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Theory of the Ion-Channel Laser

, David H, Whittum

Abstract

A relativistic electron beam propagating through a plasma in the ion-

focussed regime exhibits an electromagnetic instability with peak growth rate

near a resonant frequency c0~272 0_/3,where y is the Lorentz factor and co/3is the

betatron frequency. The physical basis for this instability is that an ensemble

of relativistic simple harmonic oscillators, weakly driven by an

electromagnetic wave, will lose energy to the wave through axial bunching.

This "bunching" corresponds to the development of an rf component in the

beam current, and a coherent centroid oscillation. The subject of this thesis is

the theory of a laser capitalizing on this electromagnetic instability.

In Chapter 1 a historical perspective is offered. In Chapter 2, the basic

features of relativistic electron beam propagation in the ion-focussed regime
i.

are reviewed.

, In Chapter 3, the ion-channel laser (ICL) instability is explored

theoretically through an eikonal formalism, analgous to the "KMR"

formalism for the free-electron laser (FEL). The dispersion relation is derived,



and the dependence of growth rate on three key parameters (detuning 3,

Pierce parameter p, and betatron parameter a_) is explored. Finite temperature

effects are assessed.

From this work it is found that the typical gain length for amplification

is longer than the Rayleigh length and we go on to consider" three

mechanisms which will tend to guide the radiation. First, we consider the

effect of the ion channel as a dielectric waveguide. We consider next the use

of a conducting waveguide, appropriate for a microwave amplifier. Finally,

we examine a form of "optical guiding" analgous to that found in the FEL.

In Chapter 4, the eikonal formalism is used to model numerically the

instability through and beyond saturation. Results are compared with the

numerical simulation of the full equations of motion, and with the analytic

scalings. The analytical requirement on detuning spread is confirmed.

In Chapter 5 results are summarized and prospects for future work are

considered.
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. Chapter 1: Introduction

"All things hang like a drop of dew

Upona bladeof grass."
---W.B.Yeats

A relativistic electron beam propagating through a plasma in the ion-

focussed regime exhibits an electromagnetic instability with peak growth rate

near a resonant frequency 0;~2_ c03, where y is the Lorentz factor and 0;3 is the

betatron frequency.I, 2 The physical basis for this instability is that an ensemble

of relativistic simple harmonie oscillators, weakly driven by an

electromagnetic wave, will lose energy to the wave through axial bunching.

This "bunching" corresponds to the development of an rf component in the

beam current, and a coherent centroid oscillation. The subject of this thesis is

the theory of a laser capitalizing on this electromagnetic instability.

In this introduction we review the historical background and

motivation for the ion-channel laser, to include a brief history of beam-

plasma physics and the subject of coherent radiation from intense relativistic
,a

electrons beams. In practice, these two fields overlap considerably, in that

plasmas have been used to enhance efficiency in known radiation devices,3,4,5
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and have been proposed to provide the coupling for novel radiation

devices.S, 7 In the ion-channel laser (ICL), these two subjects are inseparable.

m

A. OVERVIEW OF BEAM-PLASMA PHYSICS
o

The essential features of beam propagation in an unmagnetized,

preionized plasma may be described in terms of charge and current

neutralization. A relativistic electron beam (REB) injected into a plasma less

dense than the beam core Cunderdense") expels plasma electrons from the

beam volume, producing a non-neutral "ion-channel." The radial electric

field due to the ions then focusses the beam ("ion-focussing regime" or IFR).

A plasma more dense than the beam will neutralize the beam charge, so that

the REB is focussed by its own magnetic field ("magnetic self-focussing"). A

still denser plasma will partially neutralize the current, if the plasma skin

depth is short compared to the beam radial size, and if the magnetic diffusion

time is long compared to the beam length.

In the next chapter we will discuss these features in detail, specializing

to the ion-focussed regime. First, however, we consider the historical context

for the growing interest in the IFR.

1. Early work on beam-plasma physics

The earliest treatment of REB propagation in a plasma was given in

1934, by Bennett, 8 who considered the magnetically self-focussing regime.



Chapter I Introduction

This paper was followed in 1939 by work of Alfven, 9 who showed that, due to

self-fields, an electron beam could not be propagated in free space at arbitrarily

. high current. The limiting current, or Alfven current, is IA=yflzlo, where I is

the beam current, Io=mc3/e~17 kA, 7is the Lorentz factor for the beam and

" _z=Vz/C, with vz the velocity of the beam and c the speed of light. The electron

mass is m and -e is the electron charge. To exceed this limit some confining or

focussing forces must be applied, and they may be either electric or magnetic,

provided externally, or arising collectively from the addition of a plasma.

A second paper on self-focussing streams was published by Bennett in

1955.10 In the same year, Budker pub!ished his work on propagation of

partially charge-neutralized beams, motivated by the possiblity of accelerating

lights ions. 11 Further work on ion-acceleration followed in 1957, by

Veksler.12,13 Eventually, interest in ion-acceleration led to the the Electron

Ring Accelerator (ERA) concept. 14 From the ERA project, and related work on

the "ASTRON" injector, we may trace the beginnings of work on induction

linear accelerators for high current electron beams.

2. Induction linear accelerators and beam-plasma physics

At Lawrence Livermore National Laboratory (LLNL), this work began

with the ASTRON I induction accelerator (1963), which was followed by the

ASTRON II (1968). Under the SEESAW project funded by the Advanced

. Research Projects Agency (ARPA), the ASTRON was used to study

REBpropagation in the atmosphere, for military applications, 15 After the
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termination of the ASTRON program (1972), the ASTRON II was used as a

tool for the study of beam-gas and beam-plasma interactions, and the

Experimental Test Accelerator (ETA) was constructed on the old ASTRON II

site (1977). ETA was sponsored by the Navy's Chair Heritage program, again to

study propagation in the atmosphere.

Success with ETA lead to the construction of the Advanced Test

Accelerator (..ATA)at Site 300 (the high-explosives test site operated by LLNL

near Tracy, California) in 1982. Most recently, a fifth induction linac, ETAII

has been constructed (1987) on the site of the old ETA, which has been

decommissioned. 16

This is a rough outline of induction linac work at LLNL, just one lab

among many. During the same period, induction linac work has been

performed at the Atomic Weapons Research Establishment in England,

Physics International, Ion Physics, Maxwell Laboratories, the Naval Research

Laboratory, the Air Force Weapons Laboratory, the National Bureau of

Standards, Sandia National Laboratories, and other labs. Induction linac work

is also proceeding in Japan, notably at the National Laboratory for High-

Energy Physics (KEK), the Institute for Laser Engineering at Osaka University,

the Institute for Space and Astronautical Science, and the Naka Fusion

Research Establishment of the Japan Atomic Energy Research Institute.

Space does not permit a thorough history or complete enumeration of

induction linac work here, but this brief digression and the references will

give some indication of the explosion of research during this period. Much of
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this work was concerned directly or indirectly with beam-plasma interactions,

and the proposals, papers and results which have accumulated could fill a

small library.

• 3. Beam-plasma theory and experiment

Extensive _treatments of the equilibria of a charge neutralized, and

partially current neutralized, REB propagating in a plasma, were given in

1968 by Roberts and Bennett, 16 in 1970 by Bennett and Cox, 17 and Hammer

and Rostoker, 18 and in 1971 by Lee and Sudan. 19 In 1976 a Fokker-Planck

formulation of beam-plasma equilibria and an application of the H-theorem

to this system were set down by E.P. Lee.20 By the mid-1970's the beam-

plasma community had grown quite large, and one finds review papers from

around the world, for example R. Okamura, et al.,21 and G. Wallis, et al..22 A

more recent review of REB-plasma physics may be found in P. C. de Jagher, et

al. 23

An extensive literature exists on REB-plasma experiments. The first

experimental work on magnetically self-focussing streams was published in

1966 by Graybill and Nablo. 24 The first observation of the acceleration of light

ions was reported by Graybill and Uglum, 25 in 1970. A discussion of theory

and results for REB propagation in connection with an REB-pumped N2 laser

is given by Yu V. Tkach, et al. 26 Some of the first results from experiments

. with REB heating of plasmas are discussed by MacArthur and Poukey, 27 and

Prono, et al.2s These papers are the first of scores of such papers published in
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each area of application over the period 1960-1980, of which there are far too

many to review in detail. Perhaps it is enough to note that over the last

decade, ion-focussing has been successfully and routinely employed in the
l

transport of high current beams for accelerator work and radiation

research.29,3°,31, 32 From this one might gather that the essential features of

REB propagation are well in hand.

In fact, this is not quite true. At the Advanced Test Accelerator (ATA),

at Lawrence Livermore National Laboratory (LLNL) extensive, experimental

tests of beam propagation in the ion-focussed regime have been conducted

over the last decade. 33 One particular application was to use the REB to drive

an infrared FEL, 34 and this application provided a rigorous test of beam

quality. 35 It was found that REB emittance degraded considerably in the ion-

channel, much more than could be expected theoretically. As with the early

experiments on fusion plasmas, 36 one might expect that some unknown,

instabi!ity lurked in the data. In fact, the electromagnetic instability we will

discuss in Chapter 3, coupled to ion-motion, may account for considerable

emittance growth in a long pulse.

4. Novel beam-plasma concepts

We may summarize REB-plasma work during the period 1930-1980 as

the studv and application of the equilibria and instabilities of beams subject to

various collective focussing forces. Most work involved long pulse lengths,

in the range 10ns-l_ts, for applications including light-ion acceleration,
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plasma heating, microwave generation, gas-laser pumping and nuclear effects

simulations. The applications are quite varied and this reflects the variety of

• regimes available in such a three-component plasma. 37

More recently, interest has been growing in the regime of short pulse,

" low-emittance, high-current, high-energy beams, propagating through

preionized, unmagnetized plasmas. Among the novel concepts proposed are

the plasma lens, 38,39 the continuous plasma focus, 40,41 the plasma wakefield

accelerator, 42,43,44 the beat wave accelerator, 45 a collective electron

accelerator, 46 and the plasma emittance damper.47, 48

Given the abundance of new ideas, it is helpful to remember that ali

have essentially one application: beam-handling. Typical beam-handling

problems include transport, focussing, suppression of beam-breakup, and

acceleration. For example, the foremost goal of accelerator physics today, is to

design a high luminosity TeV-energy electron-positron collider of reasonable

length. 49 To this end, plasmas have been proposed to accelerate beams to TeV

energies in a few hundred meters, to focus the beams while overcoming

theoretical limits 50 on conventional focussing and to neutralize self-fields at

the interaction point, 51 thus overcoming certain limitations due to collective

effects in beam-beam collisions.52,53,54



Chapter I Introduction

B. OVERVIEW OF FREE-ELECTRON RADIATION DEVICES

i

Coherent radiation from relativistic electron beams, usually in

vacuum, also has been the subject of extensive work, in connection with the

FEL,55, 56 the Cyclotron Auto-Resonant Maser (CARM), 57 and other FEL-like

devices._,59,60, 61 Applications for high power, coherent radiation may be

found across the spectrum from the microwave to the X-Ray, from particle

acceleral'o;, 62,63 fusion, 64,65 communications and weapons, 66 to surface

chemistry, medical and industrial applications.67,68, 69

Probably the earliest work on the FEL is that of Motz, 70 and the

"ubitron" work of Phillips 71 in the microwave regime, and Madey, 72 who

proposed and demonstrated experimentally, that the FEL could be operated as

an amplifier (and, subsequently, an oscillator) at visible wavelengths. The

CARM concept grew naturally out of work on the gyrotron, 73 for which the

CARM is the relativistic limit.

The CARM and the FEL are each fast-wave devices, in that the

coupling of the beam to the fields occurs through a transverse electric field,

with small electric field parallel to the beam velocity (corresponding to phase

velocity of order c). This feature is shared with the ICL.

In general, fast-wave devices have a resonance relation of the form

I

co- kzvz= _o, (1.1)



Chapter I Introduction

near which maximum amplification of an input signal occurs. Here coand kz

. are the angular frequency and axial wavenumber of the signal field to be

amplified. The beam propagates in the z-direction with velocity vz,..,c. At the
ii

same time, external fields enforce a periodic transverse motion with angular

frequency coo.

This resonance condition states that the Doppler shifted frequency of

the signal field, should be close to the frequency of transverse oscillation of

the electron. In this way the electron is resonantly driven and suffers a secular

perturbation in its orbit. Viewed collectively, this secular drift produces a

bunching of the beam. The system is unstable because the bunching of the

beam causes the electrons to radiate more nearly in phase producing higher

power, and thereby, more bunching.

For the CARM, coo~eBdmTc, where Bz is the applied axial magnetic

field. For the FEL coo~kwvz, where kw=2r_/Xw, with _,w the spatial period

("wiggler" period) of the alternating dipole fields.

In fact, it is not hard to show, using the Maxwell-Vlasov equations, that

for an ensemble of electrons subject to an arbitrary, periodic zeroth order

orbit, such a resonant electromagnetic instability may ensue. This feature is

. exploited, for example, in the CARM, and in the quadrupole FEL (QFEL),

proposed by Levush, et ai. 74,75. The QFEL makes use of a quadrllpole focussing

" winding to capitalize on this instability and amplify microwaves. One

shortcoming of the QFEL is that magnetic focussing channels tend to be weak
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compared to FEL wigglers. Consequently, the frequency range, and gain are

limited.

An analagous instability obtains for a REB propagating through an

electrostatic focussing channel in the ion-focussing regme.1, 2 In this case the

resonance relation of Eq. (1.1) applies, with coo=co_, where co_ is just the

betatron frequency of the ion-focussed beam,

COp

caB= "_. (1.2)

The subject of this thesis is, roughly, to explain and expand on Eqs. (1.1) and

(1.2), and to explore the consequences in detail.

Interestingly, experimental evidence has already been found, of

coherent radiation from intense electron beams injected into overdense,

unmagnetized plasmas.76, 77 Explanations offered for the high microwave

power levels observed have included streaming instabilities, strong-

turbulence, and virtual cathode oscillations. Kato et al., 58 remark on the

possibility of an FEL analogy based on jitter motion in "large-amplitude

electrostatic waves generated by instability"; however, to date, no satisfactory

theory has been set down to explain the measured power levels. We shall see

that the ion-channel laser instability is likely an important contributing "

mechanism for the production of such radiation.
I

Now, unlike slow-wave devices, (the klystron or the magnetron,78, 79

for example) fast-wave devices require a cold beam, i.e., one with a small

10
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spread in axial momenta, and small transverse temperature. This may be

seen from the resonance relationship and the principle of Landau damping, s0

In general, one must require that the spread in detuning

. z_co= coo+ kz vz- co (1.3)

be small compared to the growth rate for the instability. Otherwise electrons

slip out of phase with respect to the resonant particle (satisfying aco=0) and,

collectively, radiate less, so that gain is reduced. As in the FEL and CARM,

detuning spread will turn out to be an important limitation on ICL

performance.

C. SUMMARY

The diverse regimes of beam-plasma physics have been studied

extensively over the last fifty years, and the list of novel applications grows

wih each passing year. Free-electron radiation devices trace their origin to the

burgeoning microwave work of the post-war era, and have flourished in the

last decade, appearing in many varieties, with as many applications. Many

. features of each field will appear in our study of the ion-channel laser.

In the next chapter, we review the basic features of relativistic electron

beam propagation in the ion-focussed regime. We go on to explore the ICL

instability theoretically, in Chapter 3, and numerically, in Chapter 4. The

11
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result of this work will be a theoretical formulation for the laser, includin_

particle dynamics and radiation guiding, which will be summarized in terms

of scaling laws encompassing laser performance and plasma constraints (ion-

motion, etc.), with specific numerical examples for illustration. From this

work, theory will be advanced to the state where practical experiments can be

considered.

12
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- Chapter 2: Short Pulse Propagation

"One never ought to listen to the flowers. One should

simply look at them and breathe their fragrance."

mAntoine de Saint Exupery

In this chapter, the basic features of REB propagation in the ion-

focussed regime (IFR) are reviewed. In Sec. A, we discuss charge and current

neutralization, and provide a working definition of the IFR. In Sec. B we

consider in a more formal manner, equilibrium propagation in the IFR, and

we apply our results to analyze the continuous plasma focus, recently

proposed by Chen, et al. 1 In Sec. C we consider the dominant IFR instabilities:

"ion-hose" and "electron-hose". In Sec. D, we enumerate certain important,

• but less dominant features, including scattering, beam-ionization, radiation

and streaming instabilities.

21



Chapter 2 ....... Short Pulse Propagation

FIG. 2.1. A relativistic electron beam propagates through a preionized plasma, more dense than

the beam core. A small fraction of plasma electrons are expelled (as indicated by the plasma

electron current density J_ ) to produce overall quasineutrality, so thatthe net electric field E,,t

(which is the sum of the fields due to the beam, ions, and plasma electrons, Eh, Ei, and E_,

respectively) vanishes. The net force on the beam, F_.a,is then due to the beam magnetic field

B_,,i.e., the beam is magnetically self-pinched.

A. THE ION-FOCUSSED REGIME

Before embarking on detailed analytic work and to place this work in

the appropriate context, it is helpful to review the simplest features of REB

propagation: charge and current neutralization. In the course of this review,

we will provide a working definition of the "IFR". We restrict ourselves
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throughout to the case of a preionized, unmagnetized plasma, and neglect

plasma electron collisions, recombination and attachment.

ca

E net = Eb + E i _ 0
@

, FIG. 2.2. A relativistic electron beam propagates through a preionized plasma, less dense than

the beam core. Ali plasma electrons are expelled, producing a non-neutral column of ions, or

"ion-channel." For a sufficiently dense plasma, such that np>>ndl g, the beam is thenq

electrostatically focussed by the ion-charge. This is to be compared to Fig. 2.1.
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Let us place ourselves at a fixed position in the plasma and watch the

beam "arrive" (Fig. 2.1). We observe a rising current, a rising azimuthal

magnetic field, a radial electric field and an induced axial electric field. The
i

total electric field must, by Lenz's law drive a plasma current, Je such as to

oppose the rising beam current, as indicated in Fig. 2.1. Now,

characteristically, plasma electrons will respond to imposed fields on the

time scale of a plasma period, cop-1, where cop2=4_n_e2/m, the electron charge

is-e and its mass is m. Thus if the current rises adiabatically on the cop-1 time

scale, plasma electrons will flow out of the beam volume with only small

radial plasma oscillations. The local plasma is then in a quasi steady-state.

(We will take the ions to be fixed for the moment).

For early times, as the beam "head" is flowing past, there are many

more plasma electrons than beam electrons, and the beam is charge

neutralized and magnetically self-focussed, as indicated in Fig. 2.1. As the

beam current continues to rise, the beam density on axis increases above the

local ion charge density, and a channel is formed from which ali plasma

electrons have been quasi-statically evacuated.

Eventually, as the current rises still further, this "ion-channel" extends

beyond the beam volume, as depicted in Fig. 2.2. In this limit, the transverse

Lorentz force seen by a beam electron in the channel is

F-'(r ) =- e "+_. _-b- e g,
, (2.1) •
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where Eb is the radial electric field due to the beam and Ei is the field due to

the ion charge, Ei ~2_en_,r, with r the radial coordinate. The quantity fl_L=Vj./C,

with v.L<<c the transverse velocity. The speed of light is c and y is the beam

energy divided by the electron rest energy, mc2.

::?:i i :: ,: ii . i??:! :? i:i:!:::??:??:?i : ?????L?:"i:!i??i??i?i!i?i?!?ii????:?!?:?!!:i??i?7.:i?!?!???i:i:ii?i?ii?i.??ii?i!????i!?? !!71}_??i?7177_
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_ _ : i .i IIii_ii_i:_:i::i ii:i__i::_L _:_!i _iii_i:i!i_:_.i:::::_iiiiiiiiiiiiiiiiillliiiExpelled I.ili!iiiiiiiii{

......................................................... ._...,._';........ 'b.".4'bb,"k,._.,'q,.gg......... 'b._'...q'_..' ............. ;';_'; 4_'. ,',_'.',,_._k _ ,'_,:.: _llil;.;4.b,'

FIG. 2.3. The radial electric field of the beam expels plasma electrons from a large cylindrical

vc, lume, or "ion-channel". The beam head is weakly magnetically self-focussed, while the

main-body of the beam is electrostatically focussed by the relatively immobile ions.

Now the primary motivation for sending a beam into a plasma is

focussing and for focussing to be effective, the restoring force due to the ion

charge should be much larger than the transverse Lorentz force on the beam

due its self-fields. This imposes the Budker condition 2 on the plasma density,
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II II IIII I I i]

In b >hp >>nb +

. (2.2)

We shall refer to the regime constrained by these assumptions as the

ion-focussed regime (IFR). In fact, as we have seen, no beam is ever entirely

ion-focussed, since the beam head is always weakly magnetically se!f-focussed

(Fig. 2.3). 3 For propagation over long distances, this distinction is important,

since poor focussing at the beam head may result in significant "erosion". For

the relatively short propagation lengths of interest here, this will turn out to

be a minor effect, and we relegate further discussion of it to Sec. D.

With a definition of the "IFR" in hand, we proceed to a more

quantitative treament of IFR equilibria.

B. EQUILIBRIUM PROPAGATION

In this section, we examine the features of equilibrium propagation in

the IFR. In Sec. 1, we consider the steady-state plasma-electron flow subject to

an adiabatically varying, specified beam current, using a cold-fluid model. In

Sec. 2, we consider the ion-motion using a linearized cold-fluid model. In Sec.

3, we consider REB propagation through a background of rigid ions, subject to

the fields determined in Secs. 1 and 2. We reserve to Sec. C discussion of

dipole perturbations to the beam centroid.
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1. Steady-state plasma electron flow

First, we consider the plasma flow subject to specified beam charge and

current densities, with ions fixed. It will be convenient to change variables

- from z, t to z, s where s=t-Z/Vb is the displacement along the beam and varies

from 0 at the beam head to • (the pulse length) at the beam tail. The beam

velocity is Vb~C.We will take the beam density to be specified in the form

Pbo( r ,s ) =- enb( s ) H (a - r ) (2.3)9

where -e is the electron charge, a is the beam radius, and H is the step

function. The beam density on axis nb varies with s, on the time-scale l:r, the

current rise time. As noted above, we assume throughout that current

variation is adiabatic,

!
Op'Cr > > 1

I, (2.4)

so that plasma oscillations are small in amplitude.

a. MHD Equations. With these assumptions, we calculate the

" equilibrium fields and plasma electron flow, using a cold fluid model.

Maxwell's equations in the Lorentz gauge are
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{;I : : _ +I')+ c)za c s _2 c '

+ &2 c 2 _2' _ =- 4 n:(p b + Pi + P,) , (2.5)

i

where rp is the scalar potential and A is the vector potential. The transverse

gradient is V.L,and t is time. The beam, electron and ion charge densities are

Ph, Pe, and Pi and the beam and plasma electron current densities are

Jo .= pbc_bz ,

ft' = p,c ( ]__ + j_,_') , (2.6)

where the plasma electron axial velocity is vz=_zc, and the radial velocity is

Vr= _rC.

In the adiabatic limit, we may simplify Eq. (2.5) with the "frozen-field"

approximation, replacing the D'Alembertian operators with Vj.2. This

approximation neglects radiative effects and takes advantage of the slow

variation of the beam fields in z, at fixed s. We will see that this amounts to

the approximation b/cv,,y<<l, which is typically well satisfied.

It is convenient to define dimensionless variables,

eA_
a z -

?HC2 '

cA,

lq'ZC2 '

e_
??'lC2
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pe

Pi '
Pb
Pi '

e

in terms of which Eq. (2.5) takes the form

1 3 3 , 2(-7-_--r-_-)a = k_,(2_,8b+/_ zi),

(/__ 3 1) 2r& r2 a, = kpfl, a,

_--r _-- = kv , (2.7)

Here, kv=cOp/C.For reference, we note the expressions for the physical fields,

e _+c & '

e N- a_- /_

= e + _b _ ' (2.8)

where the azimuthal angle is O, and Eo=Br=Bz=O. The quantity j_b=Vb/C,

where vb is the beam axial velocity. We will take flb~l below.

. Next we set down the cold-fluid equations for the plasma electrons. In

the beam frame, our system is translationally invariant, so derivatives in z at

rixed s are zero. The continuity equation is
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} 1_(2 - 'G ),4l$b+ c T-'_r { fl"4 } = 0 , (2.9)

and this may also be rewritten

pA+ a (1--a-) + = o
, (2.10)

where D is the convective derivative along the flow,

D = (1 - [3,) + _,c -_-. (2.11)

The Lorentz force equation is

D (yfl,) = (1 _ __),8,,,,o_-+c-_a#__ c,&OM,,&,
(2.12)r.-b

where yis now the Lorentz factor for the plasma electrons.

Now in principle, to describe file equilibrium, we may set flr=ar=O and

neglect all s-derivatives in Eqs. (2.7) and (2.12). In this case, the fluid

equations, Eq. (2.12), reduce to a condition for radial force balance,
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Chapter 2 Short Puls_t Propagation

I

0¢ Oa, [ (2.13)

- valid where A;._. Equation (2_._Ois unchanged except that we may set ar=O.

Unfortunately, this steady-state approximation has left us with only

three equations for the four unknowns ¢, az, _z, and ,4. In general, to close this

system of equations, we must obtain an integral of the full s-dependent

equations. Since these are non-linear partial differential equations, this

would appear to be a formidable task. However, in the limit,

> > ]J,, (2.14)

an integration is straightforward. We proceed to show that Eq. _2.14) is always

valid for a sufficiently slowly rising current.

Now, from Lenz's law, we expect plasma electrons to stream backward

in z, neutralizing the beam magnetic field at large radii, as is the case for

overdense plasmas. 4 This implies that the electron density must vanish for

r<b, for some channel radius b. Otherwise the electron density extends to r=0,

where the net Lorentz force on a backward-drifting electron is outward, i.e.,

non-zero, contradicting Eq. (2.13). In this connection it is convenient to define

• a channel parameter,
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I V =k_b , (2.15)

which characterizes the magnetic shielding provided by the plasma drift in z.

Small skin-depth corresponds to V>>I, and, as we shall see, a large axial drift,

while large skin-depth corresponds to V<<I. 5

Next, we estimate _z. Qualitatively, we expect good magnetic shielding

over a radial length c/_, so long as the time for magnetic diffusion due to

collisions is long compared to the electron beam pulse length. This magnetic

diffusion time is of order '_D~(kpb)2/v where v is the plasma electron collision

rate, and kp~rOp/C.Consistent with our neglect of collisions we will assume

_'<<TD. In this case, the total plasma current contained within a skin-depth of

. the channel wall should be of order the total beam current. This gives

_z~O(V2), for V<<I, and _z~O(V)for V~I. 6

We may estimate ]_rby assuming that any increase in beam charge

must be balanced by plasma electron charge flowing outward through the

channel wall. This gives

b V
#':c-T:

Actuallythisisa bitof an overestimateof Pr,sincechargemay flow out

axially.

With these estimates we have for V<<I
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" We will assume that COpZr;'>l/V, so that [Jr<<_z. The result _r<<_z for slowly

rising current is not surprising, since in the limit of constant current, /Jr=0,

while, on the other hand, ]Jzdepends on the integral of Ez and is non-zero so

long as the current is non-zero. (Indeed were ]J_ to vanish for non-zero

current, the magnetic field would extend to large r, despite the presence of an

intervening collisionless plasma, an unphysical result.)

Having established Eq. (2.14), we proceed to integrate the fluid

equations by two methods. First, we will close this system of equations by

iteration, in the limit V<<I. Next, we will obtain an integral of the motion

(valid for arbitrary V)from the full s-dependent equations. This second

method does not provide an explicit solution, but reduces the problem to one

second-order, nonlinear, ordinary differential equation, which is easily solved

numerically.

b. Large skin-depth limit (V<<I). Knowing that the electron density

must vanish for r<b, we may solve Eq. (2.7) immediately for the potentials in

that region. Suppressing the s-dependence, we have

[ 2)r2l(k_ - kp + _(0 ) ; r < a

r_= l 1 2 1 2- _kpr 2 + _-k ba 2(1 +2 ln( r/ a ) ) + (_(0 ) ; a < r < b , (2.17)
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where kb2=47rnbe2/m. The vector potentials are

r 12_k br 2 + a,( O) ; r < a

a, =lT "l k_ a 2(1 + 2 ln( r/ a ) ) + a,( O ) ; a < r < b , (2.18)

and

' r

a;( r ) = a,(b )-b-. (2.19)

Boundary values at r=b are,

1 2

a,( b ) = a,( O ) + _-U (1 +2 ln( b/ a ) ) ,

&, . U2
-'dr--( b ) - 2 b '

ln(b/a ),

_0 1 (U 2 V 2)
-'dr-( b ) = 2---b - '

_/--(b a,(b ))
= b ' (2.20)

and we have defined a current parameter

112

U = 2(1/lo) (2.21) "

with lo=mc3/e~17 kA.
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We proceed to linearize Eqs. (2.7) and (2.12), about the V--_0 solution. In

the V_0 limit, we know that _,~O(V2). Inspection of the vacuum vector

potential shows that a,~O(V 2) also. Equation (2.7) then implies ¢~O(V 4) and

can be neglected at lowest order. Equation (2.13) gives V2=U2+O(U4), o__

w

b = a _ (1 + O (V2)) (2.22)

In this case, `4-1 at lowest order. Inspection of Eq. (2.12) shows that/Jr is of

order O(V4). This gives ]_z~az through O(V2). From Eq. (2.7) it is then

straightforward to solve for az. In addition, the continuity equation, Eq. (2.10)

gives Al=_zl. The O(V2) potentials and other quantities are then, for r>b,

a l(r) =,41 = _,1 V Ko(k_r)
, =-_- KI(V ) ,

_,1 = _1(r) = a,1 (r ) = 0 , (2.23)

and ,4o=1. Here Ko and K1 are the modified Bessel functions and the subscript

n denotes a quantity of order O(V2n). The constants in Eq. (14) are given by

a 1(0)=-1V2{ Ko(V) }z V KI(V) +In(b/a) ,p

( 0 ) "- -- _-V 2 In ( b / a ) . (2.24)

We may check the 13z<<1 approximation, from Eq. (2.23), which gives,
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1.0 , _ : 0.00 , . , ,
" " ---,r II . I i

IL.LI
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t=

A o.s 13=
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0.0 I I .. I .r . II , -0.15 ' I , I. , I ,
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la) kl,r (b) kpr

0.1 0.0
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0.0
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-0.4
-0.2

-0.5

-0.3 -0.6
0 1 2 3 4 0 1 2 3 4

(c) kpr (d) kpr

FIG. 2.4. The analytic solution in the large skin-depth approximation for U=0.5 (I-1 kA).

(a)A=ndnp, the plasma electron density normalized to its initial value (b)_z=v=/c, the plasma

electron axial drift velocity (c)the scalar potential and (d)the axial vector potential,

normalized by e/mc2. Due to the axial drift depicted in (b), electrons are "held off" the channel

wall by the vxB force and this is reflected in the droop in the density in (a). This deficit of

charge at the wall produces a small potential trough as depicted in (c), just adequate to balance

the vxB force for the remaining electrons.
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'\ 2 d, (2.25)

. where we use the small argument expansions for the modified Bessel

functions, 7

Ko(z )2- I

1
KI ( z ) = -rf-,

and yE~0.5772 is Euler's constant. So, for example,/]z1~-10-2 for V-.-10q.

It remains to determine _2, the lowest order nonvanishing correction

to q. This is obtained from Eq. (2.13), radial force balance in equilibrium,

2

r_2(r) =_-a,1 (r) = KI(V) K°(k_r

Note that the potential at r=0, is shifted slightly at O(V4), and is given

by r_(O)~r_l(O)+r_2(b).The channel radius is then determined by the point where

the radial Lorentz force vanishes,

d"2 U2 I__U3 Ko(U ) = U2 1 4 U er_
. = - 2 K1(U) - -_-U In(---_-) + 0 (U 6 ) . (2.26)
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, - , - , - , - 0 -- i . -

00f-- II a z
-1.0 .

----- analytic -2 ----- analytic
-.------ numerical

------ numerical

-2.0 • I . ' ' ' ' -3 -- • I , I ' ' .
0 1 2 3 4 0 1 2 3 4

(c) k_- (d) kmr

FIG. 2.5. Solution of Eq. (2.31) for t//versus r, for U=I (I-4 kA) compared to the analytic result of

the V<<I approximation.(a)A=n,Jnp, the plasma electron density normalized to its initial

value (b)_z=vJc, the plasma electron axial drift velocity (c)the scalar potential and (d)the

axial vector potential, normalized by e/mc 2. Evidently at V~I, the small V approximation is

fair for the potentials, while it errs noticeably for the plasma electron density.
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Chaptel: 2 Short Pulse Propagation

More explicitly, in terms of the channel radius, this is

2

. Cn-7;

w

So, for example, for I~1 kA, b is 5% larger than would be predicted by

neglecting ]Jz.

Physically, Eqs. (2.25) and (2.26) show that the small axial drift (_zl) of

the plasma electrons results in a "vxB" force which tends to push electrons

away from the channel wall. This results in an a depression in the plasma

electron density (AI) and an attractive electrostatic potential (¢2). The

associated radial electric field just balances the "vxB" force and maintains the

equilibrium. For illustration, the analytic solutions for _, az, ]_z and A are

depicted in Fig. 2.4 (a) for U=0.5 (I~1 kA).

c. General solution. In general, neglecting /Jr reduces the Lorentz force

law, Eq. (2.12) to the form

o • (2.27)

We integrate this from s_-_, to obtain
p

tan( _/ 2 )
. _/=az-c_= 2

1 + tan (_/ 2 ) (2.28)
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1.2 _ 0.0 .... , . , . , . , .

_.o _ _.1
0.8

-0.2 - .

0.6
-0.3

0.4

0.2 -0.4

0.0 _ _ -0.5 . i , i,
0 1 2 3 4 5 0 1 2 3 4 5

(a) kpr (b) k_

2 _ , _,, , . , L,,, _, 0 . . . , . '

0 f" " " "2

"2 f -4a z
(_ -4 -6

-6 -8

-8 , I . I . I . I , -10 . J . I , I . t .
0 1 2 3 4 5 0 1 2 3 4 5

(c) k_ (d) k_

FIG. 2.6. Solution of Eq. (2.31) for V/versus r, for U=2 (I~17 kA) compared to the analytic result of

the V<<I approximation.(a)_=n,./np, the plasma electron density normalized to its initial

value (b),Sz=vJc, the plasma electron axial drift velocity (c)the scalar potential and (d)the

axial vector potential, normalized by e/mc 2. Note that V~2.4 so that the channel radius

b~l.2a(nb/nr,) 1/2 is 20% larger than would be given by charge neutrality at the wail. Thus (c) a

large, attractive potential well forms corresponding to the deficit of charge in the annulus

2<kpr<2.4, as seen in (a). This sheath is mildly relativistic, as seen in (b), with energies of

order 80 keV.
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where _Oz=sin(_), and we have taken a,, ¢ and flz to vanish at s_-_. In terms

of V,

m

y=l+
2(1 -IV) '

" ¢(2 - ¢)

_=2_2¢+¢2 , (2.29)

so that the flow is explicitly prescribed by the potentials. In this case, the

equilibrium equations can be resolved into a single equation for ¢,

ap 2 - 1 - ]_ +e 1+]3, , (2.30)

where p=In(kpr). All other quantities may be determined from ¢,

aa, 1 o31V
_p -l-ft, ap'

'4-1 -]3.

¢(2 - ¢)

2 - ' (2.31)
|

N

(This assumes that 27=0 at and beyond the channel wall). Equation (2,30) is to

- be solved numerically on the interval (po,+_,), where po=In(V). The initial

conditions are derived from Eq. (2.17),
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a-_/ 1U2a--_(po)=T '

- ,/i - po>
_ ( Po) :21 + _, ( po) - d 1- _, ( po)2 '

_ V2...__
_z ( Po) 1 U2 ' (2.32)

and an iteration over V is required to obtain a finite solution at large p. Such

a numerical iteration is straightforward, given the bounds, U<V<21/2U

(obtained from Eq. (2.32) using-l<_z(po)<l).

1.4

1,3

V/U 1.2

1.1

1.0
.1 1 10

U
m

FIG. 2.7. The results of several numerical solutions of Eq. (2.30) have been collated to give V/U
b

as a function of U=2(l/Io) 1/2.This result is useful in that it gives the variation of channel radius

with current as indicated in Eq. (2.33).
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Regarding the character of the solution, we note that/3_(po)<O implies

_(p0)<0. Physically, we expect _z and therefore V to be monotone increasing to

. 0 at p_. On the other hand, from Eq. (2.32), we see that _l)(po)>O, and from

Eq. (2.31) we see that _(2)(po)>O. Since _must asymptote to 0 at z_, there will

be an inflection point where _'2)(po)=O. Thus we expect the solution to appear

much as that of Eq. (2.23), rather similar to a modified Bessel function.

2b
v

. FIG. 2.8. An REB of radius a propagating through an underdense plasma, expels plasma

electrons from the beam volume and beyond to produce an "ion-channel" of radius b-a(ndn_) 1/2.
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We have solved Eq. (2.31) numerically and results are displayed in Fig.

2,5 for U=I, with the results of the small-V approximation overlayed. In Fig.

2.6 results are displayed for for U=2. In Fig. 2.7, the results of several

numerical solutions have been collated to give V/U as a function of U. We

see that V~U for U small, and V,.o21/2U for U large, as expected. This plot is

instructive insofar as it provides the channel radius as a function of beam

current, i.e.,

b = a _ . (2.33)

So, for example, for I~4 kA, U~I, and we see from Fig. 2.7 that V/U~1.15. Thus

b is about 15% larger than predicted by the V<<I result. For large currents we

have

(2rlb _1/z
limb = a\--_p dl >>I

o •

From the work of this section, we have a simple picture of the plasma

electron configuration in the IFR, in steady-state (Fig. 2.8). We know that for

V<<I 0<<4 kA) return current is fairly negligible, and the electrons reside at

r>b, drifting very slowly backward in z. For V>I, return current effects become
b

appreciable.

44



Chapter 2 Short Pulse Propagatior_

Before leaving this subject it is instructive to consider the single-

particle plasma electron motion, as this yields some insight into the integral

given by Eq. (2.28). The single-particle Hamiltonian is
m

. H= _/m2c 4 + (p, + mca,)2c 2 + p_c 2 + p_c 2 - md¢
t

where the quantities Px, Py, and p, are the canonical momenta in x, y, and z,

respectively,

px = myra,

• py=myoy ,

p, = m yv,- mca, ,
-1/2

y= 1-
C2

The particle velocity components are vx, v r, and v,. Note that H may be

written,

H = mc2(y- ¢).

The variations in It and pz are given by
m

dH c2
dt "( Pz + mca,) C Oa, _¢,. y3t -m _,

dp,

dt - ( p' + mca,) C Oa_ o_¢y Oz +mc2
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On the other hand, we have already observed that the fields vary adiabatically

as a function of s=t-z/vb, so that
i

3 a

and vb~c. In this case, we observe that

_t ( H - p,c )_ 0 (2.34)

Equation (2.34) expresses momentum conservation in the translationally

invariant beam-plasma system. For an initially cold plasma, we integrate this

to obtain, H-pzc~mc 2, so that

1 = y(1- _,)+a,- r_

It is not hard to show, for _,.<<_z, that this is just the integral of Eq. (2.28).

2. Ion collapse

Next, we consider the response of the ions to specified plasma electron

and beam electron charge densities. We will work to linear order, using a cold

fluid-model. Since ions drift very slowly the problem is essentially
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electrostatic and can be described in terms of the scalar potential and ion-

density, which we decompose as
m

rp=%+_,

" Pi= P_O+ Plt'

Maxwell's equations reduce to the Poisson equation,

_Po =- 4 _'(p_+ Plo),

_ _I=- 4 _Pil'

and the perturbed ion-density is governed by the cold fluid equations,

_tOil

,
3vll e

& =- -_-_'% ' (2.35)

Combining Eqs. (2.35) and (2.34) then gives an equation for the perturbed ion

density in terms of the beam density,

, (2.36)

where O9iois the ion-plasma frequency at zeroth order, Oio2=4rcnioe2/mi, with

mi the ion-mass. 8 We may integrate Eq. (2.36) immediately to obtain,
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8

-- (2.37) .

w

Not surprisingly, we see that Pb should vary rapidly on the oi time-

scale to avoid collapse of the ion-channel and neutralization of the beam.

Thus we expect roi_<<l will be required in order to self-consistently neglect

ion-motion. To obtain a more quantitative estimate of the ion-density

variation, we model the beam density with a square profile in s,

Ph(S) =- en_H (a - r )H (s ) H ('c - s ) . (2.38)

The integral of Eq. (2.37) then gives,

pi,(s ) ={- enio + enbH (a - r) }[1 - cos (ro,os )]. (2.39)

In terms of ion-density this is

H i '._ Hio + Hil

= n,o cos (COioS)+ nbH (a - r ) [I - cos (coios)] (2.40)
,m

(Note that this result is not valid in the limit nb---;,O, since we have assumed
h,

an initially unneutralized ion-channel.) With this result we have an estimate

for the variation in ion-density over the length of the beam,
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na(r,_) !( n4 1ni ° = _- H (a - r ) - 1 (moV) 2 ' (2.41)

and we assume ¢oi_v<<l as noted above. Within the beam volume, this is
e,

n ;o n io o_') . (2.42)

Thus for nb>>nio, the time-scale for ion-motion within the beam volume is

mi_,1 = _ r°b-1 (2,43)

where ¢.ob2=4znbe2/m. The condition for negligible ion-motion, nil<<nio is

then a constraint on the pulse length, v<<vil. Typically, we will consider the

case where nb is within a factor of a few of ni, so that this costraint reduces

simply to r.0/1:_1.

There is in addition, a second ion time-scale, the time-scale for ion-

neutralization of the beam. A simple estimate of the neutralization time may

be made by following the motion of a single ion from initial position r=b,

through to r=O in specified beam and ion fields. This calculation provides a
s

1.ower bound on the ion-neutralization time-scale,

o

v_2 - 4 c = 2 o)--7-. (2.44)
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From the work of this section, we see that to neglect ion-motion we

must have a fairly short pulse (hence the title for this chapter). Putting this

together with the adiabaticity assumption of the previous section, we see that

our analysis applies to a particlflar range of pulse lengths,

I I

co_ <<¢ <<co, "_ ], (2.45)

In fact we shall find that quite a wide variety of beams fit this constraint.

3. REB Equilibrium

With a fair understanding of the ion and plasma electron motion, we

now consider the beam equilibrium as it propagates through the channel. We

will take the ion and plasma electron densities to be specified as obtained in

the previous sections, and consider the motion of a single _lectron.

a. Single-particle Hamiltonian. From Eq. (2.14), we see that the motion

of a beam electron is governed by the scalar and vector potentials

+4(= kb - kp ,
2

2)/.2

1 2 r2
a_ = a_(0) + _k b . (2.46)

50



Chapter 2 Short Pulse Propa_i.o_

and in general, we will consider an axially varying plasma density, kp=kp(z).

The single-particle Hamiltonian is

m

H =,q/m2c 4 +(p,.+ mca,)2c 2 +p_c 2 +p_c 2 - ro dC, (2..47)

where the quantities Px, Py, and p, are the canonical momenta in x, y, and z,

respectively,

p ,: = rn Tv,. ,

Pr = myoy ,

p z = m '}'Vz - rn c az ,

.4/2

7 = 1- cS (2.48)

The particle velocity components are v_, v r, and v,.

In the limit Pz>>P_,Pr, and neglecting second order terms in az, Eq. (2.47)

may be written

m s c 3 p_c p_c
H = p,c + +_ + + mcS(a. - ¢)

2 pz 2 p z 2 p, , (2.49)

a

or

mS c3 p2,c
= +_+ .... +U

H pzc + 2 p, 2 p_ 2 p,

till H l , (2.50)
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where, we identify the effective potential

| i i II i

U =_-_nco_(x 2 +y2)+mc2(a,(O,s) -r_(O,s))
U

, .... , (2.51)

and we restore the s-dependence of the constants of integration, for clarity. As

indicated in Eq. (2.50), the energy is a sum of the energy of the axial motion

(H, ,), and the energy of the transverse motion (H_).

b. Longitudinal wake in the IFR. Note that due to the s-dependence 9

1 Ko(V)
U (0 ,s ) = mc2{a,l(O ,s ) - 01(0 ,s )} =-._.mc2V

K1(V) ' (2.52)

H is not a constant of the motion, but varies according to,

d---_-= I(O ,s )

l c2_f{I n(le2r*)}=- y m "_-°1 T° , (2.53)

where we take the V<<I limit. Equation (2.53) reflects the fact that electrons at b

the beam front must do work to induce a plasma return current. The plasma

electrons deposit this energy in the beam tail. 10 In the terminology of

accelerator physics, 11 Eq. (2.53), integrated over z, gives the "longitudinal
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monopole wake potential" for IFR propagation,12 The effect of this wake will

be fairly negligible for our purposes, primarily because wc will consider

" relatively short propagation lengths33

c. Equations of motion• Next, we derive the equations of motion from

the Hamiltonian of Eq. (2.50). In this connection, it is important to note, that

by approximating the beam drift velocity by vz~c, in evaluating the vector

potential, the contribution to the Hamiltonian due to beam self-fields has

been neglected,

1 c2 2 1
u_ = T m k_r_7

This term is negligible in the limit 7>>1, and typically has only a small effect

on the particle motion. However, for a realistic beam profile (not a step

profile), self-fields result in non-linear focussing and (as we shall see in

Chapter 3) may produce damping of the ion-channel laser instability. We will

neglect this effect for the remainder of this section.

From Eq. (2.50) the equations of motion are

dz m2 c3 plc p_c
. dt -c - 2p:_ - 2 p_ 2 p_

dpz 3U

d t - 3z ' (2.54)w

The equations for the transverse motion are,
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dt - Pzc

d_± 1
d-"_ = - -_-m o_pf" , (2.55)

where we abbreviate

Equation (2.55) may be rewritten as an equation for the transverse

displacement alone,

d2 1 d 1-d_+ a,ea r-"=_'sC dt p,

1 Ps 0 2

- -_-k_ (2.56)4 p_ mc3r2

where ro/3is the "betatron frequency ''14 in the IFR,

i

1'2IZ

.... (2.57)
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The main attraction of the IFR and the primary motivation for using a

plasma in beam transport, is that ro/j, as given by Eq. (2.57), is much larger

- than that achievable with more conventional magnet focussing.

The transverse equation of motion simplifies when we take account of

the fact that the axial momentum does not change appreciably. From Eq.

(2.53),

Since, typically, kpa/yll2<<l, we have apdpz<<l. In this case Eq. (2.56) is well-

approximated by that of a 2-D simple harmonic oscillator,

i 0I+CO r"=

........ (2.59)

The observation that a beam in the IFR may be considered as an ensemble of

relativistic simple harmonic oscillators is the starting point, more or less for

the analysis of the next chapter.

• Since the the motion is Hamiltonian, the microscopic emittance is

conserved, by Liouville's theorem. In addition, however, since focussing is
.o

linear, the rms normalized emittance
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1
e,, = ._-y k lja2 , (2.60)

is conserved (neglecting scattering, instabilities, etc.) for an adiabatic variation

in k/3. This implies that an adiabatic increase in plasma density in z may be
q

used to continuously focuss the beam to an ever-smaller spot size.

FIG. 2.9. Set-up for a "proof-of-principle" continuous plasma focus experiment, consisting of a

pair of quadrupole magnets to control the initial beam spot size, a tank of gas with a density

gradient maintained by differential pumping, and a laser used to form the plasma.

d. Continuous plasma focus. Chen, et al. t have proposed to take

advantage of such continuous IFR focussing for application in a TeV linear

electron-positron collider. In particular, they propose to focus the beam
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continuously to a spot size smaller than can be achieved through

conventional magnetic optics.15 Such a focus also has application to the ion-

- channel laser, for, as we shall see in the next chapter, it is sometimes

advantageous to focus the beam to a very small spot, not achievable with
q.

conventional magnetic optics. A schematic of a continuous plasma focus is

depicted in Fig. 2.9.

Based on our work thus far, it is straightforward to derive some

simple scalings for the continuous plasma focus. To transport the beam into

the plasma without excessive emittance growth, k# should vary

adiabatically. This determines the initial plasma electron density, npi, in

terms of the initial beam spot size, ai,

2 e,
Ylpi _ ,,

y r, a_ , (2.61)

where re is the classical electron radius.

As the beam is focussed to an ever smaller spot, the plasma density

approaches the beam density and the character of the focussing changes. In

the overdense regime, the ion space-charge is sufficient to neutralize the

beam charge, so that the beam is focussed by its own magnetic field. This

transition, from the underdense regime and ion space-charge focussing, to

. the overdense regime and beam self-pinching, occurs for a minimum beam

radius, amin, determined by setting np=nb:
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I

!
21o

a rain ,_ en

,, (2.62)

The density at this transition is

Iol Inx = 7 2 _ r,_ , (2.63)

and the betatron wavenumber at this density is

In the overdense regime, the effective betatron wavenumber

provided by the beam magnetic field is

ka _,_o T

where the net current, Inet, is the sum of the beam current and the plasma

return current within the beam volume. 16 Since lnet¢_.l, the maximum

focussing strength is bounded: k_ __k_raax.
Q

Therefore, once the beam spot size is focussed to amin, the adiabatic

focussing is complete. This establishes a limit on spot size in the continuous
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plasma focus. However, for the low emittance, high energy beams of a TeV

collider, this limit is far smaller than the beam spot size required. Therefore,

the design final spot size, al, will usually be larger than the minimum

• possible spot size, amin. In this case, the final density in the focussing section,

$

will usually be much less than npr.

At the same time, a subject of ongoing interest, in TeV linear

electron-positron collider design, is the reduction of coherent beam-beam

effects: beamstrahlung and disruption.17,18 One method which has been

proposed is current neutralization in an overdense plasraa at the

interaction point (IP). 4 Beamstrahlung and disruption are suppressed due to

plasma return currents which reduce the magnetic pinch forces seen by the

two colliding beams.

Current neutralization requires a plasma skin depth short compared

to the beam radial size, and a magnetic diffusion time long compared to the

beam length. It is shown in Ref. 4 that the magnetic field reduction

. associated with an REB in a collisionless plasma scales as a function only of

kpa. Taking a reduction of 70% as a figure of merit, kpaf~2 is required. To

" obtain partial current neutralization, without an increase in beam spot size,

the adiabatic focussing cell should then be terminated within a distance X/3f
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of the IP with a nonadiabatic increase in plasma density to a value, npc, such

that,

The length of this cell should be of order a few bunch lengths, and, to

avoid defocussing due to plasma return currents, it should be less than the

final betatron wavelength at the focusser exit. This implies, c'c<A,_f.If the

adiabatic focusser is terminated with npf<npt, the beam may pinch as it

enters the current neutralization cell. Pinching is negligible if the cell length

is much less than/_min; this requires cI: </_min.

C. BEAM BREAK-UP IN THE IFR

Thus far we have considered only a cylindrically symmetric problem,

where the beam centroid propagates down the center of the ion-channel.

However, it is well-known in accelerator physics, that interaction with the

guiding geometry can frequently result in instabilities coupled to the off-axis

displacement of the beam centroid. In the IFR there are two such transverse

"beam break-up" intstabilities: the "electron-hose" and "ion-hose"

instabilities. In this section, we review the general features of beam break-up

instabilities. We then go on to consider the particulars as they apply to the

IFR.
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1. The beam break-up equation

" A relativistic electron beam injected off-axis into a beamline will have

an electrostatic dipole moment. The axial current associated with this dipole

moment will couple to the axial electric fields of the various structures along

the beamline. The associated transverse Lorentz force will give a kick to beam

slices to the rear, displacing them farther off-axis. In this way, an instability

obtains.

k._ lllllillllllllllllillllllllllllllllllllll'_ k

'_.'..',.', .',,',.',.',.',.'.,',.'.,',. _

_'_ i BEAMLINE I "_

FIG. 2.10. A relativistic electron beam propagating in the z-direction (to the right), down the

beamline. The beam head is at s=O,and the tail is at s=t. The transverse beam break-up

instabilities arise from an off axis perturbation _, which excites electromagnetic modes of the

, structures on the beamline. The Lorentz force associated with the mode fields then "kicks"

follow-on beam slices, resulting in growth of the displacement _.

To make this quantitative, one considers the effect of a perturbation in

the form of a small displacement, _, of the beam centroid, in the x direction
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(Fig. 2.10). For definiteness we assume an unperturbed beam charge density of

the form Pbo=-enbH(a-r), where H is the step function and r is the radial

coordinate in the x-y plane. The perturbation to the beam charge density is

then

&l(r ,z ,s ) =- enb(s )8(a - r )_(z ,s )cos (O)
)

where O is the azimuthal angle in the x-y plane. The variable s=t-z/v z,

indexes beam slices, Vz~C is the axial beam velocity, and c is the speed of light.

The beam extends from s=O (the beam head) to s=l: (the beam tail). Beam

electrons remain approximately at a fixed s, as they advance in z, down the

beamline. The beam density hb(S) is proportional to the beam current is I(s),

which here will be assumed constant in s ("d.c. beam"). The perturbed current

density is Jblz~Pbl ¢.

With these perturbed charge and current sources, one solves Maxwell's

equations for the perturbed scalar and vector potentials, for the beamline

geometry of interest. 19 This procedure yields the fields as functionals of _.

Writing out the Lorentz force equation, then gives a "beam break-up"

equation for _, so called because of the deleterious effect the fields have on the

beam. Generically, this equation takes the form 11

8 •

- zr + r (z ,s ) = as' io (s - s s' )
o • (2.64)
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W(s-s'), the wake potential,20 is the Green's function which determines the

Lorentz force on an electron at s, as it arrives at z, due to the fields generated

by the beam segment at s'<s. In conventional accelerators, the focussing
w

represented by the k/j term is provided by magnetic fields. In the IFK it is

• provided by the ion electrostatic field, as given by Eq. (2.57), with k/l=co/t/c.

We may solve Eq. (2.64) up to quadrature by Laplace transforming in s,

solving the simple harmonic c_scillator equation in z, and inverting the

Laplace tta :orm, to find

1 I w ,.21 dp exp(ps)cos z k_- (p)_(z ,s ) - 2 ;_ i
-;- , (2.65)

,',,b._:re w(pd_is the Laplace transform of the wake (the "impedance ''20) and the

initial condition _(O,s)=H(s) is assumed. Given w(p), it is usually

straightforward to compute the asymptotic growth of the beam centroid

oscillations, by applying the method of steepest descents to Eq. (2.65). 21

In general, as discussed at length in Ref. 20, there are many wakes of

different functional forms. For our purposes, one particular form is adequate

for our discussion. This is the wake corresponding to a single undamped TM

mode of a microwave cavity. Such a wdke takes the form 22

W ( s ) = W o sin(co os ) , (2.66)

where coo is the resonant angular frequency of the mode, and the amplitud_ is

given by

63



Charter 2 Short Pulse Prova_ation

W0 = rc°_0, (2.67)

o

where r is the "shunt il_,pedance per unit length ''23 for the mode. The

solution of Eq. (2.65) for such a wake has been discussed extensively in the

literature, and the distinction between the "weak" and "strong" focussing

limits is worth noting.24, 2s Focussing is "weak" when X_>Lg, where Lg is the

instability growth length, and_._O=2r;/k_ is the betatron period. In addition,

one should distinguish between a pulse length which is short or long

compared to the mode period. When the pulse length is short, the wake is

approximately linear in s, giving rise to a "head-tail instability". 10 When the

pulse length is longer the growth law is modified, and this is typically the

case, for example, in induction linac work. 26

We should add that we have actually written out a somewhat

simplified form of the beam break-up equation. In general, k_ may vary in s,

in z, and at fixed s, within a slice. This is an important feature in the strong-

focussing regime, for it allows the accelerator physicist to attempt to damp

what m:.ght otherwise be an incorrigible instability.

Such damping mechanisms require a spread or sweep in betatron

wavenumber of order Ak_.-1/Lg This includes Landau damping due to a

spread in energy within a beam slice, 23 "BNS damping" due to a sweep in

_nergy from head to tail, 27 and "phase-mix damping" of BBU growth due to

nonlinear focussing, arising from a radially non-uniform plasma. 28
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However, when focassing is weak, the condition Ak_~l/Lg requires an

impractically large spread (Ak/3/k_--1/kljL _ >1), and one must instead attempt
o

to disrupt the resonances emodied in the impedance, w(p), for example, by

• detuning successive cavities ("stagger tuning"), to produce phase-mixing in

the driving term on the right side of Eq. (2.64).

We turn next to apply this formulation to the premier instabilities of

the IFR, "electron-hose" and "ion-hose".

2. Electron-hose instability

Recently it has been shown 29 that IFR devices relying on an

unneutralized ion-channel, surrounded by a quasineutral plasma, suffer from

a hose instability, similar to the ion-hose instability, 30 and other varieties of

two-species trans'verse coupling instability, 31 except that here the coupling is

between the beam and the distant plasma electrons at the channel wall. In

this section, we derive the growth length for this "electron-hose" instability.

The transverse wakefield corresponding to this "electron-hose" effect is

calculated in ti_e "frozen-field" approximation, for a low current, cylindrical

beam. The asymptotic growth of beam centroid oscillations is computed and

possible damping and saturation mechanisms are discussed.

. As irt previous sections, we assume an unperturbed beam charge

density of the form Pbo=-enbH(a-r), where H is the step function, -e is the

electron charge, r is the radial coordinate in the x-y plane and a is the beam

radius (Fig. 2.8). The beam density on axis is nb and is a function of s=t-z/c,

where t is time, z is axial displacement and c is the speed of light.
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We will also assume that the collisionless plasma skin-depth, c/cop, is

much larger than the channel radius. Thus V=kpb=2(I/Io)l/2<<l, where

Io=mc3/e~17 kA, and I is the beam current. We have seen that the axial

plasma electron cr_rrent, and drift velocity, are negligible in this limit. In this
t

case, the equilibrium plasma electron charge density is peo=-enpH(r-b).

!!i!!pl
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FIG. 2.11. A beam slice in the ion-channel is displaced by an amount _ in the x-direction,

inducing a polarization PcosO on the channel wail. The polarization responds to the beam

dipole field as a simple harmonic oscillator with characteristic angular frequency ra0. This

image dipole then deflects follow-on portions of the beam. This is to be compared with the

equilibrium depicted in Fig. 2.8.
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We consider next the effect of a perturbation to the beam centroid (Fig.

2.11) in the form of a small displacement, _, of the beam centroid, in the x

direction. The perturbation to the beam charge density is then pbT=-en_8(a-

. r)cosO, where 0 is the azimuthal angle in the x-y plane. We proceed to

compute the perturbed scalar and axial vector potentials, _ and Azl, and the

perturbed plasma electron density Pe1, due to _.

Maxwell's equations in the Lorentz gauge are

{V_ °_ 1 o_+ _2 c2 _2 al =4_p,_ ,

{V_ Y 1 a_+ &2 c 2 a2 ql =- 4a:(pbl + P,1)' (2.68)

where al=Azl-r_l. The transverse gradient is g_. We will change variables

from z, t to z, s and simplify Eq. (2.68) with the "frozen-field" approximation,

in which the D'Alembertian operators are approximated by Vi 2 and radiative

effects are neglected. We shall find that this amounts to a neglect of V/y<<I.

The perturbed plasma electron charge density is determined from the

potentials through the electron cold-fluid equations,

o_Pe 1 -..

- + • (,o,ov,,)= o ,

• & = -m---_'_l ' (2.69)
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Inspection of Eq. (2.69) shows that Pe1 consists entirely of a surface charge layer

at r=b. Thus it is convenient to define,
, _ /

f

[

4

b

P(z,s)cos O- ;dr p,j(r ,O ,z ,s )
b , (2.70)

the dipole moment density induced on the channel wall by the beam charge.

In terms of _ and P the potentials from Eq. (2.68) are

(P- nbe_)r ; r < a

nbe_a 2
¢h = 2 Jr cos (0) Pr .- r ;a < r < b

(Ph- ;b<, , (2.71)

and

Pr ;r <b
aj =- 2rr cos (0) pb 2

' b < r
r t • (2.72)

The wall polarization is determined from _, through Eq. (2.69),

, (2.73) .
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where COo=tOp212. Thus P responds as a simple harmonic oscillator with

characteristic angular frequency ra0. This frequency differs from COpbecause the

" surface at r=b is the boundary between a region of electron density np, and a

region of zero density.

The Lorentz force law for the displacement of the beam centroid is

7 +7k_ _ = mc 2 o_x al, (2.74)

where k_~co_/c is the betatron wavenumber. This describes the deflection of

the beam by the image polarization on the ion-channel wall.

For an infinite beam and beamline, we may combine Eqs. (2.73) and

(2.74), taking a perturbation varying as _exp(ikz-ieos), to obtain the dispersion

relation,

. (2.75)

Equation (2.75) predicts instability for real r._<ro02 or real k2<k_ 2 with growth

rates diverging as a,,2---_ro02,or k2---_k_ from below. As in the "rigid beam"

• model of the resistive-hose instability, 27 we expect these singularities to result

in an instability which is absolute in both the beam and lab frames.

To obtain a more quantitative result, we solve the initial value

problem for a semi-infinite beam and beamline. We invert Eq. (2.73) to obtain

P, and us_ag Eqs. (2.72) and (2.74), we obtain a beam break-up equation for _,
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as in Eq. (2.65), where we identify the electron-hose "di_ole wake potential" as

W(s)= Wosin(coos), with

CO0 w

W0 =2 b 2. (2.76)
t

Comparing this result with Eq. (2.67) we see that this wake is formally

identical to that of an undamped microwave cavity, with a shunt impedance

per unit length of 2/coob2, and a resonant frequency COo.Inspection of the beam

break-up eq, lation shows that with the scaling of z by k/3,and s by coO,for y, coo

independent of s and z, no free parameters remain. There is only one,

universal solution for prescribed initial conditions.

We obtain this solution up to quadrature as in Eq. (2.68), and compute

the asymptotic solution using the method of steepest descents to find

23/2 I/ 2
_(z ,s) = A {3s/4_/2 coos e Asin r.oo s - 3-I/2A - 1--2- . (2.77)

The term in the exponent is A=(z/Lg)2/3, where the growth length is

I/2

, (2.78) "

or
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I

and _os>>A>>l is assumed. Thus when _ov>>l (adiabatic current rise)

Lg<<X]3 and focussing is always weak with respect to electron-hose growth.

This result is remarkable in that it predicts growth so rapid that ion-focussing

should be considered ineffective, rendered so by the presence of free plasma

electrons at the channel wall.

We turn next to consider mechanisms which will tend to reduce

growth. We observe from the dispersion relation of Eq. (8), tl_at there are in

principle two methods of "curing" the electron-hose. We may diminish the

resonance at cv'2_COo2, or at ka_k_ 2 . On the other hand, since focussing is

typically weak, damping mechanisms relying on a spread or sweep in betatron

wavenumber, Ak_-I/Lx, are ineffective, asthey require an impractically large

spread, ak_/k_~l/k_Lg>l. This rules out Landau, BNS and phase-mix

damping damping. (These conclusions contrast with those for resistive-hose

growth, 32 where focussing is typically strong.)

Thus, to diminish electron-hose growth, we must look to the resonant

coupling at _a;o 2, and a number of mitigating factors suggest themselves.

" First, the electron-hose could be eliminated entirely by ionizing a channel of

radius less than b. In this case, all plasma electrons are ejected to the beam-

pipe wall, leaving no free plasma electrons at the channel edge. Alternatively,

an axial variation in plasma density, as in the continuous plasma focus, 1 may

71



Chapter 2 Short Pulse Propagation

produce phase-mix damping. In this case, the plasma density should vary

appreciably over a length Lg<A_.

Growth could also be reduced by varying the resonant frequency of

plasma oscillations, through the external geometry. For example, if we add a

conducting pipe of radius R to the problem, we find a resonant frequency

coo'~o_o(l+b2/2R2), i.e., the image dipole, P oscillates at a slightly higher

frequency, dependent on R. Thus a variation of the pipe radius on the scale of

a growth length could in principle produce the effect of stagger tuning.

In addition, growth will be mitigated by the plasma return current,

neglected in the approximation V<<I. In the low current limit we have

considered, the electron-hose is formally analagous to the image-

displacement effect in conventional accelerators. 33 Were a conducting

boundary or a sufficiently dense plasma nearby, it would carry a dipole image

current, and the combined Lorentz force on the beam due to the image fields

would be a factor of 1/_ less than for the electric field term alone. On the

other hand, to achieve even V~2 requires I-lo, a current larger than typically

envisioned.

Ultimately, as a result of hosing, plasma electrons will be heated, and

the instability will saturate. The simplest estimate would give saturation

when _--b, corresponding to substantial growth in the beam emittance, and a
q.

significant electron temperature-mc2(I/lo). In fact, this omits the subtler

feature that, at lesser temperatures, the channel wall will take on the

character of a Debye sheath, with a radial variation in the plasma frequency

and a phase-mix reduction of the wake driving term. A simliar effect may
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obtain due to beam "halo". In general, issues of saturation are best studied

numerically, and such work is in progress. 34

Finally, it is interesting to note that for _a infinitely wide planar beam,

the electron-hose dipole wake vanishes. This is because a one-dimensional
!

• dipole field vanishes outside the source. However, in this case one can show

that there is a flute-like analog of the electron-hose, where ripples develop in

the beam density and provide a coupling of the beam and the channel wall.

Nevertheless, it may be possible that for ellipsoidal beams, electron-hose

growth could be reduced with a sufficiently large aspect ratio.

For present purposes, we conclude from this work that for reliable

propagation in the IFR, it is likely that a channel of radius less than b should

be ionized to insure the absence of free plasma electrons at the wall. This is

typically the ca::'_., for laser-ionized channels, for example.

3. Ion-hose instability

The ion-hose instability has been the subject of much work over the

years, as it represents an important constraint on IFR propagation. 3° In this

section, we derive the growth length for a short pulse (a;,v<<l).

We linearize the cold fluid equations, with an ion-density pi=Pio+pi_,

. and consider a small dipole perturbation to the beam centroid as in the

previous section. We find,
o
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which is more or less Eq. (2.36), now for a different source term. (We neglect

the monopole perturbation to the ion-charge density, which is small for short

pulse lengths..) The solution may be written

Oil = enirl 6 (a - r ) cos (0)

where we may interpret r/as the centroid of the ion-column or "hose"

i

_i!!i_i_i!:!_ :::!'i:!:!:!"_'.!!::i'i'i'!'{i'!'!'!'i'i
:i_i_ii!i!i:i_!!i!_::_i:_iii_}i_}:: ' _i:.::i:i:i:i_:ii!_!i!iiiiiii!iiiii_!
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FIG. 2.12. A transverse displacement of beam centroid by an amount 4, perturbs the ion-

channel centroid (or "ion-ho_e"), here displaced by an amount 7/. The ion-hose then deflects
t,

follow on beam slices. Note that this figure is drawn to an exaggerated scale to illustrate the

variables 77and _. In fact, the beam and the hose are assumed to overlap very closely.
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overlapping the beam. Following a procedure analagous to that for Eq. (2.72)

and Eq. (2.74) we may then set clown the coupled equations for the beam and

' hose centroids,

Thus displacement of a beam slice off-axis produces a displacement of the ion-

hose which then perturbs the motion of follow-on slices to the rear (see Fig.

2.12).

Solving for 7/up to a quadrature in _ reduces Eq. (2.80) to the form of

the beam break-up equation, Eq. (2.65), with

Wo = 2 rOia2

For ion-hose, however, unlike electron-hose, the pulse length is typically

short compared to the time for ions to oscillate, as discussed in connection

with Eq. (2.35). In this case, the sinusoidal wake is approximately linear,

W (s ) = 2--d-Fs
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We take this into account in applying the method of steepest descents, and

find that growth of the beam centroid oscillations varies as exp(z/L_)l/3, with

growth length,
b

-- -- II

Lg 3 9/2 _,T"

,,, ...... - - , (2.81)

or, in practical units,

We will typically accept this result as a constraint on pulse length,

when we consider numerical examples for the ion-channel laser in the next

chapter. However, typically Lg>X/_, so that focussing is strong, and the

instability is susceptible to BNS damping. In practice this may ameliorate

growth considerably.

D. OTHER PLASMA EFFECTS

In this section, we enumerate and quantify certain fairly ubiquitous
I,,

plasma effects which 'will tend to degrade beam quality in transit through the

plasma. In general, these effects are much less severe than ion-hose and

76



Chapter 2 , Short Pulse Propagatiorl

electron-hose. However, they should be taken into account in any practical

experiment.
Q

_I.Scattering

First, we consider emittance growth due to scattering. The total cross-

section for small angle scattering is35

(2Zr,)21
ors= _: 7 0_i,. (2.82)

For a fully ionized, quasineutral plasma, Omi n ,-: tf/(XomcT), where ;i,D is the

Debye wavelength. However, for a partially ionized gas from which plasma

electrons have been ejected, Omin~ li/(bmcy), for scattering from ions, and

Omin ~ li/(amcy) for scattering from neutral atoms. The atomic number is Z

and a~1.4 aB Z1/3, is the screening radius in the Thomas-Fermi model. The

constant 1i=h/2_, h is Planck.'s constant, and aB is the Bohr radius,

aB=li2/me 2. It will be assumed that the ionization fraction, f, is sufficiently

low that scattering with neutral atoms dominates.

The mean-square scattered angle per scattering event is

i,

(0')= 20d, . l _,0..,.). (2.83)
I
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The maximum scattering angle is Omax=lf/(rnmc_')where rh~0.5 reA 1/3 is the

nuclear radius and A is the atomic weight. This gives,

O,,,x 5 26 x 10_( AZ
Omin

The rms scattering angle after traversing a length, z, of gas, Orms(Z), varies

according to,

Z2r2' In
=a=,,o , <284>

where no is the density of neutral atoms. 36 Emittance growth is then given

by ,37

dz - 2 k s dz , (2.85)

The change in normalized emittance in passing through the cell is then

L t

O_IUX

o . (2.86) .

In the overdense regime, (e.g. at the beam head) envelope expansion is

qualitatively different because the quasistatic beam equilibrium is maintained

78



Chapter 2 Short Pulse Propagittiort

by the beam magnetic field, rather than the (external) field of the ion charge

(so that k_l/en in Eq. [2.85]). As the beam expands, the focussing is reduced,

• with the result that the beam envelope exponentiates, on the scale of the

Nordsieck length, 38

1 },I 1
Omax

, (2.87)

where channel radiation has been neglected.

2. Radiation

Radiation in the ion-channel is of interest as a diagnostic, and of

possible concern for its effect in producing energy spread on the beam. Two

types of radiation are considered: bremstrahlung and synchrotron radiation

due to the betatron motion.

Bremstrahlung may be characterized by the radiation length _,a,38

=7-ct norl Z In ZI/3 , (2.88)

where _=e2/lic is the fine structure constant. The fractional energy loss is then

L L
F p

= XR- 3 a r2" In Z1/3 no dz
0 , (2.89)
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and this is typically very small.

Radiation due to the betatron motion takes on the character of wiggler

radiation, for strong focussing (y/_z_l). The spectrum on axis is peaked at

frequencies co~2?_ck/j/(l+?e_z2). Integrated over all angles, the spectrum is

characterized by the critical frequency, COc=3_c/p, where p-21/2/(k#2a), is the

effective bending radius. The angular distribution extends to angles of order

_z. Quantum effects are small provided _'<0.2, where, l"=_/p, and _=Ii/mc

is the Compton wavelength. 39

As in a damping ring, synchrotron radiation can decrease the

normalized emittance of the beam. 40 However, this effect is typically small.

Fractional energy loss is, for r small,

( _YY'_)s = - 23 7'_'_°tL py 2 , (2.90)

where Ayis the change in ?'and a constant 2,# is assumed.

3. Ionization

Ionization by the beam is of concern in determining the actual axial

plasma density profih:, and is of interest as a means of augmenting laser

ionization at high plasma densities. Ionization is produced by the beam q,

through electron impact, gas breakdown, and stripping of atoms and ions in

the strong radial electric field at the beam "edge".
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To accurately compute the net volume rate of ionization requires

numerical solution of detailed rate equations, and modelling of the chemistry

. of the particular gas used. To estimate the effect of impact ionization, a

phenomenological estimate must be made for the effective area into which

secondary electrons are ejected. 41 Here we satisfy ourselves with a few simple

estimates.

The time scale for ionization in the overdense regime via impact

ionization of neutrals by beam electrons is _b~l/(nOC_biC), where O'biis an

effective ionization cross-section of order 10-18 cm2. 42 For example, this

ionization time is ~ 1 ps at a neutral density of no~3x1019 cm-3.

The character of breakdown produced by long pulses is determined by

the value of E/p, the ratio of radial electric field to pressure. 43 For very fine

beams, E/p will be sufficiently large that secondary electrons are ejected far

beyond the beam volume before they create additional ionization.

In addition, for short pulses, a key limitation is the formative time

required for breakdown. This is roughly the time for one secondary electron

accelerated in the beam field, to ionize one neutral, 1:e~ 1/(nocreive),where crei

is the cross-section for ionization by secondaries and ve is the secondary

velocity. The quantity creive peaks at secondary electron energies of order ~

100 eV, with creTve" 10-7 - 10-8cm3/sec, depending on the gas.44 For example,=,

in N2 this time scale isve ,-1 ps for n0--3xl019 cm "3.

- The radial electric field at the beam edge will be adequate to strip an

atomic electron with ionization potential, Ae, for currents of order

81



.Chapter 2 Short Pulse Prova_ation

°( ),0I =oY-frf, e2/a B • (2.91)

6

For very fine beams, this mechanism may fully ionize a channel larger than

the beam, with some multiple ionization.

When field stripping may be neglected, plasma electrons are also lost

through recombination on a time scale _rc~l/(ocrnp), and through attachment

on a time scale "ca~l/(o_ano). Here, ecr and o_aare the recombination and

attachment coefficients, respectively. 44 Taking recombination in N2 as an

example, ar ~ 2x10 "7 cm3/sec, at electron energies ~ 1 eV. 45 At a density of

3x1019 cm-3, 1:rc~ 0.2 ps and _his is quite short. However, CZrwill be lower for'

more energetic electrons. In addition, despite recombination and attachment,

the beam volume will become depleted of plasma electrons, provided the

impact ionization time scale is short enough. This occurs because, as electrons

go through successive ionizations and recombinations, they diffuse away

from the beam center.

4. Streaming and other instabilities

A number of streaming instabilities arise in the IFR, and we note their

growth rates here. Typically, they will have a negligible effect for parameters

of interest in the ion-channel laser.

a.Buneman. We have taken plasma electrons to be collisionless. i,

However, in the collisionless limit, instabilities may replace collisions in

dissipating the energy of the secondaries. 46 In particular, the two-stream
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(Buneman) instability will couple the electron motion to the ions on a time

scale VeiTS "1, where

31/2v,;rs - 24/ 3 cop , (2.92)

This instability is mitigated by convection away from the beam, which

continuously replaces the carriers of the return current with an unperturbed

flow of plasma electrons.

b. Beam-plasma electron two-stream. In the magnetically self-focussed

regime (at the beam head) beam electrons are subject to the longitudinal two-

stream instability, due to the relative motion with respect to the plasma

electron drift. The growth rate is

31/2 I nb 11/ 3VbcT$ -- 24/3 cop y3 np , (2.93)

and this is typically small.

c. Beam-ion two-stream. In addition, the longitudinal two-stream

instability will develop due to the relative motion of the beam over the ion

. background, on a time scale VbiTS -1, where

1/3

vb,rs- 24/3 co; _ _ , (2.94)
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a aL .,w

where the limit Ma > cob2/_a is assumed. This time scale is long.

d. Weibel. In addition, in the overdense regime, when kpa>O(1), (as for

an eroded beam head) significant return currents flow within the beam

volume and two adjacent plasma electron return current filaments attractl

Filaments form and disrupt the intended current neutralization. 47 The

growth rate for the Weibel or filamentation instability is

vw= ¢a_( nb _1/2
, (2.95)

and this is typically small.

In addition to instabilities (a)-(d), there are resistive instabilities

(resistive hose, sausage, hollowing, etc.). 28 We neglect these in the

collisionless limit (v_"< 1).

5. Channel formation and beam-head erosion

The analysis of the previous sections considered focussing of a long

cigar shaped bunch, neglecting the details of channel evolution at the bunch

head and tail (Fig. 2.3). We do not propose to treat this problem at length,
R

merely to outline the issues involved.

In the discussion of Sec. A, we noted that the beam head always

propagates in the weak magnetic-focussing regime. As a result, the beam head

will expand due to emittance, self-fields, scattering, and decceleration due to

84



Chapter _ Short Pulse Propagation

the induced axial electric field (longitudinal wake). In this way, the beam head

gradually erodes.

These and other issues have been discussed in connection with erosion
a,

of long pulses injected into an unionized gas, 48 and for long pulses in a

• preionized plasma of radial extent comparable to the beam. 30 For this work,

we will be interested in beams with relatively low emittance, and high

energies (_:2 MEV), so that space charge effects are not dominant. Propagation

lengths will be from cent_.meters to a few meters. In this limit, we will neglect

erosion, since the plasma is preionized, the emittance is low, the energy is

high, and the propagation length is short.

E. SUMMARY

In this chapter we have reviewed the basic features of REB propagation

in unmagnetized, preformed plasma. We provided a working definition of

the IFR, and delineated the features of the steady-state plasma electron flow,

ion-collapse, and equilibrium beam propagation. We went on to consider the

ion and electron hose instabilities and other deleterious plasma effects. The

result of these considerations is a collection of practical constraints on IFR

propagation.

We shall see in Chapters 3 and 4, that these constraints are important

. for a laser relying on IFR propagation. In practice, they force one to sacrifice

pulse length for beam quality. Fortunately, as we shall see, efficiency and

many other key figures of merit do not depend on pulse length.
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There are a number of additional problems raised here that merit

further work. Radiation from the plasma electrons during channel formation

has not been addressed, and in light of Fig. 2.6(b), would be quite interesting.

An analytical treatment of electron-hose in the limit of small skin depth

(V>>I) remains to be performed. The utility of plasma heating via electron- "

hose in the IFR has not been assessed, but our simple estimate looks rather

promising. In any case, it is evident from the work presented here that within

the ion-focussed regime await many interesting and largely unaddressed

problems for future work.
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Chapter 3:

- Theory of the Ion-Channel Laser

"... we are mere white horses of the sea ,, ."

---Octavio Paz

"To disprove anything is very difficult,

but also _oprove it."
--Hannes Alfven

In this chapter, we develop the theory of an ion channel "free-electron"

laser amplifier (ICL),1, 2 consisting of a short pulse, low emittance REB

copropagating in the IFR with an externally supplied electromagnetic wave.

The ICL makes u_e of ion-focussing to transport the beam, and a resonance,

akin to that of the planar wiggler FEL, to produce coherent radiation. Here,

the wiggler is provided by the electrostatic field of the ion channel, analagous
m

in some respects to the quadrupole FEL proposed by Levush, et a/.3,4,5

. In contrast to other proposed plasma-loaded rf devices, 6 no external

magnets are used, and, in principle, no external structures (waveguides,
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cavities) are required. However, in the microwave regime, the use of a

waveguide can enhance the overlap of the beam and the rf signal, making the

ICL cor:_parable to the FEL as an rf power sc.urce. i

In Sec. A, we briefly describe the concept, and the limitations of the

theoretical model we will use. In Sec. B we develop an eikonal formalism

rather simliar to that for the FEL. We derive the _dispersion relation

describing amplification in the initial exponential growth regime, and we

assess the effect of spreads in axial momenta.

In Sec. C, we derive the dispersion relation by applying the method of

characteristics to the Maxwell-Vlasov equations. We use this result as a check

on the work of Sec. B and to assess the effect of detuning spread due to a

realistic beam profile. From the work of Sec. B and C we will see that the

Rayleigh length is typically rather short compared to the gain length, and so,

in Sec. D, we go on to consider mechanisms which will guide the radiation.

In Sec. E, we summarize the scaling laws derived in Secs. B-D, and give

some numerical examples. As a postscript, in Sec. F, we consider the

modifications required to the theory of Sec. B, in the overdense regime. We

also briefly discuss certain experimental evidence which shows some

agreement with theory.
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A. CONCEPT

The ICL consists of a tank of neutral gas, through which a plasma ism

produced, for example, by an ionizing laser pulse. 7 Within less than a

" recombination time, and with proper matching, as in a continuous plasma

focus, 9 an REB is injected into the preformed plasma, propagating in the axial

(+z) direction (Fig. 3.1). Co-propagating with the beam is an externally

supplied electromagnetic wave.

We recall, from Chapter 2, that as the beam head propagates through

the plasma, it expels plasma electrons from the beam volume, leaving fixed

the relatively immobile ions to provide focussing for the remainder of the

beam. For definiteness the beam density is assumed to be a step radial profile,

with radius a. In this case, the unneutralized ions occupy a cylindrical

volume of radius approximately b-a(nb/np)l/2 and this is the "ion channel",

as depicted in Fig. 3.1(a).

As discussed in Ch. 2, it is assumed that the electrostatic pinch force

due to this ion charge is much larger than the transverse force on the beam

due to self-fields. This imposes the Budker condition 4 on the plasma density,

nb>np>nb/_, where nb is beam density, np is the plasma density prior to

channel formation, and y is the beam Lorentz factor. As before, we assume

adiabatic current rise (¢Op_'r>>l), and we neglect ion moti_ n (C0i_'<<1), where COp

- and fl)iare the electron and ion plasma frequencies.
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In Ch. 2, Sec. B.3, we found that the zeroth order transverse motion of a

beam electron is that of a relativistic, 2-D, simple harmonic oscillator subject

to the potentials given by Eq. (2.46)

2)/,2=_(o>+}(k_-k_ ,
lk2 r2

az= a'(O)+ 4 b "

2b

Fi!iiiiiii!iiillii_i _
,cii {_!i::::_..... [ Ion-Channel ....<:i!i!}i i _i_,

:::;i_i::_,i::,ii!i;i,:._ ..,,i!i',!i!i',i_,',iii'_iiiiiii!iiiii<..i:i:i:i:i:i:!:i:!:i:i:i:!:i:!:?'

::_iiiil!::i::i::::!iii::::!ili::iii::iiii::_>
::!iiii;_i:;::i::::ii_i:iii!...... ..<!:iiiiiiiiii::i::!::!::iiii[ii::iiiiiii!i!i:.!:ii: :i:i:.i:i:::::::::::::::::::::::::

.....:_:i_::::i::'ii:{i!i{_;:_! Quasineutral Plasma I

FIG. 3.1. (a)An REB, propagating through an underdense plasma, expels plasma electrons from

the beam volume and beyond to produce an "ion-channel", which then focusses the beam, and

causes it to radiate, o
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FIG. 3.1. (b)An electromagnetic wave copropagates with a relativistic electron beam in the ion-

focussed regime. Beam electrons (indicated by c'_rcles in the inset) oscillate transversely

(focussed by the ion electrostatic field), and are bunched axially by the ponderomotive force,

much as in an FEL. This is essentially Fig. 2.3, with the addition of an electromagnetic wave.

The Hamiltonian was found to be (Eq. [2.50])

m 2 c 3 p_c p_c
_+_+ U

. H = pzc + 2 p, + 2 p, 2 p_

where we identified the effective potential as (Eq. [2.51])
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1 2
U = _-rn_r , (3.1)

i

and we neglect small constants of integration. Inspection of the Lorentz force

equation revealed that electrons undergo transverse oscillations at the

"betatron frequency ''8 ra_~rav(mc/2pz)l/2, where Pz is the axial momentum.

We turn now to consider the perturbation of the single particle motion

by a linearly polarized electromagnetic wave.

BoEIKONAL FORMALISM

Now in the center of momentum frame, electrons are oscillating with

upshifted frequency ral~yro_ and radiate incoherently. In the lab frame the

frequency of radiation in the forward (+z) direction is ra.-.2yral~2_zco_.

In this section, we proceed to show that coherent radiation, near the

frequency c0~2_zco/3,may be amplified. The essential feature of amplification is

that an ensemble of relativistic simple harmonic oscillators, subject to a

growing transverse electromagnetic wave, will give up energy to the field,

through "axial bunching," if they are driven "weakly',. Providing a definition

of "weakly" and the sense in which it applies to a realistic beam is more or
e

less the purpose of the detailed calculations which follow. "Axial bunching"

refers to an induced correlation of longitudinal and betatron phase, which •
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corresponds toa coherent oscillation of the beam centroid. This will be

described in some detail below.

1. Particle equations

To the equilibrium described in Sec. A, we introduce an

electromagnetic wave linearly polarized in the y-direction, copropagating

with the beam.. We write the vector potential in terms of a dimensionless

eikonal amplitude and phase, A and cp,

m ¢2

A_- e A sin(_), (3.2)

_"= k,z - cot + rp. (3.3)

The angular frequency is ro and the axial wavenumber is kz. A and rp are

assumed to vary slowly in time on the _1 scale, and in z on the kz-1scale.

The single-particle Hamiltonian is, in the limit Pz>>Px,Py, and

neglecting second order terms in A,

H = pzc + m2 c3 p_c p_c Pr_+_+ U +e A
2 p, + 2p, 2p, _ Y

_, _ t, , _ •

HTI H H' . (3.4)

As indicated, the energy is a sum of the energy of the axial motion (Hi1), the
b

energy of the transverse motion (H.L) and a perturbation linear in the field
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(HI_. The quantities Px, Py, and pz are the canonical momenta in x, y, and z,

respectively,

px=m_ ,

e__A
Pr = myoy- c Y' ..

p,. = myo, - eAC zp

-1/2

r _ vi + + vi "L
=L1 c2 j (3.5)

The particle velocity components are Vx, vy, and Vz. Note that the correction

to pz due to A z is typically small, mcadpz~v/y, where v=I/Io is Budker's

parameter. We will neglec_ it in the following work, to take it up again in Sec.

B.4 in the discussion of detuning spread.

The equations of motion derived from the Hamiltonian of Eq. (3.4)

describe an electron drifting in z, subject to an axial "vxB" force as it oscillates

in the potential well

dz rn2 c 3 pic p2y.._._.__cc2 Pr A
dt - c - 2 p_ - 2 p-----T-2 p_ - m p_ sin(() ,

dpz py
d----i-=- k_mc2---_ A cos (_ ) . (3.6)

The y-motion consists of an oscillation in the ion channel potential, subject to

the Lorentz force due to the signal field,

10o



(_hapter _ Theory of the.Ion-Channel Laser

dy py mc2 A
dt - p, C + p,. sin(_)

dpy 1

dt -- _--mr_ y , (3.7)

- and coupled to the z motion via Pz and Ay. The x-motion is a free oscillation

in the potential well, which is however coupled to the axial motion via Pz

(the relativistic mass effect),

dx px
dt P"

dpx 1
dt - - _-m ogx . (3.8)

In Eqs. (3.6)-(3.8), we have neglected derivatives of the slowly varying eikonal

quantities, and their transverse gradients.

To make some progress in describing the particle motion, it is helpful

to average over the rapid betatron motion. It is convenient to introduce

dimensionless variables qz, qx, ex, qy, and 0y, such that

px = mcq_ sin(G) ,

py = mcqy sin(Oy) ,

p, = mcq, . (3.9)

For A=0, qx and qy are constants and dOx,y/dt=co_. With averaging, Eq. (3.6)

becomes
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qY A(sin(_)sin(O ))

=-k,c q,

(3.10)

where the angle brackets indicate the average over the betatron period.

Noting the identities

1
sin(_)sin(Oy) =_-(cos(ey _) -cos (Or + _)),

cos(_)sin(Oy) =1(sin(Oy + _) + sin(O r - _)) !

(3.11)

we see that the averages will depend on the time variations of ey_+_'.In this

connection we will neglect "jitter" in the axial motion, namely, that in the

frame of reference co-moving with the beam (the "beam frame"), electrons

execute a figure eight motion as they oscillate transversely, alternately

slowing and speeding up with frequency 2c0/_,as they "climb" or "descend" the

ion-channel potential. Specifically, the zeroth-order motion in z is

_x _ y
z =z_+ ff, t +-_ sin(2G)+_sin(20 r),

4,
z_ = zo - k-,- sin( 20xo ) - _ sin(2 Oyo ). (3.12)

where zo=z(t=O), and the dimensionless quantities _x,yare given by
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1 k, q_,y

'Y=8 ks q_ (3.13)

The quantity

{ 2 +q_+q_}G=c 1- 4ql

= c 1 - 2q_ (3.14)

is the drift velocity in z, at zeroth order, averaged over the betatron period,

and h=H zJmc 2 .

The effect of this jitter in z is to couple the beam to odd harmonics

(angular frequencies ro' satisfying co'-kzvz=(2n+l)ro_, with n a non-zero

integer). We will consider the limit _x,y<l, and neglect these higher

harmonics. From Eq. (3.13) we see that this is roughly the approximation that

qx,qy<l, corresponding to a transverse motion which is nonrelativistic in the

beam frame.

In addition we assume that the phase variable

V = 8_ + ¢" , (3.15)
i,

is slowly varying on the time scale eo/_-l,ie., the "detuning" parameter Aco,
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Aco = k,G- co + coa

is small compared to co/1.V represents the phase of the transverse motion

measured with respect to the phase of the radiation field. For a fast wave, the

condition, aro<<co/1 corresponds to an angular frequency co~2_cop. Note that

detuning depends only on qz and h, not qx or qy individually. Thus the

distribution in detuning may be determined in simple way from the

Boltzmann distribution function for the beam. For the step radial profile, the

distribution function is a delta function in h and qz, and there is no spread in

ACO.

The resonance condition co~2_co/t states that the Doppler shifted

frequency of the signal field, in the beam frame should be close to the

frequency of transverse oscillation of the electrons in that frame. In this way

the electron is resonantly driven and suffers a secular perturbation in its orbit

("bunching").

With these a_sumptions, Eq. (3.10)becon'les

l(dz ) 1 _q_ __.q_' _1 q , A cos (_/ )__--_ = 1- 2qf -4q 2 4q 2 + 2 q2

( dd-_-) l q _ A ,= - Tk_c q, sit'(V/) (3.17)

To average Eqs. (3.7) and (3.8) we differentiate, eliminating x and y,
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d 2 px ma,tpc
_+ px=O ,

• dt 2 2 p,

d 2 py moYpc m20Y_c2

, dt 2 + 2 p, p y 2 p, Asin(_) . (3.18)

Substituting the dimensionless eikonal variables of Eq. (3.18) then gives

cir sin(O r) + 2q'rOy cos (Or) +
2

q rOr cos (Or) - q r sin(Or ) Or + co2_qr sin(Oy )

= -a,_ A sin ( _ ) , (3.19)

and sirnlilarly for x. Here, the dot denotes the derivative with respect to t.

Averaging these equations over the betatron period then gives,

q'. - qxO2x+ co_q. = 0 ,

2q'_O_ + q.K = 0 ,
7_

q', - q,oy + _q y=_A cos (¢ ; ,

2q'yO_ + q rffy =-co2_A sin(v ) . (3.20)

At first order in A, these equations reduce to
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e-T = ,
dqx qx d ma

dt 2coa dt ' .

d Oy ( A cos ( _ ) ) ,d-T-= coa 1 2q y

dq_ qy dc% 1

dt -- 2 ma dt -2 -c°aA sin(_r) , (3.21)

and we have formally neglected electrons with qy~O(A) or smaller. In Sec. 2.b.

we will show that Eq. (3.21) is valid even in the limit qy_0. Roughly, this is

because ali terms varying as 1/qy are eventually multiplied by qy, i.e., the

complex eikonal variable qyexp(iOy), is always well-defined, even if the phase

is varying rapidly. The apparent divergence at qy_0 simply shows that Oy

adjusts rapidly to a phase determined by the wave, independent of 0y(0) and

qy(O).

Combining these results and eliminating z in favor of V, the equations

of motion take a form reminiscent of that found by Kroll et al., for the FEL,9
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I I I I I

d Oy dr# 1 q y
dV _k=v -co + + +_'kzc -"A cos (_) (3.22)d"(" - = "_ "aT- q2 ,

" dO

Y-coli 1 -l'_Ac°s (_)1' (3.23)dt 2q y

_ qy" dq= _ 1 k=c Asin(V) (3 24)a-T-- T G=

,,,1(odt -F a + k=c q-T

dq
1 qyqx Asin (V) (3 26)d-.T-=- k=c q-'T "

X

It is evident that V determines the sign and magnitude of all the

perturbative effects of the field. In general, Eq. (3.22) shows that evolution of _r

is dominated by variation in vz and Oy, (since the first order term in Eq. (3.22)

is small) which are themselves determined by variation in qz, qx and qy. For a

fast-wave (co=ckz) Eq. (3.24) describes the slowing of particles with _r>0 and the

acceleration of particles with V<0, due to the z-component of the Lorentz

force (the ponderomotive force)• lt is worth noting that, Jn general, dvz/dt

and dqz/dt may have opposite signs depending on the wave phase velocity

_=co/ckz. Differentiating Eq. (3.14), and using Eqs. (3.24) and (3.25), we find

. (neglecting qx,y<< 1)

" q_l q2 _'_")11 dG l___k=c - (_ - A sin( )c dt _-2 q_L _
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Thus for _>vdc+2/qz 2, particles may be accelerated in z (due to a loss of

transverse energy), while losing axial momentum. In fact, as we shdll see

below, dH/dt=mc2_(dqddt), so that in this case the total particle energy is

decreasing as weil.

The first term on the right in Eq. (3.25), as wel! as the first-order term in

Eq. (3.23), are due to the y-component of the Lorentz force. These terms arise

from the resonant perturbation of the transverse motion. In an FEL this effect

is small; here, it will be non-negligible. The remaining terms in Eqs. (3.25) and

(3.26) are due to the relativistic mass effect. The amplitude of the transverse

motion drifts due to variation in c0/_,which varies with qz.

2. Particle motion in a prescribed field

To gain some insight into these equations, we consider the motion of a

test particle under the influence of a prescribed eikonal. We observe from Eqs.

(3.22) and. (3.23),

d roe 1 qYA
d_.._ . k,G - ro+ a)a + _ 2 qydt - A cos (V) +_k,c ql cos (V )

= d--'_ + Ao)- HA cos (_) , (3.27)

where the parameter /7 is given by
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roll

/-/ 2qy
, (3.28)

• and arises from the ey variation of Eq. (3.23). This shows that particles with

small qy can be significantly "detuned" from resonance. This is because the

phase of a driven harmonic oscillator varies rapidly when its initial

amplitude is small.

Examining Eq. (3.27) it is tempting to think of Aro>0 as corresponding to

a particle with energy "above resonance", as in an FEL. However, from Eq.

(3.16) we see that Aco depends on both vz, (which increases with qz) and ro_,

which decreases with qz. Thus higher energy particles drift faster in z, but they

oscillate more slowly. Depending on the wave phase velocity, more energetic

particles may actually be below resonance, i.e., have At,o<0.

a. Bounce motion. To make this more precise, we differentiate Eq. (3.27)

and subsititute from Eqs. (3.23)-(3.26), to obtain,

d2v { dv } d A-d-fi - - E - Fl -d-t- A sin(c)- 17-d-t-cos (¢) , (3.29)

• where the "bunching" parameter _, is

" 4q*, q _ 2 + q_+ q_)- 2 roe ,,2
]
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or

II w

_ (k,c toa
_ ....29 | q y -k-_c I

,,, (3.30)

This parameter describes the dependence of detuning on energy, including

the relativistic mass effect, and the effect of the y-component of the Lorentz

force, from Eq. (3.25). Evidently 2; depends sensitively on kzc. For ro=kzc,

~ra_qy,while 2;=0 for kzc~co_qz2. In terms of the phase velocity the condition

for F_,=0may be written

-!

, (3.31)

where we have set Ac0=0. Typically, such a phase velocity corresponds to a

group velocity close to vz. Thus _ varies from a value which (as it will turn

out) is appreciable, to zero over a very small range of phase velocity

1<fl_<l +1/2qz2.

For A constant, Eq. (3.27) simplifies to
m

d 2
.... b

dt 2 -- ,Y,Asin(v), (3.32)
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where X,=g-FIAco. Thus Woscillates as in a nonlinear pendulum, a behavior

reminiscent of the FEL or RF linac. 40 Equation (32) differs from the usual FEL

. result in an important way, however, in that 2: may in principle be negative.

This feature is due to an extra degree of freedom, the y-motion, which is
o

strongly coupled to the axial motion. (In the FEL the y-motion is prescribed to

a good approximation.)

Inspecting Eq. (3.32) we note that the stable point for small oscillations

is either V=Oor V=_ depending on whether X>0 or Z<0. Considering first the

fast-wave limit (c0~kzc), and using _, ~c0_qy, we have

{ 8)= o_qv 1 2q_' , (3.33)

where we define the dimensionless detuning 8=Aco/a}_.Thus, in general, the

beam divides into two ensembles. Particles with 8>2qy2 have stable point _~z,

while those with 8<2qy 2 have stable point _'~0. Furthermore, within each

ensemble particles have an intrinsic spread in bounce frequency. This is quite

different from the result for the FEL, where _ is replaced by a term

proportional to the wiggler parameter, which is the same for all particles.

Note that for a beam with uniform 8<0, ali particles have stable point

• _r~O.Conversely one may show that for a beam with uniform 6>0, and for a

wave with phase velocity larger than that given by Eq. (3.31), so that _<0, all
o

particles have stable point ¢~_.
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From this discussion it is evident that, in general, the details of the

bounce motion depends in detail on the wave phase velocity, through the

bunching parameter. For example, in the slow-wave limit (ro>>kzc), Eq. (3.30) b

gives

1 kzcq_
-= -_- _-coa q 2 , (3.34)

so that

q 2 k,c . (3.35)

Thus 2_<0,except for particles with 3<-qy2kzc/ro_z 2. This result for 2_is lower

than the fast-wave result by a factor of order O(ckd2qz2ro_). '

In general, the period of small oscillations ("bounce period") about _r~0

or rc,is 2_/_o where, _o2= I,_,]A. For 2_>0,we may describe this motion with a

bounce Hamiltonian

1
H B= _-p_ + _(1 - cos (_)) , (3.36)

m

where p_,=dv//dt and at zeroth order pw-,Ac0. (For 2_<0 the same description

applies, with _ interpreted as _/-_). Unlike the case for the FEL, such a
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Hamiltonian does not describe the motion of all particles, merely those with

the prescribed values of 8 and %.

Defining a dimensionless parameter k2=HB/2[2o 2, we observe that the

motion in _is bound for k2<1, and unbound for k2>1. For bound orbits the

• maximum excursion q/m is given by

H 8

cos (_,,) = 1 - _ , (3.37)

or sin(_m/2)=k. In either case, we may define the invariant action for the

bounce motion,

1 _p_,d¢J_- 2_ , (3.38)

where the integral is over a period of the motion. More explicitly, for bound

orbits,

2 3 /2

IB- _ _ _ dV/-V'COS(¢) - cos (_,)
o

_/ 2 k2 s 28 co (0)

• o sin2(O)

8 k2 2
=--_-.C_{E( )- (1 - k ) K(k 2)}, (3.39)

o

113



Chapter _ , Theory. of the Ion-Channel Laser

where sin(O)=sin(¢/2)/sin(¢m/2) and K and E are the complete elliptic

integrals of the first and second kind3 ° For ¢m<<1, JB-HB/a'Io=O.5.QO¢mZ°For a

slowly growing eikonal, .Q0 increases, and the amplitude of small oscillations

varies according to, ¢m_,l/_oZ/Z_l/A1/4. Thus particles are adiabatically

bunched within the ponderomotive well (or "bucket") described by HB. For

larger amplitude oscillations, Eq. (3.39) must be inverted to obtain the

variation in bounce amplitude _'m as a function of g20.

e0 i w '" • "" v • ii

0.8

o 0.6

%
0.4

0.2

0.0 ' I 1 • I - " L , I '

0.0 0.2 0.4 0.6 0.8 1.0

_m//_

FIG. 3.2. Variation of bounce frequency with maximum excursion in V_,.

The angular frequency is

,a
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-4

f

. 2 K (k 2) : (3.40)

Ii

and varies from _0 for Vm small, to 0 for a particle with Vm~X, as depicted in

Fig. 3.2. In the FEL, a similar bounce motion results in the amplification of

frequencies in the range co-l'20to co+D0 ("sideband" instability). In the ICL, due

to the intrinsic spread in _Q0,one may expect a qualitatively different result for

sideband growth.

Before leaving this section, we note, from Eq. (3.279, that in order for

particles to bunch about V-O (Z>O), we must have d_p/dt+Aco>O on average.

For stable point V-_z (Z<0), on the other hand we must have d_p/dt+Aco<O on

average. This is because particles are being con'.inually detuned from

resonance by the transverse Lorentz force, with a sign depending on the wave

phase velocity. Further insight into the importance of this detuning can be

gained by examining the ponderomotive force in detail.

b. Ponderomotive force In the previous section we took the eikonal to

be rigorously constant, inspecting Eq. (3.29), however, we see that even a very

small growth rate will alter the motion, in V, of particles with small qy. This is

. because the phase of their transverse motion is determined for the most part

by the wave, and not the initial values of qy and Oy. In this section, we

• examine such effects in detail. We take an exponentially growing eikonal

since, as we shall find in the next section, the self-consistent solution of
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Maxwell's equations is well-described by a sum of such terms, prior to

saturation.

In principle, we can treat this problem most expeditiously through Eqs.

(3.22)-(3.26). However, it is instructive and useful as a check of the eikonal

equations, to solve the problem directly, using the full equations of motion.

We adopt a complex eikonal variable B given by

B = Ae i_

= Bo exp ( Ft ), (3.41)

where F=_r+iFi may be complex. In this case, dA/dt=PrA, and dq;/dt=Fi. We

assume that IFI <<cop so that growth is adiabatic on the betatron time-scale.

We proceed to solve for the particle motion directly from the

Hamilonian of Eq. (3.8). The equations of motion are Eqs. (3.6) and (3.18):

dz m 2 c 3 plc p_c P-P-&A
dt -c - 2 p_ - 2 P----T-2 p2 - mc2 p_ sin(_) ,

dp, py
d----_=- k'mc2--_, A cos (_ ) .

d 2 Px
+ co2apx = O ,dt 2

d2py

dt 2 + co2_p _ -mcco _.A sin ( _ ) . (3.42)

m

We adopt dimensionless complex variables, pj=mclm(Q/) for j=x,y,z. Since co_

is slowly varying, the solution for the x-motion is just the WKB result,,, ,
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(C0_0 t ,
Qx= _,'_a J qxoexp iOxo + i t¢oa(t )

• 0 , (3.43)

_a

and we abbreviate Oxo=Ox(O), qxo=qx(O) and co_o=ro_(O). To solve for the y-

motion, we write decompose it into a sum of a free and a driven oscillation,

Qy=Qyf+Qyd, with Q_,_and dQya/dt vanishing at t=0. These quantities obey,

d2 Q_t
+ (_Q_I= 0 ,dt 2

d2Q
d t 2 + co2aQ _ = - o_ A e '¢ . (3.44)

The solution for the free-oscillation is just

Oy = q exp iOyo + i t'roe(t
0 , (3.45)

where we abbreviate Oyo=Oy(O),and qyo=qy(O). Next we define .(2=_kzvz+iF', and

rewrite the Qy_ equation as

d2Q_

• dt 2 + a,e_Q_ =-a;C_B o exp(-i.(2t + ik, z o + i_I). (3.46)
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The term _l=kzzl, where zl is the O(A) drift in z. This may be neglected in Eq.

(3.46) at first order in A. In addition, we neglect the variation in o9_, at O(A).

Then we have

Q va _ .02 _ co2aBo exp (i I_zo)ex p (- il2t ) , (3.47)

and we neglect terms which are small for times t>l/Fr. Using

11_ - _ = 2 ir.oa( iAo9 + F) , (3.48)

Eq. (3.47) simplifies to

¢oB

Qyd =- i 2(iAco+ F) B°exp(il_z°- LOt) . (3.49)

Combining Eq. (3.45) and (3.49) we may write out explicitly the solution

for the eikonal variables Oyand qy, defined in the previous section. We have

(r°a° /1 exp iO, + i t'co/j(t') +qy(t)exp(iO_(t))=_, cos o 0 "

o)ij

- i 2(iAco + F) B° exp(ik, zo - i.Ot) • (3.50)
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It is straightforward to show that this is the same solution one obtains using

Eqs. (3.23) and (3.25). Thus, Eq. (3.50) confirms the eikonal equations for the y-

" motion, including the limit qy_0.

The equation for Qz is
lp

dQ - i k,c e i¢, Pv A
dt - P_ o

- - i_ c _3(Q + Q ) Boexp(- iCJt+ ik, zo + i(,)- q yf

_ -ik, c {_3(Q,i)(1 + i_1)+ _3(Q_)}B ° exp(- i.ftt + il_zo)q' , (3.51)

and qz=Im(Qz). We have neglected a qzl term which is small in the limit

qx,qy<<l. Neglecting jitter in zl, we average this over a betatron period, lt is

useful to write Qz as a sum of a first-order term and a second-order term, Q_

=Qzl +Qz2, where

(Oa _1 i 2dQ ,1 k_c i_
dt - 2q,qY°_, ¢0a ) B°e '

1/2

aQ, (,Oo ,,o I
dt - 2q,q'°_, ma ,) B°e i(ffl + _)+ i4q, (- iA(o + 1-')IB(t)

!

(3.52/
t

. and we have defined phase variables
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LFo = 0 _o + i COao t - i.Ctt+ i k, zo ,
t

") _

o . (3.53)
q

Note that the phases _/"0 and _ul are slowly varying quantities, since ,

dLFo/dt=Aa)-iF",and dWddt=co_.ro_o. Using Eq. (3..52) for Qzl we can solve for _1

and _'1(which replaces the variable z 1). For _F1we have, differentiating Eq.

(3.53) twice,

dt 2 - dt

r.olj dq,
m m

- 2q, dt

k,c , Boe")
- 4qZ q yo (3.54)

The solution is

k'c c°a ( %1)- 4 qf q _°_3 B°e )2(izla) + F , (3.55)

neglecting small terms.
g

We obtain an equation (or _'1from Eq. (3.42), after differentiating once,
ib
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kzc dt 2 = - 1 + m-f-c5

1 dq, 1 d (Pi+P_)
m

. ql dt 2q] dt m2c2 , (3.56)

where the brackets indicate an average over the betatron period and we

neglect the small term proportional to sin(_) in Eq. (3.42)• The averages are

L -L)o + m soC- ,0 L ra_ q y0 2 (iAra + F) , (3.57)

and we neglect second order terms. The terms in square brackets are small

and will be neglected below. The derivatives are

d <p2) 1 q2o dq.
dt m 2c 2 -4 q, dt '

d <P_'>_ 1 q2 dq
yO , 1 _rBoei_'°'t

dt m 2c 2 -4 q, dt -2-raaqY° } (3.58)

Substituting this in Eq. (3.56) gives

1 d2_ ", =1_{ 1 _/(q2 + q2 }dd__ __qY°3(Bo e,_,o). k,c dt 2 q3 _, yO) + ralJ4 qf • (3.59)
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From Eq. (3.52), using qz=Im(Qz), we have at first order,

d q , k,c i_,o
d--T = 2q 'q,o$(Boe ) t

Combining this result with Eq. (3.59) then gives,

c/2_ i-0
dt 2 -- =--,'_3(Boe ), (3.60)

where the parameter _' is given by

- k'c 2f °' t_'- 2q_ q vo 1 2k, c q2, (3.61)

and we neglect qx,qy<<l. _' differs from the bunching parameter -=of Eq. (3.30)

because V includes ey in its definition, while _'1does not (this is subsumed in

_ul). Integrating Eq. (3.59) we have

_(,0 1)_1=- _'_3 Boe
(iAro + F) 2 . (3.62)

t

Adding this result to that of Eq. (3.55) we have
a

_, + _,=- =.-,3 Boe (idro+ F)2 , (3.63)
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where .._is the bunching parameter of Eq. (3.30).

Next, we substitute this result in Eq. (3.52), for Qz2, to determine the

axial ponderomotive force on a beam slice. We find

II v(I - .';.° ItI; _ m m--

dQ.2 q yo "_ )2 + 2 iU A ( t )2dt q" (-izira+ F' (- iziro + ITM)
!

(3.64)

where FI=o)_[2qy,as defined in Eq. (3.28), and the brackets indicate an average

over the beam slice. More explicitly, for the cold beam, we have

dpz
- vmcA(t )2

dt . (3.65)

where

v- 4 - q,"
(_ +(c,+a_)_)_ + -G-'n _ +(c, + a_)_ (3.66)

or

k.c{_k.c_:_ ( _ } 2_, A_v- 4 - 2qS a_ 1 k,c q_ )2 2 +--_" (_ +(c, + a_ )
_ _ I

" + q_ _ +(F,. + Ac0)2 I. (3.67)
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Here we define a betatron parameter, a_, analogous to the wiggler parameter

in an FEL,

I I •

(3.68) .

For the round beam with step radial profile, as in Fig. 3.1(a),

= 2-1 / 2 ka aaa q. , (3.69)

and is initially the same for each particle. Considering the fast-wave limit, we

have

r.o_k,c{ F,(F_+Aro) 2 + Tr }v- 4q, - 2r.o_a_(_ +(Fi+ Aco)2) _ +(Fi+ Aco)2 . (3.70)

This result is quite revealing. We note that for a beam with negligible

transverse energy (a_0), v and Fr are of the same sign. Suppose that Fr>O,

corresponding to a growing eikonal. Then both the beam and the eikonal are

gaining energy. Since energy is conserved, this is a contradiction. On the other
b

hand, if v<0 and Fr<O conservation of energy would also be violated. Thus in

the limit a_0,we must have Fr_O. This is just the well-known result that

an ensemble of cold simple harmonic oscillators is stable against
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electromagnetic perturbations. (Interestingly, this conclusion is reached
tl,

without reference to the perturbed Maxwell's equations.)

Physically this is because the driven transverse velocity (_xd) in an

eikonal of constant amplitude is ninety degrees out of phase with the electric

• field, as reflected in the factor of i multiplying /7 in Eq. (3.64). Thus no net

work is performed on the fields, on average. On the other hand, when the

eikonal is growing, the driven motion absorbs energy from the wave, while

the "free" oscillation does work on the fields, through axial (_'1) bunching.

The relativistic mass effect tends to lessen the work done as reflected in the

subtracted terms in 3' of Eq. (3.61). The relativistic mass effect in the phase of

the transverse motion (_ul) also reduces bunching by the same amount. We

shall refer to the term F/generically as the "cold-beam dielectricterm" or the

"debunching" term.

From this we may understand the physical basis for the detuning,

d¢/dt, of Eq. (3.27). The quantity drp/dt+Aro, which appears there is just Fi+Aro.

From Eq. (3.70) we see that in the fast-wave limit, drp/dt+z_ro>O is required to

extract energy from the beam, while in the slow-wave limit drp/dt+A(o<O is

required. On the other hand, in these limits particles tend to bunch about ¢~0

or _:,respectively, corresponding to a detuning FIAcos(v) (due to the resonant

perturbation of the transverse motion) in Eq. (3.27) which approximaterly

balances the detuning d_o/dt+,4(o (due to the resonant perturbation of the axial

. motion). More simply, the bunching wave velocity should always be less than

the beam velocity. This has an analog in the FEL, where the instability is
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stabilized for finite positive detuning. 11 As in the FEL, we shall find that even

when Ao) is large and negative, Aco+F/is positive.

Inspecting the calculation of Eqs. (3.41)-(3.65) we see that amplification .

of the input signal is correlated with bunching in the variable _.+L/.,(identified

as _ in the eikonal formulation) due to the axial component of the Lorentz

force, much as in an FEL. We observe that this bunching is reduced due to the

relativistic mass effect and due to the resonant damping of the transverse

motion. Indeed, in the slow-wave limit (kzc<<c0), the relativistic mass effect

and transverse damping dominate bunching, which occurs in the opposite

sense as for axial bunching. A similar transition in bunching was examined

by Chu and Hirshfield 12for the cyclotron maser instability.

In summary, amplification will rely on the circumstance that a strongly

driven harmonic oscillator absorbs energy in a growing wave, while a weakly

driven harmonic oscillator, on the other hand, loses energy through axial

bunching. Here the "strength" is just (A_Fi)/ro_a_, and measures the size of

the driven amplitude relative to the intial amplitude.

To make further progress in assessing the relative magnitudes of the

debunching and bunching terms ((Aco+Fi)/co_2), we will consult Maxwell's

equations to determine the dependence of Fi on ,4_ and the other parameters

of the problem. We reserve this work for Sec. 3. We shall find that the cold
b

beam dielectric has a significant effect on the conditions for amplification.
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c. Invariants of the motion. Further insight into Eqs. (3.22)-(3.26) is

gained by considering the constants of the perturbed motion. First, we note

• that energy varies according to

• dH _H
dt -

Pr
=- tomc2.-_A cos (_ ) , (3.71)

and with an average over the betatron period, this gives,

dH 1 qy
d----i-= - 2-t°mC2-q--ZA sin(_r) . (3.72)

Comparing this result with Eq. (3.24) shows that

Oz =H -_'Pz

(3.73)

is a constant of the perturbed motion. This also may be seen from

translational invariance. Energy AH deposited in the fields, will correspond to

. a field momentum/ipz=(kdca)zU-I, and this axial impulse must be taken up by

the particles, in the absence of external axial forces. This is quite different

from the FEL, where the wiggler magnetic field can absorb axial momentum.
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In addition, applying Eqs. (3.24) and (3.26) shows that the action of the

x-motion

u

Jx = 2__ pxdx mc2 q__ 2r,olj q_ , (3.74)

is invariant under an adiabatic variation in c0/3,so that qx4/qz is a constant.

(Here, the integral is over one betatron period.)

A similar result obtains for the y-motion. Combining Eqs. (3.23) and

(3.25) it is straightforward to show that

dqy {c% 1_..q2__} dq,qY dt - _,c + 4 q2 q,-'f_ , (3.75)

and this may be integrated to give

Y -2 =0
dt coaq , , (3.76)

Combining this with Eq. (3.73) shows that

iiiii i iiiii

!°, I= H -a)Jy
(3.77)

is a constant of the perturbed motion, where Jy is the action of the y-motion,
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1 _ mc 2 q_
]Y- 2_ pydy =2toa q' . (3.78)

This result shows that a loss of particle energy zU-/,is accompanied by am

decrease in the particle action by an amount AH/ro. In terms of quanta, we

may say that the emission of a photon of energy hv is accompanied by a loss of

action by an amount h. This implies that amplification of the eikonal must be

accompanied by a decrease in the area occupied by the beam in the y phase

plane. In other words, if the phase of the transverse motion is such that the

particle gives up energy to the field, then the transverse motion in y is

coherently damped. It is important to point out however, that the motions in

y and z are strongly coupled. Thus this result is consistent with Liouville's

theorem, provided the area occupied in the z phase plane increases so as to

keep the total phase-space volume constant. This result may also be adduced

to explain the stability of the cold beam. If Jy=Oinitially, then AJy>0, since Jy<0

is unphysical. Therefore AH>0 and the electromagnetic field energy is non-

increasing.

For a simple estimate of the y-emittance decrease we compute the

variation in the rms normalized emittance in the y phase plane,
,i

&Y= %//y2/(p_)_ /Y P y/2 , (3.79),i
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r

where the brackets indicate an average over the betatron motion and a beam

cross-section. This gives

2
q "2ks , (3.80)

where the betatron wavenumber is k_~co_/c. The rms normalized emittance

(in x or y) is initially

1
a, = ,_-;-q"k _a 2 " (3.81)

Noting thai <Jy>=mce,_y and applying Eq. (3.77), it is straightforward to show

that the change in rms emittance is

1 (all)
_y a_ H , (3.82)

where <AH> is the average change in energy., and we have used ap=23/2en/a.

This provides a simple estimate of the y-emittance reduction in terms of the

efficiency, <AH>/H. This also provides a useful upper bound to the efficiency,

<AH>/H<a_ 2. (Obtained without reference to the perturbed Maxwell's

equations).
t,

Finally, we consider axial angular momentum,
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L= = xp_- YPx. (3.83)

. Applying Eqs. (3.7) and (3.8) we find that

. dL= 1 qx
dt ='_'mc2_A cos(v+ Ox- 0v) . (3.84)

In this expression we may set 0x-0y equal to its value at t=O.This shows that in

general particles will feel a torque due to the perturbation. However, averaged

over the ensemble, this torque is zero and no net spin is imparted to the

beam, just as one would expect for interaction with a linearly polarized wave.

Table 3.1. Invariants of the single particle motion1

ox=-coJx x-invariant (action)

Oy=H-roJy y-invariant (action, modified due to y-z coupling)

• ==H-(ro/ck=)p= z-invariant (conserved total axial momentum )

These invariants have important implications for bunching. In

particular, a loss of axial momentum is compensated in part (by an amount

depending on the phase velocity co/ckz)by a loss of transverse energy (due to

• the relativistic mass effect and the resonant damping of the transverse

motion ). This explains the sensitivity of bunching to phase velocity. At the
,,d

phase velocity given by Eq. (3.31), bunching is stationary with respect to
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variations in axial momentum, brought about by interaction with the

eikonal.

d. 1-Dimensional equations. With three integrals of the motion in
t

hand, we may reduce the "KMR" equations for the ICL to just two equations,

for qz and _. The equations for _ and qz are

I 2 + q2 +q2y 1
d V - k,c 1- " - co-->
dt 4q]

1 A cos (q/) +'-_-k,c ql cos (q/)_+ coe 1 2 q y

dq, 1 qy

dt -- _-k,c -_-d-A sin(V) . (3.85)

To eliminate qx and qy we first define two dimensionless integrals,

h
mc 2 '

Oy = k,c q, ,
m c2 (3.86)

in terms of which,

COe

q2 = 2 -_--'q,_,
b

0.1/3

q2 = 2 _c-q,(O_ + q,) . (3.87)
b

The equations of motion then take a form involving only ¢, qz and constants,
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d V _ k, c Il _ 1. I 1 c°a k,c• dt 2ql - co+'2"coa- 2q, co (Ox+ Cy)_

• 8q_. (Oy + q,) A cos (V) , (3.88)

_qz t __ ,fkzc }1,2-- _'K-d--_(r_y + qz) A sin(v).
(3.89)

It is tempting to try to formulate the problem in terms of a

Hamiltonian parameterized by Oxand Oy.However, it is evident that V and qz

are not canonical variables.

To summarize this section, we observe from Eq. (3.89) that to simulate

the fully 3-D problem including finite "temperature" effects, requires a

distribution over four variables, corresponding to the intial values of Cx, Cy,qz

and V. Thus the problem has been reduced to a 1/2+3/2 D problem. However,

the simplest model, corresponding to an intially cold beam (uniform in qz,

and qx+@) requires a distribution over only two variables, the initial values of

Vand qy. This is a 1/2+1/2 D, or in some sense, a 1-D problem.

3. Maxwell's equations

" Having examined the single-particle motion, we consider next the

feedback from the particles through the field equations. We will work in the
I,

Lorentz gauge and neglect the rf scalar potential. Maxwell's equations in

terms of the vector potential Ay and the current density, Jy, are
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. (3.9o)

We take the radial mode to be specified, corresponding to a transverse

wavenumber k_t, satisfying k_La<<l so that variation across the beam is

negligible. We define the mode area, 27

]Ay(r =0)[2
27q =

, (3.91)

(to be distinguished from the parameter employed in Eq. (3.32), passim) and

the overlap integral rl=;ga2/27. Without loss of generality, we take co to satisfy

the dispersion relation,

=_,(k,_+ kl)+_'_,,, (3.92)

where

032 4_2( ' Xq-_- }b,ff - 2_ -_o
1- (3.93)

and the brackets indicate an average over the beam slice. We define

O.)beff=?j1/2cob,with CObthe beam-plasma frequency, COb2=4a'nbe2/m.
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a. Eikonal equations. Expressing Ay in terms of the eikonal quantities A

and rp, from Eq. (3.2), and neglecting second derivatives, and products of

• derivatives, of A and rp,we obtain,

c 2 o_ 2 c 2 \ q, r . (3.94)

Here, _ve have introduced a new phase variable, X=_r-rp. In this expression, an

average has been performed over the period 2_/ro and over ali electrons at z,t,

as indicated by the brackets. Making a change of coordinates from z,t to s=t-

z/vz and t, gives

(1 v_'-, ) + (Aei_) = i exp(- ix)

T

_l,'_,s, , (3.95)

where v_=ro/ckz. Following Bonifacio et al.,13 we neglect the slippage term for

v_-vz-c (fast-wave limit). This can also be written in terms of real variables as

. "ftr"- 2o2 \q'7 sin (V) ,

A _ = 2co \_-Z'_cos (_) .
_- , (3.96)
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Combining Eq. (3.96) with Eqs. (3.22)-(3.26), we have the basic equations

describing the ion-channel laser in the fast-wave limit.

Comparing Eq. (3.72) and (3.96) we see that the quantity
b

III I

.... , (3.97)

is a constant in t. This integral is proportional to the total energy of a beam

slice and the comoving eikonal wave front.

b. Dispersion relaion To examine amplification, we adopt the complex

eikonal B=Aei¢, in terms of which Eq. (3.96) is

= i 2co \q, exp(- ix) . (3.98)

Expanding X---Xo+X1and qy=qyo+qyl in zeroth and first order terms, we have

--egr- 2 r° \ exp (- iZ°)(_-'° "_ + i _'iL_ . (3.99)

(In principle, there is also a perturbed qz term, but it contributes at higher

order in a/_.) The perturbed phase is determined from Eqs. (3.22)-(3.26), or

equivalently, Eq. (3.29),

136



Chapter 3 . Theoryof the Ion-Channel Laser

_t5 -- _ - FI + A s in ( Zo + rp)- FI _- coS ( Zo + rp).

(3.100)

. Writing Xl=Im(_l), we have

02 ,_" _
3t2 - _Be % - iU--_(BeiZ°).

(This result is roughly equivalent to the work of Eqs. (3.52), (3.54), and (3.61)

combined.) We look for a solution B(t)_exp(Ft), and integrate Eq. (3.101) to

obtain

_ i1-I }Be,ZO
-1. .

= (r +/aco) 2 (r +/aco) , (3.101)

neglecting small constants of integration. (Note that this derivation mirrors

that given in Sec. 2b, except that here we used the eikonal equations (22)-(26),

to arrive at the same result more quickly.)

The qyl term is obtained by perturbing Eq. (3.25),

• dqy, 2{ 1 q_Adt =- c°tJ+-4 -k'c q] j sin( Zo + rp)
!

6

which we integrate to find
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qy°FI tq _1 _- _ (F + iAco) Be_° , (3.102) .

neglecting corrections of order a_, and small constants of integraton.

Combining Eqs. (3.99), (3.101) and (3.102) gives the dispersion relation

for the growth rate

}/ Ir 4 co \q, _ (e +iaco )_ (r + iA_),,, .......... , (3.103)

This result is fairly general and can be used to assess finite temperature

effects, due to spreads in Aco, arising from spreads in vz or co& themselves due

to spreads in transverse energy (h) or axial momentum (qz). Before

considering detuning spread, however, we analyze the case of a cold beam,

corresponding to a step radial profile. In this case, the detuning Acois the same

for each particle, and the resonant denominators may be removed from the

average. The dispersion relation then takes the form

iii I •

r (r + ia_ )_ )_+ 122(r + iAco )co_= i (2 Pcoa
, (3.104)

m

where the "Pierce parameter", 14p is given by

I
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_ e_,_ /qY='/Jz_\q,

;{}• _ N,, (k,c _
32_ 2q_ a_ 1 ql- k,c . (3.105)

a

For a fast-wave, this '

I )1la [
P = 32q do

, , (3.106)

The constant p is given by

2coco_

a_,yl
4 a,v.o_q, , (3.107)

and in the fast-wave limit, it is

" 122 =8--
a_

..... (3.1o8)
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Fig. 3.3 (a)Variation of ICL Pierce parameter with wave phase velocity and momentum

(qz=p,Jmc), on resonance, as given by Eq. (3.110), for 1<flp<1.05 and l<qz<5.

As for the FEL, 15 the solution for the eikonal is then given by a superposition

of three terms

+1°

A e'_'= Aoe '% _._ otj exp(_t )
J"-_ (3.109)

where the Fj (j=-1,0,+1) are the three roots of the cubic gain equation. Taking

Aei_=Aoei% at t=O, with vanishing first and second derivatives, the constants

ct/are determined from the roots according to
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. with j,l,k any permutation of-1,0,+1.

Figl 3.3 (b)Variation of ICL Pierce parameter with wave phase velocity and momentum

(q==pdmc), on resonance, as given by Eq. (3.110), for 1<]3_<1.05and 1<q=<50.

Before analyzing the dispersion relation, it is important to note that p
a

as given by Eq. (3.105) varies significantly with wave phase velocity. This is

. not surprising given the discussion of Eq. (3.30). To make this more explicit,

we define a function F(flq_,qz)such that
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1/3

( I ,,) F(_..q_)p = 32q.io I

Making the approximation _z~l-1/2qz 2, and using the resonance relation, co(1-

]Jd]_)=co_, we find, from Eq. (3.105)

F(/J,,q,; = 1 +2ql(/J,- 1) //, , (3.110)

where the rcal root is understood. This result is depicted in Fig. 3.3(a) and on

a larger scale, in Fig. 3.3(b) We note that for/J¢=1, F=I, while for (_-1)2qz2>>1,

F~-I/_<O and increases slowly to zero, with increasing _l_. Note that this is

precisely the limit in which the relativistic upshift is negligible, i.e., c00~c0]_.

c. Small lR,3 limit ("cubic gain regime'9. In general the roots are rather

different from those for the FEL, due to the # term. Nevertheless, before

plunging into a detailed analysis of the cubic, it is instructive to consider the

limit of negligible _ (corresponding to a_2~p or larger) for the purpose of

making simple estimates and comparisons with the 3d_0 results. In this case

the dispersion relation is

F° = i(2 pr.oa (3.111) .

i.e.
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Fo=2 pcoa exp(- i_ 2) ,

F±I = + 2 pco_ exp ( + i_ 6 ) , (3.112)

dt

and the constants oq=1/3. (We will assume p>0, since the details for p<0 can be

. straightforwardly worked out, with the replacement I"j'=-F_j.)
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FIG. 3.4 (a)Gain, from Eq. (3,114), versus the normalized time coordinate T=pco/jt,for zero

detuning.

The solution is

• 1 '

= e + 2 e cosh ('v_) }Aoe (3.113)A e '¢ ._-.,[ -2 i, i, %
• !

where v=-pco_t. Gain is given by
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G(t) A2
A 20

= 3 + 2 cosh(2"_'_)+ 4 cos (3v)cosh('_r)} (3.114) °/

t,

and is plotted in Fig, 3.4(a).The phase advance varies according to

sin('c ) 2 cosh (.x/_ ) - sin( 2"c )
tan( q_ - %) =

cos (_') 2 cosh (%/_ ) + cos ( 2 _') , (3.115)

and is plotted in Fig. 3.4(b).
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FIG. 3.4 (b)Phase advance, Arp=_, from Eq. (3.115), versus the normalized time coordinate

r=-pco_t, for zero detuning.
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Growth is cubic for shot" times,

{4},%• Ae '_= 1 +_i, ° Aoe , (3.116)

and for longer times is exponential

1
A e'*'= -_- exp ( "V_*: + i'c) A o e %. (3.117)

As a figure of merit we note the exponential gain length Lg=c/Re(F.), or

Lg= 31/2 - 3I/2 ;ta2_ p . (3.118)

This is typically a few to one hundred betatron wavelengths, depending on 7?,

I and y

With the solution for A in hand it is instructive to substitute this into

Eq. (3.102) and solve for Z1. In the limit v>l, this gives

1 q__L 2_
,_1= _- p2 A sin(_o+7.o + _ )

- Note that particles with small qy are perturbed little. Maximum power is

achievtd near the onset of non-linearity and particle trapping, where the rms

Z1 is of order unity. At saturation we then find,
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A 2 32
"a. (3.119) .

Making use of Eq. (3.97), this gives an estimate for the efficiency e-p, and the

final output power P out~ eP beam, where Pbeam~mC2()'-l)I is the initial beam

power.

We observe that the average energy lost by the beam is second order in

A. Indeed, writing out Eq. (3.72) explicitly gives

=- _-o_mc A _ sin(V )

1 Iq_ qy I=- _-'_mc2A -_, sin(tp + Zo) +-_-Z cos (tP + Zo) Z1

=- -2-o_mc2A _ cos ( _ + Xo+ _ ) X_

31 / 2 a_ 2= a)mc t _A
2( q, p2 . (3.120a)

This energy loss from vyEy work done by the particles is seen to arise from

coherent oscillations in Z, at angular frequency pc0_ which are synchronous

with those in the eikonal. In configuration space, this amounts to a slow drift

in betatron phase, and axial position, which results in coherent beam centroid

oscillations of ever growing amplitude.
,w

More quantitatively, calculating the average y-momentum in a beam

slice we find
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24 p2 . (3.120b)

" This result makes use of eyl~-O.Sx1, which follows from differentiation of Eqs.

(3.22) and (3.23). Equation (3.120) shows that a coherent oscillation of the beam

centroid develops, and, near saturation, <py>~mca_/23/2. On the other hand,

particles bunch in ¢ as A grows. Thus an rf component develops in the beam

current, at the same time that the beam centroid oscillations grow in

amplitude. As we have seen, the result is coherent radiation.

d. Growth for finite 1_,8("quadratic gain regime"). We shall find that

the results of the last section are typically useful for simple estimates of the

laser performance. However, they represent the optimal performance

possible. In fact, the approximation l_=0 omits some important i:eatures. In

particular, a beam with a smooth distribution in transverse energy (i.e., a

typical beam) will have a detuning spread of order ¢o_. If _t is small, this

detuning spread is large, and gain will be reduced. This circumstance

motivates the more detailed study of the roots which we now undertake.

We proceed to solve Eq. (3.122). We define a dimensionless gain

parameter _', and detuning 3,
w

= (ir - ao ) / ,

3 = Aco/c0_ , (3.121)
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in terms of which the dispersion relation takes the form

Note that since Re(F')=ra_Im(_), growing roots correspond to Im(_)>O. In

particular, for amplification _' must be complex. In terms of dimensionless

parameters

1 2 1 2
Q =-_-/2 -_--8 ,

1
/22 _ ,

R =-_-- 3 + 4/Y- ,,z g (3.123)

and a discriminant,

D 2 = Q3 + R2

= pa _ __8(/22 + _-8 - 2--7 y8 , (3.124)

the condition for the existence of complex roots, and amplification, is D2>0.16

Specifically, for D2>O there is one real root and one conjugate pair of complex

roots. For D2=O all roots are real and at least two are equal. For D2<O all roots

are real.

Definining two additional constants
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_. )1 13S± (R -t- D , (125)

. the roots of the dispersion relation are given by

8
.

_ = -1( 8+ + S-) - _- ± i _23 '(S+ - S-) (3.126)

5

4 p+ll

321 unstable _ "t0 _

nstable, | J

-20 -10 0 10 20

5/g
FIG. 3.5. The peof Eq. 3.(130) are depicted as a function of detuning, 3. For gain, p must satisfy

p<p. or p>p., i.e., the region of stability lies between the two curves shown.

i

For D2>O, we have one growing root (_'+)one decaying root (_.) and one purely
g

real root (_'.). Inspecting Eq. (3.122) we observe that the dispersion relation is

unchanged under the transformation _'_-_', 6_-_ and p_-p. This simplifies
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our analysis somewhat, in that we need consider only the case p>0.

Conclusions reached there may be extended to the p<0 case by changing the

appropriate signs and noting that when D2>0, _'+=_'.*.
,I

FIG. 3.6. (a)The normalized growth rate _=lm(_=Re(F)/¢Ol3is plotted versus detuning I 8 and

the cold beam dielectric parameter _ Note that the peak value _i=31/2occurs at 3=-/_=0.

It is also helpful, in analyzing the roots to note the standard relations

between the roots of a cubic, which in this case are
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We may check Eq. (3.126) against the I.t=8=O result, by taking the limit

l_,5<<p. We find,

m !

_o = 2 p 1 +2sl3 3 t:9 ,

G =-p 1 + 2s d3 ,- + i31/2p 1 - 2s 33 ' (3.127)

FIG. 3.6. (b)The real part of the root _r=Re(_,Ois plotted versus detuning, 8 and the cold beam

dielectric parameter /_, as in Fig. 3.6(a). Note that Re(_)=-(F'i+Aro)/cof_<Oin regions where

Im(_)_Re(F')>O ( i.e., in regions where amplification occurs) as would be expected from the

discussion of the ponderomotive force of Eq.(3.70).
e

. The exponential growth length is Lg~llk_Im(_+), or
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Lg _ 31/2 1+ 25/32 a: p 3 /Y , (3.128)

in agreement with the previous result.

In general, however, for # or 8 comparable to p, the condition D2>O

yields a constraint on p, p<p. or p>p+, where

312

. (3.129)

This constraint did not appear in the previous treatment because we

neglected detuning, and the cold beam dielectric effect represented by # (i.e.,

we neglected particles with qy<A). The p± are plotted versus 8 in Fig. 3.5. We

observe that on resonance (8=0) I p1>l._/22/331/2 is required for gain. For a fast-

wave, this condition is a_2>(2s/3/3)p~p. On the other hand, inspection of Eq.

(3.130) reveals that for large negative detuning this constraint is reduced and

gain is possible with a_2<O(p), i.e.,/_/p>2.8.

To gain more insight into the condition for gain, we plot the growth

rate, Im(_+) given by Eq. (3.126), versus 3 and # in Fig. 3.6(a) and, on a larger

scale, in Fig. 3.7. Immediately we observe that gain is not an even function of

detuning. In fact, the instability is stabilized for a finite positive detuning,

which for #=0 is 8/p~3.8. As _/p increases to/_/p~2.8, this upper bound on

decreases to 0. On the other hand, for any finite negative detuning, there is

some range of _ which yields growth. Conversely, for any/1, there is some
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negative detuning which yields growth. Interestingly, the growth rate is

appreciable even for 8/p~-50. It should be added, however that the cubic is

. strictly valid only for 3<<1 and this constrains the maximum possible S.

(Thus for 8/p~-50 to make sense we must have p<1%).
N ,

2.D_

0.0 .6

Fig. 3.7. Growth rate as in Fig. 3.6(a), for -100<8/p<50and 0<p/p<20.

We may check this large 3 behavior by solving Eq. (3.122) explicitly, in

the limit 131 >>#,p. In this limit, we find
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and the threshold for gain in this limit is 8<-_4/32p 3. Far above threshold,

Im(_+) decreases slowly, as 1/I 81 1/2, as seen in Figs. 3.6-3.8. More

quantitatively, we may compute the maximum growth rate directly from Eq.

(3.130). We find

b

max _3(_.) 8 lY
6 _- _ a_, (3.131)

occuring at

2.0 ' " ! " I " I ' " I "

1.5

1.o

0.5

0.0 • I , i , I , I ,
0 1 2 3 4 5

g/p

w

FIG. 3.8. The maximum growth rate hn(_+)/p is plotted versus the cold beam dielectric

parameter. The corresponding detuning is plotted in Fig. 3.9.
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1 /_ _4/_

8 = 16 p3 = a--_# (3.132)I

G

and corresponding to

a

_'= _-(- I +i)

We observe that at this detuning, Re(_+)=-#2/2181=.8p3/#z--2ap 2,

corresponding to Fi=-Ac.a+2a_cop.

0 " % I _ " I " ! " ! ' "

,_L

-10

8lp
..20

-30

40 " i , ' • ' , I_ ,
0 1 2 3 4 5

m

FIG. 3.9. The detuning corresponding to the growth rate depicted in Fig. 3.8. plotted versus the

cold beam dielectric parameter.
a
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The "exact" result computed numerically from Eq. (3.128) is depicted in

Fig. 3.8, with the corresponding detuning in Fig. 3.9, giving good agreement.

Practically, it is useful to have an estimate of the reduction in the peak growth

rate due to the # term. This is given numerically in Fig. 3.8. Analytically, in

the limit a_<<p, this is

max_3(G)
_=

max Y3( _. ) 31/ 2 _-_,) 3112 p
, (3.133)

where we have used the fact that the maximum growth rate for #=0 is

Im(_+)=31/2p, and a_2/p~8(p/_) 2 .

From the analysis of this section we have learned that the cold beam

dielectric effect represented by the/_ term in Eq. (3.122) tends to reduce growth,

even eliminating growth for some range of 8 and p. This was anticipated in

the discussion of the ponderomotive force of Sec. 2.b. We have seen that the

competition between the bunching (=--)and debunching (/7) terms depends on

the ratio p/a_. It also depends on detuning, since the pondermotive force

may be varied by tuning the beam off-resonance.

To make this more explicit, and to check the calculation of the

ponderomotive force of Eq. (3.70), we repeat the calculation of Eq. (3.120), in
i,

the case where the/7 (or #2) term is not negligible. We have
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- _--o)mc2A _ sin(_/)

1 _qyl q, )=- Tromc2A\ q, sin(rp+ Xo) + _ cos (rp + Zo) Z

-_- _-comc2 A _ exp ( - i,:p- iXo) i--_ + -_-Z,,7,1
a

We substitute from Eq. (3.101) for X1, and (102) for qyl to obtain

I___t I 1 2_/_qysl 1 +21qy I 1 }= 4 -c°mc_A _ \-q-Z 3(F+ iaco) 2 'q-d-'Fl _(F + iaco) .

Taking the fast wave limit and writing this in terms of _r=Re((+) and

_.i=lm(_+) we have

This is just the result one obtains from Eq. (3.70), using dH/dt=(ro/ckz)dqz/dt.

By inspection we see that _r<0 is required for gain. Since _r=-(Fi+,4co)/co_, this

just says that Fi+z_=drp/t+Aco must be positive for gain. In this way the phase

shift in the transverse motion due to the driving force is partially cancelled

" and particles may remain nearly stationary in _, resulting in a secular loss of

energy. Said differently, detuning has increased the axial bunching with

respect to the debunching effect represented by the "/7" terms of Eq. (3.29).

(The same discussion applies to the slow-wave case, with the signs reversed)
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4. Finite temperature effects.

Thus far we have considered a cold beam, for which all particles had
o.

identical detuning, Aco. In this approximation, ali particles were resonant with

the wave. Returning to the dispersion relation of Eq. (3.103), we see that a

spread in detuning will alter the dispersion relation, and likely reduce

growth. In this section, we quantify the effect of a detuning spread arising

from a spread in axial momentum, qz. We reserve for the next section a

rigorous calculation of the effect of spread in transverse energy, h.

We define 30=<z_co>/cop to be the dimensionless average detuning, and

introduce a new particle variable /_=(Aca-<Aco>)/rop. Taking _"to be defined as

in Eq. (3.121) with "3" replaced by 3o, we rewrite Eq. (3.103) in the form

We model the effect of momentum spread by taking particles to be uniformly

distributed in the range -3s<61<3s. In this case the integrals are straightforward

and we obtain the modified dispersion relation, (to be compared with Eq.

(3.122)),

,u2 3_ 8 p3

+ So = In 6, +_2 _32
....... (3.134)
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a. Cubic gain regime. First, we consider the limit of negligible _. The

dispersion relations is then cubic,
o

and is identic; :o Eq. (3.122), provided we make the replacement [.12"-"_r_s2.

Thus we may carry over ali the conclusions from our analysis of finite #

effects. When Ss<p, the effect of the spread is small. When 3s>p the coherent

oscillations in X1, which in Eq. (3.120) contributed to the ponderomotive force

are washed out, unless S0 is below the threshold detuning given by Eq. (3.131)

From Eq. (3.132), peak growth occurs for

6o=-16 1:,3l

and the growth rate is reduced below the rSO=3s=Ovalue by the factor from Eq.m

(3.133),

o

8
L_ --

31/2 _ • (3.135)
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'/hus for 3s~3p, the growth rate is reduced by a factor of two.

We may relate these constraints on 8s to practical constraints on the

beam through the dependence of detuning on qz and h as given by Eq. (3.16).

In the fast-wave limit this gives 8s,...1.5q_/qa for a momentum spread of +-qs.

Equation (136) then requires qs/qz~O(p) or less. For example, for qs/qz~2p, the
J

growth rate is reduced by a factor of two. For low p, as in the FEL, this imposes

a stringent requirement on beam quality.

For a spread in transverse energy -+hs,8s~qzhs. On the other hand, for

typical beam profiles, h_~crha_2/qz, where Crhis a factor of order unity which

depends on the beam profile. In this case 3s~Crhal_.Peak growth then occurs

for a detuning

with a red:.:ction in the growth rate from the &=30=/_=0 result of

2

O - 31/ 2o_

,p

For example, we take trh~0.5 and consider the case a_2.--lOp. We find 3o/p~-19

(thus this example only makes sense for p<2% or so), with the growth rate
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reduced by a factor of five. (This choice of trh is essentially phenomenological _

and motivates the more precise treatment of Sec. C.)

b. Quadratic gain regime. Next we consider the limit in which li isc

comparable to p. We look for a solution with 8s<< I _'!, expanding in 3s/_'. we

" have

_'+ 8o= s +7-tyJ + s+

We expand the root about the 8s=Osolution, _'=_'0+_'1,and obtain

_"--('¢-7(28o¢o+,3¢_- _).

As an example, we consider the correction to the root _+, at the optimal

detuning given by Eq. (3.132). In this case we have

_'o.8 p3
ti2 (-1+i),

1 l_

8o= 16p3,

so that
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_I=- (2+i)

This gives a growth rate

_(_.,.) 8tY.{#22;'31 I._ }- 1 - p6_

) (3.136)

Although the condition for the expansion amounts to 8s¢<a_, this result

should provide a useful estimate for more appreciable 8s. For example, Eq.

(3.136) predicts a factor of two reduction in growth rate for 6s...,31/2al_.

In terms of axial momentum spread, Eq. (3.136) requires qs/qz~O(a_) or

less. For a transverse energy spread hs,...c_ha_/qz, Eq. (3.136) predicts a reduction

in the growth rate by a factor t_~l-Crh2/6, which is of order unity.

We conclude from this that the quadratic gain regime is less sensitive

to transverse energy spread than the cubic regime. It is slightly more sensitive

to axial momentum spread, however, since the constraint on qs/qz is lower by

a factor of order O(a_/p).
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C. MAXWELL-VLASOV DISPERSION RELATION

In this section, we provide an alternate derivation of the dispersion

" relation using the method of characteristics applied to the Maxwell'Vlasov

equations. This approach is especially useful in assessing the effects of

detuning spread due to realistic beam profiles. After working out the

dispersion relation, we will apply it to both the step profile and an arbitrary

finite profile.

1. Phase space integrals

First we digress briefly to note certain helpful integrals. The

normalization of the equilibrium distribution function fo is

I
fd 3 p dxdy fo = _ -

t

and the average of some function F over the beam cross section is given by

paxay (3.137)

o

It will be convenient to convert this to an integral over parameters

characterizing the unperturbed trajectories. We parameterize these
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trajectories in terms of quantities 8xo, OyO, qx, qy, qz, and zo defined as follows.

The betatron angles satisfy

/

Oy = Oyo + _'c , _ ,.,_
/

, [,

0x = 0_o + mo1: , . /_. , (.3.138)

where 0x0 and ey0 are the values at v=-0. The transverse positions are

cqx
x =- cosqz cos (G ) ,

cq_

Y = r_a q, cos (0 r ). (3.139)

and the momenta are just px=qxsin(Ox), and py=qysin(Oy). The axial velocity is

given by

tj, G 1

c - c +q_q2{q_c°s(20, ) +q_ cos(20,)},

G 2 + q_ + q2Y

c 4qZ '

and the axial position is given by

z = z, + Gv + _Jc-,sin(2G) + _ sin(20_ ),

z, = z o - k, sin(2 0_o ) - -k_, sin (2 Oyo ).
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We recall the dimensionless quantities _x,y

a

1 k, ql,y

_'Y=8 k_ q_
w

defined in Eq. (3.13).We may rewrite Eq. (3.133) by making a change of

variables in the integrand, using

m_____cd q yd Oydy dpy - kaq, q y o ,

dx d px - mc qxdqxd Ox
kaq, o ' (3.140)

This gives,

, f C, ioIF)- m e c (io/I) dq,dq_dq_dO de x 12 yO 0
2k.

We consider the zeroth order distribution function, fo, to be a function of H_L

and pz, and it will be convenient to refer to the dimensionless transverse

energy h=H.dmc 2,

1 (P_ + P_) + 1 2(x 2 y2
h- mc 2p, _kr, + )o

1

- 2q (q_ + q_)z . (3.141)
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We may then convert <F> to an integral over qy2, qz and h,

2 h#. 2z 2a

0 o 0 . (3.142) .

When F is a function only of h and qz, this gives,

....... ,,, I I i I

iF ) = 8 _2 m 2ekp22c( Io/ I ) _dq ,dh q . hfo F I........ (3.143)

It will also be necessary to compute integrals with derivatives of fo, and

we note for reference,

,..,,- mc ) , ,.

- mc \Sh )
_,,p, ,t. (3.144)

2. Method of Characteristics
m

We proceed to apply the method of characteristics to derive the

linearized dispersion relation for an electromagnetic wave copropagating

with the beam through the ion-channel. Writing the perturbed distribution

function as f=fo+fl, we the Vlasov equations is to linear order
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G Fad0 af0
dt - ' _ - F_I °_P--7, (3.145)

a

where d/dt is evaluated along the zeroth order trajectory. Taking a vector
,m

potential Ay=(mc2/e)bexp(i_), gives

fl is then given by

I

• (3.147)

or, in terms of the Fourier transform,

0

. (3.148)

Here, the integrand is evaluated on the parameterized trajectory defined in
t

Eqs. (3.138)-(3.140).

, This result for h is coupled to Maxwell's equations,

167



Chapter $ Theory. of the I0n-(_hannel Laser

(c2_ _ + ro2_ c2k2)b 4_e 2 Pr ,
= m _daP _(F',ff)W. (3.149)

Note that the integral on the right-side is over the momenta at 'r=-0.

We assume b varies negligibly across the beam and define the mode

area, 2:

_,_, = Ib (r = 0 )12

fdxdylbl2 . ' (3.150)

Then the dispersion relation takes the form

2
m2_ c2k_ - c2ki =

4 z e2c Sd3 q YmX pdx dy _ sin (0_o )

x Sd't k,v,-_, + (ro - kzv,) (imce' ("._ 11_1_,-.- , ,,.,.,,..,,,

where we make use of the parameterized trajectory given above. Defining the

dielectric constant e

co_e - c2k_ - c_k_,= 0 , (3.152)
i

and writing e=l +ez+@, we have o
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0

- mE r# pdx dy -_, sin (Oyo) d'c k,v_ imce _(¢'- , '
0

ey = 4 rce2c q Y fd'¢ kzv, _(im '(¢'-¢))- mE roa ld3 p dx dy _ si n(Oy o) (ro - ) ce

(3.153)
w

Next we make use of Eq. (3.144) to obtain

& =-i4rce2c fd 3 qYmE r_ pdx dy -_- sin ( Oyo) --_

id { _o _o( Pi + P} )} i(¢,_¢)x_. zk,vy Oq, Oh 2 pi e ,t

ey =- i 4 rc e2c Sd3 q ym 2 o_ pdx dy _ sin(Oyo) -*

x -.Sdz (ro - kzv, )[,-_-ff'f-_e . (3.154)

Using Eq. (3.140)., this may be written in terms of eikonal variables as

f __-.Z )Oyey_ =- i8rce 2m 2c 3 qxq3
oYk_E dq_dqydq,dO_odOy o q,a sin(Oyo ,, , (3.155)

where,

I

= cg--h v(ro- kzvz)sin(Oy)e _(¢'-;)
-- , (3.156)

and
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° {0-_, _h(q_ sir_(G)+q_sin2(OY)l}G = kzc __d'r - 2q_ sin(Oy)ei(_'-_) . (3.157)
m

Several different integrals over 1:appear in these expressions. For clarity we

write them out separately

0

= Id,rsin(O,)ei(¢'-_),

o

02 = Ida:cos (2G)sin(Oy)e _(_'-_),
o

03 =. Id'r cos (2 Oy ) sin(O_)e _(_'-_l,
o

= Ida: sin 2 (G)sin (Oy)e'(_'-_l,

0

0s = Id_: sin 2 (Oy)sin (Oy)e '(_'-_).
-- (3.158)

In terms of these integrals,

ofo(o_- k,_,)o,+ Ofo (-q_ o -92'--o)Oy- Oh _k,c _,4q1 2 + 4 qd 3 (3.159)

cgf° c?f°( q_ q_ 0 _
O, = k, c _q O, - k, c -_ _-_-_2t14+ 2 q2 s) . (3.160)

o

The term in the exponent in Eq. (3.158) is explicitly
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4"- 4"= k,0",l:- _ -+

+ _,, sin(2Ox)+ _ysin(2Oy)- _, sin(2O,,o)- _y sin(20yo).(3.161)
6

so that

q,

e '(_'-¢) = exp{- i(,G sin(2O, o) + {y sin(20,o)) } --+

x £ ].(_.)J..(_,)exp{ei(nO=o + mO, o)}_

x exp {i(2(n + m )roe_ - .f2),'} , (3.162)

where

I2 = o9- k=rT=. (3.163)

Thus in general, the integrals of Eq. (3.158) are a bit complicated,

involving a sum over odd harmonics, with coefficients given by infinite

sums of products of Bessel functions. However, in the limit _x,_y<<l, these

integrals reduce to a quite manageable form. (This is essentially the same

approximation made in averaging the terms in Eq. (3.11)).

We have in this limit

{0 .}=1 e o _e ,o
A+I -a_--_ , (3.164)
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where we assume Im(f2)<O and we define the detuning from the k-th

harmonic

AN= rO- k,_, - nroa

1 +q_h 1

= co - k,c + k,c 2 ql - nrop 2_"_,. (3.165) "

The other integrals are

L92 _ 0 i

1
=

3

(3.166)

and we discard terms that will vanish after integration over 0x0. Noting that

we may write

8_e2m2ca _ q,_q3y(___+ 1_,e.y., = 0.)2km2y, dqx dq y dq,-_, + _ y._ , (3.168) "
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where

y 1

• o_h ah 4q_ ( - "2") '
i

= k,c -_(1 ) - k,c "_q,2(T ) + "_q2,('4")" . (3.169)

Recalling Eq. (3.14),

vG 2 + q _ + q2y 1 + q,:h
u= 1 - = 1-
c 4qf 2q_ , (3.170)

we see that zl_ depends on h, but not qx or qy individually. In this case, we may

change variables to qy and h, and integrate over qy, to obtain.

2q_h

= h dq, _ + dq_q_tYy ,,,

= 4_3e 2m 2c a hdq, 1 1 +-_ y,zk_E (3.171/

where

• 2q, h
A

Oy,:= Sdq_q_l._,,.,.
O• , (3,172)
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or

^ 1, _o 1 _o h_O_ 2 qI n2= "_'(ro - k,G) - "_'k,c "_'qz ,

O, - 2 ql k,c - k,c --_.q, h . (3.173)

Substituting this in Eq. (3.171), we have

4 x3e2m2c _ t_ P

e = 1 + Jd
oYk _,F, -- h d q , (0 + _") , (3.174)

where

0 = -_, +-_ 2 b-h-(ro- k,G) ,

Oh q, + 2 k,ch 2 " • (3.175)

We rewrite O' as

Oh- 2 + rot_ ,4-_- , (3.176)

and integrate by parts using
t

174



Chapter 3 Theory Qf the Ion-Channel Laser

az_ ro__._a_ 2 + q,h
"_, =+ 2qz k,.c 2qd '
Oa, k,c

j

Oh 2qz (3.177)
b

- so that

-- 4 h fo (2 + _ ,4_ + q, fo ,42+ _ , (3.178)

and

0 --5k, cfo'o--[,k.-_,+ --g'(k,c) fo'2"-i-q,_,a_'-Ti'+_

_+ k'croaf°-_ " z_ A2- -(k,c -qTfo(2 + qzh ) 1 +-Z . (3.179)

From Eq. (3.174) this gives

-- I

.... , (3.180)

where X is proportional to the dielectric susceptibility, and is given by
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h rn' k" c (1 1 ) !2.. h ( 2 + q h , (__+ + __ ) __- 2q2 r Z1,2 _ + (k,c )2 q| "

(1 1)+ 2 + rn.a - - 2 ql A_ _ . (3.181) -

Simplifying this somewhat gives

I ! I I iii I

h 1

+ (k,c 1 +12-._,h ; +...__

................. (3.182)

In the next two sections we apply Eqs. (3.180) and (3.182) to compute the roots

co, of the dispersion relation determined by e, for various beam distributions,

fo, corresponding to step radial, Gaussian, and parabolic density profiles.

It is worth noting the h_0, or cold-beam limit of Eq. (3.180),

l i m e = 1 _ .6)_,# (co - k,Fa ) 2

hd cot (CO_ kzG)2 °Ya, (3.183) . :

where we recall the effective beam plasma frequency, from Eq. (3.93), "
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_,rr = £, _q ,Io ,). (3.184)

g,,

This reduces to the expected results in the c0_---)0and vz_0 limits, as we shall

" see below, the resc_nant part of this cold beam dielectric corresponds to the/7

term in Eq. (3.103), and the/_2 term in Eq. (3.104). It is straightforward to show

that this e gives rise to no instability, as we would expect from the discussion

of the ponderomotive force of Eq. (3.70).

3. Step Radial Profile

To make contact with the results of the eikonal treatment, we consider

first the case of a beam with uniform transverse energy,

2
1 kp 1

= __(h- ho)8(q,-q,o)
fo(h ,q,) 8_ m2e2c (I/I°)hoq. o , (3.185)

corresponding to a step radial variation in beam density, with beam radius, a,

given by ho=kp2a2/4. The overlap integral is r/=_a2/2_. We specialize to the case

of small detuning from the fundamental, so that a;=_o+iF, where Re(F)

corresponds to the growth rate to be calculated, and coo is the resonant

" frequency, satisfying

coo - k ,vz = ¢% - Aco , (3.186)
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with flco<<co/_. In addition, we take c00 to satisfy the dispersion relation of Eq.

(3.92),

a

2

co_o= c2(k_ + k[)+ a3b,,. (3.187)
w

Assuming Re(F)<<co_o, we may neglect the A_I terms in evaluating X, from Eq.

(3.182). In this case the dispersion relation takes the form, identical to Eq.

(3.104),

F(F + iaco)' a2+ (F + /aco)r_ a = i(2 Pcoa , (3.188)

where the Pierce parameter p is given by

p3 = 32.__oio 2q_ coa , (3.189)

with a_=qzoho, as defined in Eq. (3.68). This is just Eq. (3.105) at lowest order in

a_ 2, which we obtained by perturbing the electron equations of motion

directly.

The dimensionless constant # is

- F, q, oi ° coocoo 1 - 4 q--2-co---;a2a

1( rjI )2q2"co,o 1 (1 5 kzc 1-4 qzolo % a_ - -4q2 co-----ffa2a, (3.190)
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which is just Eq. (3.107) at lowest order in a/_. For example, for a fast-wave and

zero detuning,
Q,

, (3.191)

This result also shows that #2 vanishes for a/_~0.4.

From the work of this section, we conclude that the Ivlaxwell-Vlasov

treatment confirms the results of the eikonal model of the previous section.

We turn to consider the effect of detuning spread.

4. Arbitrary, finite radial profile

One shortcoming of the step-profile model is that all particles have the

same drift velocity in z. In general, we expect a spread in drift velocities, or

equivalently, detuning, to produce Landau damping and to reduce gain, as

discussed in Sec. B.3e. In this section, we consider the effect of such detuning

spread and quantify its effect on gain.

We will consider an arbitrary finite distribution fo, where by "finite" we

mean that the first and second moments, <h> and <h2> are finite. This

- assumption (which excludes, for example, the Bennet profile) is necessary as

we shall have occasion to refer to the fractional rms deviation in h
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a. Modified dispersion relation. We proceed to compute <X>, in order

to derive the dispersion relation. We specialize as before to the case of small

detuning from the fundamental, so that A+ is small compared to col3at zeroth

order. Now, for crh_0, there is an instrinsic spread in detuning. (An exception.

to this is the case of a slow-wave.) Defining

a2a = q.(h l, (3.193)

and defining a dimensionless rms detuning spread,

ZI2

)&-
k=c

-
2 q 2 toa , (3.194)

we see that the spread is of order crha_. We will assume O'ha_<<l SO that we

may neglect the A_ terms in Eq. (3.182). In this case,

( 5 2_2_ro_ & _'2 (k,c( 11 ) 1 "X _ qz4 + _ k,c h___+q2q, _ + ( k,c) _, q l 1+ -i-2--q,h ) - a)_ --_.

_4

(3.195)

To compute <X> we evidently need to compute the integrals,
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04 = . (3.196)

In terms of these integrals, we have

In general, Eq. (3.197) will result in a transcendental dispersion relation,

analagous to, but more complicated than that of Eq. (3.134). As with Eq. (3.134),

we may simplify this by assuming a small detuning spread, and expanding

the dispersion relation to obtain the lowest order correction to the growth

rate. Recalling Eq. (3.165),

1 + q,h
. A+= co-kzc + k,c - coe

2q_ . (3.198)

• it is convenient to write
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.k,c { {h}
2q, _, , (3.199)

where-z_co is the average of A+ at zeroth order,

k,.__._c k,c {h
Aco k,c - co + 2 q 2 + c°lJ+ _._ I. (3.200)

We then write Eq. (3.198) as ,4,=Ao+Al, where

do=- dco+ iF ,

Defining t_=A1/A0, we assume that Icl <<1, and expand the integrals of Eq.

(3.195).

1 _2 ./=_?(1- _+ - _ +.. ,

t_3-- 1---<h (132° - 2e + 3e 2 +...))

-Fi- (1 - 2e. + 3e a +...)1.
A° (3.202)

To simplify matters, we will neglect the corrections higher order in a_2

represented by _ and _4. Keeping only terms through O(1/z103), we have
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" 0 ,4_ h _,2 q, ,) ' (3.203)

From Eq. (3.197) we write <X>=XI+X2 where

X_--_+ q, Ao + ql q2 - c°a (h),

X2 = 1 )2(k,c)2 ( )A3° cr_lh kzc 3q_ ql 2 toa .
(3.204)

The term X1 corresponds to the cold-beam susceptibility, while X2

incorporates finite temperature effects.

Next we write out the modified dispersion relation. We take COoto

satisfy the dispersion relation of Eq. (3.92), and define _=(iF-Ato)/top as in Eq.

(3.121). The modified dispersion relation is then

a2 8 p3 t_

, (3.206)

" where S0=Ao/tori is the average detuning. Note that the condition for the

validity of the expansion, I el <<1, can be written _hafl2<< I (I Theiw '

dimensionless parameters /._and p are defined as before in terms of tobef[as in

Eqs. (3.105) and (3.107). The dimensionless parameter v is given by
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1 ra2b,H (k,c .k,c 3

v'-8 co0r_a _aj q_ q2 2coa , (3.207)
t

and for a fast-wave,

v4 _ 8 p3cr_a_. (3.208)

Now Eq. (3.206) is rather different from the result of Sec B.3.e, where we

modelled detuning spread with a fiat distribution. In that case, we found that

the 0(1/_ 3) correction to the dispersion relation vanished, and we went on to

compute the effect of the 0(1/_ 4) term. Such a distribution of detuning is a fair

model of the effect of axial momentum spread. However, since the

distribution of transverse energy is weighted by a factor of h (see Eq. [3.143]) we

have found that in fact there is a non-vanishing 0(1/_ 3) term. We will now

proceed to cal:ulate the correction to the growth rate due to this term. We

shall show that this effect is small, and in this way verify the simpler

phenomenological model.

To compute the correction to the v=0 root we expand _'=_'0+_'1and find,

-1

_1= - v4 (_ + 1_2_ + 16 p3 ) . (3.209)

1

b. Cubic regime. In the limit #<<p, Eq. (3.209) becomes
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_I= 24'°3 _J, (3.210)

. which in the fast-wave limit is

1 I_I = - -_-_ a_ 1 c._,. (3.211)

Thus ti_e shifted root is just

_'0 + _'_--"--_-o_ a_ + _'0 1 + yo'_ . (3.212)

This implies that the growth rate is increased by a small factor

1 2

t? = ! + _.o'_, (3.213)

which is typically of order unity,

c. Quadratic regime. For ]_>p, we consider _'0 corresponding to the

optimal detunJng given by Eq. (3.132), so that
,,L

• Co 8p_
- /22 (- 1 + i),

1 /_4

_°= 16 _' (3.214)
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In this case

- i)
_1 =- 16 p_ , (3.215)

corresponding to a slight increase in the growth rate by a factor

1 v 4/_2
0_- 1+ 12---8-p_

I

1 + 2-_ , (3.216)

where in the last equality we take the fast-wave limit.

We proceed to compute the factors of Eq. (3..213) and (3.216) for two

typical beam profiles.

" d. Example: parabolic profile. We consider first a uniform distribution

in transverse energy,

2

1 H(h o- h)6(q,-q o)1 kp (I/Io) 2
f°(h 'q') - 4 ;_2 m2e2c ho q_o , (3.217_

where H is the step function. This corresponds to a parabolic beam density

profile, ,
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( r__)/_/n(r) = no 1 -. (a.- r)
, (3.218)

- where the beam density on axis, no and the current are related by I=_a2ecno/2.

The beam radius, a is related to h0 by ho=kp2a2/4. For the parabolic profile Eq.

(3.143) takes the form

h

IF/ 2!=_2 dhhF(h )
ho o

Thus <h>=(2/3)ho and <h2>=(1/2)ho 2, and Crh2=1/8. Equation (213) then

predicts an increase in growth rate of about 4% in the cubic regime, while Eq.

(3.216) predicts a 7% increase in the quadratic regime.

e. Example: Gaussian profile. For a second example, we consider a

Maxwell-Boltzmann distribution in transverse energy,

= .l k_' (I/I0) _ .0
fo(h,qz) 8_ m2e2c hoq, °

This corresponds to a gaussian density profile,

n ( r ) - no exp - r2
, (3.219)

I
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where the beam density on axis, no and the current are related by I=r_a2ecno.

The beam radius, a is related to ho by ho=k_,2a2/4. Equation (143) takes the

form

'i"F" dh h exp h F
ho o

Thus <h>=2ho and <h2>=6ho 2, and crh2=1/2. Equation (213) then predicts a

correction to the growth rate of about 16% in the cubic regime, while Eq.

(3.216) predicts a 25% correction irt the quadratic regime.

We conclude from this analysis that detuning spread due to a realistic

beam profile does not seriously modify our estimates• Indeed, it appears that

the most significant correction appears at order 0(1/_ 4) as indicated by the

treatment in Sec. 3.B.e. No additional constraint has appeared in the course of

this more rigorous calculation.

Finally, it is worth pointing out that this analysis establishes that the

instability does not depend on an inverted distribution in h (e.g., 8(h-ho)).

D. RADIATION GUIDING

i

In this section, we calculate the overlap integral, _, in various regimes.

The simplest estimate 7/--1 (perfect overlap) is adequate when the gain length •

is short compared to the Rayleigh length, Lg<<LR=rca2/A,, where X=2rcc/co. On

the other hand,
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a 2

La =

while Lg>X#. Thus diffraction is always important and, in this case, effectsm

which provide guiding of the radiation must be included in our treatment.

In fact, the strength of guiding is rather critical, due indirectly to a

combination of two constraints previously discussed. We know that to avoid

detuning spread, we must have a_<O(p). On the other hand, the condition

that beam space-charge be negligible (np>>nb/_) can be written v'<<a# 2, where

v'=I/qzlo. Now we observe from Eq. (3.106) that p=(rlv'/32)l/3 (in the fast-wave

limit), and putting these two constraints on a#2 together, we have

v'<<a_<(rlv'/32)l/3, or rl>>v2/32. Thus guiding must not be so weak, and/9 so

small, that the focussing strength consistent with small detuning spread is

comparable to the beam self-fields. This constraint is not typically severe.

In this section, we consider: guiding by the ion'channel (viewed as a

dielectric waveguide), guiding by a conducting waveguide, and optical

guiding, 16 an effect which arises from the resonant contribution to the

refractive index. In principle one should incorporate all these effects into a

single model. However, we will consider each separately since, in practice,

- only one dominates.

We also should add a caveat that employing ion-channel dielectric
I

guiding will depend on damping or reduction of the "electron-hose"

instability, discussed in the previous chapter.
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1. Ion-channel dielectric guiding

Neglecting collisions of plasma electrons, the channel serves as a

cylindrically symmetric, dielectric waveguide, with step discontinuity in the

dielectric constant,

1 ;r<b
e(r ,ro)= ----_ "b _ r

1- r._ ' (3.220)

where r is the radial coordinate, r2=x2+y2J

Such a waveguide will always have at least one guided mode, the HEll

mode. We proceed to apply the results of Marcuse 17 to compute the overlap

between this mode and the beam, in the limit ro>>ro_. The transverse vector

potential is,

mc 2 f J°(_) ;r < b

A_ = _A sin(_ ) lo( _b )

Ko(_b) K° (_r) "b __ r. (3.221)

where J, and Kn denote the n-th order Bessel functions. 18 Equation (221)

shows that within the channel the vector potential decreases away from the

axis on the scale a-7, and evanesces beyond the channel wall on the scale/_-1

The quantities a"and p are determined from Maxwell's equations,
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o_ = c2k_ + c2 r_ ,
2

+122= k_ , (3.222)

- and the continuity condition at r=b

ll ( rb ) K1( 12b)

_cJo ( _ ) = 12Ko ( lab ) . (3.223)

It is convenient to define a dimensionless "waveguide parameter"

t 2 (12b)2 2= + ( _b) , (3.224)

where, from Eq. (3.222),V is just the channel parameter of Eq. (2.15),

V =krb I (3.225)

In principle, V determines/ab and _'b through Eqs. (3.222) and (3.223), and,

thus determines the efficacy of the guiding. It is not really surprising to see V

. appear again, since we are again considering shiel_ling, albeit electromagnetic

rather than just magnetic shielding.

The total power is related to the dimensionless amplitude, A, according

to
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ra 2A 2
Ptot = Po -_--k,b A (3.226)t

#,

where Po=m2cS/e2~8.71 GW, and A is a dimensionless mode area,

rolli ii .......

iA =8 I, I,tb
...... (3.227)

The power flowing through the beam volume is, for au<<1

1 A2Pb = Po -'d"k,a2 • (3.228)

Thus the overlap integral is

Po a_

77 -- Ptot - 2 qzV2 A . (3.229)

The Pierce parameter with dielectri.c guiding is then

III I

a_ 13
p=

28J J AliJq213
J (3.230) .

and the gain length (for #=6=0) is
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i/a

L8 _ 31/: _ • (3.231)

- (Although the actual gait. length will of course depend on # and 3, this is

useful as a figure of merit.) Interestingly, the only explicit current dependence

in Lg is through the dimensionless mode area, A.

60

5O

,o

° i
.o 3o

2o

1o

0 1 2 3 4

I(kA)

FIG. 3.10. The dimensionless mode area, A, of the HE11 mode of the ion-channel, decreases

sharply as a function of beam current I for I< 2 kA. Plot of loglo(A) versus l(kA) shows that Am

passes through about 70 orders of magnitude for I varying from 100 A to 4 kA.

m

Now, characteristically plasmas shield currents on the scale of a

plasma skin-depth, kp-1. On the other hand, in order for the radiation mode to
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be confined to the channel, plasma currents must shield out the field over a

length of order b. Thus for good guiding, we should require b>kp"1or V>I. We

make this more quantitative by solving for Ic,/_ and A explicitly in the limits

of weak (V_<1), moderate (1_V<5) and strong (V>>I) guiding.

a.Weak guiding. For V<I (i.e., I<4 kA), the solution of Eq. (3.223) is

l 1 lo OI) 1_b = 2 exp - _--j_(V ) - YE (3.232)

and Icb.-,V. The constant yE.--0.5772 is Euler's constant. In this regime, #b<<I

and the fields extend far beyond the channel. For example,/ab~0.2 for V=I.

3O

i
2o i

l/3

10

0
0 1 2 3 4

I

I(kA)

q

FIG. 3.11. Plot of A 1/'_,the current dependent factor in the gain length of Eq. (3.231) varies by a

factor of about 30 for I varying from 1 kA to 4 kA.

194



Chapter 3 Theory. qf the Ion-(_hanne! L.aser

The mode area is

_ 2

A = 3--2" J,(V) exp 11'(V)' + Yr. (3.233)

and is quite sensitive to current, as indicated in Figs. 3.10 and 3.11. For

example, A 1/3 ranges from A1/3~7x1010 for I=0.2 kA to Al 3 -2.4 for I-2 kA. For

V=I, A1/3~0.83.

The dispersion relation is

r_ = c 2k 2,+ _ cos 2(c_), (3.234)

where

li(V)

sin(_ ) = ,v/8 A . (3.235)

The angle a is an increasing function of V, with c_~12° at V=I. Thus for V<I,

most of the radiation propagates outside the channel, in quasineutral plasma.

. b. Moderate guiding. For intermediate values of V (1<V<5) we have

solved Eq. (3.223) numerically. In Fig. 3.5, Al/3 is plotted for the corresponding

" range of current (4 kA<l<100 kA), and this plot complements Fig. 3.10. In Fig.
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3.12, #b and x'b are plotted versus V. Over this range #b is nearly linear and is
L

well-fit by _b~-0.92+1.11 V.

0.9 "'. i' • '_' • ,' • , " •

0.8

0.7

, 0.6 I

0.5

0.4

0.3 - ' , I • ' .... ' •
0 20 40 _ 80 1_

I &A)

FIG. 3.12. The dimensionless mode area, A, of the HE11mode of the ion-channel, as a function of

beam current I for 4 kA.._100 kA.

Now, the HEll mode is unique in that it has zero cut-off and it should

be noted that at high currents, other guided modes will appear. Each of these

modes has a non-zero cut-off waveguide parameter, Vc>O, satisfying J,(Vc)=O,

where n is the radial mode number. For the ion-channel this means that for

each mode there is a minimum beam current, Ic~Io(Vc/4) 2, required for

propagation. At a given V, the number of additional modes above cut-off is
q

just the number of solutions of Jn(Vc)=O, with Vc<V. The next mode above

the HEll mode corresponds to Vc=jo,l=2.405 (Ic=24.6 kA). Thus for I<24.6 kA
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all modes are below cut-off, except the HEll mode. The constant jn,s is the s-th

zero of J,. For reference, the first five mode cut-offs are listed in Table 3.2.19

5

4
gtb

3

2

1cb
1

0
1 2 3 4 5

V

FIG. 3.13. The parameters au and/.la from Eq. (3.223) and (3.224), as a function of the waveguide

parameter, V.

We also note that at high current the simple relation between V and I

is altered. When the skin-depth is small, plasma electrons drift appreciably in

z, and the resulting "vxB" force tends to expel them farther from the channel.

• Asymptotically, for I>>Io, b,.-a(2nb/nr,)7/2,and V is bigger by a factor of order

21/2 . Thus the cut-off currents listed in Table 3.2 should be considered

approximate values, accurate only to within a few tens of percents.
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c. Strong guiding. For V>>/,/_b~V>>l and the field evanes,_es rapidly

outside the channel. The solution of Eq. (3.223) for a'b is

- _'- , (3.236)

and the mode area is

1 )2
. (3.237)

Thus A asymptotes to a constant ~3.34x10 -2 independent of current. In this

limit, the gain length from Eq. (3.231) is Lg~O.2;_(y/a_) 2/3 and has no explicit

current dependence. The dispersion relation is just ro~ckz, i.e., the fields are

well confined to the channel and don't "see" the plasma.

Table 3.2: Approximate currents at cut-off for the ion-channel waveguide.

Vc lc(/cA)

jo,I=2.405 25

j1,1=3.832 62

j2,_=5.136 112

jo,2=5.520 130
m

ja._=6.380 173

u

lt is evident from these considerations that at high currents, typical, for

example, of induction accelerators, dielectric guiding may be effective in
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enhancing the overlap of the beam and radiation fields. In principle, this

mechanism could be employed at very short wavelengths where machined

waveguides would be inadequate, providing guiding of a sort not available

for evacuated free-electron radiation devices. In fact, this mechanism can be

- tested and employed independent of the ion, channel laser instability. For

example, it could be employed in an ordinary FEL to inhibit diffraction.

2. Effect of Conducting Waveguide

We shall find that, for operation of the ion-channel laser as a

microwave amplifier, dielectric guiding is not quite as effective as guiding by

a conducting waveguide. This may be seen from Eq. (3.232)° For currents as

high as a few kA and beam radii of 1 cm or so, the field evanesces radially on

the scale of a fraction of a meter, a larger scale than that of the beam pipe.

Thus in the microwave regime, it is necessary to consider modifications due

to the presence of a conducting waveguide. Such modifications have been set

down by Orzechowski et al.,2° for the FEL, and we take them over directly for

the ICL.

a. Rectangular waveguide. Consider first rectangular waveguide with

dimensions wx>wy. We consider operating in the TEl0 mode, rather than the

usual TE01 mode used in FEL work. This is possible since the beam electrons
Q

make only small excursions off-axis, unlike in the FEL. This choice of mode

. has the added advantage that, depending on the waveguide parameters,

1,igher order modes may be below cut-off. The dispersion relation is

199



Chapt_ 3 Th_tQry Qf the Ion-Channel Laser

0)2 = c 2 k 2 2
, + c2kz, (3.238)

b

where k.L=_/wx. We neglect the effect of the plasma in modifying the

dispersion relation, in the limit k L>>kp. The overlap factor is

2iva 2

11- wzw y , (3.239)

and we assume a<<wx, so that the field does not vary appreciably across the

beam.

b. Circular waveguide. Next, we consider a circular waveguide of

radius R, operated in the TE01 mode. The dispersion relation is that of Eq.

(3.238) with k.L=j'ol/R, where j'01-3.832 is the first zero of J0'. We will neglect

the effect of the plasma in modifying the dispersion relation. The overlap

factor is

11= 1 a 2 a 2u_= 0.42_
J12oI2(o) 2R2 R2 , (3.240)

using J2(jlo)--0.4027. We assume a<<R, so that the field does not vary

appreciably across the beam. Note that three additioP.al modes are above cut-

off, the TEll (k_L=j'll/R, j'71~1.841), the TM01 (k.L=jol/R, j01-2.405), and the TE21

(kl=j'27/R, j'21-3.054). The incorporation of multiple mode effects in the
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particle dynamics can be accomplished in a manner analagous to that for the

FEL.21,22

3. Optical Guiding

" It is evident from the dielectric constant given by Eq. (3.180) and (3.182)

that the fast-wave interaction results in a modified index of refraction, which

is complex and varies radially. This suggests the possibility of a waveguide

effect due to the resonant interaction itself, regardless of other conducting or

dielectric boundaries. Such an effect was noted by Scharlemann et al., 16, and

Moore, 23 for the FEL. This "optical guiding" or "active guiding" and related

topics have been studied in detail by Xie24,25 and others. 26 In this section, we

shall give a simple approximate treatment of this effect in the ICL, which is

valid in the limit of weak guiding.

We return to and rewrite Eq. (3.152), in the form

oY- - Z, (I/Io) (X) , (3.241)

using Eqs. (3.180) and (3.182). We remove the average over the radiation

mode cross-section,

c--T- - k, = I , (3.242)
m
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restoring the mode profile, b. We consider a step radial profile for illustration,

so that H is the step function. We may describe this result in terms of a

radially varying, complex dielectric constant

¢2

e( r ) = 1 a_ a 2(I/ Io)X ; r < a

1 ; a __ r . (3.243)

Consulting Eq. (3.182), we observe that this may be written,

t 2 coe

e(r ) -_ 1 rlr_° (_ + 8) ;r < a

1 ; a _: r, (3.244)

where _ and 3 are defined by Eq. (3.121). This corresponds to an index of

refraction, n=nr+ini, where, for r<a,

Typically one distinguishes between gain guiding, where ni dominates, and

refractive guiding, where nr dominates. In general, both contribute.

We look for a solution for the radial mode of the form,
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Jo(_) ;r < a

b(r) =
]o( ra )

Ko(#r) ;a __ r
. K0(/Ra ) (3.246)

=.

The quantities _cand # are determined from Maxwell's equations,

0 2 2 _2
c2 - kz -

)2 V2(.a) 2 + (_ = , (3.247)

and the continuity condition at r=b

J1( _ca) K 1(/_a )

_c ]o ( _ca) = # K ° (/Ra ) . (3.248)

In Eq. (3.247) we have introduced the (complex) waveguide parameter

ii i t I

v _ =-__" +_;)
..... , (3.249)

m

and it will be convenient to express V in terms of amplitude Vo and phase O,

. V=Voe i°. From Eq. (3.246) we see that the mode evanesces radially on a length

scale 1/Re(/_). In particular, we require Re(la)>O.
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We will consider only the weakly guided regime, so that Rei#)a<<l.

We will make the additional assumption I/_al<<l. In this case, Eq. (3.248)

may be solved approximately using the small argument expansions for the

modified Bessel functions, 27

1
Kl(z ) = --Z t

to find,

loCV) }_ta = 2 exp -V J_(V) - Yr.. (3.250)

We may simplify Eq. (3.251) somewhat in the limit V0<l,

/ 1 1/.ta = 2 exp V2 Yr

_ 2 expl e-2'° 1Va2 _'E . (3.251)

Writing # in terms of amplitude and phase we have #=/aoexp(ir_), where

cos (20) tLa = 2 exp - V2° - 7'E ,

exp ( ir_) = exp { i sin(20)}1/o2 ' (252)
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Thus ¢=sin(2e)/Vo 2 modulo 2_, and -r,12<r_¢_12is required for guiding so that

Re(/a)>O.

Now, Eq. (3.252) is implicit in that the overlap factor, r/, depends on _t,

" which in turn depends on V, which depends on r/. To close this set of

equations we need to compute 7/in terms of ht. Having taken b(O)=l, the mode

area is28

,Y,= 2_Jrdrlb(r)! 2
0

r drlKoC r;I
= 2_ Ko(_ a ) o

2_ 1

• (3.253)

Equation (255) gives for the overlap integral rl=rra2/r,,

1 2 12sin(2 r_)
rl = T( _a ) IKo(m; I

• (3.254)

As we would expect, in the limit r_.--_zr/2(so that Re(l,t)_O), the mode extends
Q

to infinity and we find r/_0. Equation (254) may be rewritten explicitly in

terms of Vo and (9,using Eq. (3.252),I
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ii ii

' {rl _ 2-_..exp - 2 c°s (20) _2

V_ (sin (2 0 )]V0 ,
...... ,........... , (3.255)

Combining Eq. (3.255) with Eq. (3.249) provides an iterative algorithm for

determining 77 and V. Now, in principle 8 must be solved for as well,

however, we may distinguish two regimes where 0 is determined

immediately and only V0 ( or r/) need be solved for (self-consistenly for the

assumed regime). We discuss these regimes in turn.

a. Small #, 3 limit (cubic regime). In the cubic gain regime, _'+is given

by Eq. (3.112), _+=2pexp(2i_/3), so that

16a_p
¢,_e2io =exp (_ in;/ 3)

77 . , (3.256)

Thus O=-r:/6, and r_=-31/2/2Vo t. The requirement r_>-_/2 then restricts Vo to

Vo>_0.743.Eq. (3.255) becomes

71 ._ 3Z12V2° Vd 2 yE sin _, vd ,).
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To solve this, we define Po such that p3=rlPo3 (Po is the Pierce parameter for

perfect overlap), and a dimensionless parameter cr=64po3/2a]. Then from Eq.

(3.256), rl=cr/Vo 3, and we have

cr = Vo exp 2 y_ sin
3 ''2 1/o2 _"_°2 J. (3.257)

Since cr is formally independent of r/Eq. (3.259) is easily inverted numerically

to give Vo as a function of ct. This is plotted in Fig. 3.14(a). The corresponding

overlap integral 7/is plotted versus o in Fig. 3.14(b).
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FIG. 3.14 (a)The modulus of the waveguide parameter IV I= Vo as a function of the

. dimensionless parameter cr=64po3/2a/j3, in the small #,/_ limit ("cubic regime"). This result is

well-fit by Vo-O,74+O.94cr,
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For ct<0.05, we may extract a simple analytic scaling law by

approximating the curve of Fig. 3.14(b), with rl,.-,2.3cr.Taking a/_=_p for some

o_,..,0(1)we find _~2.2 104 p0_c_, and p~28po3o_,..,c_(I/qzIo).Thus p-c_(v/'),) where

v=(I/Io) is Budker's parameter. On the other hand, the condition that beam

space-charge be negligible (np>>nb/_) can be written v<<a_. Thus we must

have cz2>>0(1). This is incompatible with o_-0(1).

Essentially this argument shows that for effective optical guiding in the

cubic regime, o>0.05 is required (i.e., larger 77).Otherwise p is so small that the

constraint on a_2, a_<O(p), (imposed by the limit on detuning spread)

ultimately implies that focussing is too weak,a/_~v.

0.3 i m i 1

0.2

rl

0.1

0.0 I n i i
0.00 0.05 0.10 0.15 0.20 0.25

i

FIG. 3.14 (b)The overlap integral for the optically guided mode in the cubic gain r_gime, as a

function of the dimensionless parameter cr=-64po3/2al_,corresponding to the soil iLion of Eq. (3.256)

as depicted in Fig. 3.14(a). For ct<0.05, this result is well-fit by r1~2.3_.
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b. Large 8 limit. We turn then to consider operation at large detuning.

• In this case, from Eq. (3.130), we have 8+_'+~8, so that guiding is primarily

refractive. The waveguide parameter is,

8a 8

and will assume 8<0 so that V is real and 0=-_=0.

IVI
0.6

FIG. 3.15. (a)The modulus of the waveguide parameter I VI =Vo as a function of the

dimensionless parameter o"=8a_ I SI, in the limit of large detuning, as given by Eq. (3.258).

The overlap integral is
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I

I

and we note that this expression is just the usual weak guiding result (as in

10 0 .... I 1'1 I I " I11' I ..... I

10 -1

'11 10"

,o!10 .

10

10 -7 _ _ I ,, I I , _ 1
10 -7 10 "610 -5 10 -4 10 "]' 10 -210 -1 10 0

Or'

FIG. 3.15 (b) The overlap integral for the optically guided mode in the limit of large detuning,

as a function of the dimensionless parameter o"=8al_l81, corresponding to the solution of Eq.

(3.258) as depicted in Fig. 3.15(b). For O"<10 "3, this result is well-fit by 77~2.032(_)o.9oa.

Eq. (3.229), with appropriate modifications). We define a parameter o"--8a//2 181, •

which is formally independent of 77.Using Vo2=O"/rl, we obtain V0 implicitly
q

as a function of o" (analagous to Eq. (3.257),
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V_ V_ . (3.258)

" The dependence of V0 and 77on o" is depicted in Figs. 3.15a,b.

. With a bit of algebra it is not hard to see that this refractive guiding
)

regime scales more robustly than the zero detuning case. For illustration, we

select the optimal detuning given by Eq. (3.132). In this case,

8/:)3(_ 1+ i)=a_(- 1 + i),,u2

1/-'4 4 p3

so that o"=32r12/3po2/O_, where we take a_2=o_p for some o_~0(1). For o"<10 -3, we

fit r/(o") by r1~2.032 (cr')o.go3.It is then straightforward to solve for p and we find

p~2 4.9po2.513/ ¢_0.756, or

p = 1.36 e'-°'Ts_v°_3s

The condition a_2>>v may then be written, oc>0.28v 0,672and this is not usually

inconsistent with the requirement ez<O(1). For example, consider a 50 MeV

" beam with I=100A. At this current, ion-channel dielectric guiding is

ineffective, while the wavelength will likely be in the infrared making the

use of a waveguide impractical. For this example, we compute v~6xl0 -5, and

taking c¢~0.5, we find p~6xl0 -4. For the same current, at 2 MeV energy, we
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find p~1%, corresponding to an output power at saturation on the order of 1

MW.

We also note that for a controlled experiment it may be important to

remove the quasineutral plasma surrounding the ion-channel (by lowering

the intensity of the ionizing laser and producing fewer free electrons). In this

case, active guiding will be important even for high currents. As an example,

taking I=4 kA and 50 MeV, we find p~1%, corresponding to an output power

on the order of 2 GW.

We may conclude from this work that refractive guiding in the large

detuning limit will be quite useful depending on the regime of interest.

E. EXAMPLES

In this section, we apply the scalings derived in Secs. B-D, to fashion

several numerical examples of ion-channel laser performance from

microwave to X-Ray wavelengths. We consider four numerical examples for

which parameters are given in Table 3.4. The results have been checked with

a many-particle simu_atio.n based on Eqs. (3.22)-(3.26)_,ud (3.98). The first

example was also checked with a simulation following the full equations of

motion derived from Eq. (3.4) (i.e., Eqs. (3.6)-(3.8) and (3.98)). We postpone

discussion of numerical results to the next chapter. The numerical values

quoted assume ion-channel dielectric guiding, and the gain lengths and

efficiencies are for _=8=0. Nevertheless, other regimes are of interest as well
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(Table 3.3) and we will explore these in the numerical work of the next

section.

a

Table 3.3. Minimum gain length scalings
i

Cubic gain regime (a/_>p):

,,, ;80=0 ,8.<p
2 rc3 p

L I =,

16--'--_ 16 p, , 8, > p

Quadratic gain regime (a_<p):

.!

L, =, 2 rca_ 1 6 _,a_ ) ;8°=-4 a-"_

It is also worth noting that, in the first example (microwave regime), it

would be most natural to confine the radiation in a conducting waveguide.

Taking a 3 crux5 cm waveguide, operated in the TEl0 mode, the overlap factor

is r/-0.2, and the Pierce parameter is p~8%, for a gain length of Lg~45 cm. The

output power would be on the order of 600 MW. The beam parameters for

. this example are quite practical, corresponding roughly to what has already

been achieved with induction linear accelerators. 29
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Table 3.4: Examples of Ion Channel Laser Scalings.

Microwave Millimeter Infrared X-Ray •

Mcm) 2 5 10-2 1 10.3 1 10_ -

E(MeV) 2 4 10 100

I(kA) 4 4 4 4

en(cre-rad) 3 10"1 1 10-2 5 10-4 3 10.5

hp(Cre"3) 6 10l° 8 1012 1 1015 2 1019

L8 (cre) 70 16 4 0.2

;L_cm) 4 101 5 6 10-1 2 10-2

T/ns) 2 101 1 0.1 1 10.3

aa 0.6 0.5 0.4 2

a(cm) 1 710-2 3 10-3 4 10-5

p(%) 5 3 1 1

P_.t(GW) 0.4 0.5 0.6 3

Nh 3 6 11 14

In selecting these examples, the most severe constraint was found to be

the condition a#2<O(p), which is marginally satisified in the first three

examples. To exhibit the consequences of this constraint, the fourth example

was designed with a large a#. It should be emphasized, however, that such an

X-Ray laser could not be realized without a sharp distribution in axial

velocity, corresponding to a step radial profile, a spinning or otherwise

specially prepared beam. In the first three examples, the plasma densities

required are not out of the ordinary. For the fourth example, the plasma

density is high; however, it need only be maintained over a few centimeters.
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For completeness, we review the considerations of Chapter 2, for these

examples. Scattering with the neutral atoms and ions of the gas will results in

emittance growth. The increase in normalized emittance in one betatron

wavelength is A_,n=4_vreZ2ln(Omax/Omin)/f, where f is the ionization fraction, re

' is the classical electron radius and 8max/Omin~ 5.26 104/(AZ)1/3. Z is the atomic

number, and A is the atomic weight. For the examples, below, we take Z~50,

A--.100 and f~ 10%, corresponding to Ac, ~ 10.6 cm-rad. This is typically small.

Most beam-plasma instabilities will be rather benign for typical

parameters; however, growth of the ion-hose instability 30 is not always

negligible and the number of ion hose e-folds at saturation, Na, becomes

severe at shorter wavelengths. However, it can be reduced by further

shortening of the REB pulse length, _.

To summarize, we have seen that the ion-channel laser is viable high-

power, high-efficiency source of coherent radiation across the spectrum.

Needless to say, before proposing a practical experiment based on any of these

examples, one should ask whether any experiment has already been

performed which might in some way confirm theory. This appears to be the

case, as we shall discuss next.
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F. ION-CHANNEL LASER IN THE OVERDENSE REGIME

Ion neutralization of the beam on the (.Oi"1 time scale imposes a

significant constraint on beam length and this motivates the study of the

analogous instability of a magnetically self-focussed beam (nb<np). This

regime is also of special interest in that experimental evidence has already

been found, of coherent radiation from intense electron beams injected into

overdense, unmagnetized plasmas.31, 32 Explanations offered for the high

microwave power levels observed have included streaming instabilities,

strong-turbulence, and virtual cathode oscillations. Kato et al.,31 remark on

the possibility of an FEL analogy based on jitter motion in "large-amplitude

electrostatic waves generated by instability"; however, to date, no satisfactory

theory has been set down to explain the measured power levels. We propose

the ICL instability as a possible mechanism.

Examining the single particle motion, we observe that the

Hamiltonian of Eq. (3.3), takes the form

,/ ( (H = m2c_ + p,+ e A, c2c2 + p_c 2 + p y +eAC C Y '

- p c + rn2 c3 p_c p_c p y- _ _+_+ eA,+ e A
2 p, + 2 p, 2 p, P, Y , (3.261)

where pz is the canonical axial momentum
B
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p, = m yo,- e--A_
¢

In Eq. (3.261), we have set _~0 from quasi-neutrality. The axial vector

potential, Az, is due to the axial beam current, together with any plasma

" return current. 33 For a step radial profile (a crude approximation, in

particular, for the plasma return current)

A, = I,_ a-T . (3.262)

Note that here the assumption of a step radial profile takes on additional

significance in that, with it, the restoring force is linear. For realistic beams,

nonlinearities in focussing will introduce detuning spread and reduce gain.

With this approximate form for the Hamiltonian, the problem is

formally identical to that describe by Eq. (3.3), i.e., the potential of Eq. (3.1) is

replaced by eAz. There are some important differences, of course, even in this

idealized model. For example, now "71' is constant at zeroth order (whereas

previously it suffered a small jitter). We still have Pz constant at zeroth order,

from translational invariance.

Table 3.5. Parameters for the experiment of di Capua, et al.
a,

I=50 kA I.ec'25 kA

- v=-60ns R~33cm

a~ 7.5 cm rb~4 xl010 cm -3

&r-44c.Tn a~50cm
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Although this problem is deserving of a detailed analysis in its own

right, we may make some simple estimates merely by identifying, •

k_~(2Inet/yIo)l/2/a and a_~(ylnet/Io)l/2, and carrying over the scalings laws

developed for the underdense case. We consider then the experiment of di

Capua, et al. 32 Parameters are listed in Table 3.5 (where R is the circular beam

pipe radius and L is the propagation length), and analytic estimates are given

in Table 3.6. In this experiment, microwave emission was measured from a

relativistic electron beam propagating through an unmagnetized plasma. The

power as a function of time was measured in frequency bins ranging from 2-

47 GHz. 34

Table 3.6. Estimates for the experiment of di Capua, et al.

air-2.3 /}-45%

V~3.4 Ls-9cm

fr--3 GHz 2_fd(1 +aa2)~3GHz

2_zftm19GHz Pout~32GW

A number of features of this experiment presented anomalies. Two of

these were the large microwave power radiated (they estimate 4% conversion

of beam power to microwave power), and the spectrum, which extended far ,a

above cap, and resisted explanation. A number of the observations in the

paper are particularly notable:
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"... Electron acceleration due to the self-magnetic field of the beam is capable

of producing synchroton radiation. However, the power levels previously

observed are substantially higher than those expected on the basis of a single-

. particle model, indicating that it is necessary to have bunching of the electron

beam as weil. The growth of the radiation could conceivably provide the

. mechanism for such bunching, but it is not at all clear to what extent that occurs

in our experiment."

and later

"... The Compton boost model proposed in [8] [K. Kato, et al., Phys. Fluids 26,

3636 (1983)] predicts a frequency upshift in the emission from fr to ?_fr,' In our

experiment, this would correspond to emission at about 35 GHz; we do observe

emission at this frequency and beyond. Unlike the results of [8], however, we

observe a decaying spectrum, not one in which the emitted microwave power is

uniformy distributed over a wide range of frequencies ..."

Thus the experimentalists observed large microwave emissions at

frequencies far above cop, and theory did not provide them with any

qualitative or quantitative explanation for their observation. Of course, there

are a number of factors which complicate any clear understanding. Among

these are time variation in plasma density (also anomalously high) and

virtual cathode oscillations. Recognizing tttat this experiment does not

represent an ideal test of ICL theory, we may nevertheless make simple

. comparisons.

Now, the experimental results are characterized by overall efficiency of

about 4% (mostly at cop) and a broad-band spectrum extending far above cop.
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The naive estimate of efficiency gives 45%, Which of course one hasno reason

to expect given the highly nonlinear focussing and spreads in momenta,

associated with the large value of a/3~2.3. Thus comparison of efficiency is not

particularly fruitful. On the other hand, the spectrum as given in Fig. 3 of

Ref. 31 is quite interesting. For late times (t>120 ns), when the current has

dropped to I~10 kA (corresponding to a reduced a/_~l), it reveals a plateau in

the 18-20 GHz and 20-22 GHz windows, bracketing, the expected resonance

near 2_f_~19 GHz. In this time range all other frequency windows give no

reading observable on their plot. This is indicative of a sharp resonance. This

could be explained tentatively from the result for the resonant frequency:

co-kzvz~CO_.An electron with small transverse energy (small ap) is resonant

with co~2_c0_, while electrons with large transverse energies are resonant

with co~272ro_/a_. At later times, many more electrons have small a_.

One other feature should be noted. Based on the estimates of Sec. D, we

would expect dielectric and active guiding to be quite strong. Now the

detectors used in the experiment were mounted on the side of the beam pipe,

33 cm from the center of a 7.5 cm radius beam. Even in the overdense regime,

one expects an optical fiber effect (analagous to ion-channel dielectric guiding)

due to the radial variation in plasma electron density. A simple estimate

gives a fiber parameter of V~3.4. Consulting Fig. 3.13, we see that the radial

mode would then evanesce on a length scale of a/3~2.5 cre. Thus the power at

the wall would be much reduced from that flowing through the beam

volume. We may conclude that the power levels measured were not

220



Chapter 3 ...... Theory of the Ion-Channel Laser

accurately calibrated and probably represent underestimates of the total

radiated power. This is particularly true of higher frequencies, and may

. explain in part the observed exponential fall-off in the spectrum.

One cannot cite these experimental results as evidence confirming the

" theory of the ICL as set forth here. However, they don't contradict theory, and

they provide strong ' motivation for further, more controlled, experimental

work.

As for other experimental evidence, it seems likely that some form of

the ion-channel laser instability will appear naturally, in astrophysical

circumstances and its applicability to solar bursts merits further study.31, 35

G. SUMMARY

In conclusion, we have presented the concept of the ion-channel laser,

together with a theoretical formulation. Several novel features were noted.

First, the electromagnetic instability itself, and the resonant damping of the

transverse motion for a weakly driven oscillator. We examined the dielectric

guiding effect of the ion-channel, noting that it may ultimately prove to be

problematic due to the electron-hose instability. We also found that, as in the

FEL, there is an optical guiding mechanism which is quite effective

depending on the regime of operation.

- Given the practical difficulties typically associated with manipulating

plasmas, it is important to recognize th_,advantages to be gained. Perhaps the

221



Chapter 3 Theory. of the Ion-Channel Laser

primary advantage of the ICL over the FEL, is the short betatron wavelength

achievable in a plasma. To reach a given wavelength with the ICL, a lower

beam energy may be used than in an FEL, resulting in higher efficiency and a

more compact accelerator. Indeed, with optical guiding, operation in the

, visible spectrum with under 100 MeV appears possible. Economically, -

plasmas are "cheap", since one trades the cost of magnets and power supplies,

for the cost of a laser.

A disadvantage of the ICL is that the "pump-field" is unstable.

Fortunately, ion-motion represents a cumulative, electrostatic instability,

with zero group velocity, while the ICL instability is electromagnetic,

propagating with a beam slice, with only small slippage. Thus, a reduction irl

the pulse length, 1:,lowers the growth of ion instabilities, while not reducing

the peak laser power, or efficiency.

Another disadvantage is that in using a plasma, results will be subject

to axial and radial variation in the plasma density. Axial variation in np,

especially on the scale of a betatron period, will tend to disrupt the resonance.

Radial variation in np will make focussing nonlinear, damping growth. Thus

in any proof-of-principle experiment, control of and diagnostics for the

plasma will be rather crucial.

Of course, before proposing a practical experiment based on any of these
,a

examples, one should perform detailed numerical simluations to confirm the

theory. This is the subject of the next chapter.
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"... thisfree,electro: '_ser is to be three or four miles

long, its main apparatus buried in concrete tunnels

beneath the desert.., just cooling the giant laser will

require an estimated 450 million gallons of water a year..."

-William J. Broad, "Anti-Missile Laser Project Is

Delayed Nearly 2 Years", New York Times, 4/17/88

In this chapter we study numerically some example ion-channel laser

"designs". These numerical simulations provide us with an opportunity to

check the theoretical scalings, and to confirm the eikonal model. The

numerical approach also provides us with a straightforward method of

following the dynamics through saturation, and studying the effect of

detuning spread on gain length and efficiency.

In Sec. A, we describe the numerical codes we will use. With these

codes, we proceed to examine the examples set down in Table 3.4. •

In Sec. B, we consider variants on the microwa_e design. We compare
I

ECL, FULLCL and theory, finding good agreement. We examine the

consequences of optical guiding, ion-channel dielectric guiding and the
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introduction of a waveguide. We also examine the effect of detuning spread

due to spreads in axial momentum and due to a spread in transverse energy.

. Finally we consider the effect of errors in plasma density.

Having established confidence in the theoretical scalings in Sec. B, we

go on in subsequent sections to consider examples at shorter wavelength, in

somewhat less detail.

In Sec. C we consider variants on the sub-millimeter example. We first

consider a high gain experiment using a beam typical of induction linacs. We

then consider a low gain example making use of a low current, low emittance

beam typical of a storage ring.

In Sec. D, we consider a high gain 10 _m amplifier, and, in Sec. E, we

consider an X-ray laser, which, is severely constrained by the requirement on

detuning spread, and probably cannot be realized practically at present. This

example, does however, provide considerable motivation for further work.

In Sec. F, we offer some conclusions for future numerical and experi-

mental work.

A. THE CODES: ECLAND FUt.LCL

. We will dse two codes, ECL and FULLCL, each running on a VAX 8650.

The code ECL solves the betatron-averaged equations, Eqs. (3.22)-(3.26),

• combined with Maxwell's equations, Eq. (3.95). The code FULLCL solves the

full equations of motion, Eqs. (3.6)-(3.8) and (3.95). Each codes relies on a
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fourth-order Runge-Kutta advance in t. Each makes use of a complex field

variable (B=Aeicp),advancing the real and imaginary parts.

Note that, consistent with Eq. (3.95) there is no radial solver, and no

slippage. The codes merely follow one beam slice and its comoving eikonal, a

system of ordinary differential equations, rather than the full partial

differential equations. Thus we cannot fully model sidebands, oscillators,

lethargy, diffraction, or optical guiding. We also cannot incorporate beam

break-up, or cumulative plasma effects. Needless to say, ali these effects

should eventually be modelled. On the other hand, simple simulations such

as discussed here provide considerable graphic insight into the beam

dynamics, finite temperature effects, and the approach to saturation. These

codes are also enormously faster.

Each code checks energy conservation through the integral of Eq. (3.97)

E = r/co_(H) + T cuem c

and quotes a fractional numerical error given by

Ef- Ei

, (4.1)

where <AH> is the average change in energy of beam electrons. E/and Ei are

the final and initial values of E. Thus for example a numerical error of

enum~lxl0 "2 (a typical value) for a result of 100 MW of output power,
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corresponds to an absolute error of 1 MW. The integrals, Ox, Oy, and Oz of

Table 3.1 could also be used to double-check the accuracy of the numerical
w

algorithms, however this has not been implemented yet.

. The initialization and time constraints of each code are rather different

so we discuss them separately.

1. Eikonal ICL Equation Solver (ECL)

In this code, the particle variables are x=kzz-cat+ey, qx, qy, and qz, as

defined in Eqs. (3.9) and (3.94). Note that the variables 0y and Oxare ignorable.

ECL integrates the betatron-averaged equations, Eqs. (3.22)-(3.26), combined

with Maxwell's equations, Eq. (3.95), using a standard fourth-order Runge-

Kutta algorithm.

a. Inputs. The inputs for ECLare:

e.,, rms normalized emittance,

I beam current,

H beam energy,

A. resonant wavelength (free-space),

Po input signal power,

ACO detuning.

In addition, the user specifies momentum spread (trh or ,4pz/pz) and

. numerical variables, N x, Na, Na, 6, Nt as described below. The user also

specifies the guiding option of which there are three:
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(1)ion-channel dielectric guiding (code computes overlap),

(2)conducting waveguide (user specifies dimensions, code computes overlap, kz, k.L, etc.)

(3)user-specified overlap (code assumes fast-wave, ¢o=ckz).

Other significant quantities are determined implicitly from the following

relations:

co- k,v, =cos-aco,
Iresonance relation, Eq. (3.16)]

a_ = c 2k 2,+ c 2ka' , ldispersion relation, Eq. (3.238)1

1__ kaa2e_= 4 q,
2 q, ka , [emittance, Eqs. (3.81), (3.69)]

I/I o
tl b --

rc r,a2 , [beam density]

kp = kax/2 q,
, lplasma wavenumber Eq. (3.1)1

n -

P 4 rc r, ' [plasma density]

where re is the classical electron radius, re=e2/mc2~2.8x10-13cm. ECL solves

these equations iteratively, rejecting a parameter choice which would result

in an overdense plasma (hp>hb).

b. Initialization. Particles are initialized in X, with a uniform

distribution -a:<X<;v, over N x values. The initialization in qx and qy

corresponds to qx=qosin(c_), qy=qocos(_x),where a is distributed uniformly over
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the interval O<o¢<(1-e)r:/2, with Na values. Results are not sensitive to the

value of e, and typically, e~10 "2.The quantity qo=21/2a _, for a step profile. To
u

model a more realistic profile, we use a distribution of Nh values of qo

. satisfying <qo2>~2at_, and a user prescribed value of the rms deviation

, (4.2)

where the subscript "h" refers to the transverseenergy, of Eq. (3.141) which is

proportional to qo. The quantity a_ is determined from the normalized

emittance of the beam, and the user specified resonant frequency.

Detuning spread is modelled with a uniform distribution over qz, qzo-

qs<qz<qzo+qs, or, alternatively, with the distribution over qo mentioned above.

It will be convenient to refer to the dimensionless detuning spread,

_,= 1 5 q-L
• qo , (4.3)

and to the total fractional momentum spread,

In Eq. (4.3) the factor 1.5 appears instead of 1.0 (as in an FEL) due to the

relativistic mass dependence of the betatron frequency.
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Note that 3s should be distinguished from the average detuning of the

ensemble, 8o

where the angle brackets denote an average over the ensemble.

c. Numerical requirements. For a cold beam (no detuning spread) all

particles are initialized With the same qz and qo. The number of macroparticles

needed may be detemined from the requirement that the initial values of

<sinx>, <cosx>, <sin(2;_)> and <cos(2_)> are small (theoretically, they are

zero). This requirement, which insures that the beam is not prebunched, can

be satisfied by any distribution which is symmetric under the transformations

X_-X and X-_X+_/2. For N values specified on the interval [0,_/2], Nx=4N

macroparticles are required. As for the variable c¢, results are not sensitive to

the distribution, provided the value of <qy2> is correctly fixed at <qy2>=a_.

Thus in general the number of macroparticles required to model a cold beam

is of order N p= N aN x~102-103. Modelling momentum spread requires

Np=NhNaNx-103-104, i.e., an additional factor of ten or so in the number of

macroparticles.

The number of steps in t, Nt, required to evolve the system through to

saturation is typically quite small, on the order of 100-500. This is because all

quantities vary as the larger of the growth rate or the detuning (and because

we are using a fourth-order differencing). Thus the number of betatron
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periods does not enter the time-step scaling, making this code particularly

efficient for low gain simulations.

w

2. Full ICL Equation Solver (FULLCL)

- In this code, the particle variables are x, Px, Y, Py, _, and pz, where _=kzz-

cot. The code integrates the full equations of motion, Eqs. (3.6)-(3.8) and (3.95),

using a standard fourth-order Runge-Kutta advance in t.

a. Inputs. The inputs for FULLCLare:

rms normalized emittance,

I beam current,

H beam energy,

rb plasma density,

co input signal frequency

Po input signal power,

In addition, the user specifies the number of particles, Nr,, and the number of

time-steps Nt. There are three guiding options as for FULLCL. If a waveguide

is used and ca is below cut-off, or, if the self-consistent beam density is less

than hp, the parameter choice is rejected. Unlike ECL, there are no implicit

algebraic relations to solve. FULLCL computes a_, intializes the beam and

integrates in t,

b. Initialization. The initialization is most easily described in terms of

• eikonal variables. (Note however, that eikonal variables are not actually used
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to solve for the particle motion.) Particles are initialized in ex, Oyuniformly

over (-_, _). The initialization in qx and qy corresponds to qx=qosin(_),

qy=qocos(c_), where a is distributed uniformly overO__c_/2, and qo=21/2a_.

There are Np1/3 values for each distribution (i.e., in (z, Ox,ey). Particles begin at

t=Owith the same _'and pz.

c. Numerical requirements. From the reasoning given in Sec. 1, we see

that the number of particles required will be of order Np~103-104. In practice,

we find fair agreement with ECL and theory for as few as --103.

The number of steps in t (Nt) required to evolve the system through to

saturation scales directly with the number of betatron periods. (With the

fourth order differencing, one may use as few as 30 steps per betatron period.)

This constraint, combined with the large number of particles required,

generally limits the application of this code to problems where gain is high,

and saturation is reached in about ten betatron periods. This typically

corresponds to the microwave regime. Due to the large number of particles

and time-steps required, this code does not model detuning spread.

We proceed to study the examples of Table 3.4, using the codes ECL and

FULLCL.

B. MICROWAVE EXAMPLES
lo

In this section, we consider ICL designs in the microwave regime, with

parameters as given in 'Fable 4.1, but subject to different guiding mechanisms,
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and for various values of detuning spread. These beam parameters are typical

of what can be achieved with an induction accelerator. The wavelength was

" chosen somewhat arbitrarily within the range 11-23 GHZ. This range has

attracted considerable interest in the microwave power source community,

for application in a future TeV-energy linear collider.

Our discussion of this example will be fairly detailed. We will first

consider an ICL relying solely on ion-channel dielectric guiding. We will go

on to consider the effect of optical guiding and we will find that it is in fact

very important. We will also consider the effect of introducing a 3cmx5cm

waveguide and we will find that it provides an overlap integral (77)

comparable to that from optical guiding. In presenting the results based on

these three guiding mechanisms, we will have established that a practical

experiment is possible and that the signature of the different guiding

mechanisms would be clear, experimentally.

In addition, we will use these examples to check the conclusions of

Chapter 3, relating to particle motion, gain, effects of detuning and detuning

spread and the like. Our analysis and survey of parameter-space will not be

exhaustive, but, hopefully illustrative. In the course of this more or less

tutorial example, we will have shown that, even in the presence of realistic

- momentum spreads, significant amplification (i.e., a positive experimental

result) can be expected.
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Table 4.1. Parameters for Microwave Examples

_(cm) 1.75

E(MeV) 2

I(kA) 4

e,(cm-rad) 0.25

n_(cm_) 6.2 101°

;tdcm; 36
a(cm) 1

aa 0.57

Po 50 kW

1. Ion-channel dielectric guiding example

For this first example, we will assume that the beam pipe is sufficiently

large that ion-channel dielectric guiding dominates. Now the channel radius

is b~a(nb/n_)l/2~2cm, and the fiber parameter is V~I, from Eq. (3.225), while,

from Fig. 3.13, #~0.25/b. Thus the ion-channel, HEll mode evanesces radially

on a length scale/_-1~8 cre. We assume a beam-pipe radius of perhaps-30 cm

or more and proceed to compute the cubic gain regime scalings for this

example.

At 4 kA, the dimensionless HE_I mode area is from Eq. (3.233) (or Fig.

3.11), A-0.7. We compute an overlap integral r/~6.3 xl0 -2, from Eq. (3.229).

From Eq. (3.106) this gives a Pierce parameter p~5.5%, and a gain length from

Eq. (3.118) of Lg~67 cm. The beam power is about 6 GW, so w_. expect the
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saturated output power to be about 5.5%x6 GW~330 MW. We will assume an
w

input power Po" 50 kW (a typical figure for a magnetron), and this implies

. roughly a length of Lsat~0.5 Lgln(9Psat/Po)~4 m, for saturation, where the

factor of 9 arises from Eq. (3.114).

Table 4.2. Comparison of ECL,FULLCLand Cubic Gain Results

Psat efficiency Lsat

Cubic Gain 330 MW 5.5% 4 m

ECL 392 MW 6.6% 4.8m

FULLCL 384 MW 6.4% 4.6m

a. Summary of E¢L Results. We turn next to compare these predictions

to the results of simulation. We followed the eikonal equations through

twenty betatron periods, using Nt=198 steps in t and Np=1600 particles. The

initial values of the the sine and cosine averages were <sin(x)>~-3xlO "ll and

<cos(z)>~3xlO "8. These are sufficiently small that we may consider the beam

unbunched. Results from ECL are depicted in Figs. 4.1-4.3. Saturation is

reached at Lsat~4.75 m, with an output power of 392 MW, for an efficiency of

. 6.5%. The numerical error in energy conservation is enum~3xlO'2 % (12 MW).
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(c) z(m) (d) z(m)

FIG. 4.1. Results from the eikonal equation solver, ECL, for (a) power in GW versus z (b) beam

energy versus z, (c)power in watts on a log scale (compared with the anaZytic result of Fig. 3.4a)

and (d)eikonal phase, rp in radians versus z (to be compared with Fig. 3.4b). Parameters are as ql

in Table 4.1, and we assume only ion-channel dielectric guiding.

_b
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3.8 0.50 , • " i , , ," i

Qo 3.7

• _

v 3.6 v l

I3.5_ 0.45 ' - '
0 2 4 6 0 2 4 6

z(m) z(m)

FIG. 4.2. ECL result for (a)dimensionless average axial momentum and (b)dimensionless

transverse momentum amplitude, for the parameters of Table 4,1. Comparing this plot with

Fig. 4.1(b), we see that <pz> follows H, as would be expected from the integral Oz,of Eq. (3.73).

1.0 1.0 __ -. , _ , . , ,

0.5 0.5

OOv-0.5

-I.0-1.0
0 2 4 6 0 2 4 6

z(m) z(m)
P

FIG. 4.3. ECL result for (a)the average of cos(v/) and (b)the average of sin(v) over the ensemble,
li

versus z. We observe that peak power in Fig. 4.1a, and the zero of <sin(v/)> coincide, as would

be expected from Eq. (3.96).
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p

b. Camparison with FULLCL Results. Next we compare these results to

those obtained from FULLCL, by solving the full equations of motion. We

used Nt=500 steps in t, and Np=lO00 particles. The initial values of the the

sine and cosine averages were <sin(Ox,y)>~lO q° and <cos(ex,y)>~-lO "7.We find

saturation at z~4.6 m (versus 4.8 m for ECL), with an output power of 384 MW

(versus 392 MW for ECL,for a difference of about 2%). The numerical error in

energy conservation is Chum~Ix10 "2 % (i.e. 4 MW). Generally agreement

between theory, ECLand FULLCLis good as we can see by inspecting Fig. 4.4

(also, Table 4.2). A comparison of the results for phase advance is plotted in

Fig. 4.5, also giving good agreement.

We also observe in Fig. 4.4, a discrepancy between the slope of the cubic

gain regime analytic curve and the numerical results. This is due to the

nonnegligible value of l_/p~1.2. Consulting Fig. 3.8a, we see that the growth

rate will be only 87% of the #=0 value, corresponding to the lower slope

observed in Fig. 4.4.
i

The FULLCL code also shows that the beam centroid develops a

coherent oscillation, as depicted in Fig.4.6. Inspecting this plot we see that the

amplitude is <py>~0.25 in rough agreement with the theoretical estimate of

Eq. (3.120) <py>~ap/23/2~0.21. In addition, we find a decrease in the rms

normalized y-emittance from 0.25 cm-rad to 0.20 cre-rad, or Aeny/e,y~20%. this

is in rough agreement with the theoretical estimate of Eq. (3.82),

Ac, y/¢,y~(AH/H)/a_2-14%. Emittance versus z is depicted in Fig. 4.7.
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FIG. 4.4. Comparison of theory (straight line) with the results of the ECL (smooth curve) and

FULLCL (tortuous curve) results for power in gigawatts vs z.
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FIG. 4.5. Comparison of the phase advance computed by the ECL code (smooth curve) with that

of FULLCL (tortuous curve).
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FIGo 4.6. The y-momentum, averaged over the ensemble is plotted versus z. As the beam

approaches saturation a noticeable coherent oscillation of the beam centroid develops.
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FIG. 4.7. The normalized rms y-emittance decreases near saturation, consistent with

conservatio9 of Oy [Eq. (3.77)].
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c. Particle Motion. With working codes in hand, it is straightforward to

follow the particle motion in detail. Making use of ECL, we plot a
t

reperesentative sample of the beam(particles #600-#700), in the _-qz plane, at

. various positions in t, in Figs. 4.8(a)-(d). Rather than simply depicting a

"snapshot", each of these plots includes a range of values in t, so one can

view the particles position and the tangent, and thereby discern the character

of the motion.

II I Ill " II I!11

t
2 "

dip

2 -

. , • • • , • • _ " . •
|

3.6 3.7 3.8

qz
Fig. 4.8(a). Orbit _gments for one-hundred representative particles for 0<z<0.4 m. We see that

particles were intialized on the interval (-_,+Tt), all with qz~3.7. We also observe that

" particles with sin(_)>O initially drift backward in qz (lose energy) and vice versa for sin(_/)<O,

ali as one would expect from Eq. (3.24), i.e., dqddt _,-sin(_).

Inspecting these figures we observe three qualitatively different kinds

of orbit. One class of orbits resembles very much what one observes in the
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FEL, while the others appear to be more weakly perturbed. This can be

understood from Eq. (3.32), and the variation of the bunching parameter 2_

with qy. In the sample of particles we have taken, there are three different

values of qy, and hence three qualitatively different orbits.
t

II IIII III _ Iww • -w w | • •

4.

--2 - =

|-4 ........ ' • , , i, i
3.6 3.7 3.8

qz
Fig.4.8 (b). Orbit segments for the particles of Fig. 4.8(a), for 0.7<z<1.1 m. We observe that

some particles are remaining nearly stationary in qz. These are just the particles initialized

with small %.

These plots illustrate the competition between axial bunching and

forced debunching, i.e., the effect of the "/-/:' term (debunching) in Eq. (3.65) in

competition with the "_," (bunching) term. The transverse motion of small qy

particles is strongly perturbed by the growing fields, and these particles

oscillate with ever large amplitude, extracting energy from the fields through

the ponderomotive force of Eq. (3.65). The transverse motion of high qy
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particles is on the other hand only weakly perturbed and they bunch axially

(or in _ as we see in Fig. 4.8(d). Low qy particles are also detuned, as seen in Eq.

. (3.27), and in Fig. 4.8 in their vertical motion in the _-q= plane.
I

I

6 i i . ! w imlml w | . III II 1= w i !

4.

2.

0. .

"4 ......... | I " P •

3.6 3.7 3.8

qz
Fig. 4.8(c). Orbit segments for the particles of Fig. 4.8(a), for 2.2 m<z<2.6 m. The three

populations corresponding to three different values of qy are now very clearly distinguished.

Larger q_ particles have drifted farther back in q=,giving up more energy to the fields.

To make this inspection of the phase-space a bit more quantitative, we

select two specific groups of five particles, and observe their motion in detail.

Fig. 4.9 depicts motion in the IK-qzplane and Fig. 4.10 depicts qz as a function of

o z, for these particles. Each group of particles has initial phases distributed

throughout (-_,+_). However the first group, depicted in Figs. 4.9(a) and

4.10(a). has a large qy~a_, while the second group, in Figs. 4.9(b) and 4.10(b) has
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a small qy~O.OSa_. In Figs. 4.9(c) and 4.10(c), both groups are plotted together.

Inspecting Fig. 4.9 we see that high-qy particles tend to give up energy to

the fields, while low qy particles tend to absorb energy from the fields (as they

are driven to higher qy by the transverse Lorentz force). Fig. 4.10(c) shows that

the peak loss (gain) of high (low) qy particles occurs at roughly the same point

in z, corresponding to the saturation point and maximum radiated power.

8

6

4

g2
0

_2 m i

4 .... ' ..... ' ..... , .......... _ ....
2.6 3.0 3.4 3_8 4.2 4.6

qz

Fig. 4.8(d). Orbit segments for the particles of Fig. 4.9(a), for 4.4 m<z<5.1 m, including the

saturation point at z~4.8m. Large q_ particles have completed one synchrotron oscillation, and

are exceuting bound orbits governed approximately by the bounce Hamiltonian of Eq. (3.36).
s

Small qy particles (the dark clumps near qz~3.8) have gained energy from the fields.
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Fig. 4.9(a). Depicted is the motion computed with ECL for 0<z<7.3m for a representative

• collection of five particles with qy~a#. This motion is to be compared with that of a simliar

collection, with q_,~O.O5a_, depicted in Fig. 4.9(b). Evidently, large q_ particles bunch in _ and

. give up energy (moving to the left in the figure). From Fig. 4.9(b) we see that small qy particles

gain a little, and from Fig. 9(c), we see that the difference is positive, leaving some energy to be

taken away by the fields.
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Fig. 4.9(b). The motion in _rand qz of five representative macroparticles with small q_,.,O.O5a_.

Because qy is small, the transverse motion of these electrons is strongly perturbed by the signal

field. As a result they oscillate with growing amplitude, aborbing energy from the field. None

of them give up energy, as discussed in connection with Eq. (3.77).
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t

Fig. 4.9(c). Orbits in the v-q_ plane of particles with small qy (white dots) and particles with

- large qy (dark dots). Small q_, particles gain a small amount of energy. Large qy particles lose a

large amount of energy. The difference is taken away by the fields.
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Fig. 4.10(a). Near saturation large q_ particles lose a significant amount of energy. On the other

hand, (b) small qy particles actually gain energy near saturation. This is clearer in (c) where

both ensembles are depicted together.
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a

Fig. 4.10(b). Depicted is qz versus z for the five representative low q_ particles of Fig. 4.9.

Evidently, these particles gain energy near saturation (z~5 m).
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@qy= a_

4.2 O qy= 0.05a_

4.0

3.6

qz
3.4

2.8
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z(m)

Fig. 4.10(c). Depicted is qz versus z for the representative particles of Fig. 4.9. While low qy

particles gain energy, high qy particles lose energy. The average results is a loss for the beam.

252

.



Chapter 4 .... N_merical Simulations

Inspection of Figs. 4.9 and 4.10 qualitatively confirms the conclusions of

our discussion of bunching, in particular the ponderomotive force of Eq.

. (3.70) and the invariant Oy of Eq. (3.73).

d. Effect of detuning spread. Next, we turn to consider the effect of

detuning spread on the saturation length and output power. There are in

principle at least three important effects: (1) detuning spread due to spread in

axial momentum (2) detuning spread due to spread in transverse energy

("realistic radial profile") and effective detuning spread due to beam space

charge. The beam density is nb~l.7xl011, and the Lorentz factor is y~3.9, so that

the spread in k_ due to beam self-fields (Ak_/k/j~v/2ya_ 2) will be of order 7%.

The spread in detuning due to a non-ideal radial profile will be of order

Ss~crha_~20% (depending on the beam profile). The code ECL allows us to

model detuning spread in two ways: spread in qz, or spread inh. We consider

each in turn.

First, we consider spreads in axial momenta. Results for power versus z

for various spreads in momenta are depicted in Fig. 4.11. A summary of peak

power and saturation length is depicted in the plot of Fig. 4.12. We observe

that power is rather insensitive to even significant spreads. This is not

surprising, given the discussion of Eq. (134) (modified dispersion relation,

. including momentum spread) since the Pierce parameter is relatively large.

In this connection note that the actual detuning spread _s as defined by Eq.

" (3.134) is given by Eq. (4.2) as _s=l.5qs/qz, where particles are distributed
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FIG. 4.11. (a)-(d) Curves for power versus z for the parameters of Table 4.1, with an assortment

of different spreads in axial momenta (dark curves) plotted with the result for zero detuning

spread (light curve, the result of Fig. 4.1 (a)), for reference. The corresponding momentum

spreads (2qs/qz) are (a) 5% (b) 6% (c) 7% and (d) 9%.
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10 8 • . . . , . . . , . . . 10 8
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Ios

10 5 10 4
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104 -"'_-"' ' "'' ' ' .... 102 , | , I ,
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(e) z(m) (f) z(m)

FIG. 4.11. (e)-(f). Stabilization due to detuning spread manifests itself numerically as a

sensitivity to the number of points used to model the momentum distribution. So for example,

(a)the result of 4.11(c) is relatively insensitive to a decrease in the particle number by a factor

of four (the dark curve corresponds to 700 particles, the light curve, 2800). On the other hand

_3: c_s~9%,the result varies dramatically with particle number. By increasing the number of

particles it is possible to show that the power curve of 4.11 (tOflattens out. The curve of 4.11(e)

merely converges, and in fact, has more or less converged with the res_dt of 4.11(c).

uniformly in momenta on the interval [qz-qs,qz+qs]. (The results for

saturation power and length are summarized in Table 4.3 and in Fig. 4.12.

To illustrate the approach to stabilization, in Fig. 4.11 (e) and (f) we

compare results corresponding physically to reduced growth (e) and no

• growth (f). Numerically, the physically stable system is numerically sensitive

to the number of particles. In principle, this sort of result can be avoided

• altogether by routinely using 20-40 values of momenta. However, this is not

always numerically effici:;nt.
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The results of Figs. 4.11(a)-(d) are summarized in Fig. 4,12, giving peak

power and saturation length as a function of 3s, based on these four runs.

Table 4.3. Effect of axial momentum spread for ion-channel guiding

3,, Pat Ls, t efficiency Apdpz

0 392 MW 4.8 m 6.5% 0

3°8% 189 MW 6.1 m 3.2% 5% , i

4.5% 91 MW 7.0 m 1.5% 6%

5.3% 78 MW 7.3 m 1.3% 7%

6.8% 16MW 11.7m 0.3% 9%

9% -- (stabilized) m 12%

10 9 12 • _' , , e"• " i_' "_" I "' '/ I "" _ " "

' 10
#

g @ 0
_ • •

6 •

i •10 7 . _ , , , t . 4 • , • i , , ,
0 2 4 6 8 0 2 4 6 8

(a) 5 s (%) (b) 5 s (%)
b

FIG. 4.12. (a) Power at saturation versus detuning spread, based on the data of Fig. 4.11, and (b)
m

length for saturation. For these plots, the first appreciable peak in power was selected (even

though, frequently, the second peak is slightly larger).
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From these runs we see that a detuning spread 3s<p has only a small

effect on the output power (a factor of two), in accord with the results of Ch. 3,

Sec. B.4. For 3s>p, we observe an approximately exponential decrease in power

" with detuning spread, as we would expect when 3s enters the gain length

scaling, as in Eq. (3.135).

10 9 10 8
• " " " I " " " " I " " " " i'" " " " I' " " " ' I " " '_ 7'

10 8

10 1
10 7

10 6

1,04. I0 4, ............ , , , , • , ....
0 5 10 15 0 5 10 15

(a) z(m) (b) z(m)

FIG.13. (a)Power versus z for the parameters of Table 4.1, with a spread in transverse energy

corresponding _c._a parabolic radial profile. The "equivalent" detuning spread is 8s-11%. (b)

The result of (a) compared to the same result for twice as many particles.

In addition to detuning spread due to axial momentum spread, there is

a detuning spread due to the spread in transverse energy associated with a

. realistic beam profile (as discussed in Ch. 3, Sec. C). To quantify the effect of

such an "intrinsic" detuning spread, we consider a distribution in the

dimensionless transverse energy h with an rms fractional deviation in
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transverse energy trh~0.35, equivalent to a parabolic beam profile. The

equivalent detuning spread is of order 8s~crha_~12%. Results are depicted in

Fig. 4.13. Saturation occurs at z~7.6 m with Psat~41 MW. The peak power is 61 "

MW at z~10.7 m, corresponding to a factor of 10 reduction in power, and an

efficiency of about 0.6%.

This result is mildly surprising, since for an 11% detuning spread due

to axial momentum spread the beam is stabilized. On the other hand,

particles with the largest detuning, i.e., the smallest transverse energy,

interact negligibly with the wave. They tend to gain energy, but as we see in

Figs. 4.9(c) and 10(c), this gain is relatively small. Thus the rms detuning crha_

is not quite "equivalent" to a numerically equal detuning due to momentum

spread. Detuning due to energy spread is reduced by a weighting increasing

with h.

We performed simliar runs for era~0.71 (equivalent to a Gaussian

beam) and found that the instability was stabilized. This is not surprising

since the equivalent detuning spread is an enormous 22% (>4,o). However,

this has sobering implications for a practical experiment. Results will depend

in detail on the character of the transverse energy distribution. On the other

hand, the situation improves for smaller a_2/p as we shall see in the next

example.
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109 20 , _ . , ._, .• h • • ' • " _ i • | w

10 8 15

10 7

10 6

10 5 5

10 4 , J . , . i . i . i . 0 •
0 1 2 3 4 5 6 0 1 2 3 4 5 6

z(m) z(m)

FIG. 14. The result from thecode ECL,for (a)power in watts and (b)phase in radians versus z for

the example of Table 4.1. This differs from Fig. 4.1 (a) because we have included the effect of

optical guiding. Saturation occurs at L_a~2.2m, with P~440 MW.

10 9

10 8

10 7:

106
..... ECL

105 _ FULLCL

10 4

10 3
0 1 2 3 4 5 6

a

z(m)

,. FIG. 4.15.The results from thecode FULLCL(wiggling curve) and ECL,for power versus z, for the

example of Table 4.1, including optical guiding. FULLCLpredicts saturation at L_t~2.3 m, with
P~370 MW.
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i

_.. ;:ji_eq_of Optical Guiding

Ali of the previous _I_sc_ssion of Sec. 1 assumed guiding by the HEll

mode of the ion-channel. On the other hand, a simple estimate of the effect of

optical guiding for the parameters of the previous example shows that it will

be quite important. From Eq. (3.258) we find cr=64po3/2a_3~1.5, which is too

large to apply the weak-guiding results of of Sec. 3.D, and indicates that 7/~1 is

probably a good approximation. This gives a corrected Pierce parameter

p~12.4% and a gain length Lg-27 cm. The output power at saturation would

be P_t-744 MW. The length for saturation would then be Ls,,t--1.6 m, or about

5 betatron wavelengths. We conclude from this that the parameters of Table

4.1 would provide a fair test of optical guiding. Since in this case the gain

length is less than a betatron wavelength, this example also provides an

interesting test of the eikonal formalism beyond its presumed range of

validity.

a. Comparison of ECL and FULLCL results. Taking r/-1, we performed

ECL and FULLCL simulations as described above. Results for power versus z are

depicted in Fig. 4.14. The code ECL predicts saturation at z~2.1m, with

Psat--440 MW, corresponding to an efficiency of about 7.3%. FULLCL predicts

saturation at z~2.3 m with Ps,,t-370 MW, for an efficiency of about 6.'2% (Fig.

4.15).

Thus the power levels are somewhat less than the cubic gain regime

predictions. This is partially due to corrections to the eikonal approximation
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in the limit LS<;_, and also due to the larger value of #/p, which lowers the

growth rate as discussed in connection with Eq. (3.126). For this example, we
q,

have lz/p~l.8, which from Fig. 3.8(a) predicts a peak growth rate 75% of the'/z=0

" value (and somewhat less for zero detuning).

.4 , ii IIIII I I I I ii II

0.2

0.00.2 _ -

-0.4 ' . , I
0 1 2 3 4 5 6

z(m)

FIG. 4.16. The y-momentum, averaged over the beam slice is plotted versus z, for the

parameters of Table 4.1, including optical guiding. Following saturation the beam centroid

continues to oscillate coherently.

b. Effect of detuning spread. With optical guiding we have seen that the

. Pierce parameter is larger by about a factor of two. With a larger p, the

condition Ss<p is eased and we can expect performance to be much less

sensitive to detuning spreads. This is seen in the results of Fig. 4.17, which are

summarized in Table 4.4 and Fig. 4.18. For example, with a 7.5% spread, the

peak power is reduced by only a factor of 3.
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10 9 10 9 •

10 8 10 8 /_ _"f_" ,

,/
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lo5 5 s = 7.5% 10s 5 s - 11.0%
10 4 10 4 . . i , , , ,., ,

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(a) z(m) (b) z(m)

10 9 . 10 9
[ " I "' " 1 " '"' I " I " I """ • ' " I " I " • " I " I " "i
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.-. 10 7 ,., 10 7

_, 10 6 _ 10 6

10 5 5 s = 12.8% los
10 4 . 10 4 i , , . , . , .

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(C) z(m) (d) z(m)

FIG. 4.17. (a)-(d) ECL results for power versus z with various detuning spreads (dark curves),

compared to the cold beam result of Fig. 4.14 (a) (light curves). Optical guiding has increased p,

and as a result the power is less sensitive to detuning spread.
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Table 4.4. Effect of axial momentum spread for optical guiding example.

Put L,,,t efficiency Apz/pz

• 0 440 MW 2.2 m 7.3% 0

7.5% 170 MW 2.4 m 2.8% 10%

11.3% 98 MW 2.5 m 1.6% 15%

12.8% 61 MW 2.6 m 1.0% 17%

13.5% 46 MW 2.8 m 0.8% 18%

15% -- (stabilized) -- 20%

10 9 3.0 , . , . . .

q 2.8 •

• "_ 2.6 •10 8 0

• , _ 2.4
• _ •

2.2

10 7 .... ' • • , , ' .... 21]. .... ' , • • ' ' ....
0 5 10 15 0 5 10 15

(a) _s(% ) (b) _s(% )

FIG. 4.18. (a) Power at saturation versus detuning spread, based on the data of Fig. 4.17, and (b)

length for saturation. For these plots, the first appreciable peak in power was selected (even

though, frequently, the second peak is the largest).

- In Fig. 4.19, we have collated the results for peak power and saturation

length as a function of _s/P, for this example (optical guiding) and the
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previous example (ion-channel guiding). We observe that the results are

well-correlated, even though they apply to Pierce parameters differing by a

factor of two, and different I.t/p values. This gives us a fair measure of

confidence in the condition for gain,
b

Ap,
p ; =o; , (4.6)

Where in parenthesis we note for clarity that we have only considered zero

average detuning.

By the same reasoning, since p is large we expect the performance to be

much less sensitive to realistic spreads in transverse energy. This is observed

10 0 3 .-' . • _ v I " • "--" I " " v 1-- -v • v""U " " " " I • " • " -

J,iili i i

O
• o Fig. 12b

Ooo ,i • Fig. 18b o

-1 •
....

10 • ... 2

• ,.-1
_'_ o Fig. 12a o •

• Fig. 18a " o o
• 0 OO

10 -2 .... , • , • • , .... 1 .... ,o . . , . ,..
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

(a) 6slp (b) aslp -

FIG. 4.19. A collation of the results of Figs. 4.12 and 4.18. (a) Power at saturation normalized by

the cold beam value, versus detuning spread normalized by the Pierce parameter (b) length for "

saturation normalized by the cold beam value.
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10 9 10 9

108 lo 8
¢.

• _ 10 10

10 54 1010 104
0 1 2 3 4 5 6 0 1 2 3 4 5 6

{a) z(m) (b) z(m)

FIG. 4.20. ECL results for power versus z with fractional rms spreads in transverse energy 'dark

curves) of (a) 35% and (b)70%(dark curves), compared to the cold beam result of Fig. 4.14 (light

curve). (a)For the parabolic beam of the peak power is 270 MW, at 2.2 m, ( 56% of the step-

profile result). (b)For the case of % comparable to a Gaussian beam, the peak power is 173 MW

at 2.1 m ( 36% of the step-profile result).

10 9 , 3e+8.....' '" ' " ' " , " ' _ ""i • ",

10 s

10 7 2e+8

10 6
. le+8

10 s

1°4 f ---- N=7oo _j ---- N=7oo-" ' " ' ' ' "-' ' ' • Oe+O _.-, i • , . , , , ,
0 1 2 3 4 5 6 0 1 2 3 4 5 6

(a) z(m) (b) z(m)

FIG. 4.21. Example of the insensitivity of the numerical result to a change in the number of

particles used to model energy spread for N=700 and 1400, corresponding to 5 and 10 different h-a.

values respectively and o'h=35%. In (a) we see that the linear growth rates agree well, and in

(b) we see that the peak power levels agree weil. Note that the larger number of particles has

resulted in more realistic phase-mixing and a noticeably smoother power variation in (b).
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in the results of Fig. 4.20. As a check on the results we varied the particle

number, obtaining roughly the same results, as shown in Fig. 4.21 We

conclude that with optical guiding, a positive experimental result would not ,,

depend on the beam profile, or the momentum spread, within reasonable

limits.

3. Waveguide example

Next we consider the effect of introducing a waveguide for the

parameters of Table 4.1. We select (somewhat arbitrarily) a 3cmx5cm guide,

and increase the plasma density to 1.3x1011 cm -3, (corresponding to ;_/3~23.6cm)

in order to maintain resonance at 1.7 cm.

The phase velocity is _~1.016, and qz~3.6, corresponding to a reduction

in the Pierce parameter by a factor F~0.341, from Eq. (3.110). Thus p~3.3%.

From Eq. (3.118) we expect a gain length of Lg~O.O9;_ll/p~ 64 cm and an output

power Psat~200 MW, with saturation at Lsat~3 m.

a. FULLCL results. The numerical result for power versus z is depicted

in Fig. 4.22. FULLCL predicts Psat~280 MW, with saturation in 2.3 m. for an

efficiency of 4.7%.

b. Error in plasma density In practice one expects shot-to-shot

variations in the plasma C_ensity, and it is natural to ask what effect this might .

have on the output power. Taking the last example, we decreased the plasma

density by about 50% to 9xI01° cm -3, keeping all other inputs fixed. In this case "

X_~28.6 cm and the resonant frequency is now 12.7 GHz.
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10 9

10 8

" 10 1

i10

0 1 2 3 4 5

z(rn)

FIG. 4.22. The results from the code FULLCL for power in gigawatts, versus z for the example of

Table 4.1, with modications due to a 3cmx5cm waveguide. The analytic result is overlayed for

comparison.

"10 9 . , , ,.... _ ......| .r ! .
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10 7

m"3 .
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10 4 i,i
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FIG. 4.23. Cornparison of the result of Fig. 4.22 for power versus z (light curve), with the result

for a 50% error in plasma density (dark curve).

267

m

i

4



Chapter 4 .... Numerical S.imulations

FULLCLpredicts saturation at Lsat~2,6 m with a saturated power of 260

MW (Fig. 4.23), about 7% less than the result for a 50% more dense plasma.

The rf phase at z~410 m has changed by about 388 degrees due to the plasma

error. Thus the error in power is small, while the error in phase is quite large.

This is not really surprising, since waveguide corrections tend to diminish

the detuning. Indeed, even though the resonant frequency is off by about 50%

(6 GHz), the detuning is only 8~Aco/Cojo~-12p~-40% (i.e., zic0~-2.6GHz).

Consulting Fig. 3.7, we see that the growth rate will still be appreciable at this

detuning. (Note that since FULLCL follows the full motion, it should be

accurate even for a detuning of order unity).

We conclude from this that for applications requiring good phase

control, the plasma density will have to be repeatable from shot-to-shot, to

good precision. However, a positive experimental result will not depend on

extraordinary control of the plasma density.

4. Discussion

For completeness we should note the practical constraints on these

examples, due to plasma effects. The chief constraint is due to ion-motion and

imposes a limit on the pulse length. The time for ion-neutralization of the

beam (assuming an atomic weight of -100) is about 15 ns. Typically, induction
Q

linacs provide pulse lengths in the range le ns - 100's of ns, so this is a bit
_

short, but acceptable. The ion-hose growth length computed from a rigid .

bear nodel is La-8 cre, and with about four e-folds after five meters. In fact,
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, this represents a conservative estimate since it neglects nonlinearities in the

ion-motion. In addition, the use of ion-channel dielectric guiding has been

rendered problematic due tlo the "electron-hose" instability, as discussed in
lP

Chapter 2. However, electron-hose growth has been quantified only relatively

- recently, and it may be that other mechanisms may arise, or Le devised to

reduce it.

We conclude from the work of this section, that this example would

provide a highly efficient, and compact source of high peak power radiation

in the 10-30 GHz range, comparing favorably with the FEL.1 We summarize

our observations:

(1)The codes ECL and FULLCL agree with each other and theory, despite the fact that

they solve different equations, on different time-scales. Theory is more or less

confirmed with respect to simple estimates of efficiency, gain length, saturated power,

length for saturation, and the details of particle dynamics.

(2)The result for power versus z assuming only ion-channel guiding is fairly sensitive to

realistic spreads in axial and transverse momenta . . .

(3) . . . However, optical guiding is predicted to be more effective than ion-channel

guiding for this example. With optical guiding, p is large and the design is relatively

insensitive to spreads in transverse energy, or axial momenta.

" (4) Operation in a 3cmx5cm waveguide gives a performance comparable to that

predicted by optical guiding theory and . . .
p

(6) .... as a footnote, we observe, that the result for power versus z is not very sensitive

to a 50% error in plasma density.
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Of course, more exhaustive surveys of the 8s, 8o,/J_, np, I_/p parameter

space remain to be performed. However, based on our examples here, and "

theoretical work of the last chapter, one has a good idea of what to expect

from such a survey. Our purpose here has been merely to illustrate and test

the scaling laws of Chapter 3. With a fair understanding of the design

constraints in hand, we devote the remainder of this chapter to a brief

discussion of ICL examples at shorter wavelengths.

C. SUB-MILLIMETER EXAMPLES

In this section we consider two examples in the sub-millimeter regime.

The first is a high gain experiment that could be performed with an induction

linac beam. The second is a low gain experiment that could be performed

with a beam more typical of a storage ring.

1. High gain example.

First we consider the example parameters of Table 4.5. We assume for

the moment that ion-channel dielectric guiding dominates. The overlap

integral from Eq. (3.229) is r/~l.8x10 ''2.The Pierce parameter is then p---2.6%, the "

beam power is P b~14 GW, so we expect a power at saturation

Psat~2.4%x14GW~360MW. The betatron wavelength is ,_]_~4.7cm, so that the
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gain length is Ls~O.1._#/p~18 cm. We assume an input power P0~lkW so we

expect saturation in a length Lsat~O.5Lgln(9Psat/Po)- 1 m.

. The results of ECL are depicted in Fig. 4.24 with the analytic result

overlayed. We find a peak power of 500 MW in about 2.1 m for an efficiency
m

of about 3.6%. The gain is about 27dB/m. Incorporating a spread in transverse

energy trh~0.35 we find the system is stabilized at zero detuning, as we would

expect since the effective detuning spread, 8s~rYhal_~9%,...3p. (We have not

studied variation with 80 for this example).

Incorporating optical guiding, we find o'-0.17, so that 7/~0.39, The Pierce

parameter is then p~7%. The gain length is Lg-6.6 cm and the length for

saturation would be of order Lsat~0.5 m with an output power of Psat~l GW.

The detuning spread due to space charge effects would be 8s~7%-p, and this is

an acceptable amount, as is that due to spread in h.

We conclude that this example would provide a highly efficient, and

compact source of high peak power radiation in the 300 GHz range,

comparing favorably with the FEL.2This would be suitable, for example, for

plasma heating 3 and military applications. 4
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Table 4.5. Parameters for High-Gain Sub-Millimeter Example

_cm) 5x10"2

E(MeV) 4

I(kA) 4

en(cm-rad) lx10 -2

np(cm -3) 7x1012

;_dcm) 5
a(cm) 6x10-2

aa 0.5
Po(W) 103

Q

810

10 7

10

10 4 c

103_ ---" ECL
10 21 i i , , ! _ ,,,

0 1 2 3

z(m)

FIG. 4.24. Result for power vs z for the high gain example of Table 4.6, from ECL (dark curve)

with a step-radial profile (no _pread in transverse energy) compared to the analytic result •

(light curve).
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2. Low gain example.

As a different millimeter-wave example we consider a low gain
v

experiment which could be performed with the high-quality low-current

. beam typical of a storage ring. 5 Parameters are given in Table 4.6. 6 For this

example we will also assume operation in a l cmxlcm waveguide. The

overlap integral is r/~8.4x10 -4, so that the Pierce parameter is p~1.6x10 -3, and

the gain length is Lg~2.3m. For this simulation we assumed an input power

of Po~l kW, and we find P~100 kW after 15 meters, still in the exponential

gain regime, as shown in Fig. 25(a). Taking into account the spread in

transverse energy this is reduced to about 25 kW, as shown in Fig. 4.25 (b).

Table 4.6. Parameters for Low-Gain Millimeter Example

Mcm) 1x10-1

E(MeV) 5

l(kA) 0.05

e,,(cm-rad) 3x10"3

np(cm"3) lx1012

;_dcm) 15
a(cm) 5x10-2

a/3 0.14

. Po(W) 1o3

" We conclude that this example would provide a useful proof-of

principle for parameters typical of a storage ring. Extended to shorter

wavelengths, operation with such a beam would have applications in the
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study of solid-state phenomena/in a wavelength range which, except for the

FEL, is devoid of other tunable sources.
v

10 5 10 5
.... I .... " " " " _ " _'.... " " ! .... I .... .

10 4 i 10 4

10 3 10 3

-- ECL

10 2 .... , .... ! .... 10 2 .... , .... i ... .
0 5 10 15 0 5 I0 15

(a) z(m) (b) z(m)

FIG. 4.25. (a)ECL result for power versus z (dark curve), for the low-gain millimeter wave

example of Table 4.6, compared to the analytic result (light curve). (b)ECL result for an rms

spread in transverse energy trh~0.35 (comparable to a parabolic profile) compared to the cold

beam result of (a) (light curve).

D. INFRARED EXAMPLE

For the next example, we consider amplification of 10pm radiation

from a CO2 laser, the goal of recent FEL experiments. 8 Instead of the 50 MeV

beam typically required in FELs (due to the longer wiggler wavelength), we

consider a 10 MeV beam, with other parameters as in Table 4.7. This lower

energy has numerous advantages, among these are" shorter device length

(more compact), lower beam break-up growth (lower emittance), and higher

Pierce parameter (higher efficiency).
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Using the HEll mode overlap we have r/~7xl0 -3, p~1.4x10 -2 and Lg~4

cm. We expect a saturated power of Psat,.,O.6 GW, and assuming an input

" power of 1 kW, saturation should occur in a length Lsat~0.3 m. ECL predicts

, saturation in 22 cm with an output power of Psat~0.94 GW, as depicted in Fig.

4.26(a). This corresponds to a gain of 154 dB/m and an overall efficiency of

2.5%.

Table 4.7. Parameters for Infrared Example

_,(cm) 1x10"3

E(MeV) 10

l(kA) 4

en(cm-rad) 5x104

n_,(cm"3) lx1015

_._(cm) 0.6

a(cm) 3x10-3

ap 0.4

Po(W) 103

We also examined the effect of detuning, &_O (not detuning spread, Ss)

as shown in Fig. 4.26(b). For large negative detuning, growth is still in the

(quadratic) exponential gain regime after 80 cre, where P--3.4 MW. For large

positive detuning, the system is stabilized (within numerical accuracy), in

° qualitiative agreement with theory.

rl
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FIG. 4.26. (a) ECLresult for power versus z (dark curve), for the infrared example of Table4.8,

predicting gain of roughly 154dB/m, with saturation in 38 cm. Plotted with it is the analytic

result (light curve) which agrees well, due to the low value of/a (_-1x10"2-p). (b) ECLresult for

power versus z for detunings _~-20%(dark curve), 80-20%(lightcurve), compared to the result

of (a) for zero detuning (dashed curve). As predicted by theory, the result for the large positive

detuning (light curve) is stable.

Inspecting Fig. 26(b)further we observe that the result for 80--20% is

rather irregular suggestive of possible numerical instability. To check this we

doubled the number of steps in z (to 798) and found an indistinguishable

result. Energy was conserved to within 6% of gain (i.e. the beam had lost 3.6

MW, while the signal had gained only 3.4 MW). This result was also

insensitive to particle number. °

We also examined the effect of a spread trh~0.35 in transverse energy, as
q

indciated in Fig. 4.27. We conclude that the system is stabilized for this value
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of trh at zero detuning. This is not surprising since the equivalent detuning

spread is 3s~5.6%~4p.
V'

10 9 . ,,
• i " I " i " I "
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- i i4 j
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Fig. 4.27. The example of Fig. 4.26 is stabilized by the detuning spread associated with a

realistic beam profile, lt is instructive to see how this appears in the numerical data. Here

depicted is power versus z of runs with different numbers of particles. The numerical variables

are Nz=28, Na=5and Na values of transverse energy where Nh=5, 10, and 20. This dependence

on Nh is characteristic of the proximity to the stability boundary in (5,.When the system is

physically unstable, it is numerically insensitive to the value of Nh>5.

In this connection we note that when era or 8s is sufficienctly large to

stabilize the system, ECL will still give growth, but the growth depends on the

number of values used to model the distribution (Nh), and can be reduced

arbitrarily by increasing Nh. On the other hand, when the system is physically

. unstable, the result is insensitive to the number of values in the distribution

(see, e.g., Fig. 4.21).
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Including optical guiding, we find cr~7.5xl0 -2, so that 7/~0.17, giving a

Pierce parameter, p~4%. The gain length is then Lg~l.4 cm and the length for

saturation would be of order L_t~0.1 m with an output power of Psat~l.5 GW. _v

The detuning spread due to space charge effects would be 3s~4%~p, and this is

an acceptable amount, as is that due to spread in h.

We conclude that this example would provide a highly efficient, and

compact source of high peak power radiation in the 10 _m range.

E. X-RAY EXAMPLE

For our last example we consider generation of 100 Angstrom radiation

from a 100 MeV beam with other parameters as given in Table 4.8. Two of

these parameters are rather problematic: emittance and a/j. The emittance is

lower by a factor of ten or more than is currently achievable at this current.

The value for aS is larger than theory has considered and for a realistic beam

profile would correspond to considerable detuning spread. Nevertheless the

example is useful insofar as it provides some motivation for further work on

the large aS limit.

Using the HEll mode overlap we have 7/~0.1, p~l.6x10 "2and Lg~l.6xl0 -2

cm. We expect a saturated power of Psat~6 GW, and assuming an input power

of 1 W, saturation should occur in a length z~0.2 cm. ECL predicts saturation

in 0.5 cm with an output power of Psat~15 GW, corresponding to a gain of

2x104 dB/m and an overall efficiency of 4%.
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Unfortunately, but not surprisingly, this example will suffer in practice

from a huge detuning spread 8s~Crha_~9>>l>>p, which stabilizes the system.
V

To surpass this obstacle, would require a rather special manipulation or

preparation of the beam, which we leave as a topic for further work. 9

Table 4.8. Parameters for X-Ray Example

_crn) 1x10"6

E(MeV) 100

l(kA) 4

en(cre-rad) 3x10"5

np(cm"3) 6x102°

)l,_(cm) 2x10 -3

a(cm) 2x10-5

a,_ 5

Po(W) 1

F. SUMMARY

We conclude this chapter noting that the numerical work has

confirmed theory in essentially all respects. Simple estimates of efficiency,

gain length, saturation power, emittance variation and the like give the

correct answers to within a few tens of percents, which is what one expects

from simple scaling laws. From this work the theory of the ICL is advanced to

the state where goals for practical experiments can be planned, and
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perfomance can be estimated incorporating the ever-present effects of energy

spread.

Further studies of detuning and detuning spread are of course

important. In fact, a practical conclusion from this work is that control of

detuning spread will be the key to a successful experiment. In practice, this

means a small spread in axial momentum ,4pz/pz<O(p), and a low emittance,

such that Crha[j2<_,O(p).

At the same time there is much more elaborate numerical modelling

to be done. Important problems include: (1) implementing a radial field

solver to demonstrate, numerically, optical guiding, (2) modelling multiple

mode effects in the microwave regime, (3) incorporating slippage and side-

bands, (4) detailed studies of tapering, (5) numerical investigation of oscillator

configurations, (6) incorporation of ion-motion and the resulting detuning

sweep along the beam, and investigation of the ion-coupled dispersion

relation, and its consequences for beam break-up in the ion-focussed regime.
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" Never trust the artist. Trust the tale."

-D. H. Lawrence

In this chapter we summarize the discussion of plasma constraints of

Ch. 2, the theoretical scalings of Ch. 3, and the numerical results of Ch. 4. We

go on to consider prospects for future experimental tests of theory, and for

practical applications.
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A. SUMMARY

y

In this work we have answered essentially three questions:
@

1. Under what conditions is an ensemble of relativistic simple hm'monic oscillators subject to an

electromagnetic instability?

2. Do these conditions apply to realistic relativistic electron beams propagating the ion-

focussed regime?

3. Is the gain length short enough,, and the frequency high enough to make this instability a

viable source of efficient, coherent radiation?

The answer to question (1) lies in the formulae of Ch. 3, and in the

examples simulated in the ].ast chapter. The answer to questions (2) and (3) is

yes.

More specihcally, in answer to (1) and (2), we have seen that for small

betatron parameter (and small spread in axial momentum) detuning spread is

small, and amplification occurs. The answer to (3) depends on the beam of

course. Specifically, we have seen that design of an ICL parameter set proceeds

from assumed values for current (I), energy (mc2y), normalized emittance (e,),

and the resonant frequency of interest (co-2_co_). Current and energy

• determine the Pierce parameter for perfect overlap (Po). The plasma frequency

is determined from co, and then determines a_. With these parameters in
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hand, the overlap integral (r/) can be computed (whether it be due to ion-

channel dielectric guiding, optical guiding or waveguide overlap).

From these parameters, we may derive the key figures of merit: (a)the
_a

efficiency (p), (b)the gain length (Lg), and (c)the detuning spread due to

transverse energy spread (crha_). The design can be judged roughly in terms of

these figures of merit. The gain length determines whether saturation can be

reached in a reasonable length. The Pierce parameter determines the

efficiency. The betatron parameter represents a correction to the gain length

and the efficiency, and this correction must be taken into account when a_>p.

For any given design, practical constraints due to plasma effects must

also be taken into account. In Ch. 2 we found that these are primarily due to

ion-motion. The effects of ion-motion may be put in three categories for

conceptual purposes. As the ions collapse inward to neutralize the beam, the

betatron frequency drifts upward. Thus each slice finds itself at a slightly

different detuning, and samples a different part of the gain curve. In addition,

the ion density becomes nonuniform, and focussing becomes anharmonic.

Finally, focussing is with respect to the ion-column center of mass, which will

oscillate in response to the beam centroid oscillations (ion-hose). We have

accepted these effects as a constraint on pulse length. In practice, it will be

interesting to see just how stringent these constraints are, and this requires

more elaborate numerical work or, better yet, experimental work.
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B. PROSPECTS

The usefulness of all this theorCtical work is in laying the groundwork

• for designing, planning and proposing practical experiments, whether they be

with high current induction linac beams, or low current (but high quality)

beams typical of synchrotron sources. Much further theoretical work can be

done of course. In particular, incorporation of space-charge in the analytic

model will be important for low energy beams. On the numerical side, 2-D

solution of the Schrodinger/eikonal equation for the vector potential could

usefully buttress our simple model of optical guiding. Non-axisymmetric,

fully-electromagnetic, 3-D (or at least 2-D) particle-in-cell simulations of

channel formation and propagation can be used to assess ion-motion effects.

However, given the numbers of the last chapter (short gain lengths, high

efficiencies, short wavelengths) there is every reason to proceed with a

practical experiment.

Indeed there are many applications for which the ICL merits

investigation. These include the ground-ba:_ed laser concept, 1 the two-beam

accelerator (linac microwave power source), 2 UV/X-ray laser applications, 3

and others. In addition, it is likely that this electromagnetic instability will
b

appear in a natural way in astrophysical circumstances. At the same time, in

experiments relying on ion-focussing, the coupling of the beam centroid to

the ion-motion will result in beam break-up and emittance growth in a long

t_
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pulse---an electromagnetically-coupled ion-hose, Thus an understanding of

the ion-coupled dispersion relation will be important in characterizing

emittance growth in the ion-focussed regime.

Reviewing the volumes of work published in just the last ten years on

the FEL alone, one realizes that it would be 5mpossible to cover the

equivalent ground in one thesis. However, with this work we have at least

shown that the ICL merits serious attentionl It is amusing to note that this

electromagnetic instability, and the electron-hose, are just two instabilities,

revealed by a bit of careful attention to the short-pulse beam-plasma regime.

Each has rather serious consequences for our understanding of the IFR. One

can't help but wonder what other discoveries await us there.
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