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ABSTRACT

Elastic strains alter (usually, but not always, adversely) the critical

temperatures, magnetic fields, and current densities of superconducting A15

compounds; non-hydrostatic strain states are particularly effective in this

regard. This paper is a review of the experimental evidence, obtained by a

variety of techniques, concerning the strain dependence of the critical prop-

erties of a number of A15 compounds and a discussion of theoretical models for

describing such effects.
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Alteration of the Superconducting Properties of A15 Compounds and
Elementary Composite Superconductors by Non-Hydrostatic Elastic

Strains*

INTRODUCTION

It is now well known that stress alters the properties of superconductors;

the frequency of appearance of sessions entitled "Stress Effects on Supercon-

ductors" in the ICMC and Applied Superconductivity conferences bears witness

to the practical importance of this topic. In addition, studies of changes

in the critical properties of superconducting compounds as the size and shape

of their crystallographic architecture is varied by external stress provide

helpful insights into the relations between superconductivity and electronic

and vibrational structure, interatomic bonding, etc. It is the purpose of

this paper to review briefly and discuss the salient features of what is known

about the dependence of the superconducting critical temperature, magnetic

field, and current density of compounds with the A15 crystal structure (i.e.,

Nb.Sn, V,Si etc.) upon elastic strain, with emphasis on "non-hydrostatic"

strain states in which the shape, as well as the size, of the unit cell is

varied. Furthermore, the implications of the strain.—dependent properties of

the compounds for the behavior of elementary composite conductors will be ex-

amined; in addition to its relevance to technological applications, this is

important because many of the experiments on strain dependence have been made

with composite rather than free-standing specimens. Finally, this review is

not meant to be exhaustive in its coverage (see the recent and excellent review

by Koch and Easton (1) for a wide-ranging and thorough review of stress effects),

*Research supported by the Division of Basic Energy Sciences of the U.S.
Department of Energy.
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and I will draw heavily and unabashedly upon the recent work of my colleagues

at Brookhaven to illustrate a number of points.

THE ELASTIC STRAIN DEPENDENCE OF THE CRITICAL TEMPERATURE

Neither the magnitude nor the functional form of the strain dependence

of the critical temperature, T , is unequivocally well established for any

A15 compound. This is due in part to two factors: to the existence of the

cubic $ tetragonal martensitic phase transition which occurs in many A15 com-

pounds (2) and to the related occurrence of nonlinear stress-strain relations

under some circumstances (3). Before discussing the uncertainties however,

let us first establish a phenomenological framework to characterize the strain

dependence of T in both single and polycrystals.

Following Testardi (4), one might reasonably expect the strain dependence

of T for a single crystal to be described by:

T (e) = T (0) + T • E + i e • A • e (1)

c — c — — 2 — = —

where e_ is the strain (written as a 6-component vector) and T_ and _&_ are tensors

for which the components must be found experimentally. The number of distinct,

nonzero elements are governed by crystal symmetry (e.g. L_ has the same symmetry

as the elastic moduli); for crystals with cubic symmetry, Eq. (1) becomes:

Tc(£) - Tc(0) + ri(e1+e2+e3) + ^ ( e ^ + e * )

(2)

+ A12 ( £l S2 + e2 e3 + el £3 ) + iA44(e4+s5+e6> '

Thus one requires, in this framework, four coefficients to describe the strain

dependence of T for a cubic crystal.

If, as in several A15 compounds, the crystal, through the martensitic

transition, becomes tetragonal above the superconducting transition, more
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constants are required. For example, terms linear in (e.-e_), (e.+e_-2e_) , etc.

are now permitted by symmetry, and more than three distinct constants appear

in A_. Furthermore, such an expansion is only appropriate for a single domain

crystal. In general, crystals exhibiting martensitic transformations will be

multi-domained and, in most practical applications, raulti-domained polycrystals

will be encountered. Finally, the martensitic transition in A15 crystals can

be suppressed by stress as well as disorder (2), so that the degree of trans-

formation in a polycrystal subject to a triaxial strain state with strains of

the order of 1% is problematic. Because of these complications we shall con-

fine our discussion to non-transforming crystals for simplicity, but we expect

that the prin. ipal conclusions will be independent of this restriction.

An equation describing the T of a random polycrystalline aggregate, for

which each of the grains obeys Eq. (1) is obtained by the following angular

average. Suppose that the polycrystal is subjected to a triaxial strain

state with principal strains e. , e ? , and e . A particular grain, denoted

by i, has strain components referred to the crystal axes of that grain given

by ̂ (i)=2;(i)*e , where the elements of the tranformation matrix 1̂  are direc-

tion cosines between the crystal axes and the principal axes (5). Thus by

Eq. (1) the critical temperature of that grain, T (i,^), is given by:

Tc(i,£) = Tc(0) +I-L(i)-ep + jSp-i"*" (i) *A-|(i>-£p • (3)

The critical temperature for the aggregate of such grains is obtained by

averaging over all possible axis orientations; this yields an equation equivalent

to Eq. (1) with V_ and _A replaced by:

T , , = <r-L> (4a)
-^olycrystal — =

A . _ , = <L+-A-L> (4b)
=polycrystal = = =
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where the brackets denote angular averages. (This approach is analogous to the

Voigt constant strain approximation for the elastic moduli of polycrystals.)

For a random distribution of grains of cubic symmetry, one obtains by

this procedure an analog of Eq. (2):

= TC(0) + r l ( £ l

+ ( 1 0

A \

)
i p ' 2 P

+

r
e i P

s

n + 2 A i

3p+E2p

2+A44 ^

£ 3 P

f
2

£ 3 p

(5)

This can be put in more compact form by writing the strains in terras of the

dilatation, e=e, +£„ +e_ , and deviatoric components, (i.e. non-hydrostatic)
lp 2p 3p

A J_

i"£ip 3 e >

where

* - A n + 2 A 1 2
v = 3 ^ ^

(The components of A have been grouped in this way to stress their analogy

with the grouping of elastic constants in the bulk and shear moduli of cubic

crystals: (C11+2C;, _)/3, (C- ., -C12) /2 , and C,,.) Equations (6) and (2) now

provide the desired phenomenolog.ical framework to characterize the strain de-

pendence of T in both polycrystals and single crystals.

The relative efficacy of non-hydrostatic components of strain in altering

T will be reflected in the size of A compared with A and I\ in Eqs. (6) and

(7) . Let us examine the available experimental evidence on this point (which

is summarized in Table I). By means of a thermodynamic argument, Testardi (4)

related the coefficients of ̂  to the behavior of elastic moduli in the vicinity

of the superconducting transition and by this means determined values for V Si
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and V Ge; T. and A and A computed from these results are listed in Table I.

It may be seen that Testardi's results yield A =A . Studies of the hydrostatic

pressure dependence of the T of V.Si (6,7) contradict these findings: while

Testardi's coefficients suggest that a substantial quadratic depression of T

should be observable for compressions of ^2x10 (p^400 MPa), expe?riments by

Chu and Diatschenko (7) show an essentially linear increase of T with pressure

up to ^2500 MPa (at which point there is a pressure-induced phase transformation

to a low T phase). Since the bulk modulus does not exhibit any softening ef-

fects on passing through the martensitic phase transition (2), one would expect

reasonably linear pressure-dilatation relation for A15 compounds, in marked

contrast to the uniaxial stress-strain behavior (3). Therefore the results of

Chu and Diatschenko suggest that there, is no appreciable quadratic term in T

- 2 i i 4
vs e for e up to 10 and thus that |A |«2xlO K, in comparison with Testardi's

4
value of -11x10 K. Although the published data do not permit such a quantitative

comparison of values of A for V_Ge, Smith (6) suggests that Testardi's value

4
of +2x10 is probably too high. Finally, Chu and Vieland (12) observed a linear

hydrostatic pressure dependence of T for Nb.Sn for pressures up to 1500 MPa

(e^lO ). Analysis of their results using a linear pressure-dilatation relation

suggests that for this material |A |<<5X10 K; this should be compared with

A ^10 K as suggested by experiments on composite wires, to be discussed below.

There have been several measurements of the effects of uniaxial compressive

stress on the T of single crystals of VgSi, and Nb_Sn (8,9,13). All of these

experiments showed that T decreased linearly with increasing compression up to

stresses of ̂ 50 MPa (9), and that the severity of the T depression was markedly

anisotropic: greatest for stress along <100> and least along <111> with <110>

intermediate. (These results are summarized in Table I.) The linear decrease
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with stress led Weger et al. (8) to propose that the form of the stress dependence

(for stress along <100>, <010>, etc.) was:

AT, = -k { [ffl-c2| + |a2-a3[ + I<r3-a1| } . (8) .

The exact relation between this form and the strain dependence, e.g., Eq. (2),

depends on the stress-strain relation, which is known to be highly nonlinear

for stress along <100> in single crystals of V,Si at temperatures near T (3).

Testardi (10) proposed an approximate stress-5train relation based on these

results and showed how the quadratic strain dependence was consistent with an

essentially linear stress dependence over the experimentally studied range of

stress (see also (9) on this point). If Testardi's stress-strain relation is

used to obtain the triaxial strain state and thus to obtain a value of A from

the 3T /3<J<iOo>
 f°r V Si, one obtains ^-9x10 K, in quite good agreement with

the value of ^-10x10 K obtained by Testardi (4) from elastic modulus behavior

near T and the value of -8x10 K obtained from experiments on composite wires,

to be discussed below. Finally, the nature of the anisotropy in stress sensitiv-

ity mentioned above (see Table I) is consistent with the relative values of the

coefficients of strain dependence A,, and (A.^-A-2)/2 obtained by Testardi (A).

Thus all of the data for V_Si are consistent with a non-hydrostatic strain de-

pendence of T of the form of Eqs. (2) and (6) (provided A.... is ^-A^, i.e.

A ^0) and with reasonable agreement on the magnitude of the coefficients (A., ..-A.,)/2,

A,,j and thus of A . Because there are no data on stress-strain relations in

Nb_Sn, one cannot analyze the results of McEvoy (13) in the same detail as was

done for V.Si, but the fact that 3T / 3 C < 1 O Q > is of the same order of magnitude

for the two materials is consistent with the near equality of A for the two

(see Table I).

We see then that the existing experimental data are consistent with Eqs. (2)

and (6) as a description of the strain dependence of T for V,Si, Nb_Sn, and
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V Ge. Furthermore, the preponderence of evidence suggests that A <<;A for

these materials (and perhaps for all A15 compounds) and thus, from the rela-

tive values of r.. and A in Table I, that the effects of non-hydrostatic com-

ponents of strain greatly outweigh the effects of hydrostatic components for

strains ^10 . Let us now examine the behavior of simple composite conductors

in this context. To aid in this consideration, a brief discussion of the nature

of the strain state in such conductors is given in the Appendix.

The strain dependence of the T of Nb,Sn in monofilament composite wires

produced by the bronze process has been studied by Luhman et al. (14,19). They

find essentially an inverted parabolic variation of the T with externally

applied strain, the apex of the inverted parabola occurring at values of strain

interpreted by these authors (as Rupp (20) had done originally, on the basis

of critical current studies) as the point at which the external strain just

cancels the differential thermal contraction induced residual strain. A

"universal plot" of the results based on this interpretation is shown in Fig. 1.

The agreement between the external strain at which the T peaks with that of

the maximum in the critical current is shown in Fig. 2.

Let us examine these results in the context of Eq. (6), As discussed in

the Appendix, the nature of strain state in the cylindrically symmetric com-

posite permits two distinct components of principle strain: axial, e , and

radial (or tangential), e =£-_=?£ . The parabolic variation of T with

strain indicated that the linear tern: T.e in Eq. (6) is negligible and, al-

though the evidence discussed above suggests that A <<A , we include A for

generality. Thus, for composite wires; Eq. (6)

where E =E +e, e being the applied axial strain, e the initial residual
2 Z ZZ ZZ
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axial strain, and £ is a function of both e and e.
zz

First, let us examine the validity of Rupp's conjecture (20) that T is

a maximum when e=-e . To do this it is necessary to find the strain at the
zz

maximum, e*, by differentiating Eq. (9) with respect to e, making use of

Eqs. (A3-A5) in the Appendix, setting it to zero, and then finding the value

of T (e*) from Eq. (9). The results of this procedure are a function of a

large number of parameters (i.e., R, E,, E , v_, v ) , and their validity de-
I m 1 m

pends on the approximations used in the derivations described in the Appendix,

especially the use of linear elasticity theory. Nonetheless, they may provide

some insight. Some representative results are listed in Table II for two

"limiting" cases: a) the bronze matrix and the (Nb+Nb,Sn) filament both be-

E i

have elastically (x=(l+v ) ~ - 4/3) and b) the matrix yields plastically giv-

m Ji-

ing an effective modulus E /E. i> 1/3 (x=4.5). In both cases the maximum occurs
m 1

at a strain somewhat less than that required to cancel the initial residual

strain; for the most likely value of A , ̂ 0, T takes on the strain-free value

at this point, but it is seen that this may not be so for nonzero values of

A . These results suggest that an evaluation of A based on Rupp's conjecture

zX ) and Eq. (9) (with A ^0)
15[T (e*)-T (i)]

A . * £ U0)
4(1C) (e*)

may overestimate |A | since je |<E*. but it is difficult to estimate the neces-
t zz

sary corrections very accurately. Estimates of C., the ratio of the radial to

axial strains in the initial state,yield ^ -.1 for a range of plausible param-

eters for the elements of the composite. With this value and the data in Fig. 1,

Eq. (10) yields A =-7.4x10 K, bearing in mind from the discussion above that

this may be too large.
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Another method for estimating A from the properties of composite mono-

filament conductors is suggested by the form of the dependence of the residual

strains upon the matrix-to-filament (or "bronze-to-niobiuia") ratio, R, given

by Eqs. (A1-A3) of the Appendix. Combining these equations with Eq. (9),

neglecting small terms proportional to (v - v f ) , and using the large K. limit

of the ratio of radial to axial stress, £ , yields an approximate relation,

good for large R:

I + R " 1 ^ I* r 1 / 2
-1/9

|T (R)-TC(0)|

This suggests a means of plotting the variation of T with R to obtain a linear

extrapolation to R=CD where the unknown terms (5,?^) in the multiplier of

jA I are readily estimated with fair accuracy. An experiment based on this

idea has been carried out by Aihara et al. (11) for monofilament bronze-processed

composite conductors of Nb^Sn, V,Ga, V_Si, and V.Ge. Composite wires of dif-

ferent initial ratio, R , were fabricated. The ratio of each of these wires

was continuously decreased by etching away the bronze matrix, and T was measured

as a function of R. Data obtained in this way for Nb,Sn composite wires are

plotted as suggested by Eq. (11) in Fig. 3. Straight lines are indeed produced

by such a plot; however, the intercept of each plot varies with the initial ratio

R , an effect caused by plastic deformation in the bronze during cooling from

the reaction temperature. Such plastic flow effects should decrease as R -*»,

but this improvement is counteracted by an increasing amount of plastic flow

in the Nb core so that the Nb,Sn is not in a strain-free state even when the

bronze is etched sway. (No such core-plasf.icity effects were observed for V

cores.) However, corrections for these effects are possible, and the resulting

A
value of A , -(7-8)xlO K, compares well with the value deduced from the ex-

4
ternal stress experiment described above, -7.4x10 K.
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A was determined by similar methods for V_Si, V_Ge, and V,Ga. The re-

sults are listed in Table I, and the relative size of the strain dependence

for the various compounds is graphically illustrated in Fig. 4. (The Nb core

plasticity effect mentioned above causes the AT shown for Nb.Sn to be too

small; without this, the curves for Nb_Sn and V,Si would be very similar.) Of

particular interest is the increase in the T of V_Ge by strain, an effect

predicted by Testardi (4) and first demonstrated experimentally by Bussiere

et al. (21). As may be seen from Table I the values of A determined for V_Si

and V,Ge by the etching experiment agree reasonably well with those calculated

from the coefficients deduced by Testardi from the behavior of elastic moduli

(4).

The variation of the strain dependence of the T of Nb-Sn with radiation-

produced disorder has been studied by C. L. Snead, Jr. of BNL, who measured

the dependence on the fluence of reactor-spectrum neutrons of the change in

T which occurred upon removal by etching of the matrix from bronze-processed

composite wires. These results are summarized in Table III and show that the

strain dependence becomes more pronounced with increasing disorder.

The change in T of a composite tape is considerably larger than that of

a composite wire having the same axial strain in the superconductor. The

reason of course is that the triaxial strain state is different even though

the axial strain is the same. The analogous equation to Eq. (9) for a tape

composite (whose strain state is discussed in the Appendix) is:

T -T (0) = e2

c c zz

A /A

2
( (12)

with £ =-2v (1-v ) , from Eq. (A7). Combining Eqs. (9) and (12) shows
t3pG £ £

that for a superconductor with A ̂ 0, the relative change in T is:



-11-

AT (tape) (1-E ) 2

__£ = tape _ „ , _ .

2

Jean Bussiere of BNL and I have compared the behavior of Nb_Sn tapes and wires

and find that AT (tape)/AT (wire) ̂ 2 , in reasonable agreement with Eq. (13).

Finally, recent data on T of A15 Nb-Ge deposited on various substrates (15)

can be. analyzed with the aid of Eq. (12) to yield A ̂ -8x10 K, a value compar-

able to that of Nb,Sn.

The values of A for several A15 compounds, determined by the methods

discussed in detail above, are collected in Table I. Do these values follow

any systematic pattern? This is best discerned in the context of a "McMillan-

type" equation which approximately relates the T to several physically inter-

pretsble and, in principle,calculable parameters. The archetype of such equa-

tions was first proposed by McMillan (22) , and it has since been refined and

extended by a number of authors (23). For our purposes we will use the varia-

tion due to Dynes (23):

c 1.20 k
AU-.62

2 2
where XHN(O)<I >/M<&) > is the electron-phonon coupling parameter, experimental

values of which are collected in Table IV, N(0) is the electronic density of

2
states at the Fermi level, <I > is an average electron-phonon matrix element,

2
M the average atomic mass of the compound, <w> and <ui > are appropriately

weighted averages of the phonon spectrum, and u* is the electron repulsion

pseudopotential j. which we will assume to be independent of strain and to have

the "canonical value" of 0.13. The connection of these quantities to the A

coefficients of Table I is made by differentiating Eq. (14) with respect to
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the square of a strain e which changes the unit cell tetragonality at constant

volume (see Eq. (2)):

^ de de de

2 dinT
where F(X)=A(1.06+.04A)(.92A-.13)~ . Values of — ~ derived from the values

de
of A and T tabulated in Table I are collected in Table IV along with values

of the strain dependence of the electron-phonon coupling constant — " — derived
de

from them with Eq. (15), assuming <to> is independent of strain. The values of

—-r— so obtained correlate well with the theoretical values of the electron-
d e 2

phonon matrix element <I > calculated by Klein et al. (24). Such a correla-

tion would be expected if the strain dependence of X is dominated by the

variation with strain of the electronic density of states N(0).

Although such an interpretation of the strain dependence is consistent

with those models, such as that of Weger, Labbe, and Friedel (2), which em-

phasize the role of sharp peaks in the density of states in the superconductiv-

ity of A15 compounds, other investigators, most notably Testardi (25), emphasize

the importance of phonon anharmonicity in causing the high T of many A15 com-

pounds. Equation (15) can be rewritten so as to separate effects due to an-

harmonicity and those due to the strain dependence of the electronic density of

states:

de2
- 2F(X)

2 1/2

d,2
dinN(O)<I2>

(16)

2
If Hopfield's arguments (26) that the product N(O)<I > is an "atomic"

property, relatively insensitive to crystal structure, then the first term

(in braces), due to phonon anharmonicity, would be the principle source of the
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straln dependence of T . Values of this term divided by (1-2F(X)), obtained

2
assuming N(0)<I > to be constant, are collected in Table IV under the heading

— 2 2

d£nu)/de ; they also vary systematically with <I >. At this moment the actual

relative contributions of anharmonicity and the strain sensitivity of N(0) are

not known; however we shall see in the next section that the strain dependence
2

of the critical magnetic field H cannot be explained by dN(0)/de alone.

THE ELASTIC STRAIN DEPENDENCE OF THE CRITICAL MAGNETIC FIELD

Much of the discussion of the last section about the critical temperature

applies also to the critical magnetic field; there are quantitative differences

however, and these provide some insight into the relative contribution of various

mechanisms on a microscopic scale to the strain dependence.

Rupp (27) and Ekin (28) have both shown that the upper critical field,

H _, of commercially produced, bronze-processed, multifilamentary Nb_Sn com-

posite wires depends essentially quadratically on axial strain and that a

"universal curve", analogous to that shown in Fig. 1 for T , can be constructed.

Depending on the heat treatment of the conductor, H „ is reduced by strains of
_2

±10 to 65-80% of the strain-free value. From Fig. 1, or the data in Table I,
it is seen that the T for Nb_Sn is reduced to about 86% of its former value,

c 3
i.e., the reduction by strain of H , is more severe than that for T . Similar

c2 c.

behavior has been observed by Suenaga et al. (19) for bronze-processed Nb Sn

monofilament conductors and is shown graphically in Fig. 5.

Such an effect is understandable at least qualitatively on the basis of

the Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) theory of type-II superconductivity

uncluding corrections for the electron-phonon interaction. (An excellent recent

discussion of the critical fields of A15 compounds in terms of GLAG theory has

been published by Orlando et al. (29); see also (30)). The desired relation

between critical field and critical temperature is obtained by first relating
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the therraodynaraic critical field to the critical temperature by equating the

condensation energy, which introduces H , to the superconducting gap energy,

which introduces T . The thennodynamic critical field H is then multiplied

by y2 K to obtain the upper critical field H , and finally we use Goodman's

approximation for K (31) to obtain:

l + 1.32 | ^ j (16)
o '

where in addition to the parameters defined previously, c is a numerical

constant, which is not expected to depend very much on elastic strain, <l>

is the conduction electron mean-free path and ? is the coherence length; the

latter is dependent on the critical temperature and electronic Fermi velocity

(31) and hence is strain-dependent. In this equation and the following discus-

sion, H ? is meant to be the upper critical field at zero temperature. On the

basis of the preceding discussion of T and the observations of (27) and (28),

we expect H ?/T to vary quadratically with tetragonal strain, thus:

din fc^) 1.32
c _ 1 d£N(O) 1 X d&nX so " " " o (17)

d,2 " 2 d e 2 2 <1+X> dE
2 ~ 1+1.32 | ^ d e

2

o

The various terms on the rhs of the equation can be estimated based on the

discussion of the strain-dependence of T . Let us examine various limiting

cases.

Suppose that the density of states N(0) is the principal source of strain

dependence. In this case, and in the dirty limit <£><<£ , Eq. (17) becomes,

together with Eq. (15):
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1 (1+2*) d£nX = 1 (1+2X)
 d & n T

c ( 1 8 )

de2 2

where F(X) is defined after Eq. (15). For Nb Sn, Eq. (18) says that since T

is reduced 14% by a strain of 1%, (H /T) should be reduced by 10%; this is

at variance with the experimental value of the reduction of the latter,

to be seen in Fig. 5. Thus the results are inconsistent with the assumption

that the strain dependence of T and H _ is due only to a variation of the

electronic density of statss. The assumption that phonon anharmonicity is

solely responsible for the strain dependence results in an even worse dis-

crepancy. It is only possible to account for the strain dependence of H _/T

if both effects contribute.

THE ELASTIC STRAIN DEPENDENCE OF THE CRITICAL CURRENT DENSITY

Understanding the elastic strain dependence of the critical current dens-

ity, J , in high transverse magnetic fields for A15 compounds is made easier

by the existence of a scaling law, proposed by Kramer (32), which seems to be

obeyed by these materials:

[H ,(T)]2-5 1/2M M 2
Jc cc

 c 2 h ( 1" h ) (19)

where H is the applied magnetic field.

(20)

and

h 5 ifj

While there have been some criticisms (33) of the validity of the assumptions

made by Kramer in its derivation, the scaling law is observed to hold quite
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well for polycrystalline Nb_Sn in composite conductors produced by the bronze

process (19,28) as well as by so-called "in-situ" methods (34), for applied

fields greater than about A T.

Simple manipulation of Eq. (19) shows that

(JcH)
1/2H~1/A «<H-Hc2) . (22)

Thus a plot of the Jlhs versus H for samples with varying degrees of strain

should yield a series of parallel straight lines intercepting the H axis at

the different strain-dependent values of H . Such behavior is illustrated

in Fig. 6 for monofilament bronze-processed Nb Sn wires with varying degrees

of internal strain. Furthermore, both Rupp (27) and Ekin (28) have shown how

measured strain-dependent values of H for multifilamentary Nb.Sn composite

conductors can be used to predict the strain dependence of J '.-sing Kramer's

scaling law. Thus it appears that, at least at high fields, the strain-

dependence of the critical current is adequately accounted for by the strain

dependence of H - and T .
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APPENDIX. THE NATURE OF THE STATE OF STRAIN IN ELEMENTARY
TWO-COMPONENT COMPOSITES

In a substantial number of the experiments on strain dependence, the A15

compounds are present as elements of composite superconductors. In order to

interpret these experiments properly it is necessary to have some understanding

- of the triaxial nature of the internal strains present as a consequence of dif-

ferential thermal expansion among the elements of the composite and of how this

strain state is altered by externally applied stress. We shall illustrate the

general features by a brief, approximate discussion of the strain state pres-

ent in two idealized composite conductors: a cylindrical conductor containing

a single superconducting filament within a normal matrix and a two component

tape conductor.

A. Cylindrical Composite

Consider first an internally strained cylindrical conductor, for example

a single filament Nb_Sn conductor made by the "bronze process". Strictly

speaking this is a three component composite (Nb, Nb Sn, and bronze), but

for simplicity we shall treat the (Nb+Nb-Sn) core as a single element, the

"filament", whose properties will be denoted by a subscript f, since the

thermal expansion coefficients of Nb and Nb.Sn are identical. The properties

of the bronze matrix will be denoted by a subscript m. It is straightforward

to derive the strains in a three element composite wire by extending the methods

described below, but the results are rather complicated; the additional accuracy

does not justify the additional complexity for our present purposes. We shall

treat each component as an isotropic, linear elastic continuum.

Because the thermal expansion coefficient of bronze substantially exceeds

that of Nb and Nb.Sn (or V and V-Si, etc.), cooling from the reaction tempera-

ture for the formation of Nb_Sn causes a residual strain state with the filament
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in compression and the matrix in tension. We calculate the strain state by

the following process. Imagine the matrix to be a hollow cylinder separated

from the cylindrical filament. At the reaction teirperature the filament ex-

actly fills the hole in the hollow cylinder. Cool the separated matrix and

filament to the temperature at which the superconducting properties are to be

measured. The dimensions of the filament now differ fractionally from those

of the hole in the hollow cylinder by an amount 6, given by the integral of

the difference in the linear thermal expansion coefficients over the interval

between the reaction and test temperatures. Now apply an internal pressure to

the walls of the hole in the cylinder and an equal external pressure to the

cylindrical surface of the filament. Apply a uniform tensile stress to the

ends of the hollow cylinder and a different uniform compressive stress to the

ends of the filament. Increase the pressure and two axial stresses until three

conditions are met: i) the radius of the filament matches the radius of the

hole in the matrix, ii) the length of the filament and matrix are equal, and

iii) the integral of the axial stress over the area of the filament plus matrix

is zero. When these conditions are met, the strains in the filament and matrix

are the same as those present when the two elements are "glued" together to

form the composite. It is straightforward to carry out this procedure explic-

itly by combining Hooke's law with the cylindrically symmetric, plane strain

radial elastic solutions in (17) and assuming the axial strain to be uniform in

each component. These approximations are sufficiently accurate for our purposes

and are similar to those used in the theory of the mechanical properties of two

component composites developed in (18). The resulting axial strain in the fila-

ment is:
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where e(a) is the axial strain due to the applied stress alone, i.e., the mea-

sured "external" strain arising from the applied stress.

B. Planar Composite (Tape)

The residual strains arising from differential thermal contraction in a

thin tape "sandwich" conductor are obtained as follows. As above, consider

- the conductor to consist of layers of two materials: external layers of bronze,

with properties denoted by a subscript m and a central layer of (Nb+Nb_Sn or

V+V Si, etc.) treated as an effectively homogeneous material with properties

denoted by subscript f. As in part A above, we calculate the strains by imagin-

ing the separated elements to be cooled from the reaction temperature, where

they are the same length and breadth, to the test temperature where differential

thermal contraction causes a mismatch in size. We shall assume that the thick-

ness of the tape is very small compared to the length and breadth so that a

state of plane stress is a good approximation to reality. Apply uniform ten-

sions and compressions in the plane of the layers until: i) the layers match

in length and breadth and ii) the integral of stress over a cross section of

the entire tape is zero. The resulting strains are those that will occur

when the elements are then "glued" together. The strains in the central layer

of superconductor are:

efll = ~ ~ (A6)

"2vf

where the two principal strains in the plane of the tape are denoted by the

symbol li and that perpendicular to it by the symbol X.
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The strains in the external layers of matrix are:

(A8)
E (
m

E , -2V

5 == -Si. = _-S . (A9)
m e „ 1-vmil m

These results can be used (with the obvious alterations required) to

describe a composite tape consisting of external layers of superconductor

deposited on a central substrate layer.
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1+R"18E1+2(1+v )(v -v,)G~
m m f

(A3)

(Al)

where the argument zero indicates no external strain has been applied, 6 is

the fractional mismatch and is positive for bronze-processed wires, E is

Young's modulus, v is Poisson's ratio, R is the volume ratio of bronze matrix

to filament and

G H (1+v ) ( l - 2 v j + R"1 — (1+v )(2+R-2v )
i t Em mm

(A2)

The rad ia l and tangential components of s t ra in in the filament are given by:

(A3)

G"1(l+v f)(l-2v f)

-v f +
R(ia)+2G~1(l+v )(v -v )\E_/ m m f

To find the strains due to the differential thermal contraction, three

boundary conditions were invoked, as described above. If an axial tensile

stress is applied to the composite, only condition iii) above is changed: now

the integral of the axial stress over the cross-sectional area of the filament

plus matrix must equal the external stress. The resulting strains are:

e (a) = e (0) + e(a)
zz zz

1 +
e(a)

(A4)

(A5)
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T a b l e I .

COEFFICIENTS FOR STRESS AND STRAIN MSNSNDKNCB OF HIE CRITICAL -.KMPERATHRE FOR SEVERAL At5 COMPOUNDS

Compound, Tc°

V 3 S1, 16.8 K

V3Oe, 6.1 K

VjCa, 16.5 K

NbjSn, 1R K

Kiltie, - 2 0 K

r , . K

-(45 - 64)b

-7t)b

l r i l<*S

-1411'

4-2 l b

A v , K

-11 x 104

| 4 v | <2 x 10* ••

Kvl <2 * 10* ''

•1.9 x 10*

|AV| <5 x 10l •>

L

-9.9 x 10*

(-9 x 10*)c

-8 x 10*

+5.8 x 10*

+* x 10*

-9 x lu !

-a - fl) x in'

- 7 . 4 x 10*

-S x III*

_J^k
4H - 412)

.1

.1

S Tc -1
S T - K "

-(2.6 - 1.7) a 10-1"

-4.0 x 10"1"

-(5.1 - 9.7) x !0"9

-4.5 x 10-9

- 0

-8.1 x 10-1"

-1.0 x 10-1"

+1.4 x I T 1 "

-1.1 x Ur"

Reference

4

6,7

7

8 ,9

9

8

11

4

6

t i

11

6

ft, 12

n

11

14

15

Specimen

8 . r . , nun-1 ranB.a

s . c , nnn-tranB.

s . c , trans.

B.C.

B.C.

s.c.

poly.

B.C.

pnly.

poly.

poly

poly.

poly; s . c . trails.

n.t:.f traim.

poly.

poly.

poly.

Comment

from elaHtlc proporrles

hyd ios t j i t l c , (i = -p

hytlroBtat 1c, a m -p

iinlaxl.il stress, <10(^

unlaxl'il HI r«ss, < 1 l(t»

unlaxl.il stress <11>

trlaxlal; composite wire

from elastic properties

hydrostatic, a = -p

trl.-ixl£l; composite wire
etching experiment

trl'ixl.-il J composite wire
etching experiment

hydrostatic, a = -p

hydrostatic, <J ° —p

nnlaxln) Hiiesn, <IOO>

triaxlal; composite wire
etching experiments.

triaxlal; composite wire,
external tension

trlaxlal; i:ouiposite tape

" T r i m s . " " r " m m - t r a n H . " denotes wluUlicr or not Hpc'iinum cryHtn i e x h i b i t s the mnrte tmt lc i r ; i n n l t li»nu " K . L * . ' * .uiil * ' p « l y . " denole

Ca lcu la ted w i t h l l m M r o l n a t l t - l t y t l i rory Mini tlit> hulk UHKIMII IS of Ruf. A.

Cnl«:u]<itu<l w i t h Teutnr i l l 's ( i n ) jionl I i i inr t i i . i x l a l i i t i o s u - r . t r i i l u r c l a t l m i haseil on the -l.it.i •>( I'.U.-l nml llattonnait < 3 ) .

fiifttu nr po lycrvHt i i l H n o .



Table II.

CALCULATED VALUES OF THE FRACTIONAL RECOVERY
OF THE CRITICAL TEMPERATURE AT THE EXTREMUM(e=e*) OF THE

T c VERSUS APPLIED STRAIN CURVE FOR MONOFILAMENT COMPOSITE WIRES

- . 4

0

+.4

xa = 4/3

.64

.75

.85

i

4.5

.86

.90

.94

[Tc(e*) -

[Tc(o) - 1

4.3

2.77

1.00

.77

T c( i )]b

rc(i)]

4.5

1.06

1.00

.96

x = (14vffi) ||; vf=l/3 for all cases

Tc(e*), Tc(i), Tc(o) are the critical temperatures for,
respectively, the strain at the maximum or minimum in the
Tc versus e curve, in the initial as-fabricated state, and
in the strain-free state.



Table III.

EFFECT OF NEUTRON-IRRADIATION
ON THE STRAIN DEPENDENCE OF Tc IN Nb3Sn

a

Fluence
1017 ncm-2, E>1 MeV

Tc> K
(Midpoint)

16.55

16.60

16.52

16.27

15.92

13.00

10.05

ATc/Tc

.029

.028

.025

.042

.066

.076

.084

0

1.3

6.6

13.0

23.4

62.4

130.0

Bronze-processed, 700°C/96 hrs; Bronze/niobium ratio
2:15. Unpublished data of C. L. Snead, Jr. see also
Ref. 16.

AT C is the increase in critical temperature upon re-
moving the bronze matrix by etching.



Table IV.

SYSTEMATIC BEHAVIOR OF THE UNIAXIAL STRAIN DEPENDENCE
OF THE CRITICAL TEMPERATURE OF A15 COMPOUNDS
IN THE CONTEXT OF A "McMILLAN-TYPE" EQUATION

Compound K

V3Ga 16.5

V3Ge 6.1

V3Si 17.1

Nb3Sn 18.0

Nb3Ge 19

dZn T a
c

-600

+6100

-4700

-4100

-3900

1.17

.70

1.12

1.44

1.80

-420

+2100

-3100

-3600

-4500

Arbitrary Units

260

330

334

402

472

d£nU\e

~~di? //max

+319

-1300

+2300

+3300

+5200

Calculated from the data of Table I.

Experimental values tabulated in Ref. 24.

Calculated with Eq. (15) assuming <u> is constant.

First principles calculation in Ref. 24O

Calculated with Eq«> (16) assuming N<l2> is constant.



FIGURE CAPTIONS

Figure 1. "Universal" strain dependence of T for bronze-processed monofilament

Nb Sn conductors. The plot was obtained by matching curves of T

versus applied axial strain at the maximum T and the strain at

this maximum. Data are from References 14 and 19.

Figure 2. Applied strain at the maximum of curves of critical current density,

J , and of critical temperature, T , versus applied axial strain for

bronze-processed monofilament Nb.Sn conductors. The bronze/niobium

ratios are indicated. (Unpublished data of T. Luhman and M. Suenaga.)

Figure 3. Variation of the differential thermal contraction induced depression

of the critical temperature of bronze-processed monofilament Nb Sn

conductors as the bronze matrix is etched away. The form of the

plot is suggested by Equation (11). As-fabricated bronze/Nb ratios,

R , are as indicated. Data are from Reference 11.
o

Figure 4. Variation of the differential thermal contraction induced change

in the critical temperature of bronze-processed monofilament con-

ductors of various A15 compounds. Data are from Reference 11.

Figure 5. Variation of the ratio of the upper critical field at 4.2 K to the

critical temperature for bronze-processed monofilament Nb Sn con-

ductors with the bronze to niobium ratio and thus the degree of

strain. Values of strain corresponding to these ratios may be

read from Figure 2. Data are from Reference 19.

Figure 6. A "Kramer-scaling" plot of critical current density at 4.2 K for

bronze-processed monofilament Nb,Sn conductors with bronze to

niobium ratios as indicated. Data are from Reference 19.
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