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Abstract

The role of guiding-center corrections in convective
transport of electron energy is examined with a simple
numerical model. At 1016 W <:|'n—2 with a 60-uym spot and a
10.6~ym wavelength laser, the Righi-Leduc term is observed
to have little effect on transport in a calculation with

the thermal flux limited to the free-screaming value.



Introduction. Lateral transport of electron energy has been osbserved

1,4

in laser target experiments with CO, lasers, and recently with shorter

wavelength 1asera.2 In these last 2xperiments, ag much as 307 of the ab-
sorbed laser energy is carried several millimeters from the laser spot.

Recent collisionless plasma~simulation results suggest that the later-
al transpor: 18 due to self-generated magnetic fields.3 In the simula-~
tions, a plasma 1s confined in a magnetic sheath that spreads across the
target surface at speeds approaching 108 cm/s. Very strong collimation of
the thermal flux beneath the laser spot into the target is observed. as
well as inhibition of thermal diffusion by the sheath 2lsewhere. The trap-
ping of the electron energy in the sheath results in a very large tiansfer
of energy from the electrons to emitted fast ions. Many of these features
have been observed in experiments. Especially striking are the bright re-
glons corresponding to field nulls in multibeam experiments.4

A more complete theoretical understanding of lateral trarsport re-
quires including collisions in the models. With collisions, physical
length scales are iniroduced that will differentiate the results for vari-
ous wavelength lasers. Of course, much fluid modeling has been done al-
ready.5 For various reasons, lateral transport has not been observed to be
a prominent feature of calculiations with these muodels. One reason put for-~
ward is that the coronal plasma is insufficlently collisional to apply the
usual transport theory.6 Another, and the <ne explored here, is that com
peting convective terms in the fluid equaticna cancel the ExE drift motion
of the electrons in the magnetic field,

To evaluate the relative importance of the various convection terme, a
numerical approach is taken. For gimplicity, the fluld equations with in-
finitely massive ions are examlned. Furtherwore, only the competition be-
tween the Righi-Leduc and ExB drift convactive terms in the electron energy
equation is considered. Within this restricted model, tha gcaling of thesc
terms is examined, an explicit numerical algorithm tc solve the fluid model
equations i{s outlined, and numerical results are presented to [llustrate
the effect of magnetic fleld generation and the Righi-Lzduc tezm on the

lateral transport of electron enargy.



A. The 1 'tricted fluid model.

In a . »del wirth infinitely massive ions and massless electrons, only
Faraday's law and the electron energy equation are retained among the evo-
lution equati ns. With standard uotation7 and in mks units, these equa-

tions may be written
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In Faraday's law, Eq. (1), B is the magnet.c field intensity, Je is the
electron drift velocity as given by Ampere's law,

Ge - - j/ne - - Vxﬁ/une ,

P, "= nkTe is the electron pressure, n is the number density of electrons, e
is the electron charge, and E 18 the thermoelectric coefficient. (Note
that resistive diffusion is not included in the equation.) 1In the electron
energy equation, 6e is the heat flux, given by

+ +VT
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where k is the thermal conductivity tensor, and P 1s a source term

modeling the deposition of laser energy in the eli::::ns.

For tlow in a two-dimensional Cartesian geometry, Eqs. (1) and (2) can
be further simplified. Where z 18 the lgnored coordinate direction, the
equations may be written in cowponent form,

DBZ

- - -9 3 {3 aT ot .
T x Lsz dy uynz + Ix [(DY * B t A ) /n(]



and

la>

l 3Pg (aue1 auez) d
—_— —_— _— R -
(v-1) 3t * Po\"ox + oy + Te[ax(s*uex + 8»uey) (B-‘-uey Bnuex)]
1 3 9 3 aT . T ] T _ T
Y oD (K Pevex * 37 Peey) &‘(‘*ﬁ * % ay) * Sty - &)
where B, and B _correspond to BIU and BTU in Braginskii.

B. The convection terus.

Among the various terms in the fiuid model, three convection terms can
be identified. The first, the electron drift velocity, Ge’ corresponds to
the velocity of the frame in which the electric field due to finite eliec-
trnon pressure, Ea-- Vpe/ne. ie zero in steady state. As described else-
where,3 the drift velocity scales relative to the electron thermal speed awu
the ratio of the collisionless skin depth, c/wpe, to the density gradient
scale length, Ln'

/o _L_ .
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Less explicit in Eqs. (1) and (2) 1s the convection due to guiding center

correctinn terms.

The thermoelectric term in Faraday's law and the heat flux terms i1in
the electron enargy equation contain terms in which the highest derivative
of the dependent variable is the first derivative. These are convective

rather than diffusive. For example, among the thermoelectric terms is the

Nernat term, which can be written,
~ »
UxB (bxv7 ) = + Yx(u xﬁ) ,
- e N
where
b:ﬁ/lﬁl

aund

EN B BAVTE/'ﬁ! .



The effect of this term has been investigated earlier by Colombant and Win-
sor.5 Scaling estimates indicate that JN is largest when there 18 no field
to convect.6 The term will not be considered further here.

The convective term in the heat flux can be written
Yok (bxXVT ) = & VT
¥. e YR e '
where the Righi-Leduc velocity ig defined by

GR = Uxx b . (3)

Following Braginskii, x 1s written

oty x(vix® + vg)
Ko = m - A '

where v 18 the mean free time between collisions, y = w 1, w 18 the
e ce e’ “ce

electron cyclotron frequency, and

AExl.‘?-Slx2+60.

(The constants, *Y' Y6' Gl and 60 ara all o(1).)

For an unmuagnetized plasma, x 18 zecro reflecting its origin in finite
electron gyroradius cffects, In a weakly collisional plasma with VthTe/LT
>> 1, x may be 0(1) even though Woa {1 8o that JR is very large. Of
course, the coefficienta are not valid in this limit. Nevertheless, this
18 an extreme case where rhe convection due to the Righi~Leduc term is
larger than the convection cue to drift, It 18 to examine the competition
between the Righi-Leduc and drift terms in less extreme cases that numeri-

cal solutions are now sought.

C. The numerica) algorithm,

The elactron transport equations are approximated by finite differcnce
equations on a uniform rectillnear mesh witb constant interval Ax in x and
Ay in y., The dependent variuvles, i, Je' Pe and Pﬁ. are stored at the cen

ters of cells. Spatial derivatives in the transport equations are approxi-

mated by centered differences on the mesh.



The solution evolves as the finite difference equations are marched
with cime step At. Derivatives with respect to time are explicit; all
quantities appearing on rhe right-hand side of the difference equations are
available at the beginning of the time step.

The difference equations are listed with a simplified notation. All
quantities available at the besinning of the n':h time step are unlabeled as
to time. Where the indices of each cell are (1,j), the dependent variables
are labeled ¢i Furthermore, the subscript e 1s dropped since there is on-
ly one fluid, B is simply zB since there is only one field component and u
is replaced by (u,v). The finite difference equations are now given.

The components of the electron drift velocity are given by

+1 i-1 h)
- (Bi - B )/ZuonieAy

and
) . - ad 3
vi (B'}_'_1 B )/Zuon ebx
where u, 18 the permeability.

0
Faraday's law is upproximated by
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All of the terms labelled by half-~integer indices are defined by linear

averages except B. For example, uJ

i+
] 1 {3 ]
Uity " 2 (“1+1 + “1) .

is glven by

The terms containing half-integer values of B are defined differently to
give stability to terms cortaining convective derivarives. The face-

centered values of B are defined by linear interpolation,

oo =3 (1 - o P * 1+ “i“ﬁ)ﬂi] '

and

s 1 JHs\ o 3+1 3+ 3
B1 - E [(l - ai )B1 + (l + ai )31] ,

where a, the interpolation coefficient, depends on the velocity, Je, and
its gradients. Brdiefly, as in similar algorithms developed by Zalesak,9
a changes in value from uAt/Ax as in interpolated donor celllo to either 1
or -1 as the length scale of varlation of the velocity approaches the mesh
spacing. The interpolation parameter a is given by

ai+% - (1 - A{+%)ui+%At/Ax + Ai+ksign(l,ui+k) ,

and

ai+k - (l - Ai+%)vi+%At/Ax + Ai+%sign(l,vi+%) ,

where A, the gwitching parameter, 18 defined by

1. ]
A1 min (1,61) ,
and 61, the measure of the velocity gradient scale lergth is defined by

R (CHEE I VR (el IR

Using these equatlons for the convection terms results in stability when

udt,/'Ax < 1, and positive diffusivity for arbitrary gradients in Je'



The electron energv equation is differeaced similarly,
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The values of P at half-integer positions are calculated as are correspond-

Ing values of B,

o= 1 (- e+ (1 + ahael]

and

EL S N R TS AN 1)1
P1 3 [(l ai )Pi + (1 + ai )Pi] .

To be consistent, the Righi-Leduc terms ought also to be treated as convec-
tion terms. However, if their contribution is sufficiently small they
should have little lmpact on the overall stability.

The barred velocities, ;i and ;i, represent averages betwean values of

Je at t and t+At. These values, which are time~centered, are used so that

energy is conserved. Their evaluation requires that Ge be calculated after

]

1 as well as before.

advancing B



The time step for the calculation is variable. It is chosen to isatis-
fy the Courant limit corresponding to the thermal magnetic wave discussed

by Pert,5

[ 2

2,2 2
\vth + ¢ /u.\peL

n)Atz <1/ (l/sz + l/Ayz) .

and the explicit diffusion-limited time step,

:la';(!{'ll)l.\t <% [1/(1/Ax2 + l/Ayz)] .

These conditions are calculated at the beginning of the time step. So that
they are sufficlent after laser energy has been deposited, the time step 1s

also limited to restrict the maximum relative change in the energy.

D. Numerical Results.

When a slab of plasma 1s illuminated by an irntense, focussed laser
beam, electron transport should occur by both diffusive and convective pro-
cesses., The large temperature gradients drive the rhermal diffusion term,
and the temperature and density gradients acting together generate a mag-
netic field.

Here the separate effect of diffusion- and magnatic-field-enhanced
corvective transport are examined numerically. With the simple model out-
lined previously, transport is calculated with and without self-generated
fields, with and without a flux limiter, and with and without the guiding
center corrections to the thermal diffusion term.

As in the calculations with VENUS, the case of a slab of plasma in

3,8

Cartesian geometry is considered. A laser beam propagating in the nega-

tive x~-direction (vertica' axis) deposits energy along an infinite line in
z with full width at half maximum equal to 60 um. The target, whose number

density increases linearly from a background value of 1.5x1023 m_3 to a

maximum value of l.5x1025 m_3 over a distance in x of 15 ym, 18 at an ini-
tial cemperature of ~ 1 eV, The laser ILntenaity rises from zero to a maxi-
mum value of lO16 W/cm2 in 10 ps. The intensity is maximum at the center

of the line with a Gaussian variation in y,
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The numerical computations are performed on a 20x20 zone mesih with Ax
= 5 ym and Ay = 15 ym, Where Xorir is the x~position of the critical den-
sity surfce, 80% of the laser energy 1s deposited in the neighboring cell

with x < x and p > Perit’ and 207 in the neighboring cell with

crit

x > Xerit and o < Pertt’

The right boundary of tine mesh is a plane of symmetry where 3T/3y = 0O

ic

and B = 0, Only the left half of the target is modelled., On the bottom,

top and left boundaries, T = T exterlor to the mesh. All other

background
dependent variables have zero normal derivative,

A comparison of the results of calculations for the cases listed above
is shown in Fig, 1 at t = 10 ps. When Faraday's iaw 1s not advanced so
that B = 0 (the unmagnetized case), the results shown in Figs. la and 1b
are obtained. The temperature contours in Fig. la show that diffusion has
carried electron energy further from the source in the low-density plasma.
However, the thermal fiux vectors (-x,VT) in Fig. la show that more 2nergy
18 carried into the high-density plasma beneath the spot than into the
low-density plasma above, evidently because of the lower temperature
gradients in the low-density plasma.

In Fig. 1b, a similar calculation 1s depicted with the thermal flux
limited to the classical, free-streaming value. The limiter compares the

mean free path, vt , with the thermal gradient length, and limits the

th e
flux where this ratlo exceeds one by replacing k by k', where k' is defined
by

-~
3

K'y o Foey S+ vt /L)

and LT is the thermal gradient scale length. As shown by the tempersature
contours in Fig. lb, the limiter traps energy in the source region and in-

creagses the maximum temperature from 3.4x106 K (without a limiter) to

5.3x106 K. Paradoxically, the limiter also increases the maximum thermal
flux.

The limiter steepens gradients where the plasma 18 least collisional,
even though collinionless plasma simulations suggest that a lack of rolli-
slonality should smooth gradtents.3 That is, in the collisionless limit,
the flux--limited fluid equations and the collisionless plasma simulations

disagree,
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With the magnetic field on, the results are as ehown in Figs. lec and
l1d. Without a flux limit, the 2lectron temperature contours shown in Fig.
le are similar to those for the unmagnetized case except for the strong
temperature gradient in the source region and behind it. However, as a re-
sult of these differences, the thermal flux into the overdense plasma 1s
twice as large in the magnetized case, and the iheirmal flux into the under-
dense plasma 1is invisible in the plot.

With a flux limiter on, the correspcnding electron temperature con-
tours shown in Fig. 1d are very different from either the unmagnetized case
without a flux limiter, Fig. la, or the magnetized case without a flux lim-
iter, Fig. lc. The maximum temperatire is ten times as high and is local~
ized at the edge of the laser spot. The thermal flux shown in Fig., Id 1is
even moie etrongly collimated into the overdense material.

In Fig. 2, the Righi-Leduc velocity defined by Eq. (3) is plotted.
When there is no flux limiter, the maximum Righi-Leduc velocity (Fig. 2a)
15 100 c. The velocity is so large that the corresponding terms in the
electrc energy equation must be nutled if one 18 to do a calculation in a
reasonable amount of compucring time be :ause of the stability limit on the
time step. When there is a flux limiter, the maximum Righi-Leduc velocity
13 0.5 c. The velocity 18 still large, but including or nct including the
cnrresponding terms in the electron energy equation has little apparent ef-
fect on the solution, thus answerlag one of the questions posed by this
gtudy. (The results shown in Fig. 3 at a later time irclude the contribu-
tion from the Righi-)educ term.)

At 50 ps, the magnetic sheath described earlier 18 fully formed as
shown in Fig. 3. Figures 3a, b, ¢, d und e deplct the electron drift ve-~
locity, the mugnetic field, the election temperature, 0.aTe’ and the ther-
mal flux, x, VT, respectively. (The electron temperatur~ plot i3 mislabel-
led; the units are K.)

On the left, the results with a flux limiter are stown; on the right,
those without. In both examples, lateral drift is asworiated wich confine-
iment of the electrons in a magnetized sheaih, high values of w T, and re-
striction of thermal flux into the dense material heluw to the fegion be-~
hind the spot. Differences result from applying the Llimitnr, which tends

to ruise the electron temperature. At hlgher temperatures, the magnotic
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field spreads moce rapidly and is stronger. (It is so strong, in fact,

that the electron drift speed exceel, ¢.)

E. Discussion,

The numerical model is simple, yet capable of answering questions un-
answerable by analysis. For example, the computations demonstrate that the
Righi-Leduc guiding center correction term dnes not suppress maguetically
enhanced lateral transport. However, the numerical calculatior answers the
question cnly for the case calculated and thus only suggests that other
problems might give similar results.

An unanswered question ls raised by the dependence of tne results on
the flux limiter. The question is not so much the exact form of the limit-
er, or even what fraction of the classical free-streaming value the thermal
flux is allowed to reach, Rather, it is whether a flux limiter is the ap-
propriate way to lmpose reasonable behavior orn fluid equations in the col-
lisionless limit, It hus been argued that the diffusion equations with a
flux limiter give the ccrrect integrated flux. However, it is clear from
tihie model eruations and numerical resgults that the magretic field genera-
tion depends on terperatures and temperature gradlents, both of which are

dependent on the limfter,
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Fig. 2. The Kighi-lLeduc velocity without flux limiting (2a) excoeds the

speed of lighc, Wicth flux Itmiting, the velocity is smaller and
has little effect on transporci.
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