ra,re

- )(..lowx = 1 Accordilig to Ix i. (7.8), the an(trol)i)ing muclmlower 1 ' . . '_ gle acquired by
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Figure 7'.3. l"cynman diagrams for the Breit-Wheeler process, "_7--' e+e-.

these positrons exceeds 3 mrad when x f_ .2; thus a. large fraction of them would

hit the face of the quadrupole in Fig. 7.2. Whether this is a problem depends on

the effectiveness of the masking. If it is not tolerable, then this machine requres a

larger exit hole, and therefore a larger crossing angle (as the design indeed has in
Ref. 10).

,)

The good news, as we already saw in Lq. (6 17), is that none of the coherent

pairs (that is, less than one per bunch train) have x < .03. According to Eq. (7.9),
t.his implies that n.one acquire an angle larger than 12 mrad. \Vith a crossing

angle o¢ ,50 mrad it, should be easy to make the exit hole large enough to accept

every positron produced in this process. None of them come anywhere close to the

100 mrad angle of the masking.

If a small crossing angle is required for other reasons, aud the masking is not suf-

ficient to block the showers from 106 high-energy positrons hitting the quadrupoh.'
face: then one is forced to consider NLC designs with smaller values of T. As an

example a.t the other extreme, machine F in Ref. 10 has Tru,rx _ .22, and there.
2 el e 'fore, according to ],q. (6.1), l.ss than one coherent pair produced per bunch traill.

Thus it is certainly possible, one way or _nother, to avoid all background problmns

from coherent pair production.

7.3. The Breit-Wheeler Process, "I"Y"+ e+e-

Tile simplest incoherent pair production process is the direct collision of two

real photons to create an electron-positron pair. This is just a cross-channel

of Compton scattering; the two leading-order Feynman diagrams are shown in

Fig. 7.3.

The cross-section for this process is easy to compute, and even easier to find
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in standard textbooks! _*1 The total cross-section is

" _: [ ('+,)]rr_, (1 - ft2) 2/33 _ 4/3 + (3 -/34) log \.1--_ (7.18)O'BW -- 2
m

where fl is tlm velocity if the eh.,ctron (or positron) in the CM frame of the two
colliding photons. In the limit where [3_ 1, this becomes

a,w = -_ log (7.19)w" m 2 ] '

where w is the energy of each of the photons irl the CM frame. In a general frame
where the photon energies are COland w.2 r(,place co2 --4 COl W,2.

To calculate the number of pairs produced by this process we lnust fold the
cross-section with the bea.mstralllung l)Imt()ll sl)ectrulYl. Since the cross-section is

largest for soft, photor|s, we can use t.lw soft-photon approximation (5.7), divide,2
by 2 to average over the bunch length:

(o,L -
- n_,(,r ) = \/,:,,h/T 1/:_z2/:_" (7.20)

" Ilere x = w/E is tlm fra,ctiona.l energy ('arricd by tlw l)lloton, rl'he qlla.ntities T and
/cob depend, of course, on t,lle coor(lillates (b, z) witllill I,he bunch. Let us a,ssun_(,

,, 1.3t:,,l,-Wll IIa uniform cylindrical buncii g,'olnelr,,,. 'l'llen tile, total number of "e' ee e'
pairs created per bunch crossil_g is

/ /Nt3w = d2b (4rro'zcry)2 dXl dx2rt3,(Xl)n,,_,(x.2)cr13w(fi= - m2/E2XlX,2).
(7.21)

The integral over b cancels one factor of 4?rcr_,ayand giv('.s3/5 tinles the integra,nd
evalua, ted at the edge of tlm bunctl, lt, is collveIlient to evaluate l,lle coefficient of
the photon spectrum at the edge once, and for all:

( )Cb7=- lcoh(edge) [_,(e(tge)]l/: _ = 1.31 for the NLC. (7.22)

, This coefficient is proportional to [E_L(e(lge)lU3, a,nd is therefare m_mh smaller for

*- machine designs with a larger asi)ect ra,tio az/a v.

The integrals over xi and x,,2in Eq. (7.21) are not as hard as they look. Since
the total cross section depends only on tlm )" 'Ix icx_tz-_nvarianl; produc, t XlX2, ii, is
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natural to change the variable of the inner integrM from x2 to the photon energy

in the CM frame, x =-._. 'File exl)ression then becomes

where

3N 2 _ _,
HDc'g 7rre = 8.9 x 105 for the NLC (7.24.)

KBw- 5 4_'cr_cru '2

and 7 = Elm is the boost, factor of the beam electrons. The integral over x is

strongly dominated by the region from 1 to a, few times 1/7; this means that nearly
ali of the pairs are created near thresllold in tlm CM frame of the colliding photons.
Numerical evaluation of this integral gives 3.1.74/a. The value of xi determines the

overall boost of the center of inass, and therefore of the created pair. Evaluating
this integral gives a factor of log 72, yielding tlm total number of Breit-Wheeler
pairs per bunch crossing,

N,w -- 6.2 h'nw log-)'2 = 2.3 x 104 for the NLC. (7 25) "
.7213

Alternatively, we can leave tlm integral ov(,r xi undone to obtain the differential
distribution

dN, w 6.2 h'nw 1 880
= ..... - for the NLC,. (7.26)

dxl 7 2/3 Xl 3'1

As long a,s xi is not, too (;lose to 1/7 , we can interpret it a,s the fractional energy
of either member of the created pair. Integrating over the dangerous range (7.12),

_* • r "twe find that for the geometry showzl in l ig. 7 1 and a solenoidal field of 1 I,

approximately 1300 electrons hit ;lte outside of tile masking on one side, and 1300
positrons hit the outside of the masl_ing on tile other. (These numbers are per
bunch crossing; multiply by 10 fox"the nunlber per bunch train.)

Now let us consider the regime where the center of mass of the two photons is

not boosted by a, large anaount in tlle lab frame. In this case the outgoing angles
of the electron and positron can be large (even without the additional push from
the field of the bunch). We must, tllereforc consider the angular dependence of the
fundamental 3'7 --+ e+e- process.
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The differential cross-section for 3,"/---+ ¢+e- is

' dcr_w rrc(2 1 + cos 2 0cre

d cos Ocm = 2w--5]' sin '20cm ' (7.27)

(tlere we ignore the ttireshold bellavior, sirice we are interested in pa.rticles that are

produced with a transverse morneiltum of at least a few MEV.) la'or an asymmetric

collision between photons with energies xi l;] and x2E, it is more convenient, to

write the cross-section iri terms of tlm transverse inomentuln, Pv, = cosin Ocm:

danw _ lr(-i'2 . t:,'a:lX2,, 1 1 . (7.28)

Folding this expression witll flu, plloton spectra (7.20), multiplying by the lumi-

nosity per bunctl, a,tld avoraging over the transverse coordina.tes, we obtain

d2 dN, w 2Kaw r,'a,l a:., 1

d,vida:2 dp_. - ,, 5/3 sl:_ " (7.29)

• Iii a lliore exact analyis, we wollld llOW elilliinate one of ttie x's in favor of the

elect.ron's or positron's angle iri tile lab fraine. We would then specify a lninum.um

value of this aligle and a fnillil-lllllli VHlll(' of Pr (or tile crlerg.7) &lid integrate t.lp

f'ronl t,lmre to count tlm nulnber of trolllilesoine pairs. For i_ fixed angle, tiowever,

l,ile rate will be dominated 1w values of Irr oilly slightly above our imposed cutoff

(since the rate fa.lls off w'ry sl.rorigly wil,ll energy). We will there, ff_re integrate

dire.oily over xi and m2, estimating tile railge of integratioii only rougtlly. Iri this

al)proxilllaLion we carl l)erforili the P'r il:togral ii-lirliodi_tl,ely, throwirig away, ali l,he

Irr d_qJeiid II(.C e:xccpt"' l,he del-JendellCe ()11 Oily cii Pv,, r_e ", toff, 0 I he irll,egr_d is theri easy
I;(:) _'.V;,tlu _-tl,e:

/-_2T,I X2

" ( )J dpr lgZxlx'_ , 1. 1
(1,],)_

+2 1 V/] -"

where y2 = E2XlX21(por)2 Cha.iigillg variables from a:2 to ._ - xv_7_ (as in
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Eq. (7.23)) and then to y, we obtain for the total number of pairs with p_, > pO

/ / [ (1 + 'v/1 - Y-2) 1v/1-_-Y-"_]
2KBw dxl dy log (7.31)

N,w - _,2 W y T/''_ 1 - 51 - y.5(_ " .
1

The integral over y is equal to 1.39, _md receives more than half of its value from
,i

the region y < 5.

The runge of the xi integral is now determined by the minimum angle we wish
to consider. Suppose first that x l ;> x2. Then the pair is boosted in tile direction
of the first photon. If tile boost is reasonably large, each Inember of the pair will

have longitudinal momentum ,-_ zlE/2, and an outgoing angle of roughly

tan0N 2P--_-°v (7.32)
xlE'

(Since the electron and positron energies actually tend to differ by one or two

orders of magnitude, this approximation is quite crude. Fortunately, tmwever, the
der)cadence of our results on this angle will be extremely weak.) We require that
this angle be greater than some cutoff 00, and this gives un upper bound on the xi
integral. Similarly, the lower bound comes from the regime where the boost is in

the other direction. Evaluating tlm integral, we obtain the following result for the
number of Breit-Wheeler pairs with Pr > pO and 0 > 00'

N,w _ - "--- log

log _00) for the NLC.

For the ma,sking design of Fig. 7.1 a,nd a solenoidal field of 1 T, the relevant cutoffs
are O0 = 100 mra,d lind p0r= 4.5 MeV. We then obtain 130 pairs or 260 large-angle
particles per bunc]? crossing, roughly half traveling in each direction.

I_ _ 'lt stauuld be e paaslzed that all the numbers in this section would be lower for

a machine with ii larger aspect ratio, since such a machine would have _ lower lu-
minosity per bunch and (more importantly) fewer beamstrahlung photons present.
Our numbers represent a rough upper limit for a 1/2 TeV collider, while other
designs could have fewer Breit-Wheeler pairs by a factor of ,-- 10.
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Figure 7.4. Feynman diagram for the Bethe-lleitler process, c7 _ ce+ e-. 'Fl_e shaded

circle represents the sum of the two diagrams in Fig. 7,3,

7.4. The Bethe-Heitler Process, e7 _ ee+e "

.Next let us consider the case where olle of tile two initial photons is virtual.
This is tile well-known Bethe-Heitler mecha,Ilisn] of pair production, essentially

the same (in our approxiination) as pair production by _ l)hoton in the field of a
nucleus. I'he teynman diagram is show_l iii 1_lg. 7.4.

The cross-section for the Bethe-lleitler process can be related to that for the
Breit-Wheeler process ")7 -+ e+c- I_y nwans of tile cquivaleu! photon approxim.a-

* tioT_. Instead of ewfluating the full diagra.l]l of Fig. 7.4, we treat the virtual photon'
as a distribution of real photons of momentum k. When the virtual photo_l is
very soft, the -,,coil of the passing electron call he neglected. I;or this process, tlje
correct distri'bution of equiva, h:xlt real l)]lolorls is givcI_ 1)ylat'l

- 2a 1 ¢ r)

u(x.-,,) = .... log 2"/':rl, (7.34)
g :I'.2

where 7 is the length contractioll factor of tlle })can_s in tile lab fraIne, xi is lhc
fractional energy of the real photon, and x., is l lie fractional energy of the virtual
photon. Note that 2-/2x lm is t,tlc_c'llcrgy of the real photon in the electron rest
frame.

Folding this photon spectrum with the cross-section (7.18) for 77 _ e+c-, one
obtains the total cross-section for the Bethe-IIeitler process,

il

:28 ,,

: To obtain the total number of Bethc-I-Ieil.ler pairs, we now fold this cross-section

with the tzeamstrahlung photon spectrum (7.20) and aver_ge over the transverse
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coordinates as in the previous section. For the NI, C, we find apl)roxinaately 10 6

pairs traveling in each direction per burlcll crossing, or _ total ot'2 x 10 7 pairs
per bunch train. In terms of total numbers, this is the most copious of the pair
production processes.

The spectrum of tlm Bethe-lleitlcr pairs can be obtained from the equivalent
photon approxirnation, or directly from tile Feynman cliagram! TM Because of the
asymmetric nature of the process, Inost of tlm pairs are btu'der than those from the
Breit-Wheeler process ")'7 _ c+c'; tlley tend to be boosted considerably a,long the

direction of the incoming real l)hoton, Tlm Sl)ecl, rtllll lifts the same x -2/3 del)en-
dence as the beamstrahlung plloton distribution: Integra.ting ow_r the dangerous

ra,nge from x = 10 --4 to 4 × 10 .4 where tile pa.irs hit the outside of the masking
in Fig. 7,1, one finds 4 x 104 dangerous pairs traw_ling in each direction per bunch
crossing, or a total of 8 x l0 s dangerolls pairs per bunch train.

Finally one can repeat the estitnal;c of the previous section for the number of

pairs produced with large intrillsic a,_lgles. 'l"he llumber of Bcthe-tIeitler pa,irs with
a transverse momentum greater than p!],and a,ll a,ngle greater than 00 scales as

(p°,)-s/a0cT_/a(with additional logaritlax_ic depende_ee). For the NLC parameters
and the cutoffs pO = 4.,5 MeV and 0(i = 100 rnrad, the total number of pairs per a

bunch train is roughly 1200, essentially tile sazne a,s the corresponding number for
ttw Brelt-\Vh¢.el¢..r process.

i,

Again we should comment tllat tl_is l_rocess is ¢lel_eildellt on the beamstrahlung
photon spectrum, and therefore its rate decreases substantially (though not a.s

much a_sthat for the Breit-Wheeler process) if the aspect ratio ax/'au is increased

A second comment on this process is i_lore subtle. Our use of the equivalent
photon spectruna (7.34)is x_otj_sl, iticd i_ sil,_talions (s_ch as ours) wlmre the t)eams
are extremely na.rrow!_1 Tlm large logarithl_ il_ (7.3,1) comes ft'ore an integration
over the transverse lllOI/iell{,lll-llof tile virtual pl_oton, which can be extremely
small. When it is so small tl_a,t l.]ae (:orreslmndi_g transverse distance is larger
than the bunch height, the Iogttrithn_ should instead be cut off at the reciprocal
of this height; that is, replace log 27'-'.r_ wil.l_log(av/_,,), wlmre A,:is the electroa
(?,Ornl)ton wavelength. This reduces tilt loga,ritl_m by nearly a factor of 3 when
a:_ is reasonably large, so the total _u_bc'r of Bethe-lteitler pairs is reduced by
this factor. The reduction is probal)ly sonlewllat less for the pairs that come out
at large angles, altl_ough tills l_as _ot I:we_ carefully heel<cd. In a,ny case tile
geometrical reduction is a crucial factor whe_mvcr estitna, tes that m'e accurate to

factor of 2 are required.
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Figure 7.5. Feynman diagram for the Landau-Lifshitz process, ee -_ eee+e -. The

shaded circle represcnts the sum of the two diagrams in Fig. 7.3.

7.5. The Landau-Lifshitz Process, ee ._o,eee+e.-

In ttle third incoherent pair production process, both photons are virtual; the
Feynnlan diagram is shown in Pig. 7,5. Note that this process has nothing tc do
with beamstrahlung. Its rate is therefore determined entirely by the energy and
luminosity of the machine.

qb compute the rate of this react.ion we can again use tlm equivalent photon
approximation. The effective spectruln of the second photon is again given by

' . Eel. (7.3,1). For the first photon, however, we now use [2°1

2c_ 1
n(._:l) = _-- log(1/x 1). (7.36)

71"XI

[he totM cross-section then turns out to be

28 , :_ ,, ,,
<ruL= 27----_a"relog3 27" = 2.7 x l0 -:6 crn" at Ecru = 1/2 TcV. (7.37)

At; the NLC this yields approximately 2 x 105 pa,irs per bunch crossing, or 2 x 106

per bunch train.

Since there is no asymmetry between the two photons, the spectrum is similar
to that of the Breit-Wheeler process: the center of mass of the two photons can

be boosted over a wide range, witll no value of t,he boost pa.rameter preferred. A
careful calculation yields the differcntial cross-section (where x is the fractional

energy of either member of the pair a,nd E is the beam energy)
, , Q

56a-7' 1
- log(:l/x)log(2Ez/',,7,). (7.38)dx 97r x

Integrating over the range 10 -4 < x < 4 × 10-4, we find that 4 x 105 particles per
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bunch train (half traveling in each direction) would be pustmd out far enough to
hit tlm masking in Fig. 7.1.

FinMly we c_n estimate the number of pairs with a large intrinsic angle and
transverse momentum. Tile calculation is again almost identical to that of Sec-

tion 7.3. Integrating down to a minimmn transverse momentum pO = 4.5 MeV
and minimum angle 00 := 100 mrad, we find a total of 800 pairs per bunch or 8000
per bunch train--several times more than for either of the other two incoherent

processes. Tl_is time the number scales as (p°r)-2 , so if the minimum transverse
momentum could be increased (e,g. by using a stronger solenoidal magnet), the
benefit would be substantial.

Like the Bethe-Heitler process, the rate of this process is reduced by the ge-
ometrical cutoff in the logarithm of the equivalent photon distribution. In the
corrected total cross-section, log3 27 _"is replaced by I5_1loga(a/,_c). Here, however,
the reduction is by an enormous factor of (27/9.7) a = 20, at least in the leading-
log approximation. The reductions in the other two number quoted above, for a
narrow spectral range or a large intrinsic angle, have not been carefully checked,
but they are probably by only a single factor of 27/9.7 = 2.8.

7.6. Other QED Backgrounds

The three incoherent pair production processes of the preceding sections are
_,.ttie only problematic QLD backgrounds that have been identified so far for a. lin-

ear collider of less than 1 TeV. Several other processes, however, have not be_,n
rigorously ruled out.

Any process tha.t can produce e+e - pairs can also produce #+#- p_irs (as well
as other chargedparticles). Since rates of the troublesome processes are dominated
by the threshold region wheres _,, 4m "_, we expect any rate for muons to be

• ?suppressed by m_,/m_ = 4 x 104 relative to the rate for electrons. [urthermore,
the heavier muons are not pushed out to extremely large angles; any problems
would probably be from muons created with large intrinsic angles. Although the
rate of background muon events is probably less than. one per bunch train, it should
still be estimated carefully since the effect of these events on the detector would
be entirely different.

) _ , -_ . _ ,Low-energy pairs can in I rlnclple acquire a large angle by C,ompton-scatterlng
off of beamstrahlurlg photons. The rate should be comparable to that for 77 _
e+e- for a given pair of initial energies. But since the number of low-energy pairs
is so much smaller than the number of low-energy photons, this process should be

negligible in comparison to 77 --+ e+e-. C,ompton scattering of a be_tm electron
or positron off a low-energy photon should also be considered, but is of course
suppressed by the large initial CM energy.
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Coherent pair production has not been completely eliminated as a source of
backgrounds even at a 1/2 Te\, collider, since the interaction geometry isnot yet

" established and the estimates in Section 7.2 could be off by a substantial factor. In
addition, the direct, coherent production of a pair by a beam electron via. a virtual

" photon is possible. This process has been discussed by Ritusl _6_and estilnated for

future linear colliders by Chen and Telnovl TM who conclude that it is negligible

compared to ordinary coherent pair production when T ;.%100.

The low-energy particles that remain trapped with. the bunch, rather than
being pushed out, are not insignificant. We saw in Eq. (7.5) that in the worst case
they can exit the bunch with essentially the same angle as the oppositely charged
particles that are immediately pushed out.

Beamstrahlung photons emitted by any of the low-energy, high-angle particles
should not be a problem, since these photons will be much softer still, and no more
copious, than the charged particles that emit them.

Finally we must not forget the beam electrons and positrons themselves. The
number that lose nearly ali of their energy to beamstrahlung can be significant,
and these can acquire large disruption angles according to Eq. (7.5). Although

, very few would be pushed out far enough to hit the masking, a substantial number
may hit _he face of the fina.1quadrupole.
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