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Abstract

Future electron-positron colliders, with center-of-mass energies above 1/2 TeV,
must be of the linear, single-pass type, since the energy loss to synchrotron radia-
tion at a storage ring would be unacceptably high. The single-pass configuration
requires extremely dense particle bunches, which will have very strong collective
electromagnetic fields. As the bunches cross, the field of each disrupts the other,
and the electrons and positrons radiate photons under this transverse acceleration.
This radiation is called beamstrahlung. Beamstrahlung can take away a large frac-
tion of the available collision energy at such machines, but it also makes it possible
to study electron-photon and photon-photon interactions.

This dissertation is a detailed study of several aspects of beamstrahlung and
related phenomena. The problem is formulated as the relativistic scattering of
an electron from a strong but slowly varying potential. The solution is readily
interpreted in terms of a classical electron trajectory, and differs from the solution
of the corresponding classical problem mainly in the effect of quantum recoil due to
the emission of hard photons. When the general solution is expanded for the case
of an almost-uniform field, the leading term is identical to the well-known formula
for quantum synchrotron radiation. The first non-leading term is negligible in all
cases of interest where the expansion is valid.

In applying the standard synchrotron radiation formula to the beamstrahlung
problem, the effects of radiation reaction on the emission of multiple photons can
be significant for some machine designs. Another interesting feature is the helicity
dependence of the radiation process, which is relevant to the case where the electron
beam is polarized.

The inverse process of coherent electron-positron pair production by a beam-
strahlung photon is a potentially serious background source at future colliders, since
low-energy pairs can exit the bunch at a large angle. Pairs can also be produced
incoherently by the collision of two photons, either real (from beamstrahlung) or
virtual (emitted by a passing electron or positron). The rates, spectra, and angular
distributions for both the coherent and incoherent processes are estimated here.
At a 1/2 TeV machine the incoherent process will be more common, resulting in
roughly 10® pairs per bunch crossing. One member of each pair is always pushed
outward, at an angle determined by its energy, by the ficld of the oncoming bunch.
In addition, a small number of pairs are initially produced with a comparable or
larger angle.
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1. Introduction

Consider a hypothetical electron-positron collider with a center-of-mass energy
of 1/2'TeV or more. Synchrotron radiation would make a storage ring of this energy
impractical, so such a machine would have to consist of two linear accelerators,
aimed at each other. Since each pair of bunches has only one chance to cross and
interact, the luminosity per pulse must be very high. The electromagnetic fields
inside the electron and positren bunches would be very strong, causing the particles
to bend inward as the bunches cross (this phenomenon is called disruption). As
they bend, the particles emit synchrotron-like radiation, called beamstrahlung.

The phenomenon of beamstrahlung was recognized several years ago.m Much

work on the subject has been done in the last few years,[zng) motivated by the

serious attention now being given to future linear colliders"*'" and the large effect
that beamstrahlung will necessarily have on their performance. Most recently, the
inverse process of electron-positron pair production by beamstrahlung photons has
been recognized as a source of potentially serious detector backgrounds, and has

also received a great deal of attention'”™"

This dissertation treats many aspects of the beamstrahlung and pair production
processes, both formal and practical. It is intended as a pedagogical review of the
subject, and no prior knowledge of these phenomena is assumed.

Chapter 2 briefly describes the relevant parameters for two specific hypothetical
machine designs, for use in later examples throughout the paper. Chapter 3 is a
detailed review of the beamstrahlung process, simplified by the use of classical
radiation formulae. Both of these chapters should be of general interest.

Chapter 4 then delves into formalism. It contains a derivation (based on the
work of Blankenbecler and Drell™) of the standard formula for quantum syn-
chrotron radiation, and also of a generalization of this formula to motion in nonuni-
form fields. The first correction in field gradients to the standard formula is com-
puted explicitly, and it is concluded that the standard formula alone is sufficiently
accurate in all cases of interest.

Chapter 5 uses the standard formula to compute the electron and photon spec-
tra in the presence of beamstrahlung, including the effect of radiation reaction on
subsequent radiation. This part of the paper follows the outline of Ref. 8, sup-
plying more details on the shapes of the spectra in different regimes. Here we
also examine the polarization of the electrons and photons in the case where the
incoming electron beam is longitudinally polarized.

The inverse process of coherent pair production is discussed briefly, with an
emphasis on applications, in Chapter 6. Chapter 7 then concentrates on order-
of-magnitude estimates of background processes at the next generation of linear



colliders. Because of the spectra of the pairs produced, the coherent pair production
process is less of a background problem here than the various incoherent processes
involving direct collisions of electrons, positrons, and photons. We discuss both
the spectra and angular distributions for all of these processes.



2. Machine Parameters

Some possible parameters for future linear colliders are listed in Table 2.1.
Parameters for the existing Stanford Linear Collider (as projected for 1993-4) are
listed for comparison. We will consider two imaginary future machines. The “Next
Linear Collider”, with a center-of-mass energy of 1/2 TeV, is now considered an
attainable next step beyond the SLC whose design could be complete by 1992.
The “Futuristic Linear Collider” is much more hypothetical; its CM energy of 5
TeV would allow it to thoroughly study the energy regime that will be opened by
the SSC. Both of these designs are taken from a recent review article by Palmer'"
which also contains several other parameter sets, and which explains in detail how
the fundamental parameters are chosen.

The NLC design given here (machine G in Ref. 10) represents one extreme in
the design of a 1/2 TeV collider. The aspect ratio R is relatively small, and has
been chosen to give the highest possible luminosity consistent with a reasonable
(but arbitrary) limit of ~ 0.3 on the fractional energy loss due to beamstrahlung
(denoted ¢). Other designs in Palmer’s paper have R as high as 180, which yields
L~ 1.4 x 103 cm™%ec™! and § =~ .04. Since this dissercation is about bean-
strahlung, I have chosen the example for which beamstrahlung is most important.

The FLC parameters in Table 2.1 (machine K in Ref. 10) are of course very
speculative, but Palmer’s analysis makes it clear the beamstrahlung energy loss is
a dominant consideration in any machine with an energy above 1 TeV. To obtain
the required luminosity (about 1034 cm™2sec™! times the square of the energy in
TeV) at the lowest possible cost, one is forced to the largest acceptable value of 6.

We will see, however, that the beamstrahlung photon spectrum is much different
at 5 TeV than at 1/2 TeV.

The shapes of the electron and positron bunches at the interaction point are
generally assumed to be gaussian; the rms dimensions o, oy, and o, are listed
for each machine in Table 2.1. In much of what follows it will be more convenient,
to work instead with bunches of uniform density. An “equivalent” machine with
uniform cylindrical bunches (of either round or elliptical cross-section) would have
dimensions

By =235,  By=20, and L =2V30,. (2.1)

(All factors have been chosen to keep the mean square distanée from the center
of the bunch fixed.) For round beams we will use the symbols B = B, = By and
Ub =0z = ay.



Table 2.1. Machine Parameters

SLC NLC FLC
Ecm (TeV) 0.1 0.5 5
L (em™%ec™). 2 x10%° 9 x 1033 3 x 10%
N at IP 5 x 1010 1.67 x 101® 215 x 1010
Ny 1 10 125
rep. rate (Hz) 120 130 170
o, (cm) 105 011 .002
oy (cm) 1.5 x 107 6.5x 1077 2 %108
oz (cm) 1L5x107%  1.7x10"5 2.7 x 1078
R=o05/0y 1 25.5 136
D, 0.7 19 9
Hp 1.9 34 2.07
T(edge) .002 .56 25
N (edge) 1.0 6.0 4.7
b1 4.5 x 10~* 78 27
61 4.5 x 10~ .26 24
by 4.5 x 10~ 21 22
bg 26 26
64 — 35 | 26

The first nine parameters, except for £, are taken from Ref. 10. The rest are computed
in terms of fundamental parameters as explained in the text,

The luminosity per bunch crossing is given approximately by

N?. N?
Lo= drozoy  mB.B,’ (2:2)

where N is the number of particles per bunch. This formula is approximate because
of disruption: the bunches “pinch” inward as they cross, increasing the luminos-
ity by a pinch enhancement factor Hp. The actual luminosity of the collider is
therefore

N2Hpf

Y
drozoy

L=LoHf = (2.3)
where f is the frequency of collisions. The NLC and FLC designs employ groups
of 10 and 125 closely spaced bunches, in order to extract more of the RF energy;
thus the collision rate f at these machines is equal to the number of bunches (V)
times the “repetition rate” listed in Table 2.1.



The remaining quantities listed in Table 2.1 will be defined and discussed later
in this paper. In brief, they are as follows. The disruption parameter, Dy, is
a dimensionless measure of the amount of pinching (in the vertical dimension).
The classical or quantum nature of the beamstrahlung is determined by T; when
T 2 1, individual photons carry away a significant fraction of the beam energy
and classical radiation formulae break down. The number of photons emitted by
each electron, in the classical limit, is given by N/. (The previous two quantities
are depend on position within the bunch, and are here evaluated for an electron
at the edge of a uniform cylindrical bunch.) Finally, 6 is the average fractional
energy loss due to beamstrahlung. It is computed here in five approximations, as
discussed in Sections 3.3 and 5.4.
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3. Classical Beamstrahlung

Almost all aspects of beamstrahlung can be understood classically. Before
plunging into a full quantum-mechanical treatment, therefore, we will carry out a
detailed classical analysis of the problem in this section. In the next section we
will see that quantum eflects, though numerically large, can be incorporated with
little additional difficulty.

3.1. Disruption

. First consider only the motion of the electrons and positrons, in the absence
of radiation. As the bunches pass through each other, the particles bend inward,
due to the attraction of opposite charges. This phenomenon is called disrupiion.
It is most easily understood by working in the rest frame of one of the bunches,
where there are no magnetic forces between the bunches. In the rest frame of
the positrons, the length of the positron bunch is L = yLem ~ 100 r..eters. (The
symbol v will always denote the length contraction factor in the CM frame of the
- colliding bunches.) Since the final-focus area and interaction region are length-
contracted by «, only a tiny fraction sf the positron bunch is focused at any
given time. The electrostatic repulsion within the positron bunch therefore has
a negligible effect. An oncoming electron, however, traverses the entire length of
the positron bunch when it is fully focused; the electron is therefore bent inward
by a significant amount. Furthermore, since the length of the electron bunch is
L/(24?), the clectric field due to the clectrons is 2v% times stronger than that of
the positrons and therefore the positrons are severely disrupted as well. (In the
laboratory frame where both bunches are moving, each bunch has a magnetic field
that is nearly equal in magnitude to its electric field. The electic and magnetic
forces within a moving bunch nearly cancel, while its electric and magnetic forces
on the oncoming bunch add.)

To understand disruption more quantitatively, consider a single electron pass-
ing through the positron bunch. First assume, for simplicity, that the bunch is
a uniform cylinder, and that the electron enters parallel to its axis with impact
parameter bg. To a first approximation, we can assume that, the positron bunch is
stationary. Neglecting end effects, the electric field is then

r

E(b) = —2Vgb,  where 1 = ”;f (5.1)

=

(We use units in which b = ¢ = 1 and a = ¢?/4r. A factor of —¢/dr has been
absorbed into E; in other words, E is really the force felt by the electron,) The

6



electron’s trajectory is therefore

b(z) = by cos(\/—-‘—/—gle -;'—) | (3.2)

_ 2NalL _Nreaz
"~ V/3my2B? yo?

is a dimensionless measure of the disruption. (Here r, = 2.82 x 1078 cm is the
classical electron radius.) If D < 1, the distortion of the pulses is very slight.

where

For flat bunches we must define two disruption parameters, D, and Dy. Con-
sider a ur.form bunch with elliptical cross-section. The electric field inside is!"!

z Y 2Na
— = -2V = he = e 3.4
B E, 2 B’ where Vi (B + By) (3.4)

E;[; = —2‘/,1

By considering the “wavelength” of the path of an electron along either axis of the
bunch, we arrive at the definitions""

D

y = 24N0L - .2NT‘eUz : D, = *—Bi—y-Dy (35)
V3my By(By + By)  Y0y(0z + 0y) z

The values of Dy for the SLC, NLC, and FLC are listed in Table 2.1. In order
to maximize the pinch enhancement, D (or for flat beams, Dy) should lie roughly
in the range from 1 to 201" (The luminosity enhancement factor Hp depends
on the bunch length, the depth of focus at the interaction point, and any offset in
the beam positions, as well as on ). The only known n.zthod of computing Hp
reliably when D is large is by computer simulation.)

When D S 1, the effect of disruption can be computed analytically. Expanding
the trajectory (3.2) to lowest order in D and averaging over the collision time, we
find that the average dimension of the buxch is reduced by a factor of

Oeffective D 2
—— =] - —= 4+ O(D*). 3.6
e - Loy o (39

Although this formula does not apply to the vertical disruption of machines like
the NLC and FLC, it is quite accurate for the much smaller horizontal disruption.

(3.3).

t i \M

oy
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3.2. Classical Synchrotron Radiation

As the electrons undergo this transverse acceleration, they radiate photons;
this radiation process is called beamstrahlung. The amount of beamstrahlung radi-
ation is conventionally characterized by the average fractional energy loss, §. We
normally want 6 to be small.

We can easily make a classical estimate of 6. At any point r along its trajectory,
an electron feels an electric field E(r), and its trajectory can be approximated as
a circle with radius

P
T D

where p = 2v?m is the electron’s momentum. Since the trajectory is circular we
can now apply the standard formula"'® for synchrotron radiation:

(3.7)

(o)

= = 2\/_oz~—-—— / dé Ks3(6). (3.8)

dw
2w/wc

Here w is the frequency of the radiation, w, is the critical frequency,

3p° _ 3p°|E(b)]
mip  m3

We = , (3.9)

and [ is the energy radiated by the electron during one revolution about the circle.

Over any small distance Az the electric field is approximately constant, and
the electron travels a fraction (Az)[E|/27p of a revolution, so for classwal beam-
strahlung,

di TalBOWAD) w [
EJZ:{‘MTS;“(*‘“‘);; /déK/s(f) (3.10)
2w/we

Since the modified Bessel function diverges as ¢ — 0, it is more convenient to write
this formula in terms of the Airy function:®”

g_l; _ am? Az /dv v Al(’U) (3.11)

where
‘ 3

MO s

A plot of the Airy function is shown in Fig. 3.1. The spectrum extends out to
w ~ we, beyond which it falls off exponentially according to the fall-off in the Airy




i
v

—+ + —y
| 2 3 4 5

Figure 5.1. The Airy function, Ai(v). At v 0, Ai(r) = 3=¥/3/1(2/3) =~ 355 and
Ai'(v) = 3=13/T(1/3) = .259. At large v, Ai(v) ~ (1/2)7~ /20~ exp(~203/%/3).

functior. It is sometimes more convenient to write Eq. (3.11) as

o0
"

dl  orn(Az)w| 2, .
i [‘EIA‘ (u)w‘/dv Al(v)J, (3.13)

u

where we have used the differential equation Ai”(v) = v Ai(v) to integrate the first
term.

To compute & we must integrate this expression over w and 2. The w and ¢
integrals can be interchanged and the w integral readily performed to give

o0
2 2
I = EQE_L{S_%EJEL /dv 03 Ai(v). (3.14)
0

4 m

Evaluating the remaining integral and dividing by p, we obtain an expression for
the fractional energy loss é, (in the classical approximation) of a single electron at
position r,

dée(r) _ 2 aplE(r)P

= (3.15)

This result can also be obtained directly from the relativistic generalization of the
21
Larmor formula’™”

9



The classical synchrotron radiation formula (3.8) follows from a much more

LB sl tneludes , | freque listributions .

general formuia,”” which includes the angular and frequency distributions for clas-
sical radiation from a charge undergoing an arbitrary accelerated motion:

2

2 T . . - j
d] i /dt ko x (k x 8)et=kr(D] (3.16)

dwd$) 472

~1

Here B is the particle’s velocity vector, and k is a unit vector pointing from the
particle to the (distant) observation point. In the next chapter we will sce that
this general result, and also the specific formula (3.11), have simple counterparts
in quantum mechanics.

3.3. Application to Specific Bunch Geometries

Let us assume that the disruption is negligible, and that the bunches are uni-
form in the z-direction. Then the electric field felt by any electron is constant over
the length L of the bunch, and depends only on its impact parameter b. Thus
I2g. (3.15) becomes

Sei(b) = 2_“_11{_'_“(_“)‘_ (3.17)

The subscript ‘¢’ denotes ‘classical’, while ‘17 signifies that this formula is a first
approximation, obtained by neglecting radiation reaction (i.e., the dependence of

pon zj,
For a round cylindrical bunch shape we can use expression (3.1) for the electric
field to ¢btain
8 o N2 ph?

be1(b) = 3TAT L (3.18)

Averaging over impact parameter gives

V3 AT A2 mned
sevlinder _1 a’N<p . N=yry (3.19)
cl 3mil 132 3 \/f§>(yz()*x Ty ‘ o
Note that it is possible to have large disruption with negligible beamstrahlung, or
vice versa.

Next consider a uniform bunch with elliptical cross-section.  According to

Fq. (3.4), the magnitude of |E| is constant on any interior elliptical surface; it

10



depends only on the quantity

2 y2

A A 3.20

and is less than at the corresponding point within a round bunch of the same
cross-sectional area by a factor of

= Bz+Bl ~ L [B: (3.21)
= 2/B:B, B:>8, 2\| B,

Since 61 is proportional to E?, the average fractional energy loss of an electron
going through a uniform elliptical bunch is

6ellipse — __1____6cyiinder - 4N2‘77‘g (‘} ()9)
cl G2l 3vV3c. (o + 0y)?

This is the formula used to compute the values of é.; listed in Table 2.1.

Nearly all proposed machine designs have a very large value of the aspect ratio
R = 0;/0y; in this case field strength (and hence the beamstrahlung energy loss)
is independent of oy. This simplification is fortunate for our treatment of beam-
strahlung, since the effective value of o, changes significantly in the presence of
disruption. Although the distortion of the bunches under large disruption is much
more complicated than a mere reduction in oy, at least this leading-order eftect
can be neglected in beamstrahlung computations. Unfortunately, the particular
NLC design given in Chapter 2, with its unusually small aspect ratio of 25, has a
non-negligible horizontal disruption as well. The effect of this horizontal disruption
is neglected in all the calculations and plots of this paper, but is discussed at the
end of Section 5.4.

Real bunches are of course very different from ideal uniform cylinders, hut the
nonuniformities have little effect on 8. Suppose, for example, that the bunch is
uniform in the z direction, but gaussian in b (with cylindrical symmetry). The
charge density is then
~b /202 Na

’

where pg = ———. (3.23)

o(b) =
p(b) = poe 27Lo?

The electric field {ignoring end effects) is therefore
4T poo}
[E(b)] = ff-”b-‘?fi@ — /20l (3.24)

From this we can compute é.1(b) from Eq. (3.17).

11



Now the question arises, what is the proper way to average over impact param-
eter when the charge density is not uniform? To compute the average energy loss
by an electron we would weight 6(b) by p_(b), the electron charge density. But if
we are interested in the electron energy that is available for a subsequent reaction,
we should also weight each electron by the probability that it will participate in
such a reaction. In other words, we should also weight §(b) by p4(b), the positron
charge density. The appropriate average is therefore

gaverage _ fdsz"(b)p'f'(b) 6(b)
J d?bp_(b)p+(b)
For the present calculation we will assume that p_(b) = p4+(b) = p(b) (up to a

normalization constant that depends on the frame of reference), so the average
becomes

(3.25)

6a§'era.ge — fd2b pz(b) 5(6)
T &5 02(0)
For our classical computation, §(b) is given by Eq. (3.17). Using (3.23) for the

charge density and (3.24) for the electric field, and defining 8 = b/B = b/20y, we
find for a bunch with transverse gaussian profile,

(3.26)

. . -4 . .
6g;ussmn - 5§:},‘|lnder % 16 /dﬁf 7 (] _ e--zﬁz)z - 6§§/lmder v, 810g(9/8) (327)

The average energy loss is reduced by a factor 8log(9/8) ~ .942 relative to that
for a uniform cylinder.

If, instead of using Eq. (3.26), we were to weight 6(b) with only one factor of the
charge density (and thereby compute the literal average energy loss per particle),
we would obtain a factor of 4log(4/3) =~ 1.15 relative to the average (3.19) for a
uniform cylinder. Since these two definitions of § differ by 21%, it is important
to remember, in any calculation for nonuniform bunches, which definition is being
used.

Finally, suppose that the bunch has a gaussian profile in the longitudinal di-
rection. Multiply the charge density evervwhere by a factor

Peaussian \/E e s, (3.28)
» Miniform T

(Here 0 = ~o, = L/2V/3 is the length scale in the rest frame of the positron

bunch. The constant \/6/7 has been chosen to keep the total charge fi::ed.) Since

12



the longitudinal variation is negligible on the scale of the width of the bunch, the
electric field is very nearly transverse, and is altered by the same factor. According
to Eq. (3.15), the energy loss d6/dz is proportional to the square of this factor,

2
llillgzaussian _ _?r_e—zz/tﬁh (329)

uniforin

Integrating over z, we find that é is reduced, relative to Eq. (3.17), by a factor of

V3T & 977,
3.4. Radiation Reaction

Equation (3.17) and all the results that follow are obviously wrong, since by in-
creasing L sufficiently we could easily make ¢;, the fractional energy loss, exceed 1.
This is because we have neglected radiation reaction.

Accounting for radiation reaction is quite easy. Imagine slicing the bunch into
several thin pieces, through which the electron travels in succession. We can use
Eq. (3.17) to compute the energy loss within each slice, then subtract the lost
energy to obtain the electron’s momentum p as it enters the next slice. Taking the
continuum limit, we obtain the simple differential equation for the momentum

dzp(z,b) = — ) P, (3.30)

where pg is the electron’s initial momentum and é1(b) is given by (3.17) (with
p = po). The solution of this equation is

p(z,b) = —H——, (3.31)
1+ (T)bcl(o)
(23]

giving a new expression for the fractional energy loss,

_bai(b)

o(B) = T b (b

(3.32)

The symbol é denotes the exact classical value of §, including the effect of radiation
reaction.

13




3.5. Limit of the Classical Regime

Even after accounting for radiation reaction, it :s hard to detign a machine
with Eem 2 1 TeV and a tolerably small value of §. Fortunately, the beam-
strahlung energy loss is further reduced by the effects of quantum mechanics. We
can casily see whether our classical computation is valid by looking at the classical
spectrum (3.11). The intensity is sizeable for frequencies up to we. But for an
electron at the edge of a uniform elliptical bunch, we have

we(edge) _ 12pNa
p m3L(B; + By)

(3.33)

At a machine with sufficiently large energy and/or luminosity, this quantity can
casily exceed 1. If we try to interpret the classical spectrum in terms of photons,
this says that a single photon can carry away more energy than the electron has.
Thus a proper quantum-mechanical calculation is necessary in this case.

It is convenient to introduce a dimensionless quantily T that characterizes the
classical or quantum nature of the radiation. The standard definition is

T_‘ﬁm@

= e 3.34
Ip md (3:34)

s0 the classical results are valid when T « 1. To characterize a machine by a single
number we could evaluate T at a typical point within the bunch. For a uniform
clliptical bunch, a suitable characterization would be the value of T at the edge,

4pNa 27NreAe

T(edge) = = .
(edge) m3 (B, + By) ﬂﬂz(dx +ay)

(3.35)

(Here Ae = 1/m =~ 3.86 x 10~ ¢m is the electron Compton wavelength.) This
quantity is listed for each of our machine examples in Table 2.1. Alternatively,
following Refs. 5 and 7, we can use the quantity

m* LB
~ 2pNa’

Bl

e

(3.36)

which is the reciprocal of Y(B) for a round cylindrical bunch. For uniform elliptical
bunches, T(edge) = 1/GC. Thus when GC > 1, the classical radiation formulac
are valid, while when ' < 1, we are in the quantum regime.



Figure 3.2. One instant during the crossing of uniform bunches. When the radiation
is classical and § < 1, the center-of-mass energy of the colliding particles is the same
everywhere along the line from A to C.

3.6. Luminosity Spectrum

To the experimental physicists who are using a linear collider, the quantity of
most interest is not the electron’s energy loss, but rather the spectrum of relative
luminosity as a function of the center-of-mass energy of the colliding particles. In
the absence of beamstrahlung this spectrum would be a delta function located at
the nominal machine CM energy. In the presence of beamstrahlung the spectrum
is smeared toward lower energies.

To obtain a very crude approximation to the luminosity spectrum, let us neglect
disruption, radiation reaction, and quantum effects, and assume that § is large
enough to measure but much less than 1. (These assumptions are almost never
met, so the following naive analysis is almost never sufficient. But it is still a
valuable departure point for subsequent refinements.) The energy of an electron or
positron at any given time then depends only on its impact parameter and on how
much of the oncoming beam it has passed through. The situation for cylindrical
bunches is shown in Fig. 3.2, Electrons at point A still carry the full beam encrgy,
but the positrons they are colliding with have lost a fraction (z/L)6 of their energy,
where § depends on the impact parameter b. The CM energy ecm of these electrons
and positrons, expressed as a fraction of the nominal machine CM energy Fen, is

X = ;f’“ =1- (/L6 ~1— ;;{—5. (3.37)
“cm L

Electrons farther to the right have lost a small fraction of their energy, but the
positrons have lost correspondingly less. At point B, for instance, the electrons
and positrons have each lost a fraction (z/2L)8, so the fractional CM energy is
still 1 — (2/2L)é. At point C the positrons have lost no energy, but the clectrons
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Figure 3.3. Luminosity spectrum for all particles at a fixed impact parameter, in the
classical regime, for § < 1. The average fractional loss in the CM energy is 6(b)/2.

have lost a fraction (z/L)8, so the CM energy is again given by (3.37). In the limit
where 6 is small, all collisions at this instant and at a fixed impact parameter have
the same CM energy.

The relative amount of luminosity that comes from this instant is proportional
to z. As z increases, the luminosity increases linearly, as does the CM energy
loss, until the bunches overlap completely. The CM energy loss then continues to
increase linearly as the amount of overlap, and hence the luminosity, decreases. At
the last moment of overlap, the fractional CM energy reaches its minimum value,
1—6. For a fixed value of the impact parameter, therefore, the luminosity spectrum
has the triangular shape shown in Fig. 3.3. In particular, the mean loss in CM
energy is 6(b)/2. (When §(b) is finite, the mean loss in CM energy is slightly

more.)

Now consider the effect of changing the impact parameter. Near the axis of the
bunches the energy loss is small, but there are relatively few particles. Away from
the axis the energy loss and the number of particles both increase. Computing a
properly weighted average of the luminosity spectrum over impact parameter (for
a round or elliptical bunch), we obtain

4 1-X by
] l ‘2_"“— - max < r< B
dc 5max<°g 6max) MR (3.38)
dX = 4 1-X 1—-X ‘ bmax o
_ —1—log - for 1 —fpax < X <1 — —=,
6max<5mx o8 amx) T fmax = A= 2
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Figure 3.4. Luminosity spectrum, averaged over impact parameter, in the classical
regime, for 6 < 1. The average fractional loss in the CM energy is&uvemge/?.

This result is plotted in Fig. 3.4. Here éyax 1s the maximum value of §, that is,
the energy loss of an electron at the edge of the bunch. The average value of é, as
we computed in Eq. (3.22), is 6max/2. The mean fractional loss in the CM energy
is 6max/4, half the average value of §. The luminosity spectrum is quite broad in
the classical case, since every electron and positron is continuously losing energy
during the bunch crossing. In the quantum case, where radiation is a probabilistic
process, and situation is quite different: there is often a considerable peak in the
spectrum at X = 1.

3.7. Number of Photons Radiated

Before discussing quantum beamstrahlung, we can extract one more piece of
information from the classical result (3.11). If we assune that the radiation is
made up of photons with energy w, then the classical expectation for the total
number of photons is

N7 :/dw .1_.(‘1[_1_ _7 “"’2(‘1")/ 1) Ai(v), (3.39)
0

w aw

where u = (m3w/p?|E|)*/3. Interchanging and evaluating the integrals, we obtain

5alL|E|
NY = 22 3.40
¢ 2V3Im ( )
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Notice that this expression is independent of p, and therefore independent of radi-
ation reaction. For an electron at the edge of an clliptical bunch,

. 10N a? Sa y
NY{(edge) = = == 3.41
¢ (cdge) \/gm([)’z + By) V3G’ ( )

where G is the ratio defined in Eq. (3.21) (equal to 1 for round bunches) and we
have introduced the dimensionless quantity

N
Y= e | (3.42)

= m\/B. B,

from Ref. 5. The values of NJ(edge) for the SLC, NLC, and FLC are listed in
Table 2.1.

We can interpret y/G as fcllows. The radiation emitted by a relativistic elec-
tron is contained in a forward-pointing cone opening at an angle ~m/p. As the
electron curves along its trajectory, the radiation emitted from two diflerent points
will overlap only when the transverse momentum acquired by the electron between
the two points is less than m. The maximum distance between two such points is
called the coherence length, and is given by

m .
lCOh - I,_E‘l_l. | (1;.43)

Numerically, it, is generally the case that [, € L. For an clectron at the edge of
an elliptical bunch,

mL(B; + By) LG o
lcoh(CdSC) = W”UVWJ = 27". (3.’14)

Thus y/G is approximately the number of coherence lengihs in the length of the
bunch. Our result (3.40) for the number of photons radiated can alternatively be
written
Y 50’ L ,
C -
2\/§ lcuh

and says that the probability of radiating a photon within one coherence length is
roughly a. Note that y > 1 for any reasonable set of machine parameters, since
y = (a/m)v/7 Loy, and any linear collider must have a large luminosity per bunch.
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If N7 were always much less than 1, then § could be calculated directly from
,the probability P(w) of emitting a single photon with energy w:

1
6 = ;/dw wP(w). (3.46)

When N7 2 1 and 6 ~ 1, this expression gives only a first approximation to §.
The true value of § can then be obtained just as in the classical radiation reaction
computation above: Divide the bunch into several short slices, and apply the one-
photon result to each slice. This procedure is always valid, since N7 < (L/lcon);
we can make the slices small enough that the probability of radiating more than
one photon per slice is negligible, but still make the slices larger than the coherence
length.
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4. Quantum Beamstrahiung: Formalism

Let us now turn to the problem of quantum beamstrahlung. We will derive
several expressions for the probability that an electron, while traveling through a
bunch of positrons, will radiate a photon. Some of these expressions will be more
general, while others will be more useful. All of them, however, will be closely
analogous to the corresponding classical results reviewed in the previous section.
Our methods will be similar to those of Ref. 5 in many ways. Even those parts of
the calculations that are identical, however, are repeated here for completeness.

4.1. General Treatment of Radiation in an Extended Field

Qur starting point is the distorted-wave Born approximation,lm in which part
of the interaction (the emission of photons) is treated to lowest order only, and
the rest (the interaction between the electron and the pesitron bunch) is treated
exactly. Thus our first simplifying assumption is that only a single photon is
emitted. In this approxiration the matrix elernent is

M = (7" | Hing[9), (4.1)

where w:f and 1/)}' are the initial and final electron wavefunctions in the presence
of the external potential, satisfying outgoing and incoming boundary conditions,
respectively, and Hy, is the interaction Hamiltonian for emission of a photon. The
matrix can be represented by a Feynman diagram, shown in Fig. 4.1. Explicitly,
for scalar electrons,

M = e/dz /dzb e T et (Y] VYT — V), (1.2)

where k is the momentum of the photon and € is its polarization vector. We will
work with scalar electrons for now, postponing the generalization to Dirac electrons
until the end of this section.

Approximate Wavefunctions for Small Disruption

Our first task is to evaluate the wavefunctions 1/);F and 7/)f_. Each must satisfy
the Klein-Gordon equation,

[(E - V(r)* + V¥ = m¥]p(r) = 0, R

in the presence of the potential V(r) of the positron pulse. If we write each wave-
function as

(r) = ), (1.4)
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k=(k, ,(1-x)p)

€7 N ¢-
p'=(pl.p) | p’=(p{, xp)

Figure 4.1. Feynman diagram representing the matrix element (4.1) for the beam-
strahlung process. The x’s on the electren lines signify that the electron interacts with
a strong external field, and its wavefunction is “distorted” accordingly.

then the phase function ¢(r) satisfies
(E=-V(r)* = m? - |Vg(r)]* +iV(r) = 0. (4.5)

Of course we cannot solve this equat 'on exactly for any realistic potential. We
therefore make the high-energy expansion

B(r) = p -t — xolr) - l—%;,- [x1(r) + ixa(r)] + O(p~?) (4.6)

for each wavefunction. The first term represents the free-particle plane wave solu-
tion, while the second term (o) gives the usual eikonal approximation™ For our
problem it will be necessary to keep y1 as well, since terms of lower order in 1/|p|
will cancel in the squared matrix element. We may discard x2, however, since it
gives only a small correction to the amplitude of the the wavefunction.

For the initial wavefunction we have p* = (pj_,p), where p = 29%m is the initial
energy of the electron. (We assume that the longitudinal components of p', pf,
and k are all much larger than their transverse components.) Plugging (4.6) into
(4.5) then gives

(4.7)

- 0Q
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The limits on the integrals are determined by the “outgoing” boundary conditions:
The wavefunction must be a simple plane wave as z = —co. Since V|V = —E |,
we can write the phase of the initial wavefunction explicitly as

¥4
bi =pz+p1-b- /dz' V(b,?2")
-0

(4.8)

!

z z' 9 z
- 2]7) /dz'([/dz"El(b,z")] +2 /dz" P EL(b,z")).
-~00 —00

The phase of the final wavefunction can be found in the same way. Let @ be the
fraction of its energy that the electron keeps:

e= 21 | @)

Setting p/ = (p{l_, zp), we have

00

¢r = z:pz+piob+ /dz' V(b, 2"

z

1 o0 (s ] 2 oC
+ 52p dz'([/dz" E; (b, z")] - 2/dz" pf_ B (b, z”)>,

2! 2!

(4.10)

We can now check to see when our expanéion in powers of 1/p is valid. For an
electron at the edge of a round cylindrical bunch (with E; given by (3.1)), the
ratio of the O(p~!) terms to the O(p°) terms in these expansions is roughly

L*VEB%p™!  LNa
LB ~ pB

~ D, (4.11)

where D is the disruption parameter (3.3). We are therefore assuming in two places
that the disruption is small: in approximating the electric field of the positrons as
fixed, and in making the expansion in powers of D. '

With these expressions for the wavefunctions, the matrix element (4.2) takes
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the form
= te /dz /dzb ¢ ,2) eldims-ker) (4.12)
where

P(b,z) = V(¢i + ¢7). (4.13)

(It will not be necessary to retain the O(1/p) terms in P.) The total phase can be

written as
o0

buou(b, z) = —q. 1 / d2' V(b, ') + O(1/p), (4.14)

where q = py + k — p; is the momentum transfer from the pulse, and the O(1/p)
terms are given by (4.8) and (4.10).

Stationary Phase Evaluation of the Transverse Integral

The second term of the total phase changes very rapidly as b varies: For a
pulse of length L and diameter B, the potential is typically ~ Nab?/LB?, so that

oo
T ny o Ne 1
Vl/dé [~V(b,2")] 5> 5 (4.15)

We can therefore evaluate the b integral by the method of stationary phase. The
only appreciable contribution comes from the stationary point bg, defined by

o0
0= Vida(b,2)|,, =—ar+ /dZ' E_(bs,z') + O(1/p). (4.16)

Note that b depends on z only through the O(1/p) term (which we will not
need to evaluate explicitly). It will be useful to introduce a symbol, by, for the
z-independent part of byy; that is,

o0

q - /dz' E;(bp,2')=0 (exactly). (4.17)

-0

In evaluating the integral over b we obtain a factor

d t/d ,a[;; b 1
()()] bo

where the determinant is of the 2 x 2 matrix obtained by setting i and j equal to

(1.18)
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x or y. We then simply replace b by by in the integrand, with the result
= -—CJ/dZC P(bg, z) e'#o(Pusz), (4.19)

We will need to retain the difference between bg and by (a quantity of order 1/p)
in the phase, but not in the pre-factor.

Since only a small range of L-values contributes to the matrix element for
a given value of q;, we can meaningfully say that the electron has a classical
trajectory as it travels through the bunch.

Manipulation of the Squared Matrix Element

'To make further simplifications we must square the matrix element:
o0
IM|? = draJ? / dz1 dzy € P(21) € P(zg) e'lftor(s1) = dran (2], (4.20)

(For notational convenience we define ¢iot(2) = ¢iot(bst, 2) and P(z) = P(bg, 2).)
The phase can be simplified by noting that

Prot(21) — drot(z2 /dz Aot (4.21)

Fixplicicly, the derivative is

o0
ddior _ dby r ,
g - an P - [a SVbaa), )

2 2 z
- 5%([/“' El(bﬂazl)} +2 /dzl Pl‘EJ»(b(},Z’)>
o .
1 /1T 2 %
+§;1;<[/‘12’E¢(bo,2’)] -2/dz'p£-EL(bo,z')>. (4.22)

z k4

The difference between by and by is significant only in the second and third terms
of the first line. Moreover, these two terms cancel to crder 1/p. The z-dependent
part of by has disappeared from our expressions, which now involve only by.

24



It is useful to eliminate ¢, and pi in favor of other kinematic variables. This
can be done by using the relations

3 m3(1—z) N [k |? N fPJI_IZ B |pr|‘2
9z = 22p 2(1~z)p 2ap 2p

(4.23)

and pi =qy— ki + pi, as well as the relation (4.17) between q; and E . After
a page of tedious algebra one finds

Aoy _ m*(1-z)% +|K, ()[°

= 4.24
dz 2z(1—-z)p (4.24)

where
k'.l.(:) =k ~ (l-2) [pﬂ_ + /d.?:' E_L(bo,z’) . (4.25)

The quantity in brackets is just the momentum of a classical electron at position z;
thus k' is just the transverse momentum of the photon, minus the transverse
momentum that it would have if it were emit‘ed parallel to the electron. Note that
all terms in s of lower order than 1/p have cancelled, and that the only dependence
on z is through k',

We can simplify the outside polariztion factor in (4.20) by summing over the
two transverse photon polarization vectors:

A

> € P(zi)e P(z) = P(z1) - P(z) = [k P(21)] [k P(22)]
€

k|2
= P(a1) Pule) + BLL P () P2
k , k
- 5 PLa)Pi(2) = =5 Pu(z) Pulz)

= (PL(ZJ) - %Pz(?q)) ' (PJ.(ZZ) = %;L-Pz(m))v(&%)

(In the second line we have used the relation k, = 1 — |[ky[2/2k".) We need only
keep the leading-order terms in P, and Py ; from Eq. (4.13),

Pr= (14 z)p;

o0

P_L(z)::pj_-{npi + /(lz'EL(bg,z’)w/dz'El(bo,z')
-0 Z
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z

— ZPEL -k, +2 /dz' EJ_(bO, z'). ‘ (4.27)

-0

(That we only need these expressions to leading order in 1/p justifies our using
bg rather than bg(z) in the pre-factor of (4.19).) Plugging these expressions into
Eq. (4.26), we find simply

Zc P(z1) e P(2) =

4
(1—z)? k't (1) - Ky (22), (4.28)
where k'| (z) is given by Eq. (4.25).

Using Eq. (4.24) for the phase and Eq. (4.28) for the polarization trace, we
find that the squared matrix element (4.20) takes the form

2

k4 &
CIMJE = IGFGi- dz k', (z) exp{ i | d2' s(2") )|, (4.29)
) L
—00 0
where {or notational convenience we define
201—2)2 + 1K' (2)]2
s(z) = = (1-2)" + |k, ()7, (4.30)

2c(1—z)p

(The lower limit on the integral in the phase is of course arbitrary.) Notice that, due
to our expansion in powers of 1/p, all dependence on the longitudinal component
of the electric field has disappeared; only the transverse component E; enters
Eq. (4.29), through its appearance in the definition (4.25) of k', .

Phase Space Integrations

To compute the cross-section for beamstrahlung we must integrate the squared
matrix element over the final-state phase space variables. Conservation of energy
leaves five unconstrained momentum components, which we take to be k and q; .

Thus we have
ek 1 e
o = / /( q'L L‘
9p (27)3 2k | (2 -"‘)Tp

L 1 LPky [ dqL
= e— dzr ‘ A
o 8p2a(1— (27)? /,? LM/H (4.31)
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The ¢ -integral can be changed into an integral over by using (4.17):

d? 1
/(27‘:5& = = /dzbo. (4.32)

The awkward factor of J? in the squared matrix element is exactly cancelled.

If the flux of electrons were uniform over the width of the positron bunch, the
probability that any one electron would emit a photon with energy & = (1-z)p
would equai do divided by the area over which the electrons were spread. But since
our expression for do involves an integral over impact parameter, we can interpret
it to mean that the probability for any particular electron with impact parameter
bg to emit such a photon is given by the integrand. Thus we arrive at our most
general result for the probability P that a scalar electron with impact parameter
b will emit a photon with fractional energy (1—z):

2t 3] o .

where k', (z) is given by Eq. (4.25), with E; cvaluated at the desired impact
parameter b. To obtain the expected fractional energy loss 6(b) we simply weight

this probability by &/p = (1—z):
/dzk' exp( /dz's(z'))

4.2, Connection with Classical Radiation Formulae

2

d(b) a /d“k N
’L'

dr ~ pPz(l- (4.34)

Equation (4.34) is similar in form to the general classical formula (3.16) for
radiation from an accelerated charge:

o0 2
27 2 R . . i )
o] Taieepeio|
00

The factor d*k) /p?(1—z)?, for instance, is precisely equal to dQ when the angle of
the outgoing photon is small.
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To compare the formulae more closely, let us expand the phase and pre-factor
of Eq. (4.35) in powers of 1/p. The unit vector k points in the direction of the

photon momentum k, so
. [k k|2 .
kz(_kl, bl ) (4.36)

The electron’s transverse momentum, to sufficient accuracy, is
t
puO =P\ + [dBslz=1) RS

and its transverse coordinates can be found by integrating this quantity. Its longi-
tudinal coordinate is

z(t) =/tdt' <1 - m 193_(.2)|2>, - (4.38)
0

in a coordinate system where 2(0) = 0. The product k-r(t) in the phase of (4.35)
is therefore

k- P.L(f) m? (ki |pL(t)]?
t! R - . 4.39
/d ( +1 2p2  2k? 2p? (4.39)

The 1 term is cancelled by the ¢ in the phase, leaving only terms of order 1/p. We
can now substitute ¢ — z to this order. Setting k& = (1—2)p, we find that the phase
of Eq. (4.35) is

2

N m?(1—z)? -+ |k'| (z)]?
/d,. SIEET . (4.40)

€
—~~
S
I
>
-
—~
i
N
p——
]t

0

Except for a missing factor of z in the denominator, this is identical to the phase
in the quantum expression (4.34). (See the definition of s(z), Eq. (4.30).)

Now consider the prefactor in Eq. (4.34). Writing out the double cross-product,
we have

x (kx B) = [( -p(t)k — k|*p()], (1.41)

where p(t) is the electron’s momentum. Here we must keep terms within the
brackets proportional to p* and p?, but no smaller. The largest terms cancel,
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leaving us with
wh x (kx B) =k — (1-2)pL(t) =K (2). (4.42)

So again, expressions (4.34) and (4.35) agree except for a factor of .

Reversing the preceding argument, we can write the quantum result (4.34) as

o0 2
¢ _ ap*(i-a)’ ko (k H(t=kr()p(1~2)/2
d.’[fdﬂ, - 47!'211: f(ltk X (k X ﬂ)(, , (413)
-0

This agrees withh the classical expression (4.35) in the classical limit, where z — 1
(that is, the photons are soft compared to the electron’s energy). Of course our
derivation of (4.43) is not valid for a general trajectory r(t); we assumed that the
disruption is small, or, roughly, that the electron’s trajectory does not bend enough
to carry it into a region where the field strength is significantly different from its
value along a straight trajectory. Nevertheless it is tempting to speculate that
Eq. (4.43) might hold more generally.

Equation (4.43), or something very close to it, appears to have been previ-
ously derived, although the references are elusive. Chen and Yokoya[m quote a
formula involving the same phase as in (4.43), but with a pre-factor that is in-
dependent of k. They attribute their formula to Baier and Katkovfm although
it does not appear explicitly in that paper. Bell and Bell™ quote the same for-
mula and attribuwe it to the textbook of Berestetskii, et. al®® (whose treatment
of synchrotron radiation follows Baier and Katkov), although the formula does not
appear explicitly there either. Both Refs. 26 and 28 use the formula to derive
results in agreement with those of Section 4.5 below. The formalism of Baier and
Katkov involves no explicit expansion in powers of the disruption parameter, so
their derivation (whatever the result) is probably more general than ours. In any
case, Eq. (4.43) has not received the attention it deserves, in light of its very close
resemblance to the well-known classical formula (4.35). The present derivation,
based on the scattering-theory method of Blankenbecler and Drell, is entirely new,
and has the advantage of being very concrete and explicit in its assumptions.
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4.3. Expansion for Almost-Uniform Bunch

Qur general result for quantum radiation, Eq. (4.33), is not yet very useful,
since it involves an infinite integration of an oscillating function. To remedy this,
let us first write out the squared integral, labeling the integration variables z; and

29t
dP(b) a 2k, / |
= d k )
= iy [ [ i) Ky
PP B
. + |k
i [de = .
X exp (a/ dz T2zl )
FY] }
Next, change variables to the sum and the difference,
p= 2 222 ~ and W= 2z, — 29, - (4.45)

so that dzydzy = dZdw. The integrand depends on z and w only through the
field strength E(2) (which enters the definition (4.25) of k' (z)). As long as
E| (z) is not changing too rapidly, we can expand it about z d,nd then perform the
integration over w.

Let us therefore write

E_L(z):EJ_(E)+(2~—-E)di"L ~+ ey | (4.46)
so that
Ki(2) = Ki() — (1-0)[(= = ABL(2) 4 50 - P D] 4], (aan)

Inserting this expansion into the integrand of Eq. (4.44), we find for the factor
outside the exponential,

2 2 dE
K| (21) - K| () = [K (3)]? - (1—w)23)4--{El(5)|2 - (1-fc)%—kl(2) : (d; +
1z

(1.48)

In comparing the various terms in this expansion, we need rough cstimates of
the magnitudes of w and k', (2). We will soon find that the integrals over w and
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k, are dominated by the regicns

w e~ legp(2) = Ef—}—) K\ (2) ~ m. (4.49)

For a reasonably smooth bunch shape, we can also approximate
dfdz ~1/L. ~(4.50)

Thus our expansion is in powers of lon/L. This ratio is (almost everywhere)
roughly equal to G/y, or about 1073 for the NLC and FLC parameters given in
Chapter 2. (Since y is determined by the luminosity per bunch, it must be large for
any realistic machine.) By the end of this chapter we will see precisely where our
expansion breaks down. Applying the estimates (4.49) and (4.50) to Eq. (4.48),
~ we see that the last term is one power smaller than the first two and can therefore
be neglected to leading order.

The phase in Eq. (4.44) can be expanded in the same way. Expanding about
z = Z, we ;an write

Etw/2 ‘ s
/ dzs y=w- s('z’)+3<~é—> (—1~—+ (4.51)
F~w/2
Differentiating s(z) twice gives
d?s 1 9 vy dE | (2)
= (-0 - o) LD, (4.52)

The second term is smaller than the first by a factor of rouglily l.on/L, and can be
neglected, as can the higher-order terms in Eq. (4.51). Our complete expression
(4.44) then takes the form

dP o d”k_l_ .
& pf"z(l-.xwf / dz/ o (40P - (12 B

X exp [z (sw 4 %7‘311)3)],

™

1)

with s given by (4.30) at z = Z and

) (1=a)EL(2)

r
8zp

I

(4.54)

The integral over w is now in the form of an Airy integral, which we can
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evaluate using the identity"™

fdw gilowtirtn’) o 2n Ai(s/r). (4.55)
r

When powers of w occur inside the integrand, simply differentiate with respect to s
and use the differential equation satisfied by the Airy function,

Ai"(v) =vAi(v). (4.56)

Applying these formulas to Eq. (4.53), we obtain

P 2ma /d ky /d‘ |k' ) + (1- ) IEL(z)]? )A‘(3/7)
dz  plz(l-z)
(4.57)

To perform the integral over k;, we move it inside the Z integral, shift from
ki to k', (Z), and change to polar coordinates. The angular part is then trivial,
To simplify the integration over the magnitude of k', (), we change variables to

v= 2, (4.58)
/ T

o0 oQ
dP am? 2v ,
T [dz [do(Z - 1) A 56
== /dz/dv(u 1) Ailv), (4.59)
where
3 - 12/3 2/3
ooy |- (Ll _(Llfl==2 ,
=vlky =0)= p|EJ_|< 2 )] = [r( " )} : (4.60)

This is our final result for beamstrahlung from scalar electrons. Notice that when
the photons are very soft (that is, (1—-z) <« 1), this definition of u reduces to the
classical definition (3.12), and our result (4.59) agrees with the classical synchrotron
radiation formula (3.11).
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It is generally more useful 1o write the coefficient of Eq. (4.59) in terms of the
parameters .o, and T. Our result then becomes

2v
deg Tlcoh /d” w "1 Ai(v). (4.61)

The angular dependence of the mdiation is still present in the integrand of
Eq. (4.61); v = u corresponds to k', (2) = 0, while v increases as |k', (Z)| increases.
Specifically, ‘

v_ o, KEP
u m2(l—gz)?’

'4.62)

Since the Airy function falls off exponentially when v > 1, this quantity can be
large only when u < 1. In this case the 1 term in (4.62) can be neglected. Inserting
the definition (4.60) of u, we find that for most values of T, the distribution falls
off exponentially when |k’ (2)] > m. In other words, the radiation is contained
in a cone, centered on the electron’s local direction of travel, with opening angle
~ m/p. When T > 1, however, this result is slightly modified; the same analysis
then shows that the maximum value of k', (2)|/m is roughly T1/3, Up to a possible
factor of T1/3, therefore, our rough estimate for k', (2)| in Bq. (4.49) is justified.
(Recall that even for the FLC parameters in Chapter 2, T1/% ~ 3.)

To justify our estimate for w in Eq. (4.49), notice that the integral over w in
(4.53) begins to converge when

]. lCOh _ 1/3 T 1/3
v (T::E) . (4.63)

So our estimate w ~ Iy is valid except when \/u is very small. This happens at
the extreme soft end of the photon spectrum, and also over most of the spectrum
when T > 1. Neither situation is relevant for most machine parameters, since the
quantity leon/L(1—2)/3 typically remains small until (1—z) ~ 10~8, while T/3 is
quite small in current designs, as noted above. In any case, we have now shown
that the estimates (4.49) always give the correct power of l.on/L, our expansion
parameter. We also see that the coefficients in this expansion might very well
involve powers of T!/% and (1—2)/3. Tn the Section 4.5 we will explicitly compute
the next-order term in this expansion, and examine where and how the expansion
can break down.

Our earlier expansion in powers of the disruption parameter D is somewhat
more troubling. In the phases (4.8) and (4.10) we kept terms through order 1/p,
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and estimated the magnitude of these terms as roughly NaD. Many cancellations
have occurred since then, however. All lower-order terms have cancelled, and now
we have seen that even the O(1/p) terms cannot grow much larger than 1 before
the integral over w cuts off. The largest terms of O(1/p?), which we would naively
expect to have magnitude NaD?, could exceed the 1/p terms even for small D,
And as we saw in Chapter 2, ) could be as large as 20 at the next linear collider.

Physically, however, we should not expect our results to break down when D
is larger than 1 or even 20. The disruption parameter measures the bending of an
electron’s trajectory on the scale of the length of the bunch, whereas the radiation
(at least for small D) is coherent only over a much smaller scale, [.,),. A breakdown
in our formulac for large D could only result {from a coherent effect over a large
fraction of the bunch length, which seems physically implausible.

These hand-waving comments are of course no substitute for a proper treatment,
of beamstrahlung in the presence of large disruption. The direct approach of this
paper, using explicit wavefunctions, seems very difficult to apply in this case. The

. . ’ . i 27
only work [ know of that may be applicable is that of Baier and Katkov""

4.4. Dirac Electrons

The extension of this derivation to Dirac electrons involves more computation
but no new ideas. In this case the matrix element for emission of a photon is

M=c /dz /(1211 e*"k"'q/)f“*(e caypt. (4.64)
The wavefunctions 1/’,+ and 1/)}' are solutions ol the Dirac equation,

(—ie- V4 mpB)p = (L= V(r)), (4.65)

with outgoing and incoming houndary conditions. We will use a chiral basis for
the Dirac matrices:

= ; 3} = : 4.66
0 ~o / 10 ( )

To find the wavefunctions 'r/.vi+ and z/vj“., we write them 1 the form

“u(r) ig(r)
¢

Pp(r) = u(r)e' ) =
(r) = u(r) o

, (4.67)

where u, and v are two-component spinors and @(r) is the same phase that solves

31



the Klein-Gordon equation. The upper and lower t,wd«"mru)onent spinors satisfy
[—z'd'- V4o (Vé)—(E - V)]uu + muy =0,
[ie-V -0 (V¢) = (E - V)]w + muy = 0.

Combining these equations and using the fact that ¢(r) obeys Eq. (4.5), we obtain
the second-order differential equations

[V2+2i(V$)  V —ig - Eluy =0,
[V2+2i(V¢) -V +io-E]y =0,

(4.68)

(4.69)

Solving these equations to order 1/p, we can easily find the Dirac wavefunc-
“tions. Let us introduce the notation vy = v; + ivy and v- = v, — vy for the
components of any transverse vector v. We will also abbreviate [dz' Ex(b,2') .
as [ E+. For the initial state, the phase ¢(r) is given by (4.8); the Dirac spinors
- of definite helicity are therefore

1 0
Lt [* B 9
. A (Pt 2o By) . m/2p
ut —_ 2p 2p ; ulJ —_ 2p , '
R = v iy =V i)
0 1 /

(We use relativistic spinor normalization.) For the final state, the phase ¢(r) is
given by (4.10), so the right-handed and left-handed spinors are

1 ‘ 0
._1__( f_. oo ,
ol [ 5, AN R
217]7 t+ r4 : u{H = 2(1}p _‘__‘I__(I)f 3 foo F )
2op \l'— z =
0 1

f _
Uy = V2ep

&

m/2zp

Since the matrix element involves the same phase as in the case of scalar
electrons, the b-integral can be evaluated by the method of stationary phase as
before. The rest of our calculation also goes through unchanged, except for the
evaluation of the polarization trace. As in Eq. (4.19), the matrix element is

M =ied /dz ¢ - P(by, z) e, - (4.70)
but now the vector P(by, 2) is given by

P(by, 2) = u'*(bg, z) @ v (b, 2). (4.71)

In the Dirac case the photon’s polarization vector is potentially interesting, so we
will not sum over e. Since the photon, initial electron, and final electron can each



have two different polarization states, we must evaluate the matrix element for
“eight different sets of polarizations,

Consider first the case where both the initial and final electrons are right-
handed. The components of P(z) are then

P, = 2y/zp;

z 2

I)m_\j_<;7,p+ b~ k_+m/E++/E_);

-0 )
V4
») i 1 t 1 - ¢
P, = _W(mp_*_ P ket /IL+ - /,l'_>. (4.72)
) ~00

(In the last two expressions we have again used pJ_ =q—ky+p and Eq. (4.17).)
The polarization vector for a right-handed or left-handed photon with momentum
k is (to lowest order in small quantities)

1 . [} . Nt
€= :/—5(1, i, —ky/k) (right-handed)
1 (4.73)
or €= —2-(]., i, —k_/k) (left-handed).

It is now easy to work out the polarization-dependent part of the squared
matrix element. For a right-handed photon we find

, 14
€ P'(z1)€ P(z) = if»E"(-11235]"’*”(2"“"‘,*(32)' | (4.74)

In analogy with Eq. (4.33), therelore, the probability for a right-handed elecion
to emit a right-handed photon without flipping its helicity is given by

2 )

/L]a z) exp (7 /d:' .9(:’))

0

iPb) « _L/[dlcl
dz pPr(l-z)3 2z

. (4.76)

where s(z') is defined in (4.30). (Note the close similarity to the corresponding
formula for scalar electrons, Eq. (4.33).) Expanding to lowest order in leg, /L as in
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the previous section, we obtain the more explicit re~lt

oo

D 2
El_]_.. Pt 9_.7..7.:1—*...1_.. / /dv —— 1 A]('U) (4.76)

dz

where u is the same as in Eq. (4.60). This is just 1/2z times the corresponding
scalar result, Eq. (4.59). By parity invariance, this expression also holds in the
case where initial electron, final electron, and photon are all left-handed.

Similarly, if the initial and final electron are right-handed but the photon is
left-handed,

(1_%,,3)2]"—( 71)kly (22). (4.77)

The probability for a right-handed electron to emit a left-handed photon without
flipping its helicity is therefore given by

flfi = a /dzkl 7d,, k' (2) exp( /zdz s(z ))’2 (4.78)
0

dz  plz(1-2)32 ) (2r)?
00

¢ P*(z1)€" - P(z) =

{\DIH

Expanding again to lowest order in [y, /L, this becomes

»}
ap - ET_N / /(lv ?—2 - 1 Al(v) (4.79)

dx

Notice that this is % times the above expression for a right-handed photon. Again,
this expression also applies to the parity-reversed situation of a left-handed electron
and a right-handed photon.

Finally we must consider the case where the electron flips its helicity during
the radiation process, say from right to left. The components of P(z) (to order
1/p) are now simply

P, =0, P = - _;,___'_;’ Py = ~——w-—-—~—— (4.80)

If the photon is right-handed, we immediately find

e g (4.81)

€T

e P'(z1)e Plzy)

while if the photon is left-handed, the squared matrix element is zero. The proba-
bility for an electron to flip its helicity while emitting a photon (which must have

ur ) n . PR wpe S g
MR e W e LT LB LR LY A 111 R o n AL

i et

e



the same helicity as the initial electron) is therefore

o0 z 2
ap 1 21 27,
v - S gl - *) /d A'J;, /d exp /(L s(2') )] . (4.82)
da 2pa? (2m)*
~00 0

Expanding to lowest order in loy, /L now gives

8

2 ' —1T
AP _om?(1=x)* [ [, Ai(). (4.83)
dz P 2

Summing over all possible final-state helicities, we obtain the total probability
for a Dirac electron to emit a photon of energy (1—z)p:

dP  am? 2v 1422 (1*-3:)2
- I Ai(e) | (22 - )( , 1.84
da ) / /” Ai(v) ( u : 2r ) + 2z ( )

—00

where u is the same as in the scalar case (4.60). The last term in square brackets is
the spin-flip contribution (4.83), for which the photon must have the same helicity
as the initial electron. The first term corresponds to helicity-preserving emission,
with the 1 representing a photon helicity the same as that of the electrorn, and the
@® representing a photon helicity opposite to that of the eleciron. Notice that in
the classical lhnit ((1-2) < 1), the helicity-flip term vanishes, while the non-flip
term (as in the scalar case) reduces to the classical result (3.11),

Our final vesult (4.84) is not new. The ecarliest full treatment of quantum
synchrotron radiation is due to I(I(:pik()&ffm who derived an equivalent but much
more complicated formula, assuming that the electron moves in a uniform mag-
netic field. The much simpler form (4.84) is due to Nikishov and Ritus™ A similar
treatment from this viewpoint is given in the textbook of Sokolov and Ternov!™ A
later derivation”” made it clear that the electron’s trajectory can be treated clas-
sically, and hence the source of its acceleration, whether electric or magnetic field,
is unimportant. {‘This derivation can also be found in the texthook of Berestetskii
Eafshitz, and ]’i&eu'w‘kiim].) More recently, Chen and Noble™ have verified that
the formula applies in tho uw- of an electric rather than magnetic ficld. Finally,
Blankenbecler and Drell™” have derived the formula (more precisely, an average

b

of the formula over a uniforni eylindrical bunch) using the same techniques as this
paper. The equivalence of their result to that of Sokolov and Ternov and of Nik-
. . . (4 y 9

ishov and Ritus was first shown by Bell and Bell™  Jacob and Wu™ have used
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essentially the same method to study the regime where T > 1. The present paver
is the first to apply the scattering-theory formalism of Blankenbecler and Drell to
more general bunch geometries for general values of T, and to derive the local form
(4.84) directly by this method.

4.5. First Correction for a Nonuniform Bunch

In Section 4.3 we expanded the integrand of our general formula (4.44) in
powers of I, /L, keeping only the leading order. This parameter is numerically
small (typically 107%) throughout most of the bunch for any reasonable set of
machine parameters. But since [.on = m/|E] |, we should not expect the expansion
to converge near the edges of the bunch where the electric field is very small.
Furthermore, we saw at the end of Section 4.3 that the true expansion parameter
is probably l.on/L+/u, which is much larger than I, /L when (1—z) < 1 or T >
1. It would therefore be a good idea to check the validity of our lowest-order
formula, by computing the next-order correction explicitly. We will find that the
first nonvanishing correction term is smaller by two powers of oy, /L.

This Corxcctwn term for radiation in a nonuniform field was first calculated by
Chen and Yokoya!™ using the formalism of Baier and Katkov®" The correction
term in the limit T > 1 has also been calculated by Bell and Bell™  Chen
and Yokoya integrated the correction term over z and over the photon frequency,
and found the result to be negligible compared to the Jeading term for most sets
of machine parameters, but considerable (roughy 30% of the leading term) for

a parameter set suggested earlier by Himel and Siegrist™ We will discuss these
conclusions at the end of this section.

The computation of the correction term is extremely straightforward, requiring
only that we keep higher-order terms when expanding the electric field about 7 as
in Eq. (4.46). It is nevertheless quite tedious, even for scalar electrons. The electric
field enters our master formula (4.44) through k', (2), which appears both in the
phase and outside the exponential. It is necessary to keep terms that are smaller
than the leading terms by one or two powers of leon /L, according to the estimates
in Egs. (4.49) and (4.50). It is not hard to sec that this is equivalent to retaining
up to two z-derivatives of E; any given term.

The outside factor, to the needed accuracy, is

k) (21)- K (z2) = K\ | = (1-2)k, .(F’JLEL+...>
! (4.85)

?U u)4 . e
+ (1-2) (‘ _“IE l 'EJ.l - Z;:EJ.'EL +'-~),

39



where the dot denotes d/dz, and E| and k| are to be evaluated at z = z. Higher-
order terms in the phase are presumably small compared to 1, and can therefore
be brought down by Taylor-expanding the exponential. The extra factor we thus
obtain is

w® : 1/ wd <\ 2
1“94a~pk'¢'El 9(2 ke El)
“le (4.86)
w3 (1—z) 9
———= J|E 4E,-E
1920zp (IBLE +4BL By ) 4o

Expressions (4.85) and (4.86) should now be multiplied together, dropping terms
with more than two z derivatives of E . The resulting expression can be simplified
somewhat by noting that terms odd in kJ_ will vanish when we integrate over
k'_l_, and that terms of the form (k _L'EL) are, after integration, equivalent to

LK PIE L.

After these manipulations, our expression involves an 8th-order po]ynomml
in w, multiplied by the same exponential as in Iiq. (4.53). The integral over w can
again be evaluated in terms of the Airy function using Eq. (4.55), and the result
simplified using the differential equation (4.56). When the smoke finally clears, we
obtain the following expression for the correction term, Py, to the probability of
radiation from a scalar electron:

dZPZ _ 2alcon { |E_L=2

[—-u Ai(u) — % Ai{u) — —1:‘—? Ai'(u)]

drdz 90T | |E_|?
’ = E, - E| 6 (1.87)
+ IE 2 [ Ju Ai(u) + u)z Ai (u)} }
where w« is again as defined in Eq. (4.60). We now see explicitly that the ratio of

the correction to the leading term (4.61) is of order (I /L)% Furthermore, when
u is small, we find that the largest terms in the ratio are of order (leon/L/)?, as
anticipated in Iiq. (4.63). Equation (4.87) actually has a non-integrable singularity
at u = 0 (or @ = 1). We should not take it too seriously, however, since our
expansion in powers of loon/L+/u is not expected to converge in this region. The
total encrgy loss, equal to (1—a) times the above expression, is still finite.

The case of Dirac electrons is entirely analogous. Here we find, for the non-flip
radiation probability, and expression identical to (4.87), but multiplied (as was the
leading term) by (1422)/2z. There is also a correction to the spin-flip term,

([z])'{“p ‘Z(Y/coh(l”':‘(’)2 1EJ‘2 rE.L.E_L oo 2
drd: 90T 22 <|EL;2 7 B \) (”Al(“) + u Al (”)) (1.88)

It is not hard to check that the sum of the flip and non-flip correction terms agrees
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precisely with the result of Chen and ‘Yokoy.tm] (In the Dirac case there arise

additional terms, smaller than the leading term by only one power of lcon /L, that
are proportional to E; x E|. These terms vanish if the field is always parallel to
its z-derivative, or if the bunch has a mirror symmetry and we average over impact
parameter, or if we average over the initial electron helicity. Since at least one of
these conditions is generally satisfied, we will neglect these terms.)

Let us now consider the total correction to 6, the fractional energy loss. Mul-
tiplying Eq. (4.87) by (1—z), and changing variables from z to u, we find

d62 alcoh 3/2 _IEJ-‘Z 3 A : . !
o = /d (14 Tu??)=3 Im[—u Ai(u) — 8 Ai(u) — 10u Ai (u)]

+ %% [ 3ud Ai(u) + 6 Ai(u)] } (4.89)
Notice that when T < 1, the factor (1 + Yu%?)~3 can be expanded and the
integrals evaluated explicitly to whatever order desired. The first term in this
expansion vanishes identically when integrated, so the integral is proportional to
T when T <« 1. Thus the correction term is very strongly suppressed, relative to
the leading term, in the classical limit.

To examine the correction quantitatively, let us specialize to the case of a
longitudinally gaussian bunch (but uniform and round in the transverse direction,
for simplicity). The electric field is then given by Eq. (3.29):

2N o

. eive 6 ~2%/20° _
EL=-Tmb \/ﬁ_ : (4.90)

where ¢ = L/2V/3 = 40, is the length scale in the rest {frame of the bunch, and
B = 20, is the bunch radius. The ratios that appear in the correction term are

[ELl?  (z/0)) E Bl (z/0)? - 3

EFT o ER A
Equation (4.89) for the correction to the energy loss therefore becomes
dé (e ¢]
2= e /du(l+Tgc'c2/2u3/2)'3 (3u® - 6) Ai(u)
¢~ 150, ‘ |
0 (4.92)

+¢? [-—4113 Ai(u) — 2 Ai(u) — 10 Ai'(u)} },
where ¢ = z/o and T = Tge~¢*/2,
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For comparl%on the leading term (4.59) takes the form

(o]
2
%%:1137N0< > ‘/mt1+rw ﬂu”%”ﬂ-%uﬁ%w—ué/dvAKM}

8no.0;
0 u
‘ (4.93)
We now see explicitly that the ratio of the correction term to the leading term is
of order ‘
Ur (z/0)? —~ o
(zv,c> /o) yz‘ (2/2) (4.94)

where y = Na/m B is the parameter introduced in Eq. (3.41), proportional to the
square root of the luminosity per bunch crossing. Since y is large (typically 10%)
for any realistic set of machine parameters, the correction term is always negligible
near the center of the bunch. On the other hand, no matter how large y is, there is
always a (large) value of z/o beyond which the correction is larger than the leading
term. For most machines, the correction term will be small even here (compared to
the leading term evaluated at z = 0), since T is suppressed by a factor of e~ 120,
If T & 1 even with this suppressior, however, the correction term can become
large. The condition for this to occur is

T
221 or yC <1, (4.95)
Y

where C = 1/Ty is the parameter introduced in Eq. (3.36). (These expressions
assume round bunches. For elliptical bunches, substitute y — y/ and C — Cd,
where G is the quantity defined in Eq. (3.21), roughly equal to the square root of
the aspect ratio. The factors of (¢ happen to cancel in the condition yC < 1, which

still holds.)

Although most proposed machine parameters come far from satisfying condi-
tion (4.95), there are exceptions. Following Chen and Yokoya, let us consider the
parameters suggested by Himel and Siegrist for a 5 4 5 TeV collider:

98 x 107

i

N
N = 1.2 x 108

] (4.96)
4x 107 em;

o

o = 2.5 x 107 %m.

I

This is a machine with round beams, y = 680, and (' = 1.34 x 1074, (It relies on a
very large value of T to suppress beamstrahlung, a quite different philosophy from
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Figure 4.2. The differential fractional energy loss, dé/d(z/c), is plotted against z/o,
for the Himel-Siegrist parameters given in Eq. (4.96) and b = ¢,.. The solid curve is the
correction term (4.92), while the dashed curve is the leading term (4.93). These curves

are for scalar electrons.

the FLC design in Chapter 2.) Condition (4.95) is therefore met, so we expect the
cerrection term to be substantial. The leading term (4.93) and the correction term
(4.92) are plotted vs. 2/ in Fig. 4.2, for b = o (and therefore To = 5100). If we
were to integrate both terms over z, we would find (as Chen and Yokoya did) that
the total correction term is a large fraction of the leading term. (For simplicity, the
formulas plotted in Fig. 4.2 are for scalar electrons. The results are qualitatively
the same for Dirac electrons, the case considered by Chen and Yokoya.)

Since the large contribution to the correction term comes from the region z =~
3-5 o, where it is many times larger than the leading term, it scems reasonable
to conclude that our expansion is breaking down and neither formula is valid. We
might expect on physical grounds that no appreciable radiation should occur at
z & 3-5 o, but there remains the possibility of a nonlocal “end effect” that causes
the electron to radiate as it enters (and leaves) the bunch. This possibility has
been examined by many authors®™ Most relevant, perhaps, is the latest work

of Jacob and \Nu&”l who have independently pointed out the inapplicability of

13



our expansion in the region of large ||, and have examined the radiation in this
region using other methods; they conclude that the nonlocal contribution to the
radiation is not large. It seems safe to conclude that the leading term in our
expansion, the standard formula for quantum synchrotron radiation, is sufficient
whenever yC' > 1, and that it may be sufficient even when this condition is not

met.



don

‘where

5. Quantum Beamstrahlung: Applications

The previous chapter was devoted to the derivation of the standard formula
(Eq. (4.84)) for quantum synchrotron radiation. To summarize, the differential
probability for a relativistic electron with energy p in a transverse electric field E |
to emit a photon with energy k = (1—a)p within a distance Az is

2 . 2
dP am [ __1)(14—:1: )+\1—m) ], (5.1)
dx 2z 2

u=—-[,;%&-|<l—;~'f>r“=[—%G—?)r“- 52

In this chapter we will put this formula to use, at a variety of levels of sophistication.

As discussed in Sections 4.3 and 4.5, the accuracy of formula (5.1) in all cases of
interest has not been rigorously established. It is posc.ble that there are additional
effects when the electron enters and leaves the bunch, and also when the disruption
parameter D is large. Since neither type of effect has been estimated reliably,
and since both are very likely negligible for our purposes, we will neglect these
complications in this chapter and the rest of this dissertation.

5.1. Properties of Quantum Synchrotron Radiation

It is useful to rewrite Eq. (5.1) as

P _ a(82) gy 1y, (5.3)

dz leoh

where [, = m/|E | is the coherence length and

fdv Ai(v [ 2 )(1;;2)-1—(1;;”)2]. (5.4)

The coeflicient a(Az)/l.on will appear ubiquitously in this chapter, so it is conve-
nient to give it a name, K:

a(Az)

K =
lcoh

(5.5)

This quantity is just a times the number of coherence lengths that the electron
travels; it is typically of order 1 when Az equals the bunch length.
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Figure 5.1. The relative number of beamstrahlung photons, as a function of their

energy, for T = .01, 1, and 100. The precise guantity plotted is R(z,T), Eq. (5.4),
which gives the differential probability of radiating a photon divided by the coeflicient
K = a(Az)/lewon.

When one is not concerned with the final heiicities of the electron and photon,
it is generally more convenient to write Eq. (5.4) as

1422y AY T
R(x,T) = -%[( ZL )i\—%ﬂ + [ dv /\i(v)} ‘ (5.6)

i

The function R(a, T) is plotted in Fig. 5.1, for T in the extreme classical, extreme
guantum, and transition regions. When T < 1 only soft photons are radiated,
while for T > 1 the spectrum is nearly flat except at very large and very small 2.
Note that formula (5.3) reduces to the classical result (3.11) when (1—a) < 1,
regardless of the value of Y.

It is often necessary to have simple analytic approximations of the beam-
strahlung photon spectrum. In the absense of radiation rcaction, these can be
obtained directly from Iiq. (5.6). First consider the soft end of the photon spec-
trum. When v < I we can set v = 0 everywhere except in the denominator of the
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Figure 5.2. Various approximations to the beamstrahlung photon spectrum, shown
for T = 1. The dashed curve is the leading term of Eq. (5.7), the dot-dashed curve is
the leading term of Eq. (5.9), and the dotted curve is the interpolating form (5.10).

first term. If, in addition, (1—2) < 1 (as is automatically the case except when

T > 1), the spectrum takes the form

-2 Ai'(0) T )
R(z,T) = W 37 + O(~T—> for (1-2) < 1, u g 1. (5.7)

At the high-energy tail of the photon spectrum, where w is very large, we can apply
the asymptotic expansion of the Airy function,

Riv) ~ —d @ [1 n O(l)], (5.8)

v

to obtain

ey 1 ]-~:’13(1—-;zr)) ‘ 2 (1-2)
fife, 1) = 2/TY1/2 ( Va(l=x) / (IXP('* 37T«

X [1+O(TT )} for Ll—’;—r-l»z > 1.

- T

At intermediate (and small) values of u, the following interpolating form (due to

47



2.0 T 1T LR RLLL T l\ill]l T llill”[ T 1T TTTT TTIIIHI{ TTTTTT

N,/K

.
1 llllllL' 1 IlHlJll 1 lJllllll 1 Illl!ll] { lIllIllI ! llllLLLl [

0.0 :
1073 107 10”1 100 10! 10° 109 104

T

Figure 5.3. The expected number of photons radiated, divided by the coefficient K,
is plotted as a functivn of Y. The dashed line shows the limiting classical value 5/2v/3,
while the dot-dashed line shows the leading term in the quantum (Y > 1) limit, The
dotted line is the approximate expression (5.12), with a = 1.5.

Blankenbecler and Drell™) is generally quite accurate:

2c (14x? 1 : o
R(z,T) = ﬁ( = > o .f%LCZua/?/B’ ¢ = — Ai'(0) = .2588. (5.10)
0C

(This approximation has the correct exponential dependence when w > 1, but not
the correct power multiplying the exponential.) All of these approximate forms,
along with the exact spectrum, are plotted for T =1 in Fig. 5.2,

Figure 5.3 shows the integral of 2 over all values of @, as a function of T.
This quantity is the expected number of photons radiated in every 1/a coherence
lengths. The integrals can be evaluated analytically for very large and very small
values of T; the results in these limits are
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Figure 5.4. Beamstrahlung energy spectra, as a fun tion of photon energy, for three
values of T,

5
1 e ~ 1443 for T < 1,
/(th T) . , (501
14 I'(% .40
. [/3) 1 1460 for T » 1.

9.31/3 Y1/3 ~ T1/3

The first result is of course the same as Eq. (3.45). As T grows beyond | into the
quantum regime, the number of photons decreases. A useful approximation over

all T is

Ny= K oo(L 4o e (5.12

When the parameter « is 1.5 (the case shown in Fig. 5.3), this function is accurate

to better than 10% for T < 25, and better than 20% for T < 10*. The fit can be
improved over narrower ranges of T by increasing or d(..(,rca.smg .

Multiplying Eq. (5.3) by (1—z) gives the differential [ractional encrgy loss as

a function of photon energy. This quantity (again divided by the coefficient i) is

plotted vs. z, for three values of T, in Fig. 5.4, Integrating this “power spectrum”

over x gives the expected fractional energy loss, 6. We will call this quantity é;,
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since it is actually the one-photon approximation to 8, valid over distances (Az)
that are small enough that the probability of emitting more than one photon is
negligible. For limiting values of T, it takes the form

1 g’r — —§§—«T2 for T < 1;

(S' f;
—l,:/(l:lr(l——;r)li(;z','f): 3. 8v3
K 2I2/3) 1 3709
~ov1/8

(5.13)

0 for T >» 1.

81.31/3 Y1/3

Palmer"” has pointed out that the interpolating form

9 2
5 n 202 2 ( : ) (5.14)

lon 3 \ 14 1.3472/3

is remarkably accurate for ali values of T. All of these approximate expressions,
together with the exact formula for 8), arc plotted in Fig. 5.5.
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Table 2.1 lists the values of §;, averaged over impact parameter assuming uni-
form bunches, for the SLC, NLC, and FLC. From the first quantum correction
in Eq. (5.13), one can show that the quantum suppression to 6; at the SLC is
about 1%. The other two values were computed by numerical integration of the

function (1—x)R(x,T).

Since it is awkward to always average over impact parameter in such com-
putations, it is tempting to introduce an “average” value of T, from which one
could evaluate 8; (and other quantities) directly. Noble! and others have done
so, defining the average value to be some empirical coefficient times T(edge). The
danger in this practice is that the appropriate coefficient depends (weakly) on the
magnitude of T, and (strongly) on what quantity one wants to compute. We will
sce in the next chapter, for example, that using an average value of T to estimate
the rate of coherent pair production can give grossly erroncous results. The only
safe procedure is to compute averages separately in cach case, from first principles,
and this is what we will do throughout this paper.

The angular dependence of beamstrahluns radiation is not very interesting, As
shown in Section 4.3, the radiation lies within a forward-pointing cone, centered
about the electron’s local direction of travel, with opening angle ~ m/p in the rest
frame of the positron bunch or ~ 1/5 in the CM frame. (When 7 > 1, the angle is
larger by a factor of T'/3.) But the direction of the electron’s momentum changes
by roughly this amount within one coherence length [y, and the ratio L/l is
typically a few hundred. For all practical purposes, therefore, the opening angle of
the cone is zero, and the angular dependence of the radiated photons is determined
entirely by that of the radiating electrons.

5.2. Beamstrahlung from Polarized Electrons

It is well known™ that classical synchrotron radiation has a strong linear
polarization, in the direction of the electron’s acceleration. Here we will investigate
the polarization of the radiation, and of the radiating clectrons, in the quantum
regime. Since the electrons at a future linear collider are likely to be longitudinally
polarized, we use the helicity basis of polarization states.

As we saw in Section 4.4, the various terms in Eq. (5.1) correspond to the
different possible helicities of the outgoing electron and photon. 'T'he first term
within the brackets gives the probability for the electron to emit a photon with-
out changing its helicity. Within the second factor of this term, the 1/2z term
corresponds to emission of a photon with helicity parallel to the electron’s, while
the ¥ /2 termi corresponds to emission of a photon with opposite helicity. (This
r-dependence is the same as in the Weizsdcker-Williams distribution.) The second
term within the brackets gives the probability for the electron to emit a photon
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Figure 5.6. The relative probability of helicity-flip beamstrahlung radiation is plotted
vs. the photon energy for three values of Y. As in the preceding graphs, the vertical
scale is normalized to units of K.

while flipping to the opposite helicity; in this case the photon’s helicity is always
the same as the initial helicity of the electron.

The helicity-flip term of R(z,T) is plotted in Fig. 5.6, again for three different
values of T. The integral of this term over z, which gives the total probability of
helicity flip radiation divided by K, is plotted in Fig. 5.7. The total helicity-flip
probability is negligible when T <« 1, and quite small even when T 2 1. At the
NLC, for example, a typical electron has T & .4 and K = 3, so the probability
that it will flip its helicity by the time it leaves the bunch is about 2.5%. The
average beam polarization over the entire bunch crossing is reduced by half this
much, just over 1%. For the FLC the depolarization is slightly less. Furthermore,
the electrons that flip tend to be those that emit very hard photons, losing most of
their energy. The dilution of the polarization of the electron beam from this process
is therefore unimportant for all practical purposes whenever 6 is tolerably small.
One can conceive of experiments that would require better than 99% polarization el

b

although no one has yet conceived of an electron source that could deliver anything
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Figure 5.7. The total probability of helicity flip beamstrahlung, divided by K, as a
function of T.

close to 99%. Our analysis indicates that even if the machine could deliver 100%
polarization, helicity-flip beamstrahlung would reduce it to roughly 99% !

A more interesting consideration is the polarization of the emitted photlons.
From the z-dependence of the various terms in Eq. (5.1), we sce that soft photons
(with (1-z) <« 1) have no longitudinal polarization, while hard photons (with
(I—z) ~ 1) tend to have helicities parallel {o the initial electron. At the FLC,
for example, a typical electron (with T = 18 and K = 2.3) emits .2 photons with
(1—z) > .5, and 92% of these have parallel helicity. Figure 5.8 shows the photon
spectra for T = 1 and T = 100, broken into parallel and anti-parallel helicity
components. Thus whenever the electrons are polarized, and there is a significant,
hard-photon spectrum, the hard photons are polarized. Because of the spin-flip
term in Eq. (5.1), the polarization of hard beamstrahlung photons is somewhat,
greater than that of hard virtual photons (from the Weizsacker-Williams distribu-
tion). One possible use of polarized photons at a linear collider is to measure the
polarization asymmetry of the reaction ey — Wy, in order to study the W-photon

coupling.“”
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Figure 5.8. Beamstrahlung photon spectra, for two values of T, broken into helicity
components. The solid curves are for photons with helicity parallel to the (initial) elec-
tron, while the dashed curves are for photons with helicity antiparallel to the electron.

5.3. Multiple Photon Emission

When al/ln R 1, an electron has a significant chance of emitting more
than one photon before leaving the bunch. If, in addition, 6, is more than a few
percent, then radiation reaction is significant: the electron’s energy loss will reduce
subsequent radiation. In Section 3.4 we treated radiation reaction in the classical
regime, where all the photons are very soft; now let us turn to the general case.

From Eq. (5.3), we see that the probability of emitting a photon within one
coherence length is ~a. This implies that multiple photon emission is an incoherent
process: interference between the photons can be neglected. Following Ref. 8, we
will therefore apply formula (5.1) locally throughout the electron’s trajectory.

Let p be the initial energy of the electron, and suppose that at some point
along its trajectory it has encrgy ap. It can then make a transition to energy z'p
by emitting a photon with energy (z — a')p. To find the probability for such a
transition we substitute p — ap and = — 2'/x in Eq. (5.1). Thus the probability
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per unit length is

co

p am? , 2 N\ /x4’ z—a')?
T(a' )= = = s /dv A.(v)[(—- - 1)( )+ (z=) J (5.15)

u 2xx! 2z

u

where
3

N1 T gy 123
"= —"1-(9“—1) - —-("’ 7 ) . (5.16)
p|lE|\ zz' T\ za!
We have defined T = p|E|/m? in terms of the initial energy p. In general T can

still depend on z, through the electric field strength E. The coefficient m?/p is
equal to 1/Y ., but is clearly independent of z. ’

Let Pe(z,z)dz be the probability that at position 2, the electron has energy
between x and z + dz. Initially, this distribution is just a delta-function at = = 1:

Pe(0,z) = 6(z — 1). (5.17)

As z increases, Py(z,z) will increase due to transitions from higher energies down
to ¢, and decrease due to transitions from @ down to lower energies. More precisely,
P, evolves according to the “master equation”

1 z

= /d.r.’ Pe(z,2"\T(z « z') - /dm' Pe(z,2)T(z' « z), (5.18)

T 0

dPe(z,)
dz

where the two terms on the right-hand side represent the “source” and “sink” of
electrons at momentum fraction z. It is trivial to check that the total probability
[ Pe(z,z)dx is conserved.
Similarly, the photon probability distribution Py(z, ) is governed by the equa-
tion
1

= /dm' Pe(z,2YT(2' — & « 2'). (5.19)

z

dPy(z,z)
dz

From Eqs. (5.18) and (5.19) it is easy to show that the total energy, [ x(Pe+ Py)dz,
is also conserved.

IFrom now on we will assume that the bunch is uniform in the longitudinal
direction. (We saw in Section 3.3 that this approximation introduces only a 2.3%
error in the classical value of 4.) Also, as always, we will neglect disruption. Then
T is a constant for any given electron, and the kernel T'(2' « =) is independent
of 2.
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Equation (5.18) can be solved analytically in some regimes'”’ The simplest
example is at z = 1, where it reduces to

dPe(z,1)
dz

1
- ~Pe(z,1)/dx'T(x' - 1). (5.20)
0

" The integral on the right-hand side is just the expected number of photons radiated

per unit length, N,/L. The solution of Eq. (5.20) is therefore simply
Pu(z,1) = P,(0,1) e~ /L, (5.21)

In other words, the probability that the electron has radiated zero photons after
traveling a distance z is exp(—Nyz/L). The value of N, in any particular case can
be estimated from Fig. 5.3, or Eq. (5.12).

When z is very close to 1 (precisely, (1—z)/T < 1), the solution is only slightly
more difficult. In the source term of (5.18) we can assume z & z' & 1; in this limit
the kernel (5.15) becomes

am?\ =2Ai(0)Y?® T
P ) (g;l — (1})2/3 = ((L" . 17)2/3. (5-22)

T(x — ') ~ (

The constant Ty is roughly of order 1/(Y1/3 ;). In the sink term of (5.18) we can
set z equal to 1 in the limit of the integral and in T'(z' « z), so that the integral
again gives Ny/L. The rate equation thus reduces to

dPe(z,cr1) , ) Ty , N, )
R S A /dz Pe(z-,-’E ) . (x—l—:—ma —_ PC(Z,\T) . "'L“‘. (523)
The solution of this equation can be written abstractly as

1

- ~1) = ~Nyz/L ) 1 Nyz2'[L Ypo oy To
Pe(zy-'r 1) € /dZ € /dm [e(z,;p) (xl—x)2/3.
0

(5.24)

z

This equation can be solved by iteration, using Pe(z,z) = é§(z — 1)eN*/% as a first
trial solution. The result is

Tz T3 z? o
(1—z)2/3 + O((l-—m)l/:i)' . (5.25)

The second term in brackets represents electrons that fall in energy from E to z F by
radiating a single photon, while successive terms represent electrons that make the

Po(z,zm1) = ¢~ N#/L 6(z—1)+
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transition by radiating successively more photons. If the chance of radiating very
soft photons is sufficiently large, several terms in the expansion must be evaluated
before it begins to converge. Referring to the definition (5.22) of 1p, we sce that
the first term of (5.25) dominates when

al 1/3
e < 1. 5.26
lwh ( T ) ( )

The shape of the electron spectrum near x = 1 is interesting because many
experiments require a substantial peak in order to investigate a narrow resonance.
The relevant values of (1—z) are determined by the width of the resonance in
question. Using (1—z) ~ .01 as a typical value, we see that the expansion (5.25)
does not work well for the NL.C (T =~ .4), but does work fairly well for the FLC
(T ~ 20). To study the former case we will resort to numerical methods. In
Section 5.5 we will carefully evaluate the usefulness of these machines for studying
resonances.

5.4. Numerical Computation of the Multiple-Photon Spectra

To solve Eq. (5.18) numerically, first introduce a discrete grid of @ values, @y,
where n runs from 0 to N. The grid points can be equally spaced for most purposes,
though this is by no means necessary. In practice, N ~ 100 works well except when
T is very small, in which case the grid spacing should be at least a few times smaller
than T. Now approximate the transition rate by

n—1

m
[ 33 ‘—mn E C[mn .”l,‘m), (5-27)
m==(
where the cocflicient Tiny is approximated well enough by T'(24 « 5) times the
grid spacing. Since T does not depend on z, these coefficients are constant. The
electron probability distribution then reduces to a sum of delta funcuions,

ZP (z — n), (5.28)

n=0

and the differential-integral equation (5.18) reduces to a set of coupled ordinary
differential equations,

-1
dP,, — . _
T = 2 ‘ [m Tam — Pn(z) E Tinn. (5.29)
m=n+1 m=()

The sum in the sink term is just a constant, which we will call s,.
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Figure 5.9. Evolution of the electron probability distribution, for T = .2. In this
example the bunch is taken to be unrealistically long (with a fixed field strength), to
highlight the effect of radiation reaction. The peak at z = 1 is essentially gone by the
time 2 /l.on = 600.

Given the boundary conditions

We immediately obtain the solutions to Eqgs. (5.29),

z N
Py(z) = e™ N2, Po(z) = e7%n* /dz' e*n?’ Z P (2)Tum. (5.31)
0 m=n+1

Starting with Py(z) and working down one by one to lower n, we can find all the
solutions by direct integration.

Figure 5.9 shows the evolution of the electron probability distribution with z
for T = .2 and z/l.,, ranging up to 1200. This is in the quasi-classical regime,
and the behavior is somewhat like that of the classical result (3.31). The peak of
the distribution moves down in energy, but more slowly as the energy decreases.
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Figure 5.10. Electron and photon spectra for the NLC machine described in Chap-
ter 2. These spectra are the final probability distributions after the collision, averaged
over the transverse coordinates of the bunch. The solid curve is the final electron spec-
trum, the dashed curve is the final photon spectrum, and the dot-dashed curve is the
photon spectrum when radiation reaction is neglected. The average fractional energy
loss computed from these spectra is § = .211. (Note: disruption has been neglected in

these calculations; see the text for a discussion of its eflects.)

The width of the distribution also decreases with energy, since the higher-energy
particles radiate more and catch up. Of course these effects would hardly be
noticeable in a realistic machine where § is small. It should be noted that radiation
reaction will never cause § to increase, since the absolute amount of energy lost (not
the fracticnal amount) in any small time interval is a strictly increasing function
of the electron’s energy.

The effect of radiation reaction is less dramatic for the machine designs de-
scribed in Chapter 2. Figures 5.10 and 5.11 show the final (z = L) clectron and
photon spectra at the NLC and FLC, averaged over all electrons, after the bunch
crossing is over. Also shown is the photon spectrum in the absense of radiation
reaction. We sce that radiation reaction reduces the hard-photon spectrum by a
substantial factor (but less than a factor of 2) at both machines. The differences
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Figure 5.11. Electron and photon spectra for the FLC machine described in Chapter 2.
Conventions are the same as in Fig. 5.10, The average fractional energy loss computed
from these spectra is § = .216.

between the spectra for these two machines are striking. Even though § = .21 in
both cases, the photons tend to be much harder (since T is 50 times larger) at the
FLC. For the same reason, the peak in the electron spectrum at z = 1 is larger
at the FLC. Although many electrons at the FLC lose more than half of their
energy, most of this energy goes into hard photons that may themselves be useful
for high-energy experiments. Because of these features, the maximum value of §
that can be tolerated at a linear collider is probably an increasing function of Y.

The prospect of using beamstrahlung photons for physics experiments makes
1t interesting to compare the beamstrahlung spectrum with the familiar virtual
photon spectrum. Figure 5.12 shows both spectra for the NLC and FLC. The
beamstrahlung spectra are averaged over the duration of the bunch crossing and
over impact parameter. The virtual photon spectra are taken from the Weiszicker-
Williams distribution,

1+ (1-2)? «
ny(z) = ———(;J- - é—;logtifyz. (5.32)
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Figure 5.12. Comparison of beamstrahlung and virtual photon spectra. The solid
curves show the beamstrahlung photon spectrum, averaged over the entire bunch cross-
ing, for the NLC and FLC. The dashed curve shows the virtual photon spectrum (from
the Weiszicker-Williams distribution) for the NLC. (The virtual photon spectrum for
the FLC is approximately 17% larger.) Again, disruption has been neglected in com-
puting the beamstrahlung spectra.

This function is always larger than the beamstrahlung distribution at very large
and very small z, but at the FLC both of these regimes are quite narrow and the
beamstrahlung spectrum is 2-3 times larger over a very wide range in between. At
the NLC the beamstrahlung spectrum dominates from very small ¢ up to about
z = .58, above which it falls exponentially while the virtual photon spectrum
remains relatively flat*”

Going back to Figs. 5.10 and 5.11, we can compare the values of § computed
from these spectra to é;, the value that we would obtain by neglecting radiation
reaction. We find that 6 is less than 6; by about 17% for the NLC and 11% for the
FLC. The values of é (denoted &, since they are computed for uniform bunches)
for both machines are listed in Table 2.1. Whether 6 or 6; is the more appropriate
quantity is not clear. The percent effect of radiation reaction on the average energy
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throughout the bunch crossing, for instance, would be roughly half as much as on
the final value of 6. ‘

Of course we have still neglected many factors in computing é: disruption,
nonuniform bunch shapes, the spread in the initial particle momenta, errors in
beam alignment, and so on. To include these effects, Monte-Carlo simulation
codes have been developed by Noble! and independently by Yokoya.(”'“] Since it
is impractical to simulate the behavior of 1010 particles, these codes use a smaller
number (10* for the computations described here) of “macro-particles”, which are
given a proportionally larger electric charge for the purpose of computing the field
strength. The macro-particles are randomly located with a gaussian distribution in
all three dimensions. Whether a particle radiates a photon during a small time in-
terval is computed randomly, according to the synchrotron radiation formula (5.1).

Yokoya's simulation code, called ABEL (for Analysis of Beam-beam Effects
in Linear colliders), has been run for the NLC and FLC parameters used in this
paper’™  The resulting values of & are listed in Table 2.1 as 8, (for a gaussian
bunch shape, with the disruption turned off) and é; (with the disruption turned
on). (The effect of the initial transverse momentum spread was also examined and

found to be negligible.)

When disruption is turned off, we find for both the NLC and FLC that &,
is roughly 20% larger than &,. This difference is almost certainly due to the
transverse gaussian bunch shape. The simulations define § as the average energy
loss per particle, neglecting the likelihood that the particle will participate in a
collision (when transversc momenta are present, it would be extremely difficult to
define or compute a properly weighted §). But we saw in Section 3.3 that with this
definition, even the classical value of § comes out 15% larger for a gaussian bunch
than for a uniform bunch.

When disruption is turned on, there is no significant change in the value of § for
the FLC. For the NLC, however, § increases by another 35%, to the alarming value
of .35. The natural explanation for this increasc is the higher average field strength
in the presence of horizontal disruption. For the FLC this effect is negligible, since
Dy = .07. But for the NLC design used here, with its unusually small aspect ratio
and reasonably large value of Dy, the horizontal disruption parameter is D, = .74.
According to Eq. (3.6), the average horizontal beam dimension is therefore reduced
by roughly 11%. The average field strength increases proportionally, as do the
parameters T and 1/l , which are proportional to the field strength. The expected
value of 6, according to Eq. (5.1) and Fig. 46, depends linearly on 1/l but less
strongly on T; combining the effects we would expect roughly a 14% increase in
6 from an 11% decrease in o,. Thus we can account for nearly half of the 35%
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disruption effect in the simulation, but not all. The reason for the remaining
difference (or the error in the preceding analysis) is not known.

Because the effect of horizontal disruption is not well understood, it has been
completely neglected in the rest of this paper, except in its effect on the pinch
enhancement Hp (which is much larger for the NLC than for any machine with
very flat bunches) and thus on the luminosity. This inconsistency is hardly fair,
since the plots in this chapter could easily give the impression that the beam-
strahlung energy loss at the NLC is much snialler than it actually is. These plots
are unquestionably wrong; the only uncertainty is over how much. This issue re-
quires careful investigation before machine designs in this parameter r~gime can
he properly evaluated. | |

There still remains the question of how to best define §. We have seen in
this scction that radiation reaction reduces § by 17% at the NLC, but the effect,
of this reduction on the average available collision energy will be smaller. We
have also seen that there is no obviously correct definition of 6 when the bunch is
nonuniform. Both of these ambiguities are avoided if we discuss only the spectra
of CM encrgies at which actual collisions between particles occur. We now turn to
the computation of these spectra.

5.5. Luminosity Spectra

In Section 3.6 we saw that the luminosity spectrum in the classical case can
be crudely approximated with very little effort. In the quantum case, however,
the probabilistic nature of the radiation requires us to treat the computation more
properly. ‘

Iirst imagine a collision between two relativistic particles with well-defined
energics ©1F and zoF. Let Ecm = 2F be the “nominal” center-of-mass energy,
and ecm the total energy in the true center of mass: The ratio ecy/Fem is then

‘ €c S
X = -7 = /7123 (5.33)
Lhem
Next let the energies of these particles be distributed according to probability
distributions Py(z1) and Py(z2). Then the differential luminosity as a function
of X is given by
1

1
{
((lf’ = /drcl /(1.'1:2 Pi(z1) Pa(z2) (X — Jxiag). (5.34)

0 0 ‘

This distribution is normalized to 1 provided that . and Py are normalized to 1.

63



A

Figure 5.13. One moment during the bunch crossing, and one point at which to
evaluate the contribution to the luminosity spectrum.

Now consider the situation depicted in Fig. 5.13, and concentrate on collisions
occurring at point A. Electrons located at a distance z; behind the front of the
electron bunch are colliding with positrons located at a distance 25 behind the front
of the positron bunch. Since the electrons have passed through a length z, of the
positron bunch, their probability distribution P; should be evaluated at z = zo;
conversely, the positron probability distribution P should be evaluated at z;. The
luminosity spectrum coming from this instant is therefore

dl
dX

1 1
- /da:l /dmg Pi(22,21) Pa(e1,22) 6(X — /aT75).  (5.35)
A
0 0

The distributions Py and P, can be computed using the methods of the previous
two sections.

Finally we must integrate over all places and times in the entire bunch cross-
ing. Since the electron encounters positrons throughout the length of the positron
bunch, we must average over values of 2y from 0 to 1. And since the electron could
have been at any point z; within the electron bunch, we must also average over
values of z; from 0 to 1. The luminosity spectrum for the entire bunch crossing
(but still for a single impact parameter) is therefore

1

‘ L 1
dC dzy [dz _ S—
rr /'—}/—{/ LZ /dl‘l J[d:l,‘g Pi(za,21) Pa(z1,22) (X — J/z122). (5.36)
0 0 0 0
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The integrals over z; and z2 are most easily performed first. Defining

L
P(z) = /d[_z P(z,2), (5.37)
0 L/
we have simply
1 1
dﬁ =y ¢
i = /dml /d:l:gp (.’E])PQ z9) 6(X — \/—1.1,2 (5.38)
0 0

Using the delta function to perform the 2 integral, we obtain the less symmetrical
but more useful formula

- /drl ?—K—Pl xl)Pz()& /”E]) (5.39)

Either (or both) of the distributions P; and P, appearing in the above formulac
could be for photons rather than electrons or positrons. Thus we can compute the
luminosity spectra for ete™, ev, and 44 collisions. All three spectra, computed
numerically from the probability distributions of the previous section, are shown
for the NLC in Fig. 5.14 and for the FLC in Fig. 53.15. Here we have averaged over
impact parameter, assuming a uniform elliptical bunch shape. The dependence of
the spectra on the transverse bunch shape is shown in Fig 5.16, which compares
the NLC spectra of Fig. 5.14 to the corresponding spectra for a gaussian bunch
shape. The difference is negligible for most purposes. (For simplicity, the field
strengths used to compute the curves in Fig. 5.16 are actually for a round bunch,
with o, chosen so that the corresponding round uniform bunch has the same field
strengths inside as the elliptical uniform bunch. In any situation where these tiny
differences might matter, one should comnpute the spectra properly for a flat bunch
with a gaussian profile in all three directions. Of course by the time the bunches at
a linear collider reach the interaction point, they are probably no ionger gaussian
anyway.)

Notice from Figs. 5.14 and 5.15 that while the lumninosities at large X for e~y
and ~~ collisions are non-negligible, they are still quite a bit smaller than Lhe
ete™ luminosity. It should be emphasized, however, that the parameters of these
machines were chosen under the assumption that a larger beamstrahlung energy
loss could not be tolerated. Higher photon luminosities could certainly be obtained
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Figure 5.14. Luminosity spectra for the NLC parameters given in Table 2.1, The
solid curve is for electron-positron collisions, the dashed curve is for electron-photon or
positron-photon collisions (either separately—not the sum of both), and the dot-dashed
curve is for photon-photon collisions. The spectra are averaged over the duration of the
bunch crossing (assuming a uniform longitudinal bunch profile) and over the transverse
coordinates (assuming a uniform elliptical cross-section), neglecting disruption. See the
end of Section 5.4 for a discussion of the effects of disruption.

if desired, by redesigning the machines or (to a lesser extent) by changing the final-
focus optics to obtain a smaller aspect ratio. As was first pointed out in Ref. 8,
the prospect of using beamstrahlung photons for physics experiments should be
seriously considered in the design of a linear collider.

As discussed at the end of Secltion 5.3, it is important to know what fraction
of the luminosity of a collider is within a small range of the maximum CM encrgy.
We are now in a position to answer this question. Define ¢(X) to be the fraction of
the luminosity at a fractional CM energy greater than or equal to X. First let us
calculate £(1), the lumincsity that is exactly at the CM energy, which comes from
electrons that have not radiated at all. Inserting the delta function term (5.21) of
the probability distribution into Eq. (5.38), we find
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Figure 5.15. Luminosity spectra for the FLC parameters given in Table 2.1. Conven-

tions are the same as in Fig. 5.13.

1) = (1 “];;i> (5.40)

The expected number of phctons Ny can be estimated from Fig. 5.3 or Ec. (5.12).
Since N. depends on the transverse coordinates within the bunch, we must average
¥ p ) g

over those coordinates. Evaluating the average for a uniform bunch, one obtains

12 for the NLC;
(1) =
.38 for the FLC.

(The computer simulations discussed at the end of the previous section yield much
smaller values for this quantity, especially for the NLC, even when disruption is
turned off. The reason for the discrepancy is not known.)

In practice, the relevant quantity is not £(1), but {(X) for some X that is fairly
close to 1, say .99. According to our analysis at the end of Section 5.3, {(.99) should
be close to €(1) at the FLC but not at the NLC. Indeed, a numerical evaluation
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gives

£(.99) = {.24 for the NLC:; (5.42)

.46 for the FLC.

Since only a quarter of the luminosity for this NLC design is within 1% of the peak,
it is not well suited for investigating a narrow resonance. Other 1/2 TeV machine
designs in Ref. 10, while having a lower overall luminosity, do not have this short-
coming, and may therefore be preferable for such experiments. Of course an ideal
machine would be one at which the aspect ratio could be varied to yield a higher
total luminosity or a sharper peak, whichever the experimental situation demands.
To what extent this may be possible has not yet been carefully investigated.[w’
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6. Coherent Pair Production
Coherent pair production is the inverse of beamstrahlung: a photon, in the

presence of a strong electromagnetic field, converts to an electron-positron pair.
The process is illustrated in Fig. 6.1.

D4

Figure 6.1. Feynman diagram for coherent pair production.

The rate of this process is simply related to that of beamstrahlung by the
crossing relations

k— -k, plop, P o —py. (6.1)

Let us make the following definitions:

! 2/3
= me= T = () 62)

Thus z is the fractional energy of one member of the pair (the electron), Ty is
like T but evaluated for the photon energy k, and the new u is obtained {rom the
previcus one (5.2) by the crossing relations (6.1). In terms of these quantities and
leon = m/E], the differential probability for coherent pair creation in an electric
field is

d*P «a

L 3)
dedz  lop GRS (6-3)

where
i 2 2 4 (1—g)? 1
. v z¢+ (l—2
o Te) = — [ AW
S, Te) = 3 /d” A'(”)[(u 1>( 22(1—z) )+2m(1——.’c)]
u
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- Tik {_ (‘”2:(1(:;” )2) Ai;f”) + 7dv Ai(v)]. (6.4)

U

Note the close resemblance to the synchrotron radiation formulae (5.1) and (5.6).
The precise correspondence under the crossing relations (6.1) is explained fully in
Refs. 29 and 14. :

The history of Eq. (6.3) is almost identical to that of the synchrotron radiation
formula (5.1). The first full treatment of the problem, using explicit wavefunctions -
in a uniform magnetic field, was given by Klepikov”! while our relatively sim-
ple form of the result is due to Nikishov and Ritus"” Baier and Katkov"”" later
obtained the same result by more abstract methods; a nice treatment from their
viewpoint can be found in the textbook of Berestetski, Lifshitz, and Pitaevskii*”
Most recently, the formula has been derived using scattering-theory formalism (sim-
ilar to that of Chapter 4 of this dissertation) by Blankenbecler, Drell, and Kroll™**
The 1mportance of this process in beam-beam interactions .was first recognized by

Chen!™ and has been discussed in more detail by Chen and Telnov!"**"

The implications of Eq. (6.3), however, are quite different from those of the
synchrotron radiation formulae. The pair production spectra for several values
of Ty are plotted in Fig. 6.2. The most striking features are the symmetry under

~ (1—=z), the exponential suppression as either z or (1—z) goes to zero, and the
exponentlal suppression in the total rate when T} < 1.

To verify the exponential suppression, note that the new u, defined in Eq. (6.2),
grows large compared to 1 whenever z, (1—z), or Y is small. In any of these three
circumstances we can use the asymptotic expansion (5.8) of the Airy function to
obtain

1 1 — :12(1—-—:1:) e aj2 1
S ) A (Z/S)u = . )
(x,Tk)u)ﬂ 2\/’7?1*,:/2( \/:;(1__33) )6 [l +O(u>} (6 5)

The conditions for this suppression to occur can be stated more directly if we define

T_= p:ﬁL =2k, Yi= pjﬁl = (1—-2)Tk; (6.6)
these are just the usual quantity T, evaluated for the momenta of the outgoing
electron and positron. The exponential suppression of the pair production rate
occurs when either T_ or T4 is small compared to 1. In other words, very soft
particles are never produced by this process. To emphasize this fact, Fig. 6.3 shows
an expanded view of the soft end of the spectrum for the same values of Ty as in
Fig. 6.2.
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Figure 6.2. Coherent pair production spectra for several values of Tg.

When T « 1, the spectrum is strongly dominated by the region near z =
1/2. Expanding about this point and integrating over z, we obtain the total
probability,m)

dP L« 77— —8/(37%)
dz " leon \/512 ¢ ' (6.7)

Coherent pair production is therefore completely negligible when T « 1. For
example, even if there were one very hard photon for each electron in the bunch,
less than one coherent pair would be produced per bunch crossing when Y < .1.
We will make some more careful estimates below, taking the beamstrahlung photon
spectrum into account.

When both T_ and T4 are of order 1, the pair production rate is comparable
to the synchrotron radiation rate for the same field strength; that is, the probability
of pair creation within one coherence length is of order 1/a. When both YT_ and
T4 are much greater than 1, we can set u = 0 wherever possible in Eq. (6.4) to
obtain

— Ai'(0) 22 4 (1—x)?

Sz, T) uil ’rz/3 m1/3(1—m)1/3‘ (6.8)
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Figure 6.3. Expauded view of the leftmost 5% of Fig. 6.2. No matter how large Ty is,
the spectrum is exponentially suppressed when Y_ = 2}, < 1.

Although this expression is never valid when z or (1—z) is very small, we can still

integrate it over x from 0 to 1 to obtain the asymptotic total rate in the T > 1
o [29]

P o 5-3Pr%2/3) o 380 (6.9)
dz " 1B TT(8) T T T '

The rate falls off as T=1/3 just as it does for synchrotron radiation. Figure 6.4
shows the total pair production rate over a wide range of Yj.

Coherent, Pairs from Beamstrahlung Photons

So far all of the expressions in this chapter are for the number of pairs cre-
ated per photon. In the beam-beam interaction, however, the photons are created
continually at a rate determined by the synchrotron radiation formula (5.1). To
estimate the number of pairs, therefore, we should fold the pair production rate
with the beamstrahlung spectrum.

As in the previous chapter, let us consider the idealized situation in which the
bunch is uniform in the longitudinal direction and the disruption is very small.
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Then the electric field along any given electron’s trajectory is consant, so T and
l.on are constant. Finally, let us neglect radiation reaction; this will cause us to
over-estimate the number of hard photons, and hence the number of coherent pairs,
by several percent in most cases. With all these simplifications, the spectrumn of
pairs produced by a single incident electron is obtained simply by folding the pair
production rate (6.3) with the beamstrahlung spectrum (5.3). If = represents the
fractional energy of one member of the pair, as a fraction of the energy of the
incident electron, then the differential probability is

L 1
dP / / a 1 oz
— = |dz | dy ~S(z/y,yY)  —R(1—y, T
dz chohy ( /y y ) leoh ( Y )
0 z
1/ aL\? 1 1
=_(2_-> /dy—'S(m/y,yT)R(l.—-y,T)- (6.10)
2 lcoh Yy
T

Here S is the pair production spectral function (6.4), K is the beamstrahlung
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tra into account, for three values of T. The curves were computed by numerical inte-
gration of Eq. (6.10), divided by the normalization constant K2, where K = al/l..
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spectral function (5.4), and y is the fractional energy of the intermediate photon.
The factor of 1/y arises from the fact that Eq. (6.10) is differential in z, rather
than x/y. The total probability of pair production by this electron can be found
by integrating over z: - :

1 1
1/ al\
- 3(22) [wra-vm) [aem ey, e
2\ leon
0 0
The inner integral is just the function plotted in Fig. 6.4, proportional to the total
probability of pair creation by a single photon with fractional energy y.

For a more accurate treatment of the beamstrahlung photon spectrum, one
can use the rate equations (5.18) of Section 5.3. It is straightforward to a source
term to the electron master equation representing pair production. Similarly, the
photon equation would now have a pair-production sink and a second source, from
the positrons. Finally, there is now a third equation, identical in form to the
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electron equation, for the evolution of the positron spectrum. The rate equations
can be solved numerically as in Section 5.4. We will not do so here, however,
since accuracy of this order is not necessary for our purposes. For the NLC in
particular, inaccuracies due to assumptions about the bunch geometry are much
more significant, as we will see in Section 7.2.

Equations (6.10) and (6.11) simplify considerably in the limit T < 1. Inserting

the approximate expressions (5.9) for R and (6.5) for 'S, we find that the, dnfferentm]

probability (6.10) has an exponential suppression factor of the form

_c{]_iw /dJ exp _-g?’f(l-?{y+a;(y?{—rc))}' (6.12)

The exponent has a maximum at y = (14+2)/2. Expanding about this point, we
obtain the asymptotic form

1P L\ [3(1-z) (3+2%)(1+322 2(14x)?
il ~ (2 (1-2) (3+27)( +'x )exp[ﬂ——(—i}—)——.—]. (6.13)
dr v<1 \Ucon 2n Y 32(1+w)“ 3Ya(l—-z)

(This formula is accurate to within several percent up to Y = 1.) To find the total

number of coherc.t pairs in this limit we integrate over z, expanding about the
maximum of the exponent (which occurs at z = 1/3). The result is

P (BN T ey | (6.14)
TS \leon / 384 '

(This result can also be obtained by plugging Eq. (6.7) into (6.11) and then inte-
grating over y.) Notice the very strong dependence on T in this forraula: a 13%
error in the value of T would change the result by a factor of 2.

Of perhaps more interest is the form of the spectrum (6.13) when z <« 1 (that
1s, when one member of the pair is very soft) Setting z = 0 wherever possible, we
obtain simply

dP oL \* [27 1 2 /143 ,
I (,) o oy ()] wee< T
(6.15)

We are gencrally interested in machines for which T > .1 and oL/l ~ 1. Tor
order-of-magnitude estimates in these cases we can use the expression

— A ——

dx \/5

(This is the same expression we would have obtained directly from Eq. (6.5), ne-
glecting the photon spectrum.) The total probability of creating a pair with = < zg

(6.16)



is given by the integral of dP/dz, which in this case is roughly
P(z < zg) ~ ao/% =2/ (3T0), | (6.17)

When T = 1 and zp = .03, for example, the total probability is of order 10712,
We will make more numerical estimates in the next chapter.

Angular Distribution of Coherent Pairs

The angular distribution of coherent pairs is no more interesting than that of
beamstrahlung photons. The electron and positron come out at an initial angle
of order m/ k"™ which is roughly 100 times smaller than the typical angle of the
initial photon (which it inherited from its parent electron). The pairs can, however,
acquire a much larger angle as they exit the bunch, especially if their energies are
much lower than that of the beam electrons. We will return to this subject in the
next chapter.
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7. QED Backgrounds at the Next Linear Collider

In the preceding chapters we have seen that the combination of high encrgy and
high luminosity per bunch at linear colliders gives rise to several immportant beam-
beam effects: disruption, beamstrahlung, and coherent pair production. Another
important process is incoherent pair production, in which an electron-positron pair
is produced in a direct collision of two photons, either real (from beamstrahlung)

. . . . 48]
or virtual (emitted by a passing electron or poswron).[

Pairs created by the incoherent processes tend to be very soft, simply because
the cross-section for vy — ete™ falls off like 1/E2,. In the CM frame of the two
photons, the cross-section is not strongly peaked in the forward direction. Fur-
thermore, these soft pairs are disrupted very strongly by the field of the oncoming
bunch, with one member of the pair always being pushed outward. If too many
charged particles enter the detector during each bunch crossing, much of the de-
tector is rendered useless. The energy spectra and angular distributions of these
processes therefore merit careful investigation.

Because of the large number of processes and the wide range of energies and
angles that must be considered, this subject does not lend itself to a simple, general,
and accurate analytic treatment. We will therefore sacrifice accuracy and generality
in favor of simplicity. We will confine our atiention to the “next linear collider”,
a machine with an energy of 1/2 TeV. For specific numerical examples we will use
the NLC paramecters in Chapter 2, always bearing in mind that other NLC designs
tend to have lower luminosity and fewer (and softer) beamstrahlung photons. (A
1 TeV machine, on the other hand, would have a slightly higher luminosity and
slightly harder photons.) Furthermore, we will make no attempt to compute the
rates of these processes to better than a factor of 2,

7.1. Outgoing Angles and Interaction Region Geometry

Before launching into computations of pair production rates, let us ask what the
detector can tolerate. One tentative proposal " for the interaction region geometry
is shown in Figs. 7.1 and 7.2. In this design, the final focusing quadrupole magnet is
1 meter from the interaction point, and has a pole tip aperture of about 1 mm. The
beams cross at an angle of 6 milliradians, and the outgoing beam leaves through a
larger hole to the side of the quadrupole tips. (Some designs have a crossing angle.
as large as 50 mrad, which allows for a much larger exit hole.) Surrounding the final
quadrupole and extending down toward the interaction point is a conical tungsten
mask, designed to shield the detector from any radiation that might originate in
the vicinity of the quadrupole.
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Figure 7.1. A very tentative sketch of the interaction region of the next linear collider.
The vertical dimension is exaggerated.

/

quadrupole
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Figure 7.2. A face-on view of the final focusing quadrupole. In this design the crossing
angle, and therefore the exit hole, are relatively small.
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In Section 3.1 we saw that the trajecwory of a beam electron within a uniform,
cylindrical, undisrupted bunch of positrons is

VaD, X z
. by y(z) = b[},y ('os( ~—~7‘)-~——’—!£ 7) (7.1)

Here all quantities are evaluated in the rest frame of the positron bunch. From
tuis e can find the maximum disruption angle of an electron with the full beam
encrgy, attained when the electron enters at the edge of the bunch and exits as it
crosses e cis, The maximum di xi‘lli)li())l angle in the vertical direction, evaluated

in the €. .ame, is
o “ZBw )
04, = L[ = = .28 mrad for the NLLC. (7.2)
a; 3

(Here and throughout this chapter we will write expressions in terms of o, oy, and
o, although most of the derivations are for uniform cylindrical bunches. Wherever

~pussible, expressions are simplificd by assuming o, > o,. Numbers for the “NLC”
are for the parameters given in Table 2.1.) By the same argument, the maximum
horizontal disruption angle is

‘ 2D) ANT, - .
0p = g—f\/ \/3[ = \/\/_3_77(; = \/E-O";) = 1.4 mrad for the NLC. (7.3)

(Notice that this expression is independent of o, and ¢y.) Since Dy is generally

less than 1, however, the bunch crossing is over before this angle is ever attained.

For our NLC parameters, Dy equals .74, so the actual maximum horizontal angle

is about 1.0 mrad. For designs with a larger aspect ratio the actual angle would

be still smaller. In any case, we sce that an exit hole with radius 2-3 mm at a
- distance of 1 m from the interaction point, as in Fig. 7.2, is large enough to accept
- all disrupted electrons that still carry the full beam energy.

An electron that has less than the full beam energy will also oscillate within

. the positren bunch, but with a shorter wavelength and thevefore a larger maximum
angle. If the electron carries a fraction @ of the beam energy, its effective disruption
_— parameter is increased by a factor of 1/2, and hence the maximum outgoing ang. s

: are increased by 1/y/x. Equations (7.2) and (7.3) therefore become

H -
.28 mrad
0y, = - \I/“?I  for the NLC; (7.4)

i
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0% ANve _ 1.4 mrad for the NLC. (7.5)

0= \/§$7o'z \/"E S

For example, an electron with z = .01 at the NLC could acquire a vertical angle
of up to 2.8 mrad, and a horizontal angle of up to 14 mrad. (If the aspect ratio
oy /oy were larger, the vertical angle would be smaller but the horizontal angle
would be the same.) For the design shown in Fig. 7.2, such an electron would have
a good chance of hitting the face of the final quadrupole. It would then create an
electromagnetic shower, with some of the resulting photons (and possibly electrons
and positrons) heading back toward the interaction point. In this particular case
the problem could be avoided by using a larger crossing angle and larger exit hole.

Next consider the trajectory of a positron with fractional energy z traveling
in the wrong direction—against the oncoming positron beam™ It will quickly get
pushed up or down to the edge of the beam, beyond which the field is very strong
and relatively constant out to a distance of ~ B; = 205:

4Na_
LB,

If its energy is relatively large, it will reach the end of the bunch before leaving
this strong-field region The condition for this to occur is

TG s o)

|E(outside)| ~

for y < B;. (7.6)

where z 1s the distance traveled by positron from its creation until it reaches the
end of the bunch. When this condition is met, the positron’s final angle is

0 — Do, (:’_) _ L1 mraﬂ(;z_). (7.8)

o, \L T L.

Note that for our NLC parameters, with Dy = .74, condition (7.7) is met only for
fairly hard positrons.

When condition (7.7) is not met, the positron leaves the strong-field region
before reaching the end of the bunch. Outside of this region the field falls off more
quickly, so any additional angle it acquires will be relatively small. The angle it
acquires while in the strong field is

SNy 2.0 mrad
0 =~ = for the NLC. 7.9
\/\/’30271‘ \/‘7_: or e ( )

several comments about this formula are in order. First, it was derived under the
very crude approximation of cutting off the field at a height of 20, above the bunch;
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since the machine design may depend on the precise coefficient in this formula, it
should be checked against the more realistic situation of a gaussian bunch with
the field extending to infinity. Second, the formula depends only on the positron
energy vz 2 .d the linear charge density N/o,, and is independent of o and oy; it
is therefore relatively independent of the particular machine design. Finally, it is
almost identical to expression (7.5) for the m: ximum horizontal angle of a trapped
electron oscillating within the positron bunch. This is no accident, since both
results depend only on the potential difference from the center of the bunch to far
outside. Aside from the factor of v/2, the main difference between Eqs. {7.5) and
(7.9) is that only a small fraction of the trapped electrons exit with such a large

angle, whereas almost every soft positron is pushed out to the saine angle (7.9).[5”

According to Eq. (7.9), sufficiently soft positrons can leave the interaction point
at very large angles. Referring to Fig. 7.1, we see that many will hit the face of
the final quadrupole and the luminosity monitor. The masking must be sufficient
to block the showers from these particles almost completely. On the other hand,
very soft positrons (at the NLC, with 2 < 4 x 10~* or an energy of 100 MeV)
will have an angle greater than 100 mrad, and will therefore hit the outside of
the masking. These also create showers, with the backward-moving photons from
these showers going straight iuto the drift chamber of the detector. A fraction
of the photons then Compton-scatter off the gas in the drift chamber, and the
resulting free electrons (if there are too many of them) flood the chamber with
tracks. Preliminary computations with the EGS Monte-Carlo code indicate (with
a very large factor of uncertainty) that for every thousand 50-MeV electrons or
positrons that hit the outside of the masking at an angle of 10°, a few hundred
electrons are found in the drift chamber™”

A final complication (but a welcome one) is the solenoidal magnetic field of the
detector. The radius of curvature of a charged particie with transverse momenturn
pr in a constant magnetic field B is (in SI units)

e 22

el

For the design of Fig. 7.1, any particle with a radius of curvature less than 1.5 cm

will curl so tightly that it enters the opening in the masking, regardless of its initial

angle. Let us assume the typical value of 1 Tesla for the field strength; the critical

value of pr is then 4.5 MeV. Returning to Eq. (7.9), we find that for low-energy
positrons,

(7.10)

pr = V- 500 MeV for the NLC, (7.11)

and therefore that positrons with @ < 8§ x 107° will enter the opening in the
masking. A more careful analysis, taking the precise trajectory into account, raises
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this limit very slightly, to 9.3 x 1075, and also lowers the limit of the preceding
paragraph from 4 x 107* t0 3.7 x 1071,

The conclusion from this analysis is that for a 1/2 TeV collider with N/o,
as in the NLC design of Table 2.1, an interaction region geometry as in Fig. 7.1,
and a solenoidal field strength of 1 T, there exists a small but significant range of
energies for which a positron traveling in the wrong direction is pushed out to a
large angle and hits the outside of the masking. That range is roughly

Ix 10 <z <4x107t,  or 25 MeV < E < 100 MeV. (7.12)

High-energy positrons, above the upper limit, acquire too small an angle as they
exit the bunch, while low-energy positrons, below the lower limit, are contained in
the solenoidal field. The upper limit could be reduced by increasing the angle of the
conical masking, while the lower limit could be raised by increasing the solenoidal
field strcngth[”] or increasing the diameter of the opening in the masking. The
disadvantage of the latter approach is that the masking must shield the detector
from photons created by high-energy positrons (and electrons) hitting the face of
the quadrupole magnet, as well as from showers initiated by synchrotron radiation
emitted by the beam as it is bent by the quadrupoles. Monte Carlo sirulations to
study the effectiveness of various inasking designs are currently underway.

The analysis of outgoing angles in this section has neglected any intrinsic angle
that an electron or positron might liave when it is initially created. As we will see
below, a small fraction of the pairs created by the incoherent processes have angles
that are comparable to, or larger than, the acquired angle (7.9). In this case
IEq. (7.12) no longer applies, and any electron or positron with

6 > 100 mrad and pr > 4.5 MeV (7.13)

is potentially dangerous. Again, however, these limits are sensitive to the geometry
of the masking and the solenoidal field strength.

7.2. Coherent Pair Production

We saw in the previous chapter that in the NLC regime where T < 1, the
coherent pair production rate depends exponentially on Y. This process is therefore
completely dominated by the region of space and time during the collision where
the field strength attains its highest value, while the number of coherent pairs is
extremely sensitive to the magnitude of this value. Because of this sensitivity, we
will estimate only orders of magnitude in this section. A more accurate analysis
would require a careful treatment of the precise bunch geometry, including the
effects of disruption.
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The value of T (edge) for the NLC in Table 2.1 is .56; this is the value of T at
the edge of a uniform cylindricel bunch. When the bunch has a transverse gaussian
profile, the maximum value of T is slightly (and negligibly) less. A gaussian shape
in the longitudinal direction, however, has a large effect. We saw in Eq. (4.90) that
the maximum field strength in this case is larger than that of a uniform bunch
by a factor of 1/6/m. Another significant effect for this NLC design is horizontal
pinching (since Dy = .74 is relatively large), which increases the average field
strength by about 10%, and increases the maximum field strength by much more.
The maximum field with pinching, however, is only felt by the tail of the oncoming
bunch. For our present order-of-magnitude estimate, therefore, let us use the

average value of 10%. Our estimate for the maximum value of T is therefore

T max = .56 - /6/7/.9 = .86 for the NLC, (7.14)

To compute the total number of colierent vairs we can use Eq. (6.14). In the
coefficient aL/l.qn, we should set L equal to the length over which the exponent
exp(—16/37T) is reasonably close to its maximum value, say within a factor of 2
(or a field strength within 13%); this length is roughly .3 times the bunch length.
The coherence length I, is enhanced by the same factors as T, relative to its
maximum value in a uniform bunch. Combining all the factors, we find

ol

— = 1.3 for the NLC. (7.15)

lcoh

We can now evaluate Eq. (6.14) to obtain the total probability for coherent pair
creation,

Pra6x107° (7.16)

Slightly less than a third of the clectrons pass through the region in which the field
comes within 13% of its maximum value, so the total number of pairs per bunch
crossing is roughly N/3 times this number:

Number of pairs &~ 3 x 10> per bunch
(7.17)

~ 3 % 10° per bunch train.
(These numbers are for pairs going in only one direction.) It must be emphasized
that this result is uncertain by at least a factor of 2.

The spectrum of these pairs is approximated closely enough by the curve for
T =1 in Fig. 6.5. The peak occurs near @ = .3 (or I = 75 GeV), with the rate
dropping much lower below @ = 1. According to Fq. (7.8), the angle acquired by
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Figure 7.3. Feynman diagrams for the Breit-Wheeler process, yy — ete™.

these positrons exceeds 3 mrad when = < .2; thus a large fraction of them would
hit the face of the quadrupole in Fig. 7.2. Whether this is a problem depends on
the effectiveness of the masking. If it is not tolerable, then this machine requres a
larger exit hole, and therefore a larger crossing angle (as the design indeed has in

Ref. 10).

The good news, as we already saw in Eq. (6.17), is that none of the coherent
pairs (that is, less than one per bunch train) have z < .03. According to Eq. (7.9),
this implies that none acquire an angle larger than 12 mrad. With a crossing
angle of 50 mrad it should be easy to make the exit hole large enough to accept
every positron produced in this process. None of them come anywhere close to the
100 mrad angle of the masking.

If a small crossing angle is required for other reasons, and the masking is not suf-
ficient to block the showers from 10® high-energy positrons hitting the quadrupole
face, then one is forced to consider NLC designs with smaller values of Y. As an
example at the other extreme, machine I in Ref. 10 has T = .22, and there-
fore, according to Eq. (6.14), less than one coherent pair produced per bunch train.
Thus it is certainly possible, one way or another, to avoid all background problems
from coherent pair production.

7.3. The Breit-Wheeler Process, 4y — ete™

The simplest incoherent pair production process is the direct collision of two
real photons to create an electron-positron pair. This is just a cross-channel

of Compton scattering; the two leading-order Feynman diagrams are shown in
Fig. 7.3.

The cross-section for this process is easy to compute, and even easier to find

84

i 0 ' a o TN R L T PR [T T D A L T
" X TN W ]

I IR



id

{54]

in standard textbooks.”" The total cross-section is

n;‘"(l-—ﬁ)[ s —4ﬂ+(s_/34)10g(1f£)], (7.18)

OBW =

where 3 is the velocity if the electron (or positron) in the CM frame of the two
colliding photons. In the limit where 8 — 1, this becomes

o’ 4w?
Opw = —5~ log(——z), (7.19)
w* m

where w is the energy of each of the photons in the CM frame. In a general frame
where the photon energies are wy and wa, replace w* — wiws.

To calculate the number of pairs produced by this process we must fold the
cross-section with the beamstrahlung plioton spectrum. Since the cross-section is
largest for soft photons, we can use the soft-photon approximation (5.7), divide.
by 2 to average over the bunch length:

of ‘
al, —Ai(0)

) (7.20)

ny(w) = ( TU/3,2/8

( oh

Here x = w/ F is the fractional energy carried by the photon. The quantities Y and
leoh depend, of course, on the coordinates (b, z) within the bunch. Let us assume
a umform cylindrical bunch geometry. Then the total number of Breit-Wheeler
pairs created per bunch crossing is

s, NI , U,
Npw = /d“b (4"%0%5 /(1.'1'1 dryny(ae)ny(x2) opw (8 = \/1 —m?/ 2 ).
(7.21)

The integral over b cancels one factor of dro,o, and gives 3/5 times the integrand
evaluated at the edge of the bunch. It is convenient to evaluate the coefficient of
the photon spectrum at the edge once and for all:

_ al - Ai'(0) . - R,
cp = (th (cdge) >[_T (edge) }1/3 = 1.31 for the NLC. (7.22)

This coefficient is proportional to |E| (edge)|*/?, and is therefore much smaller for
machine designs with a larger aspect ratio o, /0y,

The integrals over z; and a5 in Eq. (7.21) are not as hard as they look. Since
the total cross section depends only on the Lorentz-invariant product zqiag, it is

oo
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natural to change the variable of the inner integral from z2 to the photon energy
in the CM frame, z = /z123. The expression then becomes

i)

1 1
- 21\’BW d.'L'l i 1 o a3 ol ) 1+ 1
Now =200 [ a2 lag -4+ 3 - g log(125)], (29)

T
VA S VA

where

i ;V‘.Z]: 2 0.2 ‘
Kow = SN DG 600 105 for the NLC (7.24)
5 4mogoy 2

and v = E/m is the boost factor of the beam electrons. The integral over z is
strongly dominated by the region from 1 to a few times 1/4; this means that nearly
all of the pairs are created near threshold in the CM frame of the colliding photons.
Numerical evaluation of this integral gives 3.1-v%/3. The value of z; determines the
overall boost of the center of mass, and therefore of the created pair. Evaluating
this integral gives a factor of logv?, yielding the total number of Breit-Wheeler
pairs per bunch crossing,

6.2 Ny logq®
NB\N = ()/r;
2

= 2.3 x 10" for the NLC. (7.25)

Alternatively, we can leave the integral over @) undone to obtain the differential
distribution
dj\vlgw 6.2 1\,[]\\/ 1 SSO

= for the NLC. 7.26
a7, o7 or the NLC (7.26)

As long as z; is not too close to 1/, we can interpret it as the fractional energy
of either member of the created pair. Integrating over the dangerous range (7.12),
we find that for the geometry shown in Fig. 7.1 and a solenoidal field of 1 T,
approximately 1300 electrons hit Jhe cutside of the masking on one side, and 1300
positrons hit the outside of the masking on the other. (These numbers are per
bunch crossing; multiply by 10 for the number per bunch train.)

Now let us consider the regime where the center of mass of the two photons is
not boosted by a large amount in the lab frame. In this case the outgoing angles
of the electron and positron can be large (even without the additional push from
the field of the bunch). We must therefore consider the angular dependence of the
fundamental vy — ete™ process.
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The differential cross-section for vy — ete™ is

2]
doyw ra® 1+ cos? Oem

. (7.27)

- 9 92
deosem  2w*  sin® Ocy

(Here we ignore the threshold behavior, since we are interested in particles that are
produced with a transverse momentum of at least a few MeV.) For an asymmetric
collision between photons with energies z;E' and x2F, it is more convenient to
write the cross-section in terms of the transverse momentum, p;. = wsin Ogy,:

dogw ro’ (E2371l73 1 ) ‘ 1 (7.98)
5T = e 7 -y __‘ == m————— .
dpz. Eirie Py 2) 28/t a0 \/7333:11.2 — p2

Folding this expression with the photon spectra (7.20), multiplying by the lumi-
nosity per bunch, and averaging over the transverse coordinates, we obtain

9 a1 19 .

d*  dNyw 2K yw (ﬁ"a‘;:ﬂ-_» | ) 1 (1.29)
y 2 = T, 5/3 573 7Y N, T -
drydzs dps, ‘/‘3:17?/3:17/:/ \ Pr 298/ oy \/?‘,3.1‘1:[2 — P

In a more exact analyis, we would now eliminate one of the z’s in favor of the
clectron’s or positron’s angle in the lab frame. We would then specify a minumum
value of this angle and a minimum value of p, (or the energy) and integrate up
from there to count the number of troublesome pairs. For a fixed angle, however,
the rate will be dominated by values of pp. only slightly above our imposed cutoff
(since the rate falls off very strongly with energy). We will therefore integrate
directly over ay and wxa, estimating the range of integration only roughly. In this
approximation we can perform the p, integral immediately, throwing away all the
pr dependence except the dependence on our cutoff, p2. The integral is then easy
to evaluate:

EQI)IQ 0
12 (l’]":c]af:, 1 1
dr\ =535 =
J bz 2/ 2B\ x 29/ E% 129 — PR
(?T)z (7.30)

1 '1+\/r—~‘/"3) 1 ;
= —log| ~—f =" — =y 1 —y-2
2 0&(1—-\/1‘~y“:2 2 v

P - ) . N .
where y? = Elxjz,/(pd)?. Changing variables from 22 to © = /Ziz3 (as in
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Eq. (7.23)) and then to y, we obtain for the total number of pairs with p, > p®

N QI(BW dwl 1+\/1—-y“2 V= 03 (731)
" Tl v ) R

The integral over y is equal to 1.39, and receives more than half of its value from
the region y < 5.

The range of the z1 integral is now determined by the minimum angle we wish
to consider. Suppose first that #; > x5. Then the pair is boosted in the direction
of the first photon. If the boost is reasonably large, each member of the pair will
have longitudinal momentum ~ z,£/2, and an outgoing angle of roughly
20
T

tan g ~

(7.32)

(Since the electron and positron energies actually tend to differ by one or two
orders of magnitude, this approximation is quite crude. Fortunately, however, the
denendence of our results on this angle will be extremely weak.) We require that
this angle be greater than some cutoff 0y, and this gives an upper bound on the
integral. Similarly, the lower bound comes from the regime where the boost is in
the other direction. Evaluating the integral, we obtain the following result for the
number of Breit-Wheeler pairs with pr > p% and 0 > 0p:

C g 4/3 ‘
5.6 Kpw ( E 2
w208 ()2

7.33"
2.0 x 10-° E)ua] ( 2 )f he NLC. o
~20x107° — 0 or the
(PQ &\tan

For the masking design of Fig. 7.1 and a solenoidal field of 1 T, the relevant cutoffs
are 0y = 100 mrad and p2 = 4.5 MeV. We then obtain 130 pairs or 260 large-angle
particles per bunch crossing, roughly half traveling in each direction.

it should be emphasized that all the numbers in this section would be lower for
a machine with a larger aspect ratio, since such a machine would have a lower lu-
minosity per bunch arnd (more importantly) fewer beamstrahluns photons present.
Our numbers represent a rough upper limit for a 1/2 TeV collider, while other
designs could have fewer Breit-Wheeler pairs by a factor of ~ 10
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Figure 7.4. Feynman diagram for the Bethe-Heitler process, ey — eete™. The shaded
circle represents the sum of the two diagrams in Fig. 7.3,

7.4. The Bethe-Heitler Process, ey — eete™

Next let us consider the case where one of the two initial photons is virtual,
This is the well-known Bethe-Heitler mechanism of pair production, essentially
the same (in our approximation) as pair production by a photon in the field of a
nucleus. The Feynman diagram is shown in Fig. 7.4.

The cross-section for the Bethe-Heitler process can be related to that for the
Breit-Wheeler process 7y — e¢te™ by means of the equivalent photon approrima-
tion. Instead of evaluating the full diagram of Fig. 7.4, we treat the virtual photon
"as a distribution of real photons of momentum k. When the virtual photon is
very soft, the vecoil of the passing clectron can be neglected. For this process, the
correct distribition of equivalent real photons is given bym]

20 1 N .
n(ay) = ——log 2-7");1,'1, (7.34)
T Iy
where v is the length contraction factor of the beams in the lab frame, ry is the
fractional energy of the real photon, and @, is the fractional energy of the virtual
photon. Note that 2+v%x m is the energy of the real photon in the electron rest
frame.
Folding this photon spectrum with the cross-section (7.18) for vy — ete™, one

obtains the total cross-section for the Bethe-Heitler process,

2 : :
oo = ar? log(24%01) (7.35)
= Ty arg loglay™ry), SRR D]

To obtain the total number of Bethe-Heitler pairs, we now fold tnis cross-section
with the beamstrahlung photon spectrum (7.20) and average over the transverse
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coordinates as in the previous section. For the NLC we find approximately 10°
pairs traveling in each direction per bunch crossing, or a total of 2 x 107 pairs
per bunch train. In terms of total numbers, this is the most copious of the pair
production processes. ‘

The spectrum of the Bethe-lleitler pairs can be obtained from the equivalent
photon approximation, or directly from the Feynman diagram'® Because of the
asymmetric nature of the process, most of the pairs are harder than those from the
Breit-Wheeler process vy — ete™; they tend to be boosted considerably along the
direction of the incoming real photon. The spectrum has the same 22/ depen-
dence as the beamstrahlung photon distribution. Integrating over the dangerous
range from z = 107% to 4 x 107" where the pairs hit the outside of the masking
in Fig. 7.1, one finds 4 x 10* dangerous pairs traveling in each direction per bunch
crossing, or a total of 8 x 10° dangerous pairs per bunch train.

Finally one can repeat the estimate of the previous section for the number of
pairs produced with large intrinsic angles. The number of Bethe-Heitler pairs with
a transverse momentum greater than p and an angle greater than 6y scales as
(].)?‘)"5/39{,""3 (with additional logarithmic dependence). For the NLC parameters
and the cutoffs pd = 4.5 MeV and 0 = 100 mrad, the total number of pairs per
bunch train is roughly 1200, essentially the same as the corresponding number for
the Breit-Wheeler process.

Again we should comment that this process is dependent on the beamstrahlung
photon spectrum, and therefore its rate decreases substantially (though not as
much as that for the Breit-Wheeler process) if the aspect ratio o /oy is increased,

A second comment on this process is more subtle. Our use of the equivalent
photon spectrum (7.34) is not justified in situations (such as ours) where the beams
are extremely narrow”™” The large logarithm in (7.34) comes from an integration
over the transverse momentum of the virtual photon, which can be extremely
small.  When it is so small that the corresponding transverse distance is larger
than the bunch height, the logarithm should instead be cut off at the reciprocal
of this height; that is, replace log 242y with log(ay/A.), where A, is the electron
Compton wavelength. This reduces the logarithm by nearly a factor of 3 when
Ty is reasonably large, so the total number of Bethe-Heitler pairs is reduced by
this factor. The reduction is probably somewhat less for the pairs that come out,
at large angles, although this has not been carefully checked. In any case the
geometrical reduction is a crucial factor whenever estimates that are accurate to a
factor of 2 are required.
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Figure 7.5. Feynman diagram for the Landau-Lifshitz process, e¢ — ecete™. The

shaded circle represents the sum of the two diagrams in Fig. 7.3.
7.5. The Landau-Lifshitz Process, ee — eecete™

In the third incoherent pair production process, both photons are virtual; the
Feynman diagram is shown in Fig. 7.5. Note that this process has nothing tc do
with beamstrahlung. Its rate is therefore determined entirely by the energy and
luminosity of the machine.

To compute the rate of this reaction we can again use the equivalent photon
approximation. The effective spectrum of the second photon is again given by
5q. (7.34). For the first photon, however, we now use’’ :

| n(zy) = sal log(1/ay). (7.36)

T Xy

The total cross-section then turns-out to be

o, = -g-s—ar"?‘g log® 292 = 2.7 x 10720 cm?* at Eep = 1/2 TeV (7.37)
LL 297 ¢ 108 <Y “ . Locm : . . .

At the NLC this yiclds approximately 2 x 108 pairs per bunch crossing, or 2 x 10
per bunch train. :

Since there is no asymmetry between the two photons, the spectrum is similar
to that of the Breit-Wheeler process: the center of mass of the two photons can
be boosted over a wide range, with no value of the boost parameter preferred. A
carcful calculation yields the differential cross-section (where @ is the fractional
energy of either member of the pair and E is the beam energy)

i 9D
doy,  5S6a7r;

de ~ 9n

1
- log(1/a)log(2Ex/1n). (7.38)

Integrating over the range 1071 < = < 4 x 1074, we find that 4 x 10° particles per
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bunch train (half traveling in each direction) would be pushed out far enough to
hit the masking in Fig. 7.1. _

Finally we can estimate the number of pairs with a large intrinsic angle and
transverse momentum. The calculation is again almost identical to that of Sec-
tion 7.3. Integrating down to a minimum transverse momentum pl = 4.5 MeV
and minimum angle fp := 100 mrad, we find a total of 800 pairs per bunch or 8000
per bunch train—several times more than for either of the other two incoherent
processes. This time the number scales as (p%)~2, so if the minimum transverse
momentum could be increased (e.g. by using a stronger solenoidal magnet), the
benefit would be substantial. |

Like the Bethe-Heitler process, the rate of this process is reduced by the ge-
ometrical cutoff in the logarithm of the equivalent photon distribution. In the
corrected total cross-section, log® 2y is replaced by™ log®(a/),). Here, however,
the reduction is by an enormous factor of (27/9.7)% = 20, at least in the leading-
log approximation. The reductions in the other two number quoted above, for a
narrow spectral range or a large intrinsic angle, have not been carefully checked,
but they are probably by only a single factor of 27/9.7 = 2.8,

7.6. Other QED Backgrounds

The three incoherent pair production processes of the preceding sections are
the only problematic QED backgrounds that have been identified so far for a lin-
ear collider of less than 1 TeV. Several other processes, however, have not been
rigorously ruled out.

Any process that can produce ete™ pairs can also produce ptu™ pairs (as well
as other charged particles). Since rates of the troublesome processes are dominated
by the threshold region where s ~ 4m?, we expect any rate for muons to be
suppressed by mft /m? = 4 x 10% relative to the rate for electrons. Furthermore,
the heavier muons are not pushed out to extremely large angles; any problems
would probably be from muons created with large intrinsic angles. Although the
rate of background muon events is probably less than one per bunch train, it should
still be estimated carefully since the effect of these events on the detector would
be entirely different. ‘

Low-energy pairs can in principle acquire a large angle by Compton-scattering
off of beamstrahlung photons. The rate should be comparable to that for vy —
ete™ for a given pair of initial energies. But since the number of low-energy pairs
is so much smaller than the number of low-energy photons, this process should be
negligible in comparison to vy — ete™. Compton scattering of a beam electron
or positron off a low-energy photon should also be considered, but is of course
suppressed by the large initial CM energy.
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Coherent pair production has not been completely eliminated as a source of
backgrounds even at a 1/2 TeV collider, since the interaction geometry is not yet
established and the estimates in Section 7.2 could be off by a substantial factor. In
addition, the direct coherent production of a pair by a beam electron via a virtual
photon is possible. This process has been discussed by Ritus'? and estimated for
future linear colliders by Chen and Telnov!™ who conclude that it is negligible
compared to ordinary coherent pair production when T 5 100.

The low-energy particles that remain trapped with the bunch, rather than
being pushed out, are not insignificant. We saw in Eq. (7.5) that in the worst case
they can exit the bunch with essentially the same angle as the oppositely charged
particles that are immediately pushed out.

Beamstrahlung photons emitted by any of the low-energy, high-angle particles
should not be a problem, since these photons will be much softer still, and no more
copious, than the charged particles that emit them.

Finally we must not forget the beam electrons and positrons themselves, The
number that lose nearly all of their energy to beamstrahlung can be significant,
and these can acquire large disruption angles according to Eq. (7.5). Although
very few would be pushed out far enough to hit the masking, a substantial number
may hit the face of the final quadrupole.
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