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ABSTRACT

Transjent processes in radiative transfer have recently
Lecome of interest in the modeling of astrophysical phenomena,
particularly with regard to the brightness of novae, supvrnovae,
and perhaps cven galactic clouds adjacent to quasars. We present
here analytic solutions to a particular class of Marshak wave
problem with and without the “arshak (*tilne) boundary condition.
We find that the choice of houndary condition can have a decisive
cffect on the coupling of radiative energy to the material energy in
the vicinity of a material boundary. The analytic solution we have
ohtained ~an he useful as a tool for calibrating numetrical calculation

techniques.

“Wark performed under the auspices of the
U.S. Department of Fnergy by the Lawrence
Yivermore Laboratory under contract number
W-74U5-ENG-48."
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1. Introduction

Recently Pomraningl reported on analytic solution to tne time-dependent
non~equilibrium "Marshak" problem, in which an initially cold halfspace of
material has radiation incident upon its surface. The problem was made
analytically solvable by introducing a specific heat capacity in the material
which was proportional to T3, where T is the material temperature. This
specialized heat capacity causes the equations to become linear in T4, and
classical Laplace transform techniques can then be used to solved the problem

within the framework of the lowest-order (P1l) spherical harmonic approximation.

We subsequently wondered how much the choice of boundary conditions at
the material surface affected the solution. In particular we wished to explore
how conservation of flux at the boundary (which results in the "Marshak"
boundary condition) ‘rould affect the rate of energy transfer into the material,

and also whether such a flux-conserving condition would lead to a discontinuity

in temperature at the material surface, as it is known to do in the complementary

ces ] . 2,3
case of a source radiating into a transparent medium. ’

In order to assess the importance of a flux-conserving boundary condition
we have resolved the problem posed by I’omraning1 using two different boundary
conditions. The first condition is the "equilibrium" condition that would be
valid within an infinite medium at equilibrium. The second is the “Marshak"
boundary ccndition which conserves flux across the boundary. Both of these

boundary conditions are frequently used in the literature.
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In this paper we calculate the total material and radiation energies in the
material helfspace as a function of time, and compare these energies as computed

with the two types of boundary conditions described above.

11. The Problem

< <
We consider a semi-infinite purely absorbing medium occupying 0 - z = =,

The medium is assumed to be homogeneous and, at t = 0, to be at zero temperature
with 710 radiation field :resent. At t = 0 a time-independent radiative flux
inpingee on the surface at z = 0. Ve wish to compute, as a function of space
and time, the material tempcrature and the radiation field. Hydrodynamic

motion and heat conduction will be assumed to be negligible.

The radiative tiransfer model to be used is the grey Pl diffusion

description. The equation of tramsfer is then

SE
:_E(z,t) - 3 3 EEE(z,t) = cK(T) aT4(z,t) - E (z,t) )
at 9z 13(TY Bz r

where z is the spatial variable, t is time, T(z,t) is the material temperature,
K(T) is the absorption cross section (cpacity), c is the speed of light, and

a is the radiation constant, and Er(z,t) is the radiation energy density.
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The material energy balance equation is

CV(T) 3T (z,t) = cK(T) [Er(z,t) - aTA(z,t) ] (2)
at

where Cv’ the heat capacity per unit volume, is related to the material

energy density Em by

E(T) = dr* € (T") (3)

° =3

The initial conditions are that no radiation be present:

E (z,0) =0 (%)

and the material temperature he zero:

T(z,0) = 0 (5)

Our choice of boundary conditions include the “equilibrium" condition

Er(O,t) = % Finc (6)

and the ™Marshak" condition

9E
E (0,r) ~ 2 r(0,t) =4 F, N
r IK[T(0,t)] oz c e

where Finc is the flux incident upon the medium at z = 0, At z = » we have the

boundary condition

Er(m,t) = 0. (8)



Equations (1) through (8) define a nonlinear set of equations for the
unknowns Er(z,t) and T(z,t). In order to make the problem tractable, we

assume K to be independent of temperature and we set

C =aT (92)

so that the above equations become linear in Er and T .

Before proceeding with the solutions using the two different boundary
conditions, we recast the equations in dimensionless form. The incident flux is

written in terms of an effective temperature Oinc as

_ 4
Finc - Oinc (10)

where o is the Stefan-Boltzmann constant, ¢ = ac/4. We also define a

radiation temperature 0(z,t) by

E_(2,0) - a 0*(z,t) iy

Introduce the dimensionless variables

x =2/3 Kz (12)

T 216 g Kt=14acKk t (13)
o a

and define the new independent variables
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U(x,t) =|0(z,t) (14)

0.
inc

v(x,t) =| T(z,t) (15)

0,
inc

Now equations (1) and (2) take the dimensionless form

e du (x,7) - 3% (x,7) = v(x,7) - u(x,T) (16)
aT
9x
a_V (X,T) = u(x’T) - V(X,T) (17)
AT

where we have defined the parameter

€ = 160 = 4a (18)
co a

The condition at z = » and the initial conditions are now
u(e,1) = u(x,0) = v(x,0) = 0. (19)
The equilibrium boundary condition becomes

u(0,7) =1 (20)

and the Marshak boundary condition is now

u(0,t) - 2 3u (0,7) =1. (21)

Ve



Equations (16) through (21) are the equations we shall solve.

Setting £ = Q0 is equivalent to assuming no retardation, i.e. an
infinite speed of light. This implies that the radiation field instantly
comes into a steady state distribution with the material temperature at any time
t. Note that € = 0 does not imply u = v (Er = Em) because of the spatial
streaming term in equation (16). Only in complete thermodynamic equilibrium

does E_ = E .
r m

III. The General Solution

Introduce the Laplace transform ?(s) of a function f(t) by the definition

o

T (s) E-[.dr e ot f(t) 22)

[o]

Taking the Laplace transform of equations (16), (17), and (19) gives

esa(x,s) - gzi(x,s) = ;(x,s) - ;(x,s) (23
ax2

SV(X,S) = U(Xy8) - v(x,8) (24)

u (»,s) = 0. (25)

The transform of the equilibrium boundary condition is

u (0,8) = 1 (26)
=
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and the transform of the Marshak condition is

u(0,s) - 2 3u (0,8) = 1 (27)

Vﬁ; ax s

Fquation (24) gives

U (x,s) (28)

and using this ia (23) gives

255 (xes) = 85(s) ulx,s) (29)
8x2

where
82(s) = [1+c(s +1)] (30)

The solution to Eq. (29), subject to the boundary condition at x = =, Eq. (25) is

T (x,8) = A(s) e "(SX, (31)

The constant A(s) is determined from the condition at X = 0. 1In the case of

the equilibrium boundary conditions we find

-8x (32)

s

U (x,8) = e

and
-3x

£ (33)
s(s+l)

v (x,s) =



[n the case of the Marshak condition we have

= _ -B(s)x
u (x,8) \,/;e (34)

s(J/3 + 28(s)]

and

Ve Y
s(s+1) 3 + 28(s)]

(x,s)

<|

The solutions for u(x,T) and v(x,T) follow by use of the Laplace

inversion theorem
f(1) = 1 [ds ST () (36)

271

(&

where the integration contour C is a line parallel to the imaginary S axis to

the right of all singularities of ?(a).

From the large and small limits of s one can immediately deduce that

u (%x,0) = v (x,0) =0 (37)
and
u (x,1) v (1) =77 1 (38)

where we have used the two theorems

lim sf(s) | = lim £(1) -] (39)
e 0 J
lim [sf(s)] ~ 1im | £(7) (40)

s-+0 T
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Equation (38) states that at infinite time the radiation and material
temperacures approach a constant equal to the temperature of the impinging

flux.

IV. The Solution For e = 0 With "Equilibrium" and "Marshak" Boundary

Pomraningl has already reported the solution of equations (16) through
(19) with the Marshak boundary condition (21). We outline here a similar
solution using the equilibrium boundary condition (20). For comparison the
corresponding Marshak boundary condition solution equations will be included

in hrackets after the equilibrium boundaryv condition solution equations.

It is useful to first examine the case ¢ = 0, corresponding to no

retardation. In the limit 1 = « we find

> 1, (41)

u (x,t) P > v (X,t) —

just as in the general solution, for both boundary conditions., That is, at
late times the system equilibrates to the correct constant even when € = 0,
However, for T = 0 we find that 5(») = 1 for ¢ = 0 and this gives

-x -X

u (X,O) (42)

1
(%]
1

u (x,0)

]
m

and v (x,0) v (%x,0) =0 (43)

i
o

That is, the material field is still zero at T = 0, comsistent with the
initial condition, but the radiation field with € = 0 is not zero and its
value depends on the choice of boundary condition. Thus the radiation field
with no retardation comes to a steady state consistent with a zero material

temperature but corresponding to an incoming flux of radiation. The radiation
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field at the surface is larger in the case of a Marshak boundary condition by a
factor of 0.46. Since u is proportiomal to 64 this implies that radiation
temperatures at the surface differ by a factor of 0.82 when ¢ = 0, with the
temperaturc resulting from a 'arshak boundary condition greater than the

surface temperature from an equilibrium boundary condition.

At the surface x = 0 we have

(0,5) = 1 [E 0,5) = V3 Veni (44)
L s[Y3 +/sH1 + 25 1

el

w

1 V0,8 = V3 Jer “
s(s+l) s(s+l)[vf§:/5+1 + ngj

(0,s)

<

Tiie inverses of liq. (44) and Lq. (45) are tabulated4 to be

1
2
u(0,7) = 1 w(©0,7) = 1 - a3 fdn (1-nPy/2 't (46)
v G- B
and _ -
v (0,1) =1 -¢e T=y (,1) - e T
(47)

1
2
v (0,1) = u (0,1) - 4Vg_ ./ndn (l—nz)l/2 esT(l—n )
L 4 - &

These equations show that the material field always lags behind the radiation

field, as one expects it should.

The flux of radiation is given by

I'(z,t) = - _¢ 3Er(z,t) (48)
3K az

Define the dimensionless flux
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W(x,7) = F(z,t) (49)
F

or in terms of the dimensionless variables » and Tt

W(x, 1) = - 4 3u (x,1) (50)
Ve

The Laplace transform of the surface flux is

W(0,s) = & 1 W, = 4 (51)

V3 Vs (s+1) « 3s(s+l) +2s

From the small and large s behavior we find

W(0,71) > 1) W(0,") -

W(0,0) = & W(,0) = 4 (53)

V3 Vi3 + 2
Equation (52) shows that at infinite time equilibrium has been reached throughout
the material and the net flux is zero. At 7T = 0 one physically expects that
all of the incoming radiation is absorbed bhecause the material is cold. However,

instead of W{(0,N0) = 1, Eq. (53) gives

W(0,0) = 2.3094 {1.0718] (54)
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We note that while the Marshak boundary condition gives a 77 error in flux, the
"equilibrium" boundary condition gives a 231% crror, when applied to the Pl

approximation.

For a gencral value of 1 the tabulated solution to

W(0,5) = 4 1 (53
V3 Vs (s+1)
is given b
W(0,1) = 4 e~T/2 10 (~1/2)
V3
\ (56)
4 e_T/2 1+ 13 + 14 + .« .
1
‘/'3_ 16 024
1 2
2 _ 2
W(0,1) = 3 /.dn (1-n )1/2 o "t (57)
o G+ 0
wvhere Io is a modified Bessel function of the first kind with order zero.
V. The Integrated Energies for ¢ = 0
Next we calculate the integrated cnergies for the case v = 0. We
define
a 04
Pr(1) : dz Er(z,t) = inc dx u(x,r) (s8)
o J 3 X o
4
- 4 a0,
Pm(r) = fdz o T (z,t) = ine ~/:]x v(x,t) (59)

’ ey

The dimensionless integral energies are defined as

o o
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Y (1) = fEi:l and ¥ (1) = Eﬂfii (60)
r P_(0) m P (0)
T m
wliere
a O4 o ()A
Pr(O) z inc and Pm(O) inc (61)

J3 X 63 n

Thus we have

)

‘Pr(r)= [dx u(x,1) (62)
"o

o

‘%’H(r) = Jdx v(x,1) (63)

0 ——

Taking the Laplace transforms of these integrals and integrat.ng gives

v () = et Y (s) = 3 (stD) (64)

r

53/2 s{y3s(s+1) + 2s)

%) 7 372 : 172 Ya(s) = V3 (65)
s (s+1) s(V3s(s+l) -+ 2s)

The inverse of these transforms is tabulated to give

/2 1) (/) + e 2 (t/2)

y (1) = (t+ L)e '
r 1

= (1'+l)e--T/2 1+ li + T4 + ... + re-T/Z T+ 13 +...\(€6)
16 1024 4 128
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1

2 2 - r2 -7
w(r)=_2_f;1n 2t +f{ 7+4 1 -m" - 3n 1\ My -2
r m 2 2/ 3

o 1+ 1-n 3+

for the radiation energy, and for the material energy

v (1) = we "/ (IO(T/Z) + 1 (T/Z))

= Te_T/z 1+ IE. + TA + ...+ T+ rj + ... (67)
16 1024 4 128
1
2
¥ (1) =gfdn 2+ fo + V1YY 1 >e—Tn +2e -2
T % 1 +vV1-n7/Q + n2 L 3
Note that
v =+ 2w ) v (68)
r 16 1024 m
or that
3Y
¥ (1) - ¥ (1) = __“m(1) (69)
r m v
oT

which is just the energy balance cquation for the material, obtaincd by

integrating Eq. (17) over all x.

For large values of the argument IO and I have the asymptotic approximation5

1
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1 (@) 1 et (1 + 10+ 1+ ) (70)
> Sz 8z 1282°
I.(2) 1 eZ 1~ 3 - 23 +
1 —_ 3 : oo (71)
Z > © " 2
2uz 8Z 1287
thus for large 1T we get
Y (m) = ¥ () = 2\/; Y(=) = ¥ (=) =2 [t (72
m r m r -
T ™
vI. The Distributions u{x,1) and u(x,1) for ¢ = 0

Finally we integratc according to FEq. (36) to find the inverses of U and

Vv for the case ¢ = 0, That is, we transform Eq, (32) and (33) with 52 = s/(s + 1).

Thus
y + 1
. )
u(x,1) = 1 ds e’ o VX (73)
2ni s
- jw
\
y + ix
-8
vix,t) = 1 ds e’ e " (74).
2ni s(s+1)
Y - i

These Laplace inversion integrals are vertical lines in the right half s-plane,
as shown in the contour below. Closing the contour with a large semicircle in the
left half plane gives a zero contribution except for contributions from the

pole at s = 0 and from the branch cut, with branch points at s = 0 and 5 = -1.
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In S

A
]
(o
el
o
LA

Proper branches are defined as those which give a positive square root for s lying

or. the real positive axis.

Omitting the algebraic detail, we find
1

2
u(x,t) =1 -2 y/}n e " T_ gin nx
m n ‘/'1__—“2- (75)

[e]

2
u(x,T)=1-4J_ an V1-n? ( nx )e'”‘

(3+n)

and 2
vix,t) = 1 - z._fdn e’ sin nx
" n(-n?) Vi-n?
1
vix,7) =1 - _‘i;jdn 1-n”  cosf nx e'"2T (76)
! (3+n%) Vi-n?

2
- 4\/—de l—n cos \/]__,] X ¢t (1-n")
(

° 4~n ) n
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-6 dn 1 sin nx e_Tn
L 2

2
n(3 +n") 1-n

It can be verified that these equations yield the previously derived results

in the limits 7 = » and x = 0.

VIL. The Integrated Energies for .. # 0

The general problem with : # 0 was given by equations (30) through (35)
for both types of boundary condition. Again we shall give solution equations for the
case of equilibrium boundary conditions, with the corresponding solutions
using Marshak boundary conditions in brackets. For the equilibrium boundary

conditions the integrated encrgy transforms are given by

Wr(s) S - . (77)
A 172 1/2
s s 1 + ¢ (s+1)
(&) (o)
.‘;—m(s) = 1 = L (78)
Ps(s+1) s(s+1) (s V12 (1 + ‘(s+1))1/2
(s+1)

3y -

Noting that ?r(T) = Wm(T) + m(t1), we need only invert ?n to get
a1 '

¥ and ¥ .

m r

The s =-0 limit gives the long-time behavior of ¥ .
m

lim ¥ =1lim ¥ =2 T = ¥ (o) =¥ () (79)
s~0 © s>0 T n{1l+e) m r



»
[

~19-

This limit is the same in the case of Marshak boundary conditions. For small

times one takes the limit s » = and transforms to get

(80)
Y (1~v0) =2 |1
r e
. _ 3/2
v (t~0) =41 (81)
3‘/n€
Note that these expressions are not well-behaved in the limit ¢+ = 0. At
7 = 0 both boundary conditions give
82)
¥ (0) =y (0) = 0.
r m
To get ¥ we must perform the contour integration given by
m
¥ (1) = 1 [ds ot 1
2ni R \1/2 . /2
g s(st) [ s (1 + (‘,+1)) 8%
s+l
v = L f* o™ V3 (stD)
i J 232 (1+L(S+l))1l7{‘/3(.‘5+1) +2dk (1 (s+1))‘/2}
This integrand has a simple pole at s = 0 and branch points at s = 0, s = -1,

and s = -(1 + ¢)/e. The branches to be used in the integration are again
defined as those which give positive square roots for s lying on the real
positive axis, All three branch cuts arec extended along the negative real
axis. The contour of integration is very similar to that sketched previously.
Omitting the lengthy algebraic detail, the results are given by the following

equations in the case of each boundary condition as noted:
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Equilibrium Boundary Conditions:

1
E —Inz
vy = _ 2 [dn 6 (1, e
r ——— r
w14+
o (84)
l 9
-2 e-jfdn i (n) oTHEdnD
m
(8]
[ 1 -Trz =1
‘l";‘(r) = 2 [dn Gm(r,n) AL
nfl+c - nf1+e (85}
[o]
1
- 2 e‘ilﬂdn H (n) exp -1
¥ m 2
o c(l-n")
Hr(n) = 1 (86)
2 2 2
(1-n )1/ f14r (1-n )]3/2
i (n) = (l—nz) H_ (n)
m r (87)
2
G, (t,n) = 2t + € n = 2 =1 (88>
2 2 A
(-5 ) (L+e(1-n")) +\/1-n \/1+e(l+r.(1-“2))1/2
2
G_ (t,n) = (1-n7) G_ (1,n) + 2 (89)
r m
Marshak Boundary Conditions:
M x —1n2
Wr(T) = 2 dn gr(T,n)e -2
e /o ©0)
o
1
-1
-6e [dn hr(rl) exp -1
" t‘,(]"l’]z)

(o
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1

' 4 .
‘P;‘:(T) =_ 2 jdn B, (Tom)e Moy 20— 2
n\)l+c b I_E\I-B- (91)
1
+ 6r o_t.lﬁdn h (n) exp -1
0 m 3
! ¢ (1-n%)
(o]
hr(n) = (l—nz)l/2 (92)
(145 (1-n2) 12 [3+(144e)n° = din”]
hom) = (.09 b ()
'm nr= n e in (93)
2
8, (t,n) =2t + _1+ 4e(1-n7) (94)

2
3+ (4e+1)ny - 4cn4

-1

+ 1 Lt a-nH1Y2 3etaeryn? - a1 Qen?y 4/ 145./1’-7]}
3

g (T,n) = (1-n%) B (Tom) + 2 (95)

These quantities have been computed on a CDC 7600 using 16-point
Gaussian quadrature on N intervals in the range 0 - ~ 1. N uvas
successively doubled until the desired accuracy was achieved.

s E I E M . :

The time dependence of Wm, Wr, Wm, and Wr is shown in Figures 1

3 for various values of ¢, We find, as shown in Figure 1, that for values of
E E M M

1t greater than about 10, wm(r) = wr(T) and Wm(r) = Wr(T), but the 'larshak

solutions lag the equilibrium solutions by a difference of the order of unity.

The equilibrium solution reaches the analytical late-time value of Ea, (79)
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quite carlv, but the tlarshak solution of Pomraning appears to converge very
slowly to its infinite-time analvtical value. As ¢+ is increased the total amount

af cnergy in the half-srace is decreased.

Figure 2 shows the carlyv time behavior of ?m. The equilibrium condition
encrgy is greater than the Marshak condition energy at all times. The highest energy

ahsorption occurs for - = 0, the no retardation situation.

The different hehavior at v = 0 in ?r is shown in Figure 3. The
vquilibriua condition encrgy and the Marshak condition radiation energy for

=0 in : = 0 are given by

() =1 andd ,; M) = 3 = 0.46410 (96)

that is, there is more than a factor of two difference in the amount of energy

entering the surface at carly times.

The differences between integrated energies using the two different
boundary conditions arc summarized in Figures 4 and 5 as percentages. “or
larger values of ¢ the discrepancies become enormous at early times, and even
with » = 1) the differences become ltess than a few percent only at times of

tiie order of = 1000,
VIili., Conclusion

We have attempted to compare the results of two different analvtic solutions
of the nonequilibrium cransient Marshak problem, one using a flux-conserving
(*farshak) boundary condition and the other using the equilibrium infinite-medium

type of boundary condition which {s often implicitly c¢mployed in radiative transfer.
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We find that very substantial differencos result from the use of these
boundary conditions at early times. In particualar we have comparcd the tntal
radiation and material energies in the half-space as funciions o! timc and
boundary condition. In the casc of no retardation the difiercnces can be as
much as a factor of 2, and for the retarded cases the energies can be orders of

magmitude different.

The implications are that unless great care is attached to anplying the
correct boundary condition to a transient non-equilibrium problem such as this one,
the early time solution could be grossly miscalculated. This has a particular
.mpact on such astrephysical phenomena as the brightness of galactic clouds
adjacent to strong sources like quasars or the luminositv of clouds or nehulae
receiving radiation from supernovae. lt may also have some technological
significance in spac~ scicnce where the radiative transfer involved with rocket

re—entry is a critical part of nosecone design.

[n addition to the gencral warniny that these results underline concerning
the clioice and use of hLoundary conditiouns, the analytic solutions themselves
provide a means for testing and calibrating computer codes which calcuiate time
dependent radiative transfer. Such valculations are beginning to be of great
interest in astrophysics. Since analytic solutions such as these are relativelw
rarc, we hope that these equations will be treated as reference solutions in the

development of computer codes of this type.
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