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I. Introduction

* The general alm of our study of the lon-foil interactlon is
two-fold: (1) to provide as complete as possible a‘description of
the state of the outgoing beam produced when ions are transmitted
through thin foils and (2)-to construct a éhysical model of thé
interaction process which can explain these results. In constructing
such a model 1%t 1is instructive to consider three distinct classes
of Interactlion one or all of which may contribute to the phenomena
observed: (1) excitation by the bulk, (2) electr(;n capture — both
at or near the surface and of secondaryAelectrons travelling with
the emerging b=2am and {3) interaction with the surface and with
surface.electric flelds. In terms of these processes, one can at-
tempt to assess the relative importance of'fulk and surface inter-
actlons In determining the properties cf the observed outgoing beam,
as well as try to determine the relative importance of collision
processes vis a vis electron capture. It is also.of great impor-
tance to discover whether there are significant effects of surface
electric fields and — if so — what the strength, range, and time
dependent characteristics of these fields are. i:The results to be
presented here furnish much descriptive information concerning the
nature of the interaction, but not a complete model of the interaction process.
They do, however, suggest an lmportant role for surface effects, -

and are strongly suggestive of an important role in these processes

for electron capture,
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IT. Phenomenology

. The most complete description of the beam which emerges from
the foll 1s contalned 1in the specification of the dénsity matrix of
this system, and the experiments described here are designed to
measure part of this density matrix. While recent work has shown
that present experiments do not require the interaction process to
be spin—independent(l) all experiments are, in fact, compatible
with such an assumptiqn and — since theoretical arguments generally
also lead to this assdmption — it has been adopted 1iIn the analysis
of our results, where the portion to the density matrix studied 1s
presented in the |L ML> representation. For states of'Lssl, the
optical measurements carried out determine the éntire density matrix
block as, e.g., was presented in our earliest work describing‘the
orientation produced by transmission of lons through tilted foiis.(z)
Por larger L, field free measurements determine only combinations
of density matrix elements aﬁd it 1s convenient to carry out a
spherical tensor expansion of p, in terms of which the expansion
coefficients pg with k<2 are then uniquely determined by our experi-
ments.(j) An equivalent parameterization of the outgocing beam which
can provide a direct physical interpretation has been given by Fano
and Macek, (4) who introduce the alignment (A) and orientation (0)
parameters, Theré.is a one-to-one correspondence between the align-
ment/orientation parameters and the pg‘s Introduced earlier, so that
measuring the allgnment and orientation 1s equivalent to specifying
the accesslble part of the density matrix. A generalizafion of the-

approach of Fano and Macek to the case of mixed parlty coherences
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and radiation emitted in the presence of electromagnetic fleld has
been carried out by Gabrielse,(S) and 1s particularly useful in

describing hydrogenic systems.

III. Experiments

All experiments to be described here involve detection of
radiation emitted by the beam subsequent to traversing the foll,
In some cases, quantum beats were measured; in other cases, the
detailed polarization state of the emitted light (specified by the
three relative Stokes parameters M/I, C/I, and S/I) was determined
— sometimes as a function of the azimuthal angle of observation, ¢.
In all cases, determination of the density matrix describing the

emergent beam was the aim of the measurements.

IV. Results for the 3p 1P and 4d 1D Levels of He I.

A. Folls Perpendicular to the Incident and Outgoing Beams

In this case; only a single pg, p% (proportional to a single
relative Stokes parameter, M/I) is non-vanishing, and Figs. 1 and 2
show the variation of this parameter with energy for the two states
studied. Note that Pg is always positive and that, in. both cases,
it oscillates with energy. A noteworthy aspect of Figs. 1 and 2 1is
the beam current>density dependence of the alignment,6 which occurs

in both cases, and 1tself oscillates with energy as shown in Fig. 3.

B. Tllted Foils

Here, field free measurements can determine the 4 pg‘s with
k<2 (i.é., the four Fano-Macek parameters), Measurements at one

detection position (6,¢) provide three -relative Stokes parameters, For
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= m/2, ¢ =0, these have been measured between 0° and 60° in 5°
1ncrements over the entlire energy range 30-1000 keV for both the
2s 1S - Jp 1P transition at 4016 A and the 3p1P - 44 1D transition
at 4922 A. The results for the latter transition for a tilt angle
a=145° are éhown in Fig. 4., From these measurements, tﬁe aligﬁment
and orientatlion parameters

A~ c/1
and

07 ~ 8/1 | (1)

are directly determined; however, only the combination

(A3 +A5 cos &) ~M/I

1s obtained. We have therefore carried out a number of measurements
of M/I versus ¢ for the 5016 A transition, with the results for
o =45° shown in Fig. 5. Similar measurements for the 4922 A transi-
tlon are in progress.

Comparison of Flg. 1 and 5 shows that p% is essentially un=-
changed by rotating the foil througb h5°, othér measurements suggest
that the angular dependence of the other pg's is also energy inde-

pendent. It thus seems 1likely that,toa good approximation, one can

wrlte

Ph(Ea) = gh(E) £ola) . (2)

This 1s well illustrated, for example, in Fig. 6 where all of the

measured values of pg for the 3d 1D level, measured between 100 keV

and 425 keV are plotted as a function of the foil tilt angle after
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factoring out the energy dependenge measﬁred fora tilt angle of a =45°
(data, for 3p lP corresponding to Fig. 4). These results agree very
well with a single universal — here linear — curve fepresenting the
observed angular varlation. For all cases measured to date, sﬁch an

approximation seems vallid and the resultiné fg(a) are

]
1

0 constant for 3p 1P
linear foxr both 3p 1P and 4d lD

Lo T
n =
t L

> quadratic for 3p lP

linear for 3p 1P, quadratic for 4q 1D

e
(o)
i

V. Interpretation

One feature of the excitation by foils normal to the beam dis-
played in Figs. 1 and 2 is that M/I is everywhere positive (Ag every-
where negative). It should be noted that this is, indeed, the sign
expected from electronlpick-up in the simple model that the ion
emerges from the foll and captures an electron whose velocity relative
to the foill is small compared with that of the ion 1tse1f.(7) If.
one next turns one'é attention to the observed oscillations in Ag
with outgoing ion velocity (energy), it is tempting to try to relate
them to the oscillatory electron wake which is set up by the ion's
traversal througﬁ the foil.(B) For a plasma frequency wp-vlo15 sec_I;
the assumption of electron pick-up from an oscillating charge deﬂsity
extending some few A beyond the foil can give a reasonable fit to-

the experimental data. Scattering from an oscillatory potential of

similar characteristics also would give rise to such oscillation in
c

Ao.




.The observation for the 3p 1? that Ag does not change signl-
ficantly when the foll is tilted 1s also consistent with the simple
electron plck-up model described earlief(7) where the direction of
the principal axls for the allgnment 1s determined by the beam_veloc-
ity. It is also expected 1if the alignment is produced in the bulk.
The variation of the three alignment pz meters with foll tilt angle
_ is not what would result from alignment rroduced parallel to the
tilted foil normal. Since capture of secondary electrons has been
suggested above as a significant contributor to our obser&ations,
1t 1s interesting to observe that measurements of the dependences of
the yleld of such electrons upon foil tilt angle(g) is proportional
to l/coscz,due.to an increase wlth tilt angle in the number of elec-
trons which can reach the final surface without absorption. This
same mechanism requires that the secohdary electron density is asym-
metric about the Inclident beam in exactly the way required to produce
orientation of the sense observed in all measurements carried out to
date.

Finally, we note that the lack of oscillations with energy in
measurements of the orientation sugéest that the mechanism for pro-

ducing it may be different from that producing the alignment.
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Flgure Captlions

The lincar polarization fraction M/I for the 3*p 1p 1evel
of He I as a functlon of energy. '

+ current density 30 uA/cm?

© zero current density extrapolétion

For this case, A8==-2/3 M/I.

The linear polarization fraction M/I for the 4d 1D level

of e I as-a function of energy.

The rate of current density dependence of the linear

polarization SJ==A(M/I)/A(j) for the 3p 1p level of He T

as a functlion of energy.

Relative Stokes parameters M/I (+), C/I (x) and S/I (o)

1

for the 4d "D level as a function of energy.

Allgrment and orlentation parameters for the 3p 1P level

of He I vs energy: Ag (+), Ag (x), A% (o), Oi (o).

Angular dependence of the orientation, f% (a) for the
3p 1p level of He I.
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