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AISSTKAnT 

Transient processes in radiative transfer have recently 

become of interest in the modeling of astrophysical phenomena, 

particularly with re;;ard to the brightness of novae, supernovae, 

and perhaps even galactic clouds adjacent to quasars. We present 

here analytic solutions to a part Lcular class of Harshak wave 

problem with and wi thout the Marshal; (Milne) boundary condition. 

We find that the choice of boundary condition can have a decisive 

effect on the coupling of radiative energy to the material energy in 

the vicinity of a material boundary. The analytic solution we have 

obtained can be useful as a tool for calibrating numerical calculation 

techniques. 
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I. Introduction 

Recently Pomraning reported on analytic solution to tue time-dependent 

non-equilibriui.i "Marsliak" problem, in which an initially cold halfspace of 

material lias radiation incident upon its surface. The problem was made 

analytically solvable by introducing a specific heat capacity in the material 
3 which was proportional to T , wiiere T is the material temperature. This 

4 specialized heat capacity causes the equations to become linear in T , and 

classical Laplace transform techniques can then be used to solved the problem 

within the framework of the lowest-order (PI) spherical harmonic approximation. 

We subsequently wondered how much the choice of boundary conditions at 

the naterial surface affected the solution. In particular we wished to explore 

how conservation of flux at the boundary (which results in the "Marshak" 

boundary condition) "ould affect the rate of energy transfer into the material, 

and also whether such a flux-conserving condition would lead to a discontinuity 

in temperature at the material surface, as it is known to do in the complementary 
2 3 case of a source radiating into a transparent medium. ' 

In order to assess the importance of a flux-conserving boundary condition 

we have resolved the problem posed by Pomraning using two different boundary 

conditions. The first condition is the "equilibrium" condition that would be 

valid within an infinite medium at equilibrium. The second is the "Marshak" 

boundary condition which conserves flux across the boundary. Both of these 

boundary conditions are frequently used in the literature. 
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In this paper we calculate the total material and radiation energies in the 

material helfspace as a function of time, and compare these energies as computed 

with the two types of boundary conditions described above. 

II. The Problem 

< < We consider a .sevii-infinite purely absorbing medium occupying 0 - z - •». 

The medium is assumed to be homogeneous and, at t = 0, to be at zero temperature 

witli io radiation field resent. At t = 0 a time-independent radiative flux 

impinge? on the surface at z = 0. We wish to compute, as a function of space 

and time, the material temperature and the radiation field. Hydrodynamic 

motion and heat conduction will be assumed to be negligible. 

The radiative transfer model to be used is the grey PI diffusion 

description. The equation of transfer is then 

_r(z,t) - 3__ [" c ^_r(z,t)l = cK(T) faT4(z,t) - E (z,t) 
Dt 3 Z {_3K(T) 3z J [ r 

where z is the spatial variable, t is time, T(z,t) is the material temperature, 

K(T) is the absorption cross section (opacity), c is the speed of light, and 

a is the radiation constant, and E (z,t) is the radiation energy density. 

(1) 
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The material energy balance equation is 

U r(z,t) - aT4(z,t) C (T) 3T (z,t) = cK(T) | E„(z,t) - aT*(z,t) | (2) 
V 3t 

where C , the heat capacity per unit volume, is related to the material 

energy density E by 

E (T) = I dT' C (T") (3) 
m ' 

The initial conditions are that no radiation be present: 

E r (z,0) = 0 (4) 

and the material temperature he zero: 

T(z,0) = 0 (5) 

Our choice of boundary conditions include the "equilibrium" condition 

E (0,t) = 4 F. .„ 
r — mc (6) 

and the "Marshak" condition 

E (0,t) - 2 r(0,t) = 4. F. (7) 
r 3K[T(0,t)] 3z c l n c 

where F. is the flux incident upon the medium at z = 0. At z = » we have the inc 
boundary condition 

Er(°°,t) = 0. (8) 
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Equations (1) through (8) define a nonlinear set of equations for the 

unknowns E (z,t) and T(z,t). In order to make the problem tractable, we 

assume K to be independent of temperature and we set 

C = a T 3 (9) 
v 

4 so that the above equations become linear in E and T . 
r 

Before proceeding with the solutions using the two different boundary 

conditions, we recast the equations in dimensionless form. The incident flux is 

written in terms of an effective temperature 0. as 
inc 

F. = a 0* (10) 
inc m c 

where a is the Stefan-Boltzmann constant, o = ac/4. We also define a 

radiation temperature 0(z,t) by 

E r (z,t) = a 04(z,t) (11) 

Introduce the dimensionless variables 

x ^y/l~Kz (12) 

T = 16 o K t = 4acK t (13) 

and define the new independent variables 



U(x,t) 

v(x,t) 

6(z,t) 
0. 

T(z,t) 
0. inc 

(14) 

(15) 

Now equations (1) and (2) take the dimensionless form 

E _3_u (X,T) - 3 u (X,T) = V(X,T) - U(X,T) 
3T 3x 

(16) 

3V (X,T) = U(X,T) - V(X,T) 
3T 

(17) 

where we have defined the parameter 

e = 16o = 4a_ 
ca a 

(18) 

The condition at z = » and the initial conditions are now 

u(">,x) = u(x,0) = v(x,0) = 0. (19) 

The equilibrium boundary condition becomes 

U(0,T) = 1 (20) 

and t he Marshak boundary c o n d i t i o n i s now 

U ( 0 , T ) - 2_ jhi ( 0 , T ) = 1 . (21) 



Equations (16) through (21) are the equations we shall solve. 

Setting E = 0 is equivalent to assuming no retardation, i.e. an 

infinite speed of light. This implies that the radiation field instantly 

comes into a steady state distribution with the material temperature at any time 

t. Note that e = 0 does not imply u = v (E = E ) because of the spatial 
r m 

streaming term in equation (16). Only in complete thermodynamic equilibrium 
does E = E . r m 

III. The General Solution 

Introduce the Laplace transform f(s) of a function f(t) by the definition 

f (s) = f d T e~ S T f( T) (22) = f d T e~ S T 

Taking the Laplace transform of equations (16), (17), and (19) gives 

— 2— — — (23) 
csu(x,s) - 3 u(x,s) = v(x,s) - u(x,s) 

3x 2 

sv(x,s) = u(x,s) - v(x,s) (24) 

u (-°,s) = 0. (25) 

The transform of the equilibrium boundary condition is 

u (0,s) = _1 (26) 
s 
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and the transform of the Harshak condition is 

u(0,s) - 2 lu (0,s) = _l (27) 

Equation (24) gives 

v (x,s) = 1 u (x,s) (28) 
s + 1 

and using this in (23) gives 

a "u (x,s) = f. (s) ̂ (x,s) (2y) 
„ 2 

where 

8 2(s) 2 s [1 + c(s + 1)] (30) 
s + 1 

The solution to Eq. (29), subjuct to the boundary condition at x = •», F.q. (25) is 

Z. (x,s) = A(s) e
_ i- ( s ) x. (31) 

The constant A(s) is determined from the condition at X = 0. In the case of 

the equilibrium boundary conditions we find 

u (x,s) = __e_ -3x (32) 

and 
— -Sx 
V (X,S) = _Jg (33) 

s(s+l) 
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[n the case of the Marshak condition we have 

u (x,s) = y 3 e 
s [ / F + 2B(s)] 

(34) 

and 

v (x,s) = V3 € -S(s)x (35) 

s(s+l)[/T+ 2@(s)] 

The solutions for u(x,T) and v(x,T) follow by use of the Laplace 

inversion theorem 

f (T) = _L_ f ds e S T 

2T1 / 
f(s) (36) 

where the integration contour C is a line parallel to the imaginary S axis to 

the right of all singularities of f(;.). 

From the large and small limits of s one can immediately deduce that 

u (x,0) = v (x,0) = 0 (37) 

and 

u (X,T) > v (X,T) > 1 (38) 

where we have used the two theorems 

lim 

lim 
s-»0 

sf(s) 

sf(s) 

= lim 
T-K) 

- lim 
1 -x» 

f(T) 

f(T) 

(39) 

(40) 
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Equation (38) states that at infinite time the radiation and material 

temperaLures approach a constant equal to the temperature of the impinging 

flux. 

IV. The Solution l'or e = 0 With "Equilibrium" and "Marshak" Boundary 

Conditions 

Pomraning has already reported the solution of equations (16) through 

(19) with the Marshak boundary condition (21). We outline here a similar 

solution using the equilibrium boundary condition (20). For comparison the 

corresponding Marshak boundary condition solution equations will be included 

in brackets after the equilibrium boundary condition solution equations. 

It is useful to first examine the case e = 0, corresponding to no 

retardation. In the limit T = °° we find 

u (x,t) t~Kc v (x,t) — r > 1, (41) 

just as in the general solution, for both boundary conditions. That is, at 

late times the system equilibrates to the correct constant even when e = 0. 

However, for T = 0 we find that f(™) = 1 for e = 0 and this gives 

u (x,0) = e 

and v (x,0) = 0 

u (x,0) = 3_ 
3 +2 

v (x,0) = 0 

(42) 

(43) 

That is, the material field is still zero at T = 0, consistent with the 

initial condition, but the radiation field with E = 0 is not zero and its 

value depends on the choice of boundary condition. Thus the radiation field 

with no retardation comes to a steady state consistent with a zero material 

temperature but corresponding to an incoming flux of radiation. The radiation 
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field at the surface is larger in the case of a M.irshak boundary condition by a 
4 tactor of 0.46. Since u is proportional to 0 this implies that radiation 

temperatures at the surface differ by a factor of 0.82 when c = 0, with the 

temperature resulting from a 'larshak boundary condition greater than the 

surface temperature from an equilibrium boundary condition. 

At the surface x = 0 we have 

u ( 0 , s ) = _1 
s 

u (0,s) = JT \/s+l 
; [ /3~+/s+T+ 2^/s"] 

(44 ) 

v ( 0 , s ) = 1 
s(s+l) 

v (0,s) = /IT" >/s s+1 
s(s+l)[ /TVs+l + 2^T] 

(45) 

Tiie inverses of Eq. (44) and Eq. (45) are tabulated to be 
1 

U(0,T) = 1 U(0,T) = 1 - 4 4j/T / dn (i- n' ?) 1 / 2 -n T 

(3 - n) 
(46) 

and 
v (0,T) = 1 - e T = u (0,T) - e T 

v (0,T) = u (0,T) - 4 IT C , ... 2,1/2 -i(l-n V3 / dn (1-n ) e 
• " J ,, _ 2, (4 - ?i) 

(47) 

These equations show that the material field always lags behind the radiation 

field, as one expects it should. 

The flux of radiation is given by 

T(z,t) = - c 3Er(z,t) 
3 K sz 

(48) 

Define the dimensionless flux 
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W(x.O = F(z,t) 
F. inc 

or in terms of the dimonsionless variables x and x 

(49) 

W(X,T) = - _4 jh£ (X,T) 

The Laplace transform of the surface flux is 

W(0,s) = 4 
</l /s(s+l) 

W(0,T) 

7 3s(s+l) +2s 

(50) 

(51) 

From the small and large s behavior we find 

„'(0,T) 

U(0,0) = 4̂  

W(0,T) 

W(0,0) = 4_ 
/T + 2 

(52) 

(53) 

Equation (52) shows that at infinite time equilibrium has been reached throughout 

the material and the net flux is zero. At T = 0 one physically expects that 

all of the incoming radiation is absorbed because the material is cold. However, 

instead of W(0,0) = 1, Eq. (53) gives 

W(0,0) = 2.3094 [1.0718] (54) 
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We note tliat while the Marshak boundary condition gives a 17. error in flux, the 

"equilibrium" boundary condition gives a 231% error, when applied to the PI 

approximation. 

For a general value of T the tabulated solution to 

W(0,s) = 4̂  1 
/3"\/s (s+1) 

(55) 

is given by 
T/2 W(0,T) = 4 e ' 1 (-i/2) 

= 4 e - ' / 2 1 + T 2
 + L 4

 + 

yr 16 1024 

(56) 

W(O.-r) J I dr, (1-n ) i; 
/ (3 + n) 

(57) 

wliere I is a modified liessel function of the first kind with order zero. 

V. The Integrated Energies for t = 0 

Next we calculate the integrated energies for the case i = 0. We 

define 

f a 0 4 f 
P (i) I dz E (z,t) = inc /dx u(x,r 

(56) 

y~3~ K o 

P_(T) , / a dz ct T (z.tl 
4 

inc /dx v(x, 
\/TK J 

•T) (59) 

The dimensionless integral energies are defined as 
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T (T) ~ P r ( T ) and V (T) ~ P m ( l ) 

Pr(0) P (0) 
(60) 

where 
4 .4 

P (0) I 3 ° inc and P (0) ™ "inc 
ra . 

/T K hyfT~\: 

Thus we have 

Y (T) r = Jdx U(X,T) 

"o 

(r) = Jdx v(x, r) 
o 

(61) 

(62) 

(63) 

Taking the Laplace transforms of these integrals and integrating gives 

4- (s) = Vs+1 
r 3/2 

f (s) = y/T" (s+1) r 
i(l/3s(s+l) + 2s) 

(64) 

¥ (s) = 
3/2 1/2 ; (s+1) ' 

f (s) = t/T 
s(^3s(s+l) •>• 2s) 

(65) 

The inverse of these transforms is tabulated to give 

1 (T) = (T+ l)e T / 2 I (T/2) + i e " T / 2 I, (x/2) r o 1 

( T + l ) e _ T / 2 (l +JI +_A\ + ... + T e " T / 2 / T . + ^ 2 + . . . V 
\ 16 1024/ I 4 128 J 

66) 
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T r(i) if. 
7T J 

dn J2x + f 7 + 4 1 - r,2 - 3r,2 

1 + 1 - n *r- 2e - ^ 
3 

for the radiation energy, and for the material energy 

Y ( T ) = i e " T / 2 / i ( T / 2 ) + I , ( T / 2 ) ) m \ o 1 / 

= t e " T / 2 (1 + i 2 . + L^ + • • • + i + _L*. + • • • J 
\ 16 1024 4 128 / 

1 

¥ (T) = 2̂  Jdn J2T + /4 + A - n 2 y 1 \ | e ~ T n + 2£.T - 1 
" o I \i + ^ ? A + n2 / ] , yr 

(67) 

Note t h a t 

yo 
_ - T / 2 / , 2 = e (1 + T + 

16 1C24 ) 
+ ¥ (x) m (68) 

or t h a t 

V ( T ) - 4- ( T ) = 3 4 m ( T ) 
r m IT" 

(69) 

which is just the energy balance equation for the material, obtained l>y 

integrating Eq. (17) over all x. 

For large values of the argument I and I have the asymptotic approximation 
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I (Z) o ±= e Z / l + ^ + _1 + . . . \ 
2uZ V 8Z 128Z / 

(70) 

I ^Z) 

ri TtZ \ 

23 + . . . 

8Z 128Z 
(71) 

thus for l a r g e T we ge t 

•;< ( „ , ) = 4. ( o o ) = 2 m r A_ V (°°) = f («-) = 2 /T_ (72) 

VI. The Distributions U(X,T) and U(X,T) for r = 0 

Finally we integrate according to Krj. (36) to find thu inverses of u and 
_ 2 
v for the case e = 0. That is, we transform F.q. (32) and (33) with S = s/(s + 1). 
Thus 

,Y + i-

U(X,T) = 1 , ST -|',x 
ds e e (73) 

•f - i"> 

Y + i-
ST -0X V(X,T) = 1 1 ds e" 

2iTi J s(s+l) 
Y - ioo 

(74). 

These Laplace inversion integrals are vertical lines in the right half s-plane, 

as shown in the contour below. Closing the contour with a large semicircle in the 

left half plane gives a zero contribution except for contributions from the 

pole at s = 0 and from the branch cut, with branch points at s = 0 and s = -1. 



Re 

Proper branches are defined as those which give a positive square root for s lying 

on the real positive axis. 

Omitting the algebraic detail, we find 
1 

2 
U(X,T) = 1 dn e -n T 

TT 

- 4 / T 
TT 

J n 

o 

1 

U ( X , T ) = 1 -

TT 

- 4 / T 
TT 

/ d n >/l - n'2 

J „ ^ 2, 

sin / nx \ 
(75) 

6. fdn / l - n 2 \ sin / nx V n T 

7 J \ 3 + „ 2 j Vrr-r / 
and 1

 2 

V ( X , T ) = 1 - 1 Tdn e~ n T sin / nx \ 

" { n(l-n2) [fc^) 

V(X ,T ) = 1 - 4 \ / T f dn / l - n 2 

" "I O+n2) 
cos / nx 

2 

iyiv 

# / dn 
(4-n 2) 

/ N ^ 7 " X \ o-Td-n2)l 

(76) 
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1 , 
* / d n / 1 \ sin/ nx A e »7 ( n ( 3 + ^)j ^ - n ' j 

It can be verified that these equations yield the previously derived results 

in the limits T = •» and x = 0. 

VII. The Integrated Energies for • ^ 0 

The general problem with >. 4 0 was given by equations (30) through (35) 

for both types of boundary condition. Again we shall give solution equations tor the 

case of equilibrium boundary conditions, with the corresponding solutions 

using Marshak boundary conditions in brackets. For the equilibrium boundary 

conditions the integrated energy transforms are given by 

4- (s) = _1 = 
Bs 

1 

-fef (—r 
(77) 

V (s) = 1 
s(s+l) (A)"2 0 *"•"') 

1/2 
(78) 

':)? — Noting that f (T) = V (T) + ITI(T), we need only invert ¥ to get r m —-— m Di 
V and f . m r 

Tlie s = 0 l i m i t g i v e s the long- t ime behav io r of T . 
m 

l im T = lim V = 2 
s - 0 m s -> 0 "" y*(i+ 

= "f («.) = T ("0 
(1+f.) 

(79) 
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Thls l i m i t i s the same in the ease of Marshak boundary c o n d i t i o n s . For smal l 

t imes one t a k e s t he l i m i t s -• ™ and t ransforms t o ge t 

v (T ^ o) =2 A T - (80) 

v (T -v. o) = 4 T 
m 

3/2 

3/^T 
(81) 

Note that these expressions are not well-behaved in the limit < = 0. At 

T = 0 both boundary conditions give 

V (0) = Y (0) = 0. r m 

To get V we must perform the contour integration given by m 

Y (T) = JL_ /"ds e S T 1 _ 
^ { s ( H + , ) / ^ \ 1 / 2 ( l , f ( . , + 0 ) , / 2 

J- (T) = _1_ /d< e S T / T (s+1) 
2 " J H 3 / 2 (l+as + l ) ) 1 / 2 / ^ ^ ! ^ ^ (1 +,(S +1)) 1 / 2^ 

(8 2) 

(83) 

This integrand lias a simple pole at s = 0 and branch points at s = 0, s = -1, 

and s = -(1 + L)/E. The branches to be used in the integration are again 

defined as those which give positive square roots for s lying on the real 

positive axis. All three branch cuts are extended along the negative real 

axis. The contour of integration is very similar to that sketched previously. 

Omitting the lengthy algebraic detail, the results are given by the following 

equations in the case of each boundary condition as noted: 
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Equilibriura Boundary Conditions: 

1 
T ( T ) 

TI J l+c /
dn G (T,H 

o 
1 

2 e~ | dn H 7 J (n) -t/ed-n") 

(84) 

Vl+c / ' 
Y K ( T ) = 2 / dn G (i,n) e" l n + _2e_ ' 

vjl+c 
(85) 

2 c'1 I dn H 
* J " 

(n) exp / -T 
e(l-n ), 

H_(n) = 
"> l/? 2 3/2 

(1-n") 1' [l+r(l-n')] J / Z 

(86) 

;i (n) = (1-n ) H (n) 
m r 

(87) 

G (i.n) = 2T + 
m 2 

t: n - 2 ^ - 1 
( H ' ) ( 1 + L ( 1 - I I 2 ) ) + A - n Z yi+Tu+sU-i 2)) 1 

(88^ 

G (T,n) = (1-n ) G m (i,n) + 2 

Marshak Boundary Conditions: 
1 

M 4- (T) = 2 r — 
Wl+E 

/ dn g (T ,n)e 

o 
1 

- 6 e /dn li - J r 

-2^ 

(n) exp - T 

(89) 

(90) 

f.(1-n ) 
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M 
y ( T ) = 2 

m 

2 
Tdn g m ( i , n ) e " T n + 2 e " T - 2 

n\/l+e J TI VTI+TN/T 

• f . " J 
1 

dn h (n) exp - r 

. ( 1 - n 2 ) 

r 
[ l + c ( l - n 2 ) ] 3 / 2 [ 3 + ( l + 4 £ ) r , 2 - 4 , . n 4 ] 

h ( n ) = ( 1 - n 2 ) h (n) m r 

g ( T , H ) = 2T + 1 + 4 i ( l - n ) 
m j 4 

3 + (4t + l )n - 4cn 

+ 1 J [ l + t ( l - n 2 ) ] 1 / 2 [ 3 + ( 4 c + l ) n 2 - 4i n* ] [\/l+c ( 1 - n 2 ) + / u 7 i / l ^ ? ] 

(91) 

h (n) = ( l - n 2 ) 1 / 2 (92) 

(93) 

(94) 

-1 

g (T,n) = (1-n2) s (t,n) + 2 (95) 

These quantities have been computed on a CDC 7600 using 16-point 

Gaussian quadrature on N intervals in the range 0 — • i — 1. N 'jas 

successively doubled until the desired accuracy was achieved. 

E K E M The time dependence of f , ¥ \ f ', and V is shown in Figures 1 m r m r 

3 for v a r i o u s v a l u e s of c . We f i n d , as shown in F igure 1 , t h a t fo r v a l u e s of 

F Ii M M T g r e a t e r than about 10 , >|< ' ( T ) = ui ( T ) and V (T ) = t (T ) , but the ' tarshak m r m r 
solutions lag the equilibrium solutions by a difference of the order of unity. 

The equilibrium solution reaches the analytical late-time value of F>. (79) 
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quite earlv, but t!ie tlarshak solution of 1'omraning appears to converge very 

slowlv to its infinite-time analytical value. As t is increased the total amount 

of energy in the half-srace is decreased. 

Figure 2 shows the early time behavior of f . The equilibrium condition 

energy is greater than the Marshak condition energy at all times. The highest energy 

.absorption occurs for • = 0, the no retardation situation. 

The different h"havior at i = 0 in V is shown in Figure 3. The 
r 

equilibrium condition energy and the Marshak condition radiation energy for 

• - 0 in : = 0 are given by 

.'• (-1) = '. and :'' CI) - "L_ = 0.46410 ( l ) ( t ) 

' r r 

i t- 2 

thai is, there is more than a factor of two difference in the amount of energy 

entering the surface at early times. 

The differences between integrated energies using tile two different 

boundary conditions are summarized in Figures 4 and 5 as percentages. -'or 

larger values of i the discrepancies become enormous at early times, and even 

with > = I) the differences become less than a few percent only at times of 

the order of r = 1000. 

VIII. Conclusion 

He have attempted to compare the results of two different analytic solutions 

of the nonequilibrium transient Marshak problem, one using a flux-conserving 

(Marshak) boundary rondition and the other using the equilibrium infinite-medium 

type of boundary condition which is often implicitly employed in radiative transfer. 
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We find that very substantial differences result from the use of these 

boundary conditions at early times. In particular we have compared the total 

radiation and material energies in the half-space as functions of time and 

boundary condition. In the case of no retardation the differences can be as 

much as a factor of 2, and for the retarded cases the energies c.in be orders of 

magnitude different. 

The implications are that unless great care is attached to anplying the 

correct boundary condition to a transient non-equilibrium problem such as this one 

the early time solution could be grossly miscalculated. This has a particular 

-mpact on such astrophysical phenomena as the brightness of galactic clouds 

adjacent to strong sources like quasars or the luminosity of clouds or nebulae 

receiving radiation from supernovae. It may also have some technological 

significance in spai • ;ricnce where the radiative transfer involved with rocket 

re-entry is a critical part of nosecone design. 

in addition to the general warning that these results underline concerning 

the choice and use of boundary conditions, the analytic solutions themselves 

provide a means for testing and calibrating computer codes which calculate time 

dependent radiative transfer. Such calculations are beginning to be of great 

interest in astrophysics. Since analytic solutions such as these are relatively 

rare, we hope that these equations will be treated as reference solutions in the 

development of computer codes of this type. 
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