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ABSTRACT

This report proposes a method for comparing the effects of the uncertainty in
probabilistic risk analysis (PRA) input parameters or the uncertainty in the

predicted risks.

The proposed method is applied to compare the effect of uncertainties in the
descriptions of 1) the seismic hazard at a nuclear power plant site and 2)
random variations in plant subsystem responses and compone -t fragility on the
uncertainty in the predicted probability of core melt, Thc PRA used is that
developed by the Seismic Safety Margins Research Program.
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Executive Summary

The risks associated with complex systems such as a puclear power plant
have been analyzed using probability modeling or probability risk analysis
(PRA). Necessary inputs into a PRA are probability distributions which
describe the random variation of many of the parameters, e.g., subsystem
stresses and strengths, which influence risk. Unfortunately, these
probability distributions are unknown and sufficient data does not always
exist to get good estimates. Thus, limited data and/or subjective judgements
and opinions frequently form the basis for the probability inputs into a PRA.
It follows that there is considerable uncertainty associated with the
predicted risks, e.9., probability of a core melt due to an earthguake.

A point of interest is to compare how the uncertainties in the varigus
inputs affect the uncertainty in the predicted risk. A goal might be to
identify the single input which contributes most significantly to the
uncertainty in the predicted risk. A method for comparing the effects on the
uncertainty in the predicted risk of the uncertainty in two inputs is proposed
in this report. The method js based on an analysis of the variance of the
predicted risk. Uncertainty in the probabilistic inputs into a PRA are
usually described by associating an ‘uncertainty’ distribution with the
characteristics of the probability inputs into a PRA. Thus, the predicted
risk can be treated as a random variable and the variance is a natural measure

of variation or uncertainty.
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The proposed method is applied to compare the effect of uncertainties in
the descriptions of the

. seismic hazard

- random variations in subsystem responses and component fragility
on the uncertainty in the predicted probability of core melt using the SSMRP
probability risk analysis. Ailthough the data available does not satisfy the
requirements of a valid analysis, application of the methodology suggests that
the effect on the uncertainty in the risk prediction of seismic hazard

uncertainty and fragility/response uncertainty are comparable.

N R Ll

.y



e =

SECTION 1: Introduction

Risk of a nuclear power plant, as quantified by the probabiiity of core
melt, is a function of many parameters; e.g., the magnitude of an earthquake
and the resulting peak ground acceleration at the base, soil/structure
damping; which are subject to inherent or physical random variation.
Probability Risk Analysis (PRA) is an analysis method used to estimate the
risk or probability of core melt in which the physical randomess is described
by assocfating probability distributions with the various parameters. In the
SSMRP a PRA was used to estimate the risk of an earthquake-induced core melt
and radioactive release from a commercial nuclear power plant.

Core melt will occur only if several safety related subsystems fail
simultaneously with the occurrence of an »arthquake. " Failure of large,
expensive components and subsystems, as well as the occurrence of earthquakes,
are rare events. Thus, there is a limited data base available to develop the
necessary probability distributions needed for a PRA and it is often necessary
to base the probability distributions on engineering judgments and subjective
opinions. In addition, models describing the sequence of events, including
initiating events and accident sequences, leading to a core melt are based on
knowTedgeable judgments about the operation and interrelationships between
appropriate subsystems within the plant. In the SSMRP study of the Zion
nuclear power plant the following areas relied or subjective input§ in
developing distributions for the PRA:

*  the seismic hazard curves were developed from an elicitation of

expart gpinions about the zonation and seismicity of the Eastern
United States which could form the source of earthquakes'affecting

Zion.
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the fragility distribution for many of the components and subsystems
were based on a combination of opinions of knowledgeabie individuals
from industry and private consultants, governmental laboratories and
universities along with some experimental data.

the nominal values for many of the soil and structural parameters
affecting cumponent and subsystem responses were chosen by
engineering judgment based on information in the professional

literature,

Use of judgment, opinion and experimental data to characterize the probability

distributions of the random parameters introduces a degree of uncertainty into

the PRA.

This uncertainty is called modeling uncertainty in SSH¥RP. Thus,

rather than evaluating the preobability of core melt deterministicaily, as

would be the case if all the models and probability distributions were known,

a PRA provides an estimate of the risk or probability of core melt.

Following the practice of statistics, in which estimates of unknown

paramters are based on sampled data, the output of PRA can be either

a point estimate (single value) of the risk or probability of core
melt.

an interval astimate (called an uncertainty interval) of risk which
attempts to quantify all the modeling uncertainties associated with

the analysis process.

A question of frequent interest, when assessing the significance of the

uncertainties in estimating risk, is 'what modeling uncertainties have a

significant effect on the uncertainty in the estimate of risk?’
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This report attempts to address this gquestion with respect to the
estimation of the risk of an earthquake-induced core melt at the Zion nuclear
power plant. Specifically, the report centers on comparing the contributions
to uncertainty in estimating risk due to uncertafﬁty in describing the seismic
hazard and in describing the random variations in response and fragility
parameters.

Section 2 discusses the different sources of modeling uncertainties that
were considered in the Zion risk analysis. Comparison of the contribution to
uncertainty in risk due to uncertainties in hazard versus uncertainties in
response/fragi1ity paramefer > is based on an analysis of the variance of the
probability of core melt estimated in a simulation study. The basis of a
comparison is discussed in Section 3. Results of the uncertainty simulation
experiment are summarized in Section 4. The repert concludes with a

discussion of the results and some recommendations in Section 5.
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Section 2: Sources of Uncertainty

In a complex PRA such as the study of the risk of an earthquake-induced
core melt at the Zion nuclear power plant there are many inputs into the
anal¥sis, e.9., descriptions of the seismic hazard, component/subsystem
fragilities, subsystem models, which are potential sources of uncertainty in
the estimation of risk., The two principle sources of uncertainty of incerest
in the SSMRP seismic risk analysis of Zion are:

. uncertainties associated with deveiopment of the seismic hazard

curve.

. uncertainties in describing the random variation associated with the

component/subsystem response and fragility parameters.

To make a comparison of the significnace of these two sources of

uncertainty to the uncertainty in estimating risk, ideally, these two sources
of uncertainty would affect the estimate of risk ’independently.’
Unfortunately, this is not true for the PRA methods used in the Zion seismic
risk analysis. Why? The reason is that the risk estimation process involves
a oreliminary estimation of the parameters (mean, standard deviation and i
correlations of the logarithms of the responses) of the distribution of
responses at several PGA levels. That is, for fixed values of the hazard
parameters and response/fragility parameters, instead of estimating risk based
on a specified response distribution an estimated response distributicn is
used. Estimates of the characteristics of the response distribution are based
on simulations of response parameters and earthquake time histories. The

simulated time histories are related to the hazard curve. This simulation of
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response parameters and time histories introduces a sampling variation in the
risk estimator which exists if both or only one of the two sources of
uncertainty are varied.

This phenomenon complicates any attempt to separate the effects of the
two sources of uncertainty on the uncertainty in the probabflity of core
melt. Further, if the sampling variation js a significant contributor to the
uncertainty in the estimate of risk, diffarences in the effects of the two

sources of uncertainty may not be {dentif{able.

2.1 Seismic Hazard Uncertainties
Seismic hazard is described by a seismic hazard curve which is a plot of
probability P(A_, >a) that the maximum peak ground acceleration (PGA) at
the site exceeds level a versus the value a. The value of P(Amax>a)
dapends on:
. Zonation of the region surrounding the site.
. Seismicity, i.e., range and distribution of magnitudes, for each
zone.
. Ground motion models including a measure of the random varijation in
ground motign and the possihle effects of local site soil conditions.
Information for the Zion study regarding these factors, particularly zonation
and seismicity, were based on opinions of a panel of experts. Each eapert’s
uncertainty in his/her descripticn of the location and shape of a zone and in
his/her estimate of the seismicity within a zone contribute to uncertainty in
the hazard curve. Ground motion models describe the transfer of ground motion
at the source {location of the earthquake) to the site (location of the power

plant). Such transfer will be affected by the soil type and condition between
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the source and the site. Numerous ground motion models have been developed to
describe this transfer. WMost of the models are based on data from a variety
of events and locations, hence soil conditions. Many of them are based on
data from the western United States where the propagation or attenuation of
ground motion may be quite different from that in the eastern United States.
Overall, development of the ground motion models are based on limited data,
thus will be a factor in the uncertainty of the seismic hazard. Further,

application of the ground motion models to Zion and the implementation of

local site corrections are based on subjective judgments which adds additional
uncertainty to the description of the seismic hazard.

Uncertainty in the seismic hazard was modeled by a catalog of seismic
hazard curves. The variétion in the seismic hazard curves in the catalog
reflected the uncertainties in the inputs; zonmation, seismicity, ground motion
model, local site effect; involved in the construction of the seismic hazard

curves.

2.2 Response/Fragility Uncertainties

Component and subsystem responses, as quantified by accelerations or
moments, are subject to random variation, hence were modeled as
multidimensional lognormal random variables in the SSMRP studies, The

parameters of the muitivariate lognormal distribution:

p - means of the logarithm of responses
B - standard deviations of the logarithm of responses
p - correlations of the logarithm of responses

depend on the soil and structural properties of the Zion plant. Although many

s0il and structural properties affect response, the following broperties were
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considered to have a significant effect and hence were the parameters
identified in SSMRP: ’

. soil shear modulus and damping

. structure damping and frequency
The precise values .. these param:ters are unknowns. Hence, these parameters
were considered to he reaadom variables, 1.e., Zion was considered to be a
sample plant from the collection of all possible plants that might have been
constructed using the same design as the Zicn plant. Variations in structural
properties between these (cenceptual) plants would be due to construction
variables (matarials, construction practices, quality control}. The realized
or nominal values of these parameters were based on either design or the best
information available for the Zion plant.

Because the nominal value itself is not known definitively there is
modeling uncertainty associated with specification of the nominal <oil anc
structure properties. Thus, the nominal value of each parameter was
considered to be a lognormal variable for which the coefficient of variation,
B, described the uncertainty in specifying the nominal values.

Because the soil/structure parameters have both a random and modeling
component of variation, the risk analysis estimation involved a two-stage
simulation process:

. Stage 1: given fixed nominal vaiues of the soil/struciure
parameters, 2 sample of time histories and soil/structure parameter
values were used to estimate the charactersitics (u,B8,p0) of
the multivariate lognormal distribution of responses.

. Stage 2: a sample of nominal values of the so}llstructure

parameters were selected for the uncertainty analysis.
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Fragilities of companents and subsystems were modeled by considering the
failure threshold, in terms of the appropriate response variable, acceleration
or moment, was a lognormal random variable. The characteristics of these
distributions were derived primarily from the opinions of experts. When
estimates of these characteristics, based on test data, were available, these
were combined with the opinions of the experts. Uncertainties associated with
estimating these characteristics were due to

. uncertainty in an expert's gpinion

. variations in opinions among experts

. sampling variation associated with test data.

These unéertainties were combined and described by treating u, tue mean of
ithe logarithm of failure threshoid, as a lognormal variable in which the

coefficient of variation gquantified the uncertainties.
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Section 3: Measurement of the Effect of Modeling Uncertainties

Introducing modeling uncertainty in 1) the seismic hazard by treating the
hazard curve as variable, and 2) the distributions of the response/fragility
parameters by treating the distribution characteristics as random variables
means that the estimator of the probability of core melt is also a random

variable. One measure of the variability in the distribution of values of a
random variable is the varjance. In this case, since the variability in the
estimator of the probability of core melt {s due to modeling uncertainties,
the variance is a quantification of these uncertainties. An analysis of the
variance of the estimator of the probability of core melt is the basis for
comparing the effects of the two primary sources of modeling uncertainty.

It must be noted, however, that there is an additional source of
variation - sampling variation - which has been neglected in making this
analysis. Since simulation, i.e., sampling, is used in both the estimation
phase and uncertainty analysis phase of the risk estimation, sampling
variation will have an effect on the realized results of the study and may
influence the comparative study which is the basis of this report. Honevér.
given the complexity of the Zion analysis, an analysis of the variation in the
estimates due to sampling var%ation has not been done and it was not possible,
given time and resources, to do & simulation study of sampling variation.
Since the conciusions of the comparative study can orly be suggestive and not
definitive we have neglected the affect of sampling variation at this stage.
It must be recognized that if sampling variation is large so that the relative
importance of the hazard and response/fragility uncertainties cannot be
identified, then the uncertainty dee to sampling variation must be considered

a significant contributor to the uncertainty in the estimator of risk.
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3.1 Variance of the Estimator of Probability of Core Melt

If the hazard curve and the nominal values of all response/fragility
parameters were known, as well as all otker parameters such as the systems
models and unmodeled random events, the probability of core melt would be
evaluated exactly - it would not be estimated. The identity for the
probability assessment is

P(CM | oy, ) = { picH | a; ey, og) gla | &y) da (3.1)

where QH, QR are symbols used to recognize that the probability
assessment depends on the parameters QH of the hazard curve and the
nominal values QR of the characteristics of the response and fragility
distributions.
Since 9, Oy are unknown, estimators (Eh, 8;) of these
characteristics based or opinions, judgments or data (or cembinations of these
sources of information) are used in place of the uaknown (G, QR).
The estimator of risk, labeled P(CM}, is
B(eM) = f P(cM | 2; By, BR) ofa | By) da (3.2)
a

Uncertainty in the estimates of these characteristics is handled by treating
(G, §h) as random variables. Then ?TCM} can be treated as 2 random
variable which is a function of 8, and ;. The variance, var[P(CM)],

of ﬁlcm) can be expressed in the following way

Var[P(CM)] = E5 {Varg [P(CH} |g,1) + Varg €5 [P(CM) | §,0) (3.3)
9" "0 ley "o, e | g
- EéR{VaréH[F(cm) I8, 33 + varg €5 (Picn) | §,0) (3.4) |
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To provide some motivation for the proposed statistics to be used to
compare the relative effects of two sources of uncertainty, we c nsider the
terms in Equations {3.3) and (3.4) in more detail.

Since FXCH) is a function of 2 sets of random variables QA and E&

it is appropriate to consider the conditienal expected value and variance

holding one of the variables fixed. That is, we can consider

. the conditional mean of ;(CH)
*  with @, fixed, labeled £5, PO | 8]

*  with 8 fixed, labeled €3, [P(cM) |§R]

Singce the expected value is a measure of central tendency or location each of
the expected values is an 'estimate’ of the P(CM) given the value of the fixed
veriable. This 'estimate' varies as the value of the fixed variable changes.
How variable this ‘estimate' is as the fixed variable varies over its range of
values provides a measure of the effect of uncertainty in the fixed variable

on the estimate of P(CM).

. the conditional variance of ;(CM)

. with O

8, [PicH) | 8,]

fixed, labeled Varé
2R

*  with g, fixed, labeled waréH tpcm) | &l

The conditional variance is a measure of the variability in P(CM) due to the
uncertainty in the non-fixed variable at each value of the fixed variable. A
measure of the effect of the uncertainty in the non-fixed variable on the

estimate of P(CM) would be the average of the conditicnal variances, averaged

over the range of values of the fixed variable.
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The conditional means and variances are functions of the fixed variables,

j.e., are functions of random variabies. Thus, the conditional means and :
variances are random variables also. It is appropriate to consider the mean
and variance of thece random variables also. Four of these are important to

our analysis?t

. the variance, over QH’ of the conditional mean given gH,
Tabeled
vary (€7 [P(cH) | 6.7}
& & '“

. the variance, over éh, of the conditional mean given é&,
labeled
vary {E= [P(cM) | 8.7}
% "2 =

e o e e

. the expected value or average of the conditional variance given

-~

8y

Tabeled
£ {vary [P(cM) | 0,7}
ETH =
. the expected value or average of the conditional variance given

gR’ labeled

E- {var= [P(CM) | ©,1}
o ¥, I &

The proposed indices for measuring the effect of uncertainty in < and
O,

—H
distributional characteristics. That is, the variability or uncertainty in

respectively are based on combining appropriate subsets cf these four

P(CM) due to the uncertainty in either set of inputs, e.qg., gh, can be

measured by combining

«  the average value of the Var> { P(CM) | 8,}
8 &y

and

. the Var5 {conditional mean of ;(CM) | éR}
R 15




Mathematically, the proposed measure of variation in 3158) due to the
uncertainty in QR is
v(8,) = 0.5 (E" {Vary [;(CM) 8 1} + vary {EX [;(CM) 8 ]})
%) = 0.5 (fg, erg PO [ 1) + Varg, (65 [PioMIgy
Similarly, the measure of variation in P{CM} due to the uncertainty is gh is
(€ [P{cM) |8 ]})
B 2P

v(g,) = 0.5 (g {VaréH[E(CMHéR]} + va

r=
% %
Of course, it will be necessary to estimate these indices since it will not be

possible to anaiytically calculate the values, at least for complex PRA's such

as the SSMRP model. This is discussed in the next section.

3.2 Estimation of the Effect of Uncertainties in Response/Fragility and
Hazard Characterizations
To use y(gk) and y(gH) as measures of the effect of
uncertainty in response/fragility and hazard characterizations on uncertainty
in the esiimator of the probability of core melt it is necessary to estimate
the various expected values and variances in Equations (3.5) and (3.2).

Estimates of these parameters can be derived by running an experiment

involving random samples of the resre

outline of such an experiment is given in Fig. 3.1.

Notationatty,
. ﬁ} {CMIaE;QRi) is the estimated conditional probahility
of core melt, given PGA a,, based on the random sample of
;esponse parameters for response/fragiiity nominal values fhi'
. Pj(aglgﬂj) are probabilities derived from hazard curve
&
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Fi- is the sample mean

F,. is the sample mean
N N

Iz £ p,.{cM
N 4=1 3o 3
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START
f
Select a Sample
of Spi» Byj
i=1, ..., N
J=l, ..., N

Select a R;ndom Sample
of Response Parameters
YRijk+ k=1, ...4 M,

where vp; i is Lognormal (8p;)

Select M Earthguake Time
Histories Eijk’ k=1, ..., M

8ased on Hazard Curve gﬂj

Estimate Multivariate
Response Distribution Based
on YRijk‘s and Eijk's

7

Estimate Probability of
Core Melt
Pigleh = Pi(CMja 36, 0P (2, ]9, )
L

—_ Ko——> Go to @

YES

@* No

YES
Go €g (:)
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Figure 3.1:

¢

Estimate Variances

1 N = 2
EVen = WNCTT if] jfl (Pyj - Py
1 N 5 42
R U B R E R

Estimate ‘Fffect' of
Response and Hazard Uncertainty
. Y(QR) = 0.5 (E'JHR + VERH}

. Y(Eh’ = 0.5 {EvRH + VEHR}

Outline of Experiment to Estimate Expected Values and Variances.
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Section 4: Experimental Results

The experimental design outlined in Section 3.2 involves many random
samples and a lot of simulations. For example, if N = 50 and M = 10, then
MxN2 = 25,000 response calculations would be made based on 25,000 time
histories and values of the response parameters. The resulting 2,500
estimates of the muitivariate response means, standard deviations and
correlations would be used to evaluate 2,500 estimates 3}j(CM) of the
probability of core melt. The rather large number of replications is
necessary to insure that the ?}j(CM) can be considered to be realizations of
jndependent random variables which can be used to evaluate the estimates
EVpys Vs VEpys VEjR-

The basic concept in considering Y[QR) and Y(QH) as measures
of the effect of uncertainty in response/fragility and seismic hazard
respectively is to vary the response/fragility and'hazard parameters and
quantify the resulting variation in the estimate of the probability of core
melt by the variance. Although the uncertainty amalysis in the SSMRP study of
Zion was not designed for estimating y(QR) and v(9y), making some
adhﬁtiona] calculations with the results of the 14 replications from that
study provides some data which can be used Lo draw, perhaps, some inferences
about the relative effect of uncertainties in response/fragility and seismic
hazard characterizations. Specifically, for each of the 14 combinations of
©g and By in the Zign uncertairnty

. P(CMla;gR, QH)

«  glaley)
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are derived. Note that the former estimate P(CHIa;gh, QH) depends
on the hazard curve only through the time histories, associated with the given
hazard curve, used in the response calculations. Actually, the same ten time
histories, adjusted for the different hazard curves, were used in all 14
replications. This is 1ikely to have the effect of reducing sampling
variation. A preferred analysfs would have used a different random sample of
time histories for each of the 14 replications.

If we ignore the effect of the time histories being associzted with the
hazard curve, the 14 estimates of P{CM|a; Gp» QH) can bhe combined
with each of the 14 hazard curves g(alQH) to give 14 x 14 = 196 estimates
of P(CM). These are listed in Table 4.1. Using the actation of the estimates

of variances in Fig. 3,1, the entrees in Table 4.1 are
i-
Pij Pij(CM) j=

which depend on the ith set of respense parameters and jth hazard curve. The
results of the 14 runs for the Zion uncertainty anaiysis are the diagonal
entrees in Table 4.1, These are the only estimates which can be censidered
independent. It must be recognized that the Pij's are not independent since
the same values of P(CM]a; 8pio gﬂj) are used for each hazard curve
g(algHj). Lack of independence of the Pij‘s primarily affects the

variance calculations, e.g., any sampie mean is still an unbiased estimator
whereas the sample variance is not. This is a recognized deficiency in the
data and the analysis and results based on this data. The estimated
conditional means and variances were nevertheiess evaluated. These, along
with the coefficients of variation, are summarized in Tables 4.2 and 4.3 for

fixed response/fragility and hazard parameters respectively. For a fixed set

of response parameters QRi' the estimates Pij’ i=1, ..., 14
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.2212-5
.1909-4
.1679-5
+4796-5
9772-6
+2696-5
.4833-4
.1817-4
+1220-6
.4910-3
.1595-4

.3132-5
.1658-3
.9187-6
.3589-5
.2502-4
+2699-5
.6916-5
.1645-5
.3849-5
.6008-4
.2365-4
.2481-6
.5612-3
.2149-4

.1198-4
+3633-3
.4785-5
+1451-4
.6864-4
.1095~4
23214
.7237-5
12724
14313
.6310-4
.1394.5
.1052-2
.6214-4

.3043-3
41572
.1654-3
+3565-3
+1060-2
29033
-4673-3
.2184-3
.2701-3
.1811-2
96743
.5293-4
.1044-1
.9864-3

Table 4,1

Estimates of Probability of Core Melt



Response Conditional Mean F}. Conditiona: Variance Coefficient of

Set, i Over Hazard Curves Over Hazard Curves Variation

1 .3759-4 .6334-8 2.

: 2 .6800-3 .120-5 1.56
3 .1883-4 .1896-8 2.31
4 .4440-4 .8686-8 2.10
; L 1D20=3 N YALY) 1.78
; 6 .3541-4 .5777-8 25
g 7 .6148-4 .1472-7 .07
E 8 .2571-4 .3287-8 2.23
!f 9 .3493-4 .4904-8 2.00
! 16 .2832-3 .2137-6 1.63
| n .1400-3 6171-7 1.77
12 .5868-5 .1947-9 2.38

13 -1835-2 .5998-5 1.44

14 .1407-3 .6440-7 1.80

Table 4.2 Conditional Means, Variances and Coefficients

of Variation Given the Response Parameters
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Hazard Conditional Mean ﬁ-i Conditional Variance Coefficient of i

Curve j Over Response Parameters Over Response Parameters Variation éi
1 - .9890-4 .5029-7 221
2 .3375-4 .6221°8 2.34 .
3 .3726-4 .7159-8 2.27 |
4 .1692-3 .1276-6 2.1 :
5 .8236-3 .8884-6 2.23 :
6 .3993-3 .5591-6 1.87
7 .2198-3 .1319-6 1.65
8 .1062-3 .5142-7 2.13
9 .1601-3 .1139-6 2.1
10 .6049-4 .2242-7 2.48
1N .5323-4 .1721-7 2.46
12 .6287-4 ' .2250-7 2.39
13 .1314-3 ' .7935-7 2.14
14 .1539-2 .7706-5 1.80

Table 4.3 Conditional Means, Variance and Coefficients

of Variation Given the Hazard Cur 2s
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of the probability +f core melt, given G, involve the same random Latin
hypercube sample of response parameters and time histories in the estimates
BICM]a;QRi, Byj)- Even so, the sample conditional means P, are

still unbiased estimators of the conditional expected value of probability of
core melt given the response parameicrs ghi. However, since the same

hazard curves contribute to all the Fi,'s. these estimates are not

}ndependent over the responses. Thus, the estimated variance VERH would not
be an unbiased estimate of the variance of the conditional means. The same is
true for the estimated variance "EHR' However, to possibly get some

information about the relative effects of response/fragility versus seismic

hazard uncertainty, we consider these estimates. Using the data in Tables 4.2

and 4.3,
EVpy = -6127-6
EVyp = .6988-6
VEp, = .2393-6
VEyq = -1529-6
and

?1§R) = 0.5 [VERH + EVHR] = 0.4691-6

?(gﬂ) = 0.5 [VEyp + EVp,] = 0.3828-6
For comparison, consider the ratio of the y's,

?TQR)/Y(QH) = 1.225
which suggests the inference that the effects of uncertainty in the
response/fragility parameters and in the seismic hazard parameters are
comparable. The results, taken literally, might suggest more. However, given

the inadeguate data base it does not seem reasonable to suggest more than that

they are comparable.
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SECTION 5: Discussion

Uncertainties in the probabilistic descriptions in a PRA affect the
quality of the estimates derived from the analysis. Thus, it is of interest
to compare how uncertainties in various descriptive input parameters, e.q.,
response/fragility parameters vs. seismic hazard parameters, affect the
uncertainty in the measure of risk, e.g., probability of core melt.

One way to describe the uncertainties associated with the probabilistic
input parameters, 1.e., nominal values of the soil/structure parameters and
hazard curves, is to treat these probabilistic descriptors as random variables
themselves. Since the estimator of risk is a function of these descriptors,
it is a random variable. One measure of the uncertainty or variability of a
random variable is its variance or standard deviation.

An analysis of the variance of the estimator of risk is suggested in this
report as a means of comparing the effects of the uncertainties in two groups,
response/fragility and seismic hazard, of inputs. Specifically, it is shown
that the variance of the estimator of risk can be partitioned into two

components:

[ the average value of the conditional variances,
[ the variance of conditional means.
A combination of these sources of variation provides a means of measuring the
relative effects of the uncertainties in the two groups of inputs.
An experiment is suggested which would provide unbiased estimators of the
two components of variance. Although such an experiment has not been rum in
the SSMRP study of the Zion nuclear power plant, data from the Zion

uncertainty analysis is used to

-27-
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» illustrate how the proposed measures can be estimated
. suggest, recognizing the limitations of the sample data, that
the effects of response/fragility and seismic hazard
uncertainties on the estimate of risk are comparable,
Although the data from the Zion uncertainty analysis has serious limitations
to make definitive conclusions, both the
® average conditional variance
and
* variance of conditional means
of the probability of core melt are comparable when comparing the effects of
uncertainties in response/fragility and seismic hazard parameters. 8ecause
the variance of the estimate of risk invoives an ‘averaging‘ and because the
magnitudes of the probabilities are 'small’, differences in the levels of
uncertainties of the two groups of inputs may be mitigated in the estimation
process. Also, there is the possibility that sampling variation may be so
large that the true differences between the two sources of uncertainty of

interest are not recognizable.

Again it must be emphasized that limitations on the data available for
analysis do not allow one to make definitive conclusions. An experiment
designed especially for this type of amalysis is needed to

[] further consider the proposed measures
(] make definitive conclusions about the relative effects of
response/fragility versus seismic hazard uncertainties on the

uncertainty in the estimator of the probability of core melt.
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