

PNL-4414

NUREG/CR-2769 PNL-4414

Comparison of Field-Measured Radon Diffusion Coefficients with Laboratory-Measured Coefficients

Prepared by E. A. Lepel, W. B. Silker, V. W. Thomas, D. R. Kalkwarf

Pacific Northwest Laboratory Operated by Battelle Memorial Institute

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-2769 PNL-4414 RU

Comparison of Field-Measured Radon Diffusion Coefficients with Laboratory-Measured Coefficients

Manuscript Completed: March 1983 Date Published: April 1983

Prepared by E. A. Lepel, W. B. Silker, V. W. Thomas, D. R. Kalkwarf

Pacific Northwest Laboratory Richland, WA 99352

Prepared for Division of Health, Siting and Waste Management Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B2269

ABSTRACT

Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the U.S. Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 \pm 0.03 cm²/s for the sand cover and 0.003 \pm 0.002 cm²/s for the clay cover. From the laboratory data, the coefficients were calculated to be 0.021 ± 0.002 cm²/s for the sand cover and 0.0036 ± 0.0004 cm²/s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site.

Experiments where conducted th compare souch diffusion coefficients and diffusion coefficients evaluated from cadon fluxes through several-foid greater depuis of the same soils dynamic quantum-will tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity. O/P. In the Generic Environmental impact Statement on Vramium Holling prepared by the U.S. Muchaer regulatory commission. Two sonis were tested a well-greated sand and an inorganic clay of low plasticity. For the flux availations, radon was collected by adsorption on charcoal following gassive diffusion from the soil surface and also from all variance in the flux availations showed no significant difference between these variance in the flux availations showed no significant difference between these variance in the flux availations showed no significant difference between these variance in the flux availation afflusion coefficients evaluated from field data there statistically indistinguishable, at the 95% confidence level, from the prevented a sensitive valuation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 ± 0.03 cavys for the sand cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision of the laboratory cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in the laboratory cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in the cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in the cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in the laboratory cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in the cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in cover and 0.003 ± 0.000 cav/s for the elay cover. The flow precision in cover and 0.003 ± 0.000 cav/s for the e

ABSTRACT

CONTENTS

ABSTRACT	111
ACKNOWLEDGEMENTS	vii
EXECUTIVE SUMMARY	ix
INTRODUCTION	1
EXPERIMENTAL	1
Field Test Site Preparation Field Measurements of Radon Surface Flux Evaluation of Radon Diffusion Coefficients by the Laboratory Method Evaluation of Radon Diffusion Coefficients from Field Measurements	1 2 5 6
RESULTS AND DISCUSSION	7
Physical Properties of Tailings and Applied Cover Soils Radon Flux Values from Field Measurements Values for Radon Diffusion Coefficients	7 8 9
CONCLUSIONS	10
REFERENCES	11
APPENDIX A Data Obtained with GMA Radon Flux Canisters	A-1
APPENDIX B Data Obtained with Radon Collection Tents	B-1

LIST OF FIGURES

Figure 1.	Steps in the Assembly of the GMA Radon Flux Canister	3
Figure 2.	Schematic of Tent System Used to Measure Radon by a Pressure- Balanced Recirculating Pump System	4
	LIST OF TABLES	
Table 1.	Physical Properties of Tailings and Applied Covers	7
Table 2.	Radon Fluxes Evaluated by Charcoal Canister Method	8
Table 3.	Averaged Fluxes Evaluated by Tent Collector Method	9
Table 4.	Meteorological Parmeters at the Test Site From November 9 to 11, 1981	9
Table 5.	Diffusion Coefficients for Radon in Bulk Soils from Field and Laboratory Measurements	10

ACKNOWLEDGEMENTS

The authors wish to thank the management of the Dawn Mining Company for their help and cooperation in the research work. Additionally, the authors wish to thank Wayne Richey and Jim Swanson, PNL, who were invaluable in their help to accomplish the field portion of this program, Jerry Forsythe, PNL, for the radon counting and Robert Kinnison for his help in the statistical analysis. They are also indebted to Lysle C. Schwendman and Glendon W. Gee for their technical review of this work.

VERMON'S DOPPHENTS

The authors wish to thank the management of the Dawn mining company for their help and cooperation in the research work. Additionally, the authors wish to thank Mayne Richey and Jim Swamson. PML, who were invaluable in their help to accomplish the field portion of this program, Jerry Forsythe, PML, for the radon counting and Robert Kinntson for his help in the statistical analysis. They are also indebted to Lysie C. Schwendman and Glendon W. Gee for their technical review of this work.

EXECUTIVE SUMMARY

The purpose of this study was to compare radon diffusion coefficients evaluated for 0.1-m depths of soils under laboratory conditions with diffusion coefficients evaluated for several-fold greater depths of the same soils when used to cover uranium-mill tailings. These coefficients referred to diffusion in the total pore space of the soils and are equivalent to values for the quantity, D/P, in the diffusion equations presented in the Generic Environmental Impact Statement on Uranium Milling prepared by the U.S. Nuclear Regulatory Commission⁽¹⁾. Two soils were tested: a well-graded sand with a dry porosity of 0.38 and containing 0.07 moisture by volume; and an inorganic clay of low plasticity with a dry porosity of 0.49 and containing 0.20 moisture by volume. Both were considered by the mill operators as candidate cover soils for attenuating radon emission from tailings at the field test site.

In the field, radon diffusion coefficient were evaluated from the radon fluxes emitted by bare and covered tailings and from the porosities, and depths of the soil covers as well as the 226 Ra content and radon emanation coefficient of the underlying mill tailings. The sand cover was 1.14 m in depth and covered an area of 1.31 m². The clay cover was applied over an equal-sized area but to a depth of only 0.44 m. Radon fluxes were measured by two independent methods, one based upon the passive diffusion of radon into an open canister of charcoal and the other utilizing recirculated air to sweep the radon flux collected by an aluminum tent into a charcoal trap. Analysis of variance in the flux measurements showed no significant difference in the measurement methods. The diffusion coefficient evaluated for the sand cover was 0.03 \pm 0.03 cm²/s at the 95% confidence level, whereas that for the clay cover was 0.003 \pm 0.002 cm²/s.

In the laboratory, diffusion coefficients were evaluated by a steady-state diffusion method applied to soil samples, 0.02 m^2 in area and 0.10 m in depth, with the same porosity and moisture content as in the field experiments. The diffusion coefficient measured for radon in the sand cover was $0.021 \pm 0.002 \text{ cm}^2/\text{s}$ at the 95% confidence level, whereas that for the clay was $0.0036 \pm 0.0004 \text{ cm}^2/\text{s}$ at the 95% confidence level. Both values were within the uncertainty ranges for the field-evaluated coefficients, and the best estimates for coefficients obtained by the two methods agreed within a factor of two. However, the 95% confidence intervals for the field-determined values were too broad to provide a sensitive check on the validity of the laboratory-measured values. The low precision of the field-determined coefficients was attributed to the high variation of radon flux with time and surface location at the field site, a phenomenon reported by other investigators.

EXECUTIVE SUMMARY

The purpose of this study was to compare radon diffusion coefficients evaluated for 0.1-m depths of soils under laboratory conditions with diffusion coefficients evaluated for several-told greater depths of the same soils when used to cover uranium-mill tailings. These coefficients referred to diffusion in the total pore space of the soils and are equivalent to values for the quantity, U/P, in the diffusion equations presented in the Generic Environmental inpact Statement on tranium Milling prepared by the U.S. Nuclear Regulatory Commission(1). Two soils were tasted: a well-graded sand with a dry porosity of 0.38 and containing 0.07 motsture by volume; and an inorganic by volume. Both were considered by the mill operators as candidate cover soils for attenuating radon emission from tailings at the field test site.

In the field, radon diffusion coefficient were evaluated from the radon fluxes emitted by bare and covered tailings and from the porosities, and depths of the soil covers as well as the ^{2,2}% contant and radon emanation coefficient covered an area of 1.31 m². The sand cover was apolted over an equal-sized area but to a depth of only 0.44 m. Radon fluxes were measured by two independent methods, one based upon the passive diffusion of radon into an open radon flux collected by an aluminum the fassive diffusion of radon into an open variance in the flux measurements showed no significant difference in the was 0.03 ± 0.03 cm /s at the 95% confidence level, whereas that for the sand cover cover was 0.003 £ 0.002 cm²/s.

In the laboratory, diffusion coefficients were evaluated by a steady-state diffusion method applied to soil samples, 0.02 m⁴ in area and 0.10 m in depth, with the same porosity and moleture content as in the field experiments. The diffusion coefficient measured for radon in the sand cover was 0.021 ± 0.002 cm²/s at the 95% confidence level, whereas that for the clay was 0.0036 ± 0.0004 cm²/s at the 95% confidence level. Buth values were within the uncertainty ranges for the field-evaluated coefficients, and the pest estimates for coefficients obtained by the two methods agreed within a factor of two, wover, the 95% confidence intervals for the field-determined coefficients was attributed to the oppyide a sensitive check on the validity of the laboratory-measured values. The low precision of the field-determined coefficients was attributed to the high variation of radon flux with time and surface location at the field site, a phenomenon reported by other investigators.

INTRODUCTION

Uranium-mill tailings continually release 222 Rn, a gaseous, radioactive decay product of 226 Ra, which enters the air-filled voids of the tailings and diffuses into the atmosphere. This gaseous radon transport or flux can be reduced by covering the tailings with soil. The soil increases the diffusion path of radon to the atmosphere and provides time for radioactive decay of 222 Rn (T_{1/2} = 3.82d) within the cover. The soil depths required to keep the flux or atmospheric concentration of radon below prescribed limits will be determined by calculation. These calculations require knowledge of the radon diffusion coefficient through the soil and its variation with moisture content and compaction.

The purpose of this study was to compare the diffusion coefficients of radon in soils measured under field conditions with those measured in the laboratory under identical conditions of soil-moisture content and porosity. The latter measurements can be made rapidly and conveniently with a cylinderical column of soil, 0.1 m in height, 0.02 m² in area, and weighing 3 to 4 kg^(2,3). The method involves sealing a prepared column of soil in a chamber containing a ²²⁶Ra source, which continually generates ²²²Rn. The radon diffusion coefficient is evaluated from the steady-state radon concentration in the bottom chamber, the predetermined radon flux escaping the source with no soil in place, and the depth of soil in the test column. Because of the small height and amount of soil used, however, the validity of these coefficients in calculating required cover depths for mill tailings was uncertain. As a result, it was considered prudent to evaluate some diffusion coefficients for larger-scale soil samples in the field and to compare them with laboratory-measured coefficients.

Field experiments were conducted at a mill-tailings disposal site and both a well-graded sand and an inorganic clay were tested as barriers to radon diffusion. The well-graded sand covered a 1.31-m² area of tailings to a depth of 114 cm and weighed 2.68 Mg. The inorganic clay covered another 1.31-m² area of tailings to a depth of 44 cm and weighed 0.91 Mg. Radon diffusion coefficients were evaluated from the radon fluxes emitted from bare and covered tailings and from the properties and depths of the soil covers. Radon fluxes were measured by two independent methods, one based upon the passive diffusion of radon into an open canister of charcoal and the other utilizing recirculating air to sweep the radon flux collected by an aluminum tent into a charcoal trap. Diffusion coefficients were evaluated from both types of flux measurements, and the results were compared with those obtained by the laboratory method on samples of the same soils under identical conditions of soil-moisture content and porosity.

EXPERIMENTAL

Field Test Site Preparation

Field tests were conducted on an inactive section of the tailings disposal site at the Dawn Mining Company's mill at Ford, Washington. The test facility consisted of six aluminum caissons, each 1.29 m in diameter and about 3 m high, placed vertically in a trench that was excavated in the tailings. The trench

was then backfilled with tailings and compacted to replicate the surrounding landscape. Two meters of tailings material were then added in 20-cm lifts to the caissons and compacted to again replicate the undisturbed tailings. After sufficient time had elapsed to permit the radon to attain steady-state equilibrium, measurements were made to determine the radon flux from the bare tailings in each caisson. A cover of inorganic clay with low plasticity and weighing 911 kg was then applied in caisson No. 3 to a depth of 44 cm, using 8to 10-cm lifts with compaction following each lift. A cover of well-graded sand weighing 2680 kg was applied in caisson No. 2 to a depth of 114 cm. utilizing the same compaction technique. After the field test, samples of the soils and tailings were packed in moisture-proof containers and taken to the laboratory for analysis. Physical properties of the tailings and each applied cover were determined by methods recommended by the American Society for Testing and Materials (ASTM).⁽⁴⁾ The moisture content and specific gravity were determined by ASTM methods D2216 and D-854, respectively. The particlesize distributions of the soils were evaluated by ASTM methods D-422 and D-1140, and the soils were given engineering classifications according to ASTM method D-2487. The dry packing density was determined by taking a core of known volume and determining its dry mass.

Field Measurements of Radon Surface Flux

Surface fluxes of radon in the field were measured by two independent methods. These were 1) a passive charcoal-canister adsorption method, and 2) a tent method in which radon was removed from a recirculating air stream by adsorption on granular, activated charcoal.

The charcoal-canister method has been employed by several other investigators (5-8) and was reported to measure radon flux with a precision of $\pm 15\%$ (7). A commercial charcoal-filled gas mask canister (Mine Safety Applicance Company, Number GMA-459315) was used in this study. The larger end of the canister was covered with Tedlar® film, which is impervious to radon; the smaller end was pressed into a 7.5-cm diameter, 5-cm length of Lucite® cylinder and sealed with pressure-sensitive tape as seen in Figure 1. The assembled samplers were then placed on the soil surface and forced into the ground to a depth of from 1 to 2 cm to insure good contact. Each unit sampled an area of $4.42 \times 10^{-3} \text{m}^2$. Several samplers were exposed simultaneously in each caisson for periods ranging from several hours to about 1 day. After exposure, the samplers were disassembled; and the charcoal canisters were removed, sealed in aluminum cans, and returned to the laboratory for radon analysis by gammaray spectrometry.

The tent method was developed at Pacific Northwest Laboratory, $(^{8,9})$ and sampled a soil-surface area of 0.225 m². A pressure-balanced flow system recirculated air through an aluminum tent placed on the soil surface. Radon emitted from the soil under the tent was swept to an in-line trap of activated charcoal where it was adsorbed. The system is shown schematically in Figure 2. The U-shaped aluminum collection tent was sealed onto the soil surface, the pressure drop across the collection tent was balanced, and the system was flushed for a time to bring radon concentration within the tent to its steady-state value. Flow was then routed through the charcoal trap, and

GMA FLUX CANISTER

Figure 1. Steps in the Assembly of the GMA Radon Flux Canister

Gure 1. Steps in the Assembly of the GMA Radon blux Cantster

GIVA FLUX CANISTER

Figure 2. Schematic of Tent System Used to Measure Radon by a Pressure-balanced, Recirculating Pump System

4

radon was collected for 1/2 to 2 hours. Upon termination of sampling, the charcoal in the radon trap was transferred to a 2.5 x 15.2 cm diameter, plastic petri dish, which was then sealed with pressure-sensitive tape and returned to the laboratory for radon analysis.

The activity of 222 Rn in each sealed sample of activated charcoal was measured by counting its 214 Pb and 214 Bi daughters with which it was in equilibrium. The counting rates were measured with multidimensional gamma-ray spectrometers that used NaI (T1) detectors. (10) These spectrometers were calibrated with 226 Ra standards that could be traced to NBS reference material and were contained in identical geometry as the samples to obtain a counter efficiency expressed as counts per disintegration.

Radon fluxes were then calculated by the following equation:

 $J = \frac{C\lambda}{(2.22) EA(e^{-\lambda t_2}) (1-e^{-\lambda t_1})}$

(Equation 1)

where: $J = radon flux (pCi/m^2s)$

- C = net count rate (cpm)
- λ = radon decay constant (s⁻¹)
- E = counter efficiency (counts/disintegration)
- $A = area sampled (m^2)$
- $t_1 = sampling period(s)$
- t_2 = time lapse between end of sampling and start of count(s).

Data were averaged for common collection periods from each caisson.

Evaluation of Radon Diffusion Coefficients by the Laboratory Method

Laboratory measurement of the diffusion coefficients for radon in tailings and the two cover soils was conducted with the Radon Attenuation Test Facility (RATF) described previously⁽²⁾. The facility employed columns of soil 0.1 m in depth and 1.54 x $10^{-2}m^2$ in area. Each sample was prepared to closely duplicate the moistures and compactions used for the field tests. The prepared soil columns were sealed over a constant source of ²²²Rn and allowed to equilibrate for 3 days to permit radon to attain its steady-state distribution throughout the bottom chambers and soil columns. The gas in the bottom chamber was then sampled and adsorbed onto activated charcoal, which was analysed for radon determination of the ²¹⁴Bi daughter, using gamma-ray spectrometry.

Calculation of diffusion coefficients was accomplished using the following equation:

$$\frac{C_0}{J_0} = \frac{k (1 - e^{-2kx})}{\lambda (1 + e^{-2kx})} = \frac{k}{\lambda} \tanh (kx)$$
 (Equation 2)

where: C_0 = radon concentration in soil at the bottom of the column (pCi/cm³) J_0 = radon flux with no soil in the facility (pCi/cm²s) x = depth of soil (cm) k = (λ/D)^{1/2} $\lambda = 222 \text{Rn} \text{ decay constant } (s^{-1})$

D = diffusion coefficient for radon in the total pore space of bulk soil (cm²/s).

The quantity, C_0 was evaluated from the radon gas concentration in the bottom chamber, C_q , by means of the equation (11):

 $C_{0} = (P-0.740)C_{g}$ (Equation 3)

where: P = dry porosity of the soil (dimensionless) 0 = volume fraction moisture in the soil (dimensionless).

The diffusion coefficient, D, was then evaluated by iteration of Equation (2), using measured values for the other parameters. It is equivalent to the quantity "D/P" used in the equations presented in the Generic Environmental Impact Statement on Uranium Milling⁽¹⁾ prepared by the U.S. Nuclear Regulatory Commission.

Evaluation of Radon Diffusion Coefficients from Field Measurements

Radon diffusion coefficients for cover materials (as applied in the field test) were evaluated from the measured radon fluxes escaping the bare and covered tailings, using the following equation that describes flux attenuation as a function of the porosities of the tailings and cover soils and the diffusion coefficients for radon in these materials. (1).

> $2J_{o}exp(-k_{c}x)$ $C = \frac{1}{\left[1 + \frac{P_{t}}{P_{c}} \left(\frac{D_{t}}{D_{c}}\right)^{1/2}\right]} + \left[1 - \frac{P_{t}}{P_{c}} \left(\frac{D_{t}}{D_{c}}\right)^{1/2}\right] \exp(-2k_{c}x)$

(Equation 4)

where: $J_c = radon flux across the cover surface (pCi/m²s)$

 $J_0 = radon flux across the bare tailings surface (pCi/m²s)$

- D_t = diffusion coefficient for radon in the total pore space of bulk tailings (cm²/s)
- D_{c} = diffusion coefficient for radon in the total pore space of bulk cover material (cm²/s)
- Pt = dry porosity of tailings (dimensionless)
- $P_c = dry porosity of cover material (dimensionless)$ x = cover depth (cm)

 $k_{c} = (\lambda/D_{c})^{1/2}$ $\lambda = radon \ decay \ constant \ (s^{-1}).$

The value for D_t could not be evaluated with Radon Attenuation Test Facility since the tailings themselves produced radon, and so did not meet the requirements of the measurement method. However, the diffusion coefficient for tailings was evaluated from other measured values by means of the equation (12):

$$U_{t} = R_{t} E_{t} \rho_{t} (\lambda D_{t})^{1/2} (10^{4}) \tanh(x^{2} \lambda / D_{t})^{1/2}$$
 (Equation 5)

where: J_{+} = radon flux from the tailings (pCi/m²s) R_t^{t} = specific activity of ²²⁶Ra in the tailings (pCi/g) E_{+}^{\prime} = radon emanation coefficient of the tailings (dimensionless) $P_t = dry$ packing density of the tailings (g/cm³) D_{t} = diffusion coefficient for radon in the tailings (cm²/s) λ = radon decay constant (s⁻¹) x = depth of tailings (cm)

In the field test, x > 300 cm, $D_+ < 0.06$ cm²/s and $\lambda = 2.1 \times 10^{-6} s^{-1}$ so that the quantity, tanh $(x^2\lambda/D_+) \simeq 1.00$. Hence, Equation 5 reduces to:

 $J_{t} = R_{t}E_{t}\rho_{t}(\lambda D_{t})^{1/2}(10^{4})$

 $U_{t} = \frac{1}{\lambda} \left(\frac{10^{-4} J_{t}}{R_{+}E_{+}\rho_{+}} \right)^{2}$

(Equation 6)

(Equation 7)

or

The values for D_t were calculated from field measurements of J_t and ρ_t , gammaray spectrometric measurements of $R_t(10)$, and the value, $E_t = 0.28$, estimated for uranium mill tailings containing a volume fraction moisture of $0.24^{(13)}$.

RESULTS AND DISCUSSION

Physical Properties of Tailings and Applied Cover Soils

Properties of the mill tailings and cover soils used in this investigation are listed in Table 1. They show that the two cover soils differed widely in type, moisture and compaction. Since soil-moisture content was only evaluated at the end of the field experiments, the values for weight fraction moisture and volume fraction moisture only apply with certainty at that time.

TABLE 1. Physical Properties of Tailings and Applied Covers

	ŀ	ield Sample	Laboratory Samples		
	Sand	Tailings	Clay	Sand	Clay
Packing density, ρ, (g/cm ³)	1.73	1.34	1.39	1.73	1.40
Soil-particle density, d, (g/cm ³)	2.77	2.70	2.74	2.77	2.74
Dry porosity, $P = 1 - \rho/d$	0.38	0.50	0.49	0.38	0.49
Weight fraction moisture, w	0.04	0.18	0.14	0.04	U.14
Volume fraction moisture, $\Theta = \rho \omega$	0.07	0.24	0.20	0.07	0.20

Radon Flux Values from Field Measurements

Radon fluxes measured by the two methods are summarized in Table 2 and presented in detail in Appendices A and B. The values shown in Table 2 for fluxes obtained by the charcoal-canister method are averages of the several values measured simultaneously in each designated caisson. The individual measurements differed by factors of up to 3 during the same sampling period in the same caisson. Still larger variations in flux, ranging up to factors of 35, were found at the same caisson on different days. Radon fluxes measured by the tent method varied by factors of up to 15. This lack of precision was attributed to possible differences in meteorological conditions, changes in soil moisture and variations in the collection efficiencies of the two measurements.

TABLE 2. Radon Fluxes Evaluated by the Charcoal-Canister (C) and the Tent (T) Methods in the Field (All Values in pCi/m²s)

						Cai	sson						
Date (m/d/y)	1			2		3		4		5		6	
	<u> </u>	-	<u> </u>	-	<u> </u>	1	<u> </u>	1	<u> </u>	-	<u> </u>		
5/11/81	465	90	435	750	280	350	410	720	200		160		
5/12/81	320	100	330	280	450	270	360	330	130	200	185	135	
5/12-5/13/81	200		390		220		380		110		280		
5/13/81	270	90	770	700	230	200	330	450	120	310	860	530	
6/16/81	2750	790	680	1660	1110	160	650	890	840	750	4300	410	
6/16-6/17/81	500		820		410		420		340		240		
6/17/81*	80	60	90	200	350	350	150	380	60	50	60	90	
8/5/81	160	110	30	20	155	150	270	220	120	110	90	170	
9/2/81	160	140	65	4	200	120	290	340	135	170	80	100	
9/3/81	320		60		180		290		110		190		
11/9/81		280	70	80	30	150	100	340		310		560	
11/9-11/10/81	250		97		43		210		190		500	**	
11/10/81		230	270	140	60	150	400	420		490		1120	
11/10-11/11/81	400		230		70		315		450		1420		
11/11/81	810		380		110		620		1240		1690		

* After the measurements on this date, a 114-cm cover of well-graded sand was applied in caisson No. 2 and a 44-cm cover of inorganic clay was applied in caisson No. 3.

The data can be logically divided into two subsets, those measured on or before June 17, 1981 and those measured after that date when the cover of sand was in place in caisson No. 2 and the cover of clay was in place in caisson No. 3. An analysis of variance among the flux measurements made before June 17, 1981 showed no significant difference between caissons or between flux-measurement methods. However, there was a highly significant difference in flux between dates of sampling. Similarly, an analysis of variance among the flux measurements after June 17, 1981 showed no significant difference between the uncovered caissons or between flux-measurement methods, but highly significant differences in flux between dates of sampling and between covered versus uncovered caissons. It was concluded that the diffusion coefficients for radon in the cover soils should be evaluated from Equation 4 using measurements of flux from bare and covered tailings for the same dates.

Values for Radon Diffusion Coefficients

Since soil moisture is an important factor in determining the diffusion coefficient of radon in a soil, only data taken under conditions of known moisture content were used in the evaluations. This limited the evaluation of diffusion coefficients from field measurements of radon flux to data collected during the period from November 9 to 11, 1981. These data and the computed diffusion coefficients are listed in Table 3.

TABLE 3. Evaluations of Radon Diffusion Coefficients from Field Data

Date		Avera	ge Flux(pCi,	/m²s)	Diffusion Coefficients (cm ² /s)				
(m/d/y)	Bare	Tailings	Sand Cover	Clay Cover	Bare Tailings	Sand Cover	Clay Cover		
11/9/81 11/9-		372	75	90	0.018	0.011	0.0037		
11/10/81	100	288	97	43	0.011	0.017	0.0019		
11/10/81 11/10-		532	205	105	0.038	0.028	0.0038		
11/11/81 11/11/81	1	646 1090	230 380	70 110	0.056 0.158	0.029 0.040	0.0024 0.0034		

The values for the radon fluxes from bare tailings are the averages of all flux measurements in the four uncovered caissons, on the specified date. The diffusion coefficients for radon in bare tailings were calculated from Equation 7, the data shown in Tables 1 and 3 and the measured specific activity, $R_t = 504 \text{ pCi/g}$, for radium in the tailings. The diffusion coefficient in tailings measured for November 11, 1981 is clearly too high as it exceeds the coefficient in air, $0.11 \text{ cm}^2/\text{s}^{(14)}$ Nevertheless, it was used to evaluate the diffusion coefficients of radon in the cover soils on that date since all flux values were observed to be high at that time. Available meteorological data at the test site during this time period are shown in Table 4. They did not

TABLE 4. Meteorological Parameters at the Test Site From November 9 to 11, 1981

Date (m/d/y)	Air Tem Max. °C	Min. °C	Air Pressure (mm mercury)	Precipitation (mm.)	Max. Wind Velocity (km/hr, direction)
11/9/81	9	-8	772.7	0.6	O, ESE
11/10/81	4	-3	771.4	0.2	4, N
11/11/81	3	-3	768.2	0.4	2, WNW

suggest reasons for the variations in radon flux but may overlook short-term changes in air-temperature, atmospheric pressure or wind velocity during a day.

The diffusion coefficients evaluated from field data and those measured in the laboratory are compared in Table 5.

TABLE 5. Comparison of Field-Measured Radon Diffusion Coefficients with Laboratory-Measured Coefficients (95% Confidence Limits)

Method	D (Sand Cover)	D (Clay Cover)		
Laboratory Field	$\begin{array}{c} 0.021 \pm 0.002 \\ 0.03 \pm 0.03 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

The values are presented as 95% confidence limits based on the data shown in Table 3 and on a relative standard deviation of $\pm 5\%$ for the laboratory method (10). The best estimates of the diffusion coefficients evaluated by the two methods agreed to within a factor of two for both soil covers. This may be fortuitous, however, in view of the large 95% confidence intervals for the coefficients evaluated from field data. In any case, the diffusion coefficients evaluated by the two methods for each soil are indistinguishable at the 95% confidence level.

The low precision in the diffusion coefficients evaluated from field data were attributed to high variation in the radon flux with time and surface location at the field site. These variations occurred over relatively short time intervals and with only small differences in surface location of the radon collectors. Their exact cause is unknown, but variations of similar magnitude have been reported by other investigators for other tailings sites^(5,15). The higher precision of the laboratory-measured coefficients is attributed to the ability to better control influential parameters such as soil-moisture content and compaction as well as being relatively free from changes in meteorological conditions.

CONCLUSIONS

Laboratory-measured diffusion coefficients for radon in relatively small quantities of two widely different types of soils were indistinguishable, at the 95% confidence level, from coefficients evaluated from field measurements on much larger quantities of the same soils covering uranium mill tailings. The best estimates for coefficients obtained by the two methods agreed within a factor of two; however, the 95% confidence intervals for the field-determined values were too broad to provide a sensitive check on the validity of the laboratory-measured values. The low precision of the field-determined values was attributed to high variation in radon flux with time and surface location at the field site.

REFERENCES

- U.S. Nuclear Regulatory Commission. 1980. Final Generic Environmental Impact Statement on Uranium Milling, NRC Report, NUREG-0706, September 1980. U.S. Nuclear Regulatory Commission, Washington, DC.
- Silker, W. B. 1981. A Radon Attenuation Test Facility, NRC Report, NUREG/CR-2243. U.S. Nuclear Regulatory Commission, Washington, DC.
- Cohen, B. L. 1979. Methods for predicting the effectiveness of uranium mill tailings cover. Nucl. Instr. Meth. 164: 595-599.
- American Society for Testing and Materials. 1982. Soil, and Rock, 1982 Annual Book of ASTM Standards, Part 19, Natural Building Stones. American Society for Testing and Materials, Philadelphia, PA.
- Countess, R. J. 1976. Radon-222 flux measurement with a charcoal canister. Health Phys. 31: 455-456.
- Silker, W. B. and P. G. Heasler. 1979. Diffusion and Exhalation of Radon from Uranium Tailings, NRC Report, NUREG/CR-1138. U.S. Nuclear Regulatory Commission, Washington, DC.
- 7. Macbeth, P. J., C. M. Jensen, V. C. Rogers, and R. F. Overmeyer. 1978. Laboratory Research on Tailings Stabilization Methods and Their Effectiveness in Radiation Containment, DOE Report, GJT-21. U.S. Department of Energy, Washington, DC.
- Thomas, V. W., K. K. Nielson, and M. L. Mauch. 1982. Radon and Aerosol Release from Open Pit Uranium Mining, NRC Report, NUREG/CR-2407. U.S. Nuclear Regulatory Commission, Washington, DC.
- 9. Freeman, H. D. 1981. An Improved Radon Flux Measurement System for Uranium Tailings Pile Measurement, pp. 339-344. In: International Conference on Radiation Hazards in Mining; Control, Measurement and Medical Aspects, Colorado School of Mines, Golden, CO.
- Wogman, N. A., D. E. Robertson, and R. W. Perkins. 1967. A large detector, anticoincidence shielded multidimensional gamma-ray spectrometer. Nucl. Inst. Meth. 50: 1.
- Silker, W. B. and D. R. Kalkwarf. 1983. Radon Diffusion in Candidate Soils for Covering Uranium Mill Tailings, NRC Report, NUREG/CR-2924. U.S. Nuclear Regulatory Commission, Washington, DC.
- 12. Rogers, V. C., R. F. Overmeyer, K. M. Putzig, C. M. Jensen, K. K. Nielson and B. W. Sermon. 1980. Characterization of Uranium Tailings Cover <u>Materials for Radon Flux Reduction</u>, NRC Report, NUREG/CR-1081. U.S. Nuclear Regulatory Commission, Washington, DC.

- 13. Strong, K. P. and D. M. Levins. 1982. Effect of moisture content on radon emanation from uranium ore and tailings. Health Phys. 42: 27-32
- 14. Nielson, K. K., D. C. Rich and V. C. Rogers. 1982 Comparison of Radon Diffusion Coefficients Measured by Transient-Diffusion and Steady-State Laboratory Methods, NRC Report, NUREG/CR-2875. U.S. Nuclear Regulatory Commission, Washington, DC.
- 15. Hartley, J. N., G. W. Gee, E. G. Baker and G. D. Freeman. <u>1982</u>. <u>1981</u> <u>Radon Barrier Field Test at the Grand Junction Uranium Mill Tailings Pile</u>, <u>DOE Report</u>, <u>DOE/UMT-0213</u>, U.S. Department of Energy, Washington, DC.

APPENDIX A

Data Dbtained With GMA Radon Flux Canisters Area sampled was 4.42 x $10^{-3}m^2$

Caisson 1

	11/11/81		Exposure	1454	5.55		114.81	elette data	J	
Sample	Or Date	Time	Date	Time	$\frac{\Delta t}{(\min.)}$	Counte Date	<u>Time</u>	(dpm)* Sample	<u>(pCi)</u> (m ² *sec)	
1A	5/11/81	1309	5/11/81	1810	301	5/14/81	1348	45320±500	260	
1B	5/11/81	1309	5/11/81	1810	301	5/14/81	1348	115610±1200	670	
1C	5/12/81	0728	5/12/81	1248	320	5/14/81	1410	74841±830	400	
1D	5/12/81	1248	5/12/81	1800	312	5/14/81	1423	42726±435	240	
1E	5/12/81	1802	5/13/81	0747	825	5/14/81	1457	92810±1200	200	
1F	5/13/81	0747	5/13/81	1418	391	5/14/81	1445	61162±710	270	
1A	6/16/81	1117	6/16/81	1710	353	6/18/81	1521	558000±4400	2750	
1B	6/16/81	1710	6/17/81	0735	865	6/18/81	1536	240700±2100	500	
1C	6/17/81	0735	6/17/81	1542	487	6/18/81	1549	22460±250	80	
1A	8/5/81	0827	8/5/81	1515	408	8/6/81	1443	37100±160	160	
1A	9/2/81	0756	9/3/81	0822	1466	9/4/81	1136	125560±1420	160	
1B	9/3/81	0823	9/3/81	1140	197	9/4/81	1048	35782±600	320	
1A	11/9/81	0906	11/10/81	1251	1665	11/14/81	0657	220317±1260	250	
1B	11/10/81	1252	11/11/81	1014	1282	11/14/81	1511	275870±2220	400	
1C	11/11/81	1014	11/11/81	1427	253	11/14/81	1513	118490±940	810	

* Decay corrected to end of sampling.

Caisson 2

			Exposure						J	
	On	1	Off		Δt	Counte	ed	(dpm)*	(pCi)	
Sample	Date	Time	Date	Time	(min.)	Date	Time	Sample	(m ² sec)	
2A 2B 2C 2D 2E 2F	5/11/81 5/11/81 5/12/81 5/12/81 5/12/81 5/12/81 5/13/81	1310 1310 0728 1250 1802 0747	5/11/81 5/11/81 5/12/81 5/12/81 5/13/81 5/13/81	1810 1810 1250 1800 0747 1418	300 300 322 310 825 391	5/14/81 5/14/81 5/14/81 5/14/81 5/14/81 5/14/81	1348 1354 1411 1430 1459 1447	65690±690 84198±1030 61233±710 59314±780 178500±1900 172070±1660	380 490 330 330 390 770	
2A 2B 2C	6/16/81 6/16/81 6/17/81	1118 1710 0735	6/16/81 6/17/81 6/17/81	1710 0735 0932	352 865 117	6/18/81 6/18/81 6/18/81	1524 1538 1551	137500±1300 398100±3100 6433±120	680 820 90	
2A	8/5/81	0827	8/5/81	1515	408	8/6/81	1436	6390±40	30	
2A 2B 2C	9/2/81 9/2/81 9/3/81	0754 0754 0749	9/2/81 9/2/81 9/3/81	2035 2035 1122	761 761 213	9/4/81 9/4/81 9/4/81	1034 1053 1034	2598±68 2802±69 7892±169	6 7 60	
2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K	11/9/81 11/9/81 11/9/81 11/9/81 11/10/81 11/10/81 11/10/81 11/10/81 11/11/81 11/11/81 11/11/81	0910 0910 1655 1236 1236 1236 1236 1713 1017 1017	11/9/81 11/10/81 11/10/81 11/10/81 11/10/81 11/11/81 11/11/81 11/11/81 11/11/81 11/11/81 11/11/81 11/11/81	1655 1235 1235 1235 1714 1017 1017 1017 1424 1424 1424	465 1645 1645 1180 278 1301 1301 1024 247 247 247	11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81 11/14/81	0707 0700 0700 0708 0710 1514 0716 0717 0721 0723 0725	$\begin{array}{c} 17220\pm230\\ 84070\pm770\\ 90460\pm730\\ 67212\pm798\\ 42617\pm610\\ 170240\pm1080\\ 127380\pm1310\\ 151690\pm1310\\ 50510\pm410\\ 52540\pm410\\ 59797\pm590 \end{array}$	70 90 100 270 240 180 270 350 350 370 420	

* Decay corrected to end of sampling.

A-2

Caisson 3

			Exposure						J	
	Or	1	Of	f	Δt	Counte	ed	(dpm)*	(pC1)	
Sample	Date	Time	Date	Time	(min.)	Date	Time	Sample	(m ² sec)	
3A 3B 3C 3D	5/11/81 5/12/81 5/12/81 5/12/81 5/12/81	1520 0730 1252 1805 0745	5/11/81 5/12/81 5/12/81 5/13/81 5/13/81	1826 1252 1804 0745 1417	186 202 312 820 392	5/14/81 5/14/81 5/14/81 5/14/81 5/14/81	1356 1416 1432 1500 1449	30196 ± 350 59760 ± 780 69640 ± 780 98600 ± 600 51650 ± 620	280 510 390 220 230	
3A 3B 3C	6/16/81 6/16/81 6/17/81	1117 1710 0735	6/16/81 6/17/81 6/17/81	1710 0735 1145	353 865 250	6/18/81 6/18/81 6/18/81	1529 1540 1555	226200±2200 199100±2000 50720±500	1110 410 350	
3A 3B	8/5/81 8/5/81	0827 0827	8/5/81 8/5/81	1515 1515	408 408	8/6/81 8/6/81	1448 1454	31380±150 40143±165	140 170	
3A 3B 3C	9/2/81 9/2/81 9/3/81	0803 0803 0820	9/2/81 9/2/81 9/3/81	2035 2035 1122	752 752 182	9/4/81 9/4/81 9/4/81	1119 1115 1140	80830±870 88401±1220 19256±290	190 210 180	
3A 3B 3C 3D 3E 3F 3G 3H 3I 3J 3J	11/9/81 11/9/81 11/9/81 11/9/81 11/10/81 11/10/81 11/10/81 11/10/81 11/11/81 11/11/81 11/11/81	0912 0912 1655 1241 1241 1241 1712 1022 1022 1022	11/9/81 11/10/81 11/10/81 11/10/81 11/10/81 11/11/81 11/11/81 11/11/81 11/11/81 11/11/81 11/11/81	1655 1242 1242 1242 1715 1020 1020 1020 1424 1424 1424	973 1650 165D 1187 274 1299 1299 1028 242 242 242 242	11/13/81 11/13/81 11/13/81 11/13/81 11/14/81 11/14/81 11/13/81 11/13/81 11/13/81 11/13/81 11/13/81 11/13/81	1325 1325 1325 1336 1521 1515 1339 1341 1501 1504 1505	$\begin{array}{c} 15937\pm227\\ 48698\pm465\\ 63099\pm690\\ 8043\pm64\\ 10007\pm188\\ 12644\pm200\\ 43899\pm152\\ 70661\pm190\\ 2789\pm26\\ 10163\pm48\\ 33384\pm84 \end{array}$	30 50 70 10 60 20 60 130 20 70 240	

* Decay corrected to end of sampling.

A-3

Caisson 4

			Exposure						J
	Or	1	Of	f	Δt	Counte	ed	(dpm)*	(pCi)
Sample	Date	Time	Date	Jime	(min.)	Date	Time	Sample	(m ² sec)
4A	5/11/81	1523	5/11/81	1827	184	5/14/81	1358	43710±445	410
4B	5/12/81	0730	5/12/81	1252	202	5/14/81	1417	39634±610	340
4C	5/12/81	1252	5/12/81	1804	312	5/14/81	1433	67874±730	380
4D	5/12/81	1805	5/13/81	0745	820	5/14/81	1436	173000±2000	380
4E	5/13/81	0745	5/13/81	1417	392	5/14/81	1451	73878±770	330
4A	6/16/81	1118	6/16/81	1710	352	6/18/81	1530	132200±1340	650
4B	6/16/81	1710	6/17/81	0735	865	6/18/81	1541	204100±2000	420
4C	6/17/81	0735	6/17/81	1542	487	6/18/81	1603	41070±400	150
4A	8/5/81	D827	8/5/81	1515	408	8/6/81	1438	62814±260	270
4A	9/2/81	0801	9/3/81	0818	1457	9/4/81	1121	226751±2470	290
4B	9/3/81	0818	9/3/81	1122	184	9/4/81	1128	31526±360	290
4A	11/9/81	0906	11/10/81	1248	1662	11/14/81	1458	184798±1330	210
4B	11/10/81	1249	11/10/81	1714	265	11/14/81	1458	612()0±651	400
4C	11/10/31	1249	11/11/81	1027	1298	11/14/81	1458	222518±1820	320
4D	11/10/81	1713	11/11/81	1027	1024	11/14/81	1504	175404±1193	310
4E	11/11/81	1028	11/11/81	1426	238	11/11/81	1505	71675±777	520
4F	11/11/81	1028	11/11/81	1426	238	11/11/81	1507	98995±905	720

* Decay corrected to end of sampling.

Caisson 5

			Exposure							
	Or	1	01	Off		Counte	d	(dpm)*	(pCi)	
Sample	Date	Time	Date	Time	(min.)	Date	Time	Sample	(m ² sec)	
5A 5B 5C 5D 5E	5/11/81 5/12/81 5/12/81 5/12/81 5/12/81 5/13/81	1528 0848 1254 1807 0743	5/11/81 5/12/81 5/12/81 5/13/81 5/13/81	1830 1253 1806 0747 1416	182 245 312 813 393	5/14/81 5/14/81 5/14/81 5/14/81 5/14/81	1359 1419 1438 1502 1453	21080±300 15095±240 27460±470 51097±430 48819±350	200 110 150 110 220	
5A 58 5C	6/16/81 6/16/81 6/17/81	1117 1710 0735	6/16/81 6/17/81 6/17/81	1710 0735 1542	353 865 487	6/18/81 6/18/81 6/18/81	1532 1543 1604	170300±1600 163900±1200 18090±260	840 340 60	
5A	8/5/81	0827	8/5/81	1515	408	8/6/81	1429	28017±120	120	
5A 5B 5C	9/2/81 9/2/81 9/3/81	0751 0751 0815	9/3/81 9/3/81 9/3/81	0814 0814 1122	1463 1463 187	9/4/81 9/4/81 9/4/81	1045 1048 1123	101192±1240 105670±1343 11511±170	130 140 110	
5A 5B 5C	11/9/81 11/10/81 11/11/81	0906 1247 1030	11/10/81 11/11/81 11/11/81	1247 1030 1426	1661 1303 236	11/14/81 11/14/81 11/14/81	1523 1527 1530	171864±2080 320419±1013 169771±2272	190 450 1240	

* Decay corrected to end of sampling.

A-5

Caisson 6

			Exposure						J
	On	1	Of	f	Δt	Counte	ed	(dpm)*	(pCi)
Sample	Date	Time	Date	Time	(min.)	Date	Time	Sample	(m ² sec)
6A 6B 6C 6D 6E	5/11/81 5/12/81 5/12/81 5/12/81 5/12/81 5/13/81	1530 0848 1254 1807 0743	5/11/81 5/12/81 5/12/81 5/13/81 5/13/81	1830 1253 1806 0743 1416	180 245 312 816 393	5/14/81 5/14/81 5/14/81 5/14/81 5/14/81	1408 1421 1439 1441 1455	16350±270 17830±285 43073±440 127500±1000 192584±1970	160 130 240 280 860
6A 6B 6C	6/16/81 6/16/81 6/17/81	1118 1710 0735	6/16/81 6/17/81 6/17/81	1710 0735 1542	352 865 487	6/18/81 6/18/81 6/18/81	1535 1545 1606	866000±5500 118100±950 17260±220	4300 240 60
6A	8/5/81	0827	8/5/81	1515	408	8/6/81	1431	21827±100	90
6A 6B	9/2/81 9/3/81	0818 0814	9/3/81 9/3/81	0813 1122	1445 188	9/4/81 9/4/81	1115 6.3	62569±729 21093±325	80 1 90
6A 6B 6C	11/9/81 11/10/81 11/11/81	0906 1245 1031	11/10/81 11/11/81 11/11/81	1246 1031 1426	1660 1306 235	11/14/81 11/14/81 11/14/81	1532 1533 1534	439941±4592 1009065±6889 230393±2427	500 1420 1690

* Decay corrected to end of sampling.

and a state of the second seco

APPENDIX B

Data Obtained With Radon Collection Tents Area sampled was 0.225 m^2

Caisson 1

			Exposure						J
Sample	Or Date	n Time	Of Date	f Time	$\frac{\Delta t}{(\min.)}$	Counte Date	Time	(dpm)* Sample	(pCi) (m ² sec)
C1-1 C1-2 C1-3	5/11/81 5/12/81 5/13/81	1305 1031 1230	5/11/81 5/12/81 5/13/81	1505 1231 1400	120 120 90	5/14/81 5/14/81 5/14/81	1544 1558 1615	369900±2800 418300±3400 293100±2400	90 100 90
C1-1 C1-2	6/16/81 6/17/81	1126 0902	6/16/81 6/17/81	1226 1002	60 60	6/18/81 6/18/81	1422 1453	1610000±7300 123200±1410	790 60
C1-1	8/5/81	1147	8/5/81	1247	60	8/6/81	1417	227430±500	110
C1-1	9/2/81	1528	9/2/81	1628	60	9/4/81	1147	283370±2580	140
C1-1 C1-2	11/9/81 11/10/81	1421 1828	11/9/81 11/10/81	1533 1935	72 67	11/16/81 11/16/81	1230 1239	675150±3260 517180±4020	280 230
* Decay corr	ected to en	nd of sa	mpling.						

Calsson 2

Radod Tent Samplers

B-1

Caisson 2

			Exposure						J
Sample	Or Date	n Time	01 Date	f Time	$\frac{\Delta t}{(\min.)}$	Counte Date	ed Time	<u>(dpm)*</u> Sample	<u>(pCi)</u> (m ² sec)
C2-1 C2-2 C2-3	5/11/81 5/12/81 5/13/81	1305 1031 1230	5/11/81 5/12/81 5/13/81	1505 1231 1400	120 120 90	5/14/81 5/14/81 5/14/81	1546 1600 1617	3018000±13000 1135000±6800 2111000±12000	750 280 700
C2-1 C2-2	6/16/81 6/17/81	1126 D831	6/16/81 6/17/81	1226 0902	60 31	6/18/81 6/18/81	1428 1457	3370000±16000 205800±2090	1660 200
C2-1	8/5/81	0947	8/5/81	1047	60	8/6/81	1419	42581±140	20
C2-1	9/2/81	0936	9/2/81	1041	65	9/4/81	1153	6977±180	4
C2-1 C2-2	11/9/81 11/10/81	1125 1828	11/9/81 11/10/81	1251 1935	86 67	11/16/81 11/16/81	1232 1240	223490±1920 316650±2870	80 140
* Decay co	orrected to e	nd of s	ampling.						

Radon Tent Samulev

B-2

-	٠				0
1.3	-	5	00	5	1
U.C.	- 1	3	50		0
~ **		-	~ ~		-

			Exposure						J
Sample	Or Date	n Time	01 Date	f Time	$\frac{\Delta t}{(\min.)}$	Counte Oate	ed Time	<u>(dpm)*</u> Sample	(p <u>Ci</u>) (m ² · sec)
C3-1 C3-2 C3-3	5/11/81 5/12/81 5/13/81	1807 1330 1025	5/11/81 5/12/81 5/13/81	2007 1530 1155	120 120 90	5/14/81 5/14/81 5/14/81	1548 1601 1611	1397000±7600 1077000±5900 598300±3800	350 270 200
C3-1 C3-2	6/16/81 6/17/81	1330 1044	6/16/81 6/17/81	1430 1144	60 60	6/18/81 6/18/81	1433 1506	332400±3160 711500±3750	160 350
C3-1	8/5/81	0947	8/5/81	1048	61	8/6/81	1245	318640±650	150
C3-1	9/2/81	0936	9/2/81	1041	65	9/4/81	1158	258200±3820	120
C3-1 C3-2	11/9/81 11/10/81	1125 1639	11/9/81 11/10/81	1251 1739	86 60	11/16/81 11/16/81	1234 1243	442721±2870 313340±3000	150 150
* Decay c	orrected to e	nd of s	ampling.						

Colsson 4

Radon Tent Samplers

8-3

Caisson 4

			Exposure						J
	Or	1	0f	f	Δt	Counte	d	<u>(dpm)*</u>	(pCi)
Sample	Date	Time	Date	Time	<u>(min.)</u>	Date	Time	Sample	(m²'sec)
C4-1	5/11/81	1807	5/11/81	2007	120	5/14/81	1550	2911000±13000	720
C4-2	5/12/81	1330	5/12/81	1530	120	5/14/81	1603	1320000±7200	330
C4-3	5/13/81	1025	5/13/81	1155	90	5/14/81	1613	1381000±7600	450
C4-1	6/16/81	1330	6/16/81	1430	60	6/18/81	1441	1798000±9100	890
C4-2	6/17/81	1103	6/17/81	1144	41	6/18/81	1510	777700±4500	380
C4-1	8/5/81	1147	8/5/81	1247	60	8/6/81	1422	448400±980	220
C4-1	9/2/81	1528	9/2/81	1628	60	9/4/81	1200	695340±4680	340
C4-1	11/9/81	1421	11/9/81	1533	72	11/16/81	1251	827570±5250	340
C4-2	11/10/81	1639	11/10/81	1739	60	11/16/81	1245	853770±8370	420
* Decay co	rrected to en	nd of sa	mpling.						

Radon Tent Sompler:

B-4

0						_
1 2	п.	C	C	\sim	n	h.
U a		Э	Э	U		
		_	_	_		_

			Exposure						J
Sample	Or Date	n Time	Date	ff Time	$\frac{\Delta t}{(\min.)}$	Counte Date	ed Time	(dpm)* Sample	<u>(pC1)</u> (m ² sec)
C5-1 C5-2 C5-3	5/12/81 5/12/81 5/13/81	0736 1615 0820	5/12/81 5/12/81 5/13/81	939 1815 0950	123 120 90	5/14/81 5/14/81 5/14/81	1553 1605 1608	667300±3800 944400±5200 943000±5300	170 230 310
C5-1 C5-2	6/16/81 6/17/81	1523 1245	6/16/81 6/17/81	1623 1346	60 61	6/18/81 6/18/81	1443 1512	1526400±7600 102100±1240	750 50
C5-1	8/5/81	1337	8/5/81	1437	60	8/6/81	1425	220840±580	110
C5-1	9/2/81	1738	9/2/81	1854	76	9/4/81	1202	422560±3440	170
C5-1 C5-2	11/9/81 11/10/81	1619 1445	11/9/81 11/10/81	1726 1545	67 60	11/16/81 11/16/81	1254 1247	692500±3380 985740±7390	310 490
* Decay co	prrected to en	nd of sa	ampling.						

B-5

Callscon 6

Souther Tent Sampler:

Caisson 6

			Exposure						J
Sample_	Or Date	n <u>Time</u>	0. Date	ff <u>Time</u>	$\frac{\Delta t}{(\min.)}$	Counte Date	ed Time	(dpm)* Sample	(pCi) (m ² sec)
C6-1 C6-2 C6-3	5/12/81 5/12/81 5/13/81	0736 1615 0820	5/12/81 5/12/81 5/13/81	0939 1815 0950	123 120 90	5/14/81 5/14/81 5/14/81	1553 1607 1610	203100±1900 886500±5800 1595000±10000	50 220 530
C6-1 C6-2	6/16/81 6/17/81	1523 1235	6/16/81 6/17/81	1623 1335	60 60	6/18/81 6/18/81	1449 1516	837400±5400 170500±2000	410 90
C6-1	8/5/81	1337	8/5/81	1438	61	8/6/81	1427	347710±660	170
C6-1	9/2/81	1738	9/2/81	1854	76	9/4/81	1204	258460±2040	100
C6-11 C6-2	11/9/81 11/10/81	1619 1445	11/9/81 11/10/81	1726 1545	67 60	11/16/81 11/16/81	1256 1249	1259980±5310 2259010±12750	560 1120
* Decay co	prrected to en	nd of sa	ampling.						

Caluson 5

andou 1801 2400 sta

B-6

NUREG/CR-2769 PNL-4414 RU

DISTRIBUTION

No. of Copies

No. of Copies

OFFSITE

U. S. Nuclear Regulatory Commission Division of Technical Information and Document Control 7920 Norfolk Avenue Bethesda, MD 20014

10 George F. Birchard U. S. Nuclear Regulatory Comm. 1130-SS Washington, DC 20555

3 V. C. Rogers Rogers & Assoc. Eng. Corp. P. O. Box 330 Salt Lake City, UT 84110

3 K. K. Nielson Rogers & Assoc. Eng. Corp. P. O. Box 330 Salt Lake City, UT 84110

H. J. Abbiss United Nuclear Corporation Mining and Milling Division P. O. Box 3951 Albuquerque, NM 87110

James E. Cleveland Kerr-McGee Nuclear Corp. P. O. Box 218 Grants, NM 87020

Jim Roselle Ranchers Exploration & Dev. Corp. P. O. Box 6217 Albuquerque, NM 87107

William E. Mott, Director Environment & Safety Eng. Division U. S. Department of Energy, EP-14 Washington, DC 20545 Paul O'Brien, Organization 4541 Sandia National Laboratory-Albuquerque P. O. Box 5800 Albuquerque, NM 87185

Mary G. White Remedial Actions Program U. S. Department of Energy Washington, DC 20545

Donald Phoenix Weston Weston Way West Chester, PA 19380

L. Anderson, Director Bureau of Radiation & Occup. Health P. O. Box 2500 Salt Lake City, UT 84110

T. C. Smith Cotter Corporation 9305 W. Alameda Parkway Lakewood, CO 80226

R. G. Beverly Union Carbide Corporation P. O. Box 1029 Grand Junction, CO 81502

Todd Miller UNC Mining and Milling P. O. Drawer QQ Gallup, NM 87301

Wayne Jensen Atlas Minerals Moab, UT 84532

Merve Lawton Rio Algom Corporation La Sal Route Moab, UT 84532

NUREG/CR-2769 PNL-4414 RU

DISTRIBUTION

No. of Copies

OFFSITE

Gerald Ortloff Exxon Minerals Company P. O. Box 2180 Houston, TX 77002

Randy Ford Exxon Minerals Company P. O. Box 3020 Casper, WY 82602

Ken Watts Federal American Partners Gas Hills Star Route Riverton, WY 82501

Jack E. Russell Pathfinder Mines Corp. Shirley Basin Mine Shirley Basin, WY B2165

Steve Pfaff Getty Petrotomics Company P. O. Box 2509 Shirley Basin, WY 82165

Early Shortbridge Union Carbide Company P. O. Box 5100 Gas Hills Station Riverton, WY 82501

2 George Gnugnoli U. S. Nuclear Regulatory Comm. Nuclear Materials, Safety and Safeguards Washington, DC 20555 No. of Copies

> Marcel DeGuire Dawn Mining Company Ford, WA 99013

Paul Blair Western Nuclear, Inc. P. O. Box 392 Wellpinit, WA 99040

ONSITE

39 Pacific Northwest Laboratory

J.	Μ.	Nielsen	
R.	W.	Perkins	
J.	S.	Fruchter	
W.	D.	Felix	
Ν.	Α.	Wogman	
G.	₩.	Gee	
J.	Ν.	Hartley	
Ρ.	0.	Jackson	
D.	R.	Kalkwarf (8)	
Ε.	Α.	Lepel (5)	
D.	₩.	Mayer	
R.	₩.	Nelson	
Μ.	G.	Foley	
٧.	₩.	Thomas (5)	
W.	Ι.	Enderlin	
J.	Α.	Glissmeyer	
Ρ.	L.	Koehmstedt	
Pul	olis	shing Coordination	1
Tee	chni	ical Information (5
		1 (10) 16 (0) = 21 (10)	

2)

		1. REPORT NUMBER (Assumed by DOC) NUREG/CR-2769		
BIBLIOGRAPHIC DATA SHEET		PNL-4414		
4. TITLE AND SUBTITLE (Add Volume No., if appropriate)		2. (Leave blank)		
COEFFICIENTS WITH LABORATORY-MEASURED COEFF	UN FICIENTS	3. RECIPIENT'S ACC	CESSION NO.	
7. AUTHORIS)		5. DATE REPORT C	OMPLETED	
E.A. Lepel, W.B. Silker, V.W. Thomas and D.	.R. Kalkwarf	MONTH	TOD2	
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Inclus	de Zip Code)	DATE REPORT IS	SSUED	
Pacific Northwest Laboratory		April 1983		
P. O. Box 999		6. (Leave blank)	1505	
Richland, WA 99352				
		8. (Leave blank)		
Division of Health, Siting and Waste Manage	ement	10. PROJECT/TASK	WORK UNIT NO.	
UTTICE OF NUCLEAR REGULATORY Research		11. FIN NO.		
Washington, DC 20555		B2269		
13. TYPE OF REPORT	PERIOD COVER	EO (Inclusive dates)		
Topical Technical Report	1			
15. SUPPLEMENTARY NOTES		14. (Leave olank)		
tested: a well-graded sand and an inorgani- evaluations, radon was collected by adsorpt sion from the soil surface and also from an over the soil surface. Radon diffusion coe statistically indistinguishable, at the 955 in the laboratory; however, the low precisi- validation of the laboratory measurements.	ic clay of l tion on char ir recircula efficients e % confidence ion of the f	ow plasticity coal followin ting through valuated from level, from ield data pre	For the flux g passive diffu- an aluminum tent field data were	
were calculated to be $0.03 \pm 0.03 \text{ cm}^2/\text{s}$ for for the clay cover. From the laboratory da be $0.021 \pm 0.002 \text{ cm}^2/\text{s}$ for the sand cover a cover. The low precision in the coefficient ted to high variation in radon flux with the	From the f r the sand co ata, the coe and $0.0036 \pm$ nts evaluate ime and surf	ield data, th over and 0.00 fficients wer 0.0004 cm ² /s d from field ace location	evented a sensitive e coefficients 03 ± 0.002 cm ² /s re calculated to a for the clay data was attribu- in the field site	
were calculated to be $0.03 \pm 0.03 \text{ cm}^2/\text{s}$ for for the clay cover. From the laboratory da be $0.021 \pm 0.002 \text{ cm}^2/\text{s}$ for the sand cover a cover. The low precision in the coefficient ted to high variation in radon flux with ti	From the f r the sand co ata, the coe and 0.0036 ± nts evaluate ime and surf	ield data, th over and 0.00 fficients wer 0.0004 cm ² /s d from field ace location s	evented a sensitive e coefficients 3 ± 0.002 cm ² /s re calculated to for the clay data was attribu- in the field site	
were calculated to be 0.03 ± 0.03 cm ² /s for for the clay cover. From the laboratory da be 0.021 ± 0.002 cm ² /s for the sand cover a cover. The low precision in the coefficient ted to high variation in radon flux with ti 17. KEY WORDS AND DOCUMENT ANALYSIS Radon, radon diffusion coefficient, compari diffusion coefficients	From the f r the sand ca ata, the coe and 0.0036 ± nts evaluate ime and surf 17a DESCRIPTOR	ield data, th over and 0.00 fficients wer 0.0004 cm2/s d from field ace location s ods for evalu	evented a sensitive e coefficients 3 ± 0.002 cm ² /s re calculated to for the clay data was attribu- in the field site	
were calculated to be 0.03 ± 0.03 cm ² /s for for the clay cover. From the laboratory da be 0.021 ± 0.002 cm ² /s for the sand cover a cover. The low precision in the coefficient ted to high variation in radon flux with ti 17. KEY WORDS AND DOCUMENT ANALYSIS Radon, radon diffusion coefficient, compari diffusion coefficients	From the f r the sand co ata, the coe and 0.0036 ± nts evaluate ime and surf 17± DESCRIPTOR	ield data, th over and 0.00 fficients wer 0.0004 cm2/s d from field ace location s ods for evalu	evented a sensitive e coefficients 3 ± 0.002 cm ² /s re calculated to for the clay data was attribu- in the field site	
were calculated to be 0.03 ± 0.03 cm ² /s for for the clay cover. From the laboratory da be 0.021 ± 0.002 cm ² /s for the sand cover a cover. The low precision in the coefficient ted to high variation in radon flux with ti 17. KEY WORDS AND DOCUMENT ANALYSIS Radon, radon diffusion coefficient, compari diffusion coefficients	From the f r the sand ca ata, the coe and 0.0036 ± nts evaluate ime and surf 17a DESCRIPTOR ison of meth	ield data, th over and 0.00 fficients wer 0.0004 cm ² /s d from field ace location s ods for evalu	evented a sensitive e coefficients 3 ± 0.002 cm ² /s re calculated to for the clay data was attribu- in the field site ating radon	

NAC FORM 335 (11-8)

NOT WIND AND ODDURIENT ANALYSIS