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EXECUTIVE SUMMARY 

This report documents the results of a simulation of the performance of a two-layer infiltration barrier 

for a nonradioactive dangerous waste landfill (NRDWL) at the U.S. Department of Energy's Hanford Site in 

semi-arid southeast Washington State. The pertonnance of the barrier was SiiTlJiated for a period of 10 

years using the UNSAT-H version 2.0 groundwater flow computer code. Pacific Northwest Laboratory 

performed this simulation to compare results using UNSAT-H 2.0 with those of the U.S. Environmental 

Protection Agency's HydrologiC Evaluation of Landfill Performance (HELP) version 2.0 code. 

A conceptualization of the actual landfill barrier design was modeled using both codes. The two 

layers consisted of 76.2 em (30.0 in.) of silt loam underlain by 15.2 em (6.0 in.) of fine sand. This model 

was simulated using 10 years of daily meteorological data collected at the Hanford Meteorological Station 

from 1979 through 1988. The intent of the comparison was to demonstrate that HELP conservatively 

predicts deep percolation of meteoric water at the Hanford Site. This demonstration required that the two 

codes be used to simulate the same conceptual model using identical, or at least essentially equivalent, 

input data. 

HELP and UNSAT-H represent distinct approaches to unsaturated-zone modeling. UNSAT-H uses 

a one-dimensional, fully implicit finite-difference scheme to solve the Richard's equation. HELP, in con­

trast, uses a quasi-two-dimensional moisture routing model. The fundamental consequence of this 

difference is that the HELP code does not account for capillary flow, while UNSAT-H does. Therefore, 

with all other factors equal the HELP code should predict more percolation than the UNSAT-H code. 

Because UNSAT-H is physically based, whereas HELP is more empirical, the two models necessarily differ 

in the kinds and numbers of input parameters required. These differences were identified to operate the 

codes equivalently. For each identified difference, input values were chosen to achieve comparable 

representations of the physical system. A question regarding the appropriate selection of a root-density 

function for the vegetation model in UNSAT-H was addressed by selecting a likely case (exponential root­

density function) and then "bracketing~ the possible range with two additional sets of simulations that 

maximized {constant root-density function) and minimized transpiration (no transpiration). 

For the 1 0-year period the worst-case UNSAT-H simulation (no-transpiration case) predicted a total 

of 0.0005 em (0.000197 in.) of net water flux across the interface between the top layer of silt loam and 

the underlying sand layer of the conceptual design. No percolation was predicted at the base of the sand 

layer in any UNSAT-H simulation. Hence, the UNSAT-H 2.0 code predicted that the two-layer barrier was 

100% effective in preventing drainage for the 1 0-year period simulated for the soil properties used. 

The total mass-balance error for the three UNSAT-H simulations ranged from 0.551 em (0.217 in.) to 

0.570 em (0.224 in.). These values indicate the precision of UNSAT-H predictions for water-balance com­

ponents and is equal to the net amount of water unaccounted for in the simulation. In contrast, the HELP 
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simulation mass-balance error for the same 10-year period was -0.001 em (0.0004 in.). Because it is based 

on mass conservation (as a moisture-routing model) HELP should have essentially perfect mass balance. 

UNSAT -H uses the mass-balance error to achieve a balance between the size of the time steps used in 

the simulation and the precision in the mass balance. In this siroolation, the maximum pennitted daily mass­

balance error was 1.0 x 10-4 em (3.94 x 1Q-5 in.) and the maximum ti~ step was 60 min. 

Comparing the results of the 10-year simulations showed that for the meteorological data and soil 

properties modeled the HELP 2.0 code was more conservative than the UNSAT-H code. HELP predicted 

a net drainage or deep percolation of 0.3592 em (0.1556 in.) from the barrier for the 10-year period simu­

lated. None of the UNSAT-H simulations predicted any deep percolation. HELP also predicted a greater 

proportion of precipitation returned to the atmosphere through evapotranspiration than did the U.NSAT -H 

simulations in spite of the larger precipitation values being provided to HELP through an apparent data­

entry error. 
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INTRODUCTION 

The nonradioactive dangerous waste landfill (NROWL) located at the U.S. Department of Energy's 

(DOE's) Hanford Site in semi-arid southeast Washington State is undergoing closure. A final landfill barrier 

cover will be installed when the landfill is closed. The primary objective of the work described in this report 

was to simulate the hydrologiC performance of a landfill barrier concept for NADWL using the UNSAT-H 

version 2.0 code and compare the resuHs with those of another code, Hydrologic Evaluation of Landfill 

Performance (HELP) version 2.0 developed by the U.S. Environmental Protection Agency {EPA). 

Westinghouse Hanford Company personnel simulated the NAOWL conceptual model using the HELP in 

conjunction with the UNSAT-H simulation performed by Pacific Northwest Laboratory(~ (PNL). Pacific 

Northwest Laboratory and Westinghouse Hanford staff cooperated to develop essentially equivalent 

input data sets within the constraints of the codes. The goal of the work was to provide evidence of the 

presumed "conservative" nature of the HELP code in predicting vertical percolation of meteoric water 

through the barrier. Conservative in this case means overestimation of deep percolation, a conservative 

code predicting a less effective barrier than would actually be the case. The basis for the presumption of 

HELP's conservative nature is that is does not account for capillary flow, which is present in the physical 

system and is modeled by UNSAT-H. By not taking upward capillary flow into account, HELP is expected 

to overpredict percolation. The UNSAT-H version 2.0 code was recently verified and benchmarked by an 

independent organization (Baca and Magnuson 1990). The testing documented the capability of the 

UNSAT-H code to provide a physically realistic and accurate simulation of the processes controlling the 

movement of water in the unsaturated zone. 

The codes were applied independently to simulate the performance of a conceptual model of the 

landfill barrier. The design to which HELP was applied consisted of a topsoil and subsoil (vertical percola­

tion layers), a geonet for lateral drainage, and a composite barrier consisting of a flexible membrane liner 

over 0.61 m (2.0 ft) of compacted soil. Figure 1 illustrates this conceptual design. UNSAT-H cannot evalu­

ate lateral drainage or address geosynthetic materials. Because an initial HELP simulation predicted that 

no drainage flux would occur past the second soil layer, the conceptual model was reduced to the first two 

layers for this comparison. The first layer consisted of silt loam extending from the surface to a depth of 

76.2 em (30.0 in.), and the second consisted of a fine sand with a thickness of 15.2 em (6.0 in.), giving a 

barrier depth of 91.4 em (36.0 in.). The first layer is unofficially referred to as McGee Ranch silt loam and is 

tentatively classified as Warden silt loam, a Xerollic Carrborthid (Gee et al. 1989a). 

The UNSAT-H code was used to simulate 10 years of hydrologic activity in the two-layer conceptual 

barrier. Daily meteorological data recorded at the Hanford Meteorological Station (HMS) from 1979 

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial 
Institute under Contract DE-AC06-76RLO 1830. 
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through 1988 were used to describe the boundary condition at the top of the model domain. Soil hydrau­

lic properties were selected based on reported values for Hanford Site soils (Rockhold et al. 1988, Gee 

et al. 1989a, Gee et al. 1989b). The heaHiow modeling capability of UNSAT-H was not invoked. Initial con­

ditions were computed to match the initial soil moisture conditions specified for the HELP code simulation. 
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FIGURE 1. Conceptual Design of the NROWL Barrier 

2 



DIFFERENCES IN PHXSICAL INTERPRETATION 

The two HELP and UNSAT-H codes interpret the hydrologic processes of the unsaturated zone in 

different ways; hence, some variation between the predictions obtained using these codes was 

expected. An important fundamental difference is that while UNSAT-H models both gravitational and 

capillary flow, HELP only models gravitational flow. Examination of the two codes revealed that the other 

areas of difference related to this work include the manner in which the soil continuum was discretized, the 

description of transpiration, and the manner in which the nonlinear relationships between soil moisture, 

pressure head, and partially saturated hydraulic conductivity were quantified. 

The performance of the barrier conceptual model was judged with respect to its ability to limit or 

prevent drainage. Drainage (also referred to as deep percolation) is a component of the water balance, 

which for the UNSAT-H code is expressed as 

P+I-E-T-R-0.$ 

where P = precipitation 

= irrigation 

E = evaporation 

T = transpiration 

R = surface runoff 

D = drainage (or deep percolation) 

~S = change in storage during the period considered. 

(1 I 

This balance is computed with respect to time. The irrigation component is not applicable to this simula­

tion. Precipitation is entered from meteorological records. The remaining variables are simulated by 

UNSAT-H. The water balance is similar for the HELP code, except that the evaporation and transpiration 

components are lumped into a single evapotranspiration (ET) component. 

The ability of a code to account for capillary flow significantly affects the magnitudes predicted for 

water-balance components. Capillary flow results in upward movement of water toward the surtace and 

consequently causes more water to be made available for evaporation and transpiration and proportion­

ately less available for drainage. In arid regimes this is particularfy important, because infrequent precipita­

tion events result in longer soil-water residence times and consequently more evapotranspiration per unit 

of water. Because the HELP code does not account tor capillary flow, it should predict more percolation 

than should the UNSAT-H code when all other factors are equal. This was demonstrated by Thompson 

and Tyler (1984) when they compared HELP version 1.0 and UNSAT1 D (a predecessor to UNSAT-H 
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version 2.0 code) simulations for two landfill barrier designs and three climatic regimes. They concluded 

that under semi-humid and arid climates, more representative results may be obtained using the 

UNSAT1 D code, because the algorithms used in that code account for both gravity and capillary forces. 

The discretization of the soil continuum was distinctly different for the two codes. A moisture­

routing model, HELP treats hydrologically similar soils as a single layer and reports one representative 

value for parameters (e.g., soil moisture) describing the properties of that layer. UNSAT-H reports values 

at increments equal to the discrete division of the soil used in its finite-difference formulation. This permits 

the variation of a quantity {such as soil moisture) to be analyzed within each layer. Thus, although both 

codes were used to determine average soil moisture content by layer at a specified time, UNSAT-H was 

also able to describe the soil moisture profile (variation with depth) of the multiple layers. Using the 

UNSAT-H code required discretization of the soil continuum into a one-dimensional node network. Fig­

ure 2 shows the specific node network used for this simulation, superimposed on a portion of the concep­

tual model of the landfill barrier illustrated in Figure 1. 

Each code accounted for transpiration differently. HELP 2.0 modeled transpiration using a general 

vegetative growth model requiring estimates of the maximum leaf area index (L.Al) and growing-season 

length. UNSAT-H 2.0 contained an untested general vegetation model and an empirical cheatgrass rela­

tionship suited to the Hanford Site (Fayer and Jones 1990). The cheatgrass relationship was chosen for 

these simulations. The vegetative cover specified by the landfill design was a mixture of Siberian and 

thickspike wheatgrasses. The cheatgrass relationship had to be forced to mimic wheatgrass with respect 

to root-zone development (wheatgrass is a perennial; cheatgrass is an annual). Therefore, the root zone 

was explicitly defined to be the entire model domain (0 to 91.4 em) commencing the first day of the grow­

ing season. 

The UNSAT-H 2.0 code models transpiration as a sink term at each node, with the fraction of the 

transpiration calculated as the root-length density of the node divided by the total root length within the 

soil profile (Fayer and Jones 1990). An exponential model of root distribution based on root mass data 

from the end of the 1974 growing season at the Hanford Site (Fayer and Jones 1990) was used for a 

1 0-year simulation. However, the investigators thought the exponential root density placed too much 

emphasis on water at the top of the profile, ignoring the ability of vegetation to adapt to water distributions 

in the soil profile and thus underpredicting transpiration. To bracket the uncertainty caused by the selec­

tion of a root-zone distribution, two additional10-year sirrulations were pertormed. The first of these was 

designed to maximize transpiration by means of a constant root-zone distribution: The second was 

designed to minimize transpiration by explicitly setting it to zero. 

The most significant discrepancy between the transpiration models was in the length of the growing 

season. For both simulations, the first day of the growing season was taken as day-of-year 90 (March 30 or 

Aprill). The end of the growing season used in the HELP simulation was day 292 (October 18 or 19). 
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FIG! IRE 2. Illustration of the Node Network Used for UNSAT-H Simulations 

The cheatgrass algorithm encoded in UN SAT -H restricted the last possible date for this period to day 242 

(August 30 or 31 ). Hence, the HELP code can predict transpiration for 50 days more each year than 

UNSAT-H, given appropriate meteorological and water-availability conditions. 

The net effect of using the different vegetation models and different growing-season lengths could 

not be determined, because HELP reports only the sum of evaporation and transpiration (evapotranspira­

tion). Fortunately, in this simulation great precision was not required of the transpiration prediction, 

because transpiration is a small portion of the water balance at a semi-arid site. For example, UNSAT-H 

predicted an average annual transpiration of 1.94 em (0.76 in.) during the 10 years simulated, which 

represents 11% of average annual meteoric water. For the limited moisture conditions it is likely that any 

increase or reduction in transpiration is reflected in the evaporation component, rather than in percolation. 

Because percolation is the variable of interest, trade-offs between evaporation and transpiration are not 

important to the water balance so long as the total evapotranspiration does not change significantly. For 

these reasons the error introduced to the water balance by use of the cheatgrass relations was deemed 

negligible. 
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The two models account differently for the nonlinear relationships between soil moisture content, 

pressure head, and unsaturated hydraulic conductivity. HELP applies the Brooks aRd Corey relations 

implicitly (Schroeder et al. 1984), and its input consists of variables such as field capacity, wilting point, and 

porosity. Field capacity is the soil-moisture content attained in an originally thoroughly wet field- that is, at 

or near saturation, after the rate of drainage by gravity has markedly decreased (Cuenca, 1989). In 

agricultural application, field capacrty is often identified as existing when water in a soil matrix is under a 

tension of1.0 m (0.1 bar) to 3.4 m (0.33 bar). The wilting point is defined as the point as which plants 

cannot recover overnight from excessive drying during the day. Both field capacity and wilting point are 

fair1y subjective inputs, and this reflects the empirical and approximate nature of the HELP code. Values 

for the field capacity, wilting point, and porosity are related to the function-fitting parameters (air entry 

head, a fitting exponent, etc.) through some internal, empirically-based method that is invisible to the 

code operator. In contrast, the UNSAT-H code can use several functional relationships, including the 

Brooks and Corey and the van Genuchten (van Genuchten 1978, van Genuchten 1980) relationships. 

UNSAT-H requires the actual fitting parameters for these relations to quantify the nonlinear relations in 

question. The investigators carefully considered this difference between the HELP and UNSAT-H codes 

in selecting hydrologic parameters to achieve essentially equivalent treatment of the soil physics. 
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DIFFERENCES IN REQUIREMENTS FOB CODE INPUT 

For both codes, specific input parameters were identified and values chosen to maximize similarity in 

treatment of the physical processes occurring in the model domain. The chief concern was the hydrologic 

properties for the soils specified in the conceptual model. The van Genuchten functional relations were 

chosen for the UNSAT-H code simulations because these curve-fitting parameters (a and n) were 

available for the soils of interest. To obtain the corresponding inputs for the HELP code (i.e., wilting point 

(9w) and field capacity (9tc}], values of soil moisture were COITl!Uied using the van Genuchten relations for 

lension heads of 15 bars (wming point) and 0.33 bars (field capactty). 

Table 1 summarizes the input parameters for both codes for the top layer, consisting of silt loam. 

The hydraulic properties were those reported for the McGee Ranch silt loam used in the Field Lysimeter 

Test Facility (Gee et al. 1989a). Lysimeter values for a disturbed soil were chosen in preference to field· 

scale in situ values because construction of a landfill cover presumably would result in disturbance of the 

soil structure for the period simulated. Both codes required values for the saturated hydraulic conductivity 

(Ks)- Other input requirements differed. HELP required values for the effective porosity (nE), the soil 

moisture at wilting point, the soil moisture at field capacity, while UNSAT-H required values for the residual 

moisture content (OR) and the saturated moisture content (Os) as well as the van Genuchten parameters (o: 

and n). 

TABLE 1. Summary of Hydrologic Input Parameters Used tor Layer 1 (silt loam) 

Parameter Urits HELP UNSAT-H 

Ks em 11-1 3.564 3.564 
em s-1 9.90 X 10-4 9.90 X 10-4 
in. h-1 1.403 1.403 

a, (val vol-1) 0.005 

8s (vot vol-1) 0.496 

"• (vol vot-1) 0.496 

n 1.372 

a cm-1 0.016 
in-1 0.041 

a. (val vol-1) 0.06806 

e,, (val vol-1) 0.25848 
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A specific sand lithology (e.g., Warden silt loam) was not used for the conceptual model's subsoil 

underlying the silt loam layer; rather, this material was loosely descrbed as a "fine sand." The saturated 

hydraulic conductivity was computed as the average of values reported in Fruland et aL (1989) for the 

Hanford Site Solid Waste Landfill, from samples taken to a depth of 7.62 m (25ft) in wells SW-1 and SW-5. 

The van Genuchten curve-fitting parameters, the saturated moisture content, and the residual moisture 

content that were used in the UNSA T -H simulation are those of the Hanford AP-1 g sand (Smoot and 

Sagar 1990). Again, the wilting-point and field-capacity values were cak:ulated using the van Genuchten 

relations at 15 bars and 0.33 bars tension head, respectively, and these values were provided to the 

operators of the HELP code. The values for hydrologic properties for the sand layer are listed in Table 2. 

Results of the UN SAT -H simulation, discussed later in this report, indicated that very little flux, [0.12 em 

(0.05 in.)], occurred between the silt loam layer and the underlying sand layer. Hence, the actual values 

used for the sand layer were inconsequential with respect to their effect on sirrulation results. It a large 

amount of percolation though this layer had been predicted, however, more precise information tor the 

sand layer would have been required. 

Computation of the soil moisture value for the wilting point provided an additional UNSAT-H code 

input tor the transpiration submodel. This parameter was used to quantify a lower limit below which 

transpiration would not occur (Fayer and Jones 1990). The field capacity value was not an input parameter 

for the UNSAT-H. 

TABLE 2. Summary of Hydrologic Input Parameters Used for Layer 2 (fine sand) 

Parameter 

Ks 

n 

Urils 

em h-1 

em s-1 
in. h-1 

(volvo~') 

(val vol-1) 

(vol vof-1) 

em-' 
in.-1 

(val vol-1) 

(val vol-1) 
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HELP UNSAT·H 

17.1 17.1 
0.00475 0.00475 
6.732 6.732 

0.010 

0.445 

0.445 

2.8036 

0.07255 
0.18428 

0.0326 

0.0831 



The initial conditions the WHC staff selected for the HELP model in terms of water content (volume 

basis) for each soil layer. The corresponding tension head was back-calculated using the van Genuchten 

relations to obtain an equivalent set of initial conditions for use with UNSAT-H. For the top layer of silt 

loam, the initial soil moisture was 0.071 (vol vol-1), for which the computed tension head was 13,600 em. 

The initial soil moisture content for the underlying layer of fine sand was 0.033 (vol vol-1), for which the 

computed tension head was 15,300 em. 
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UNSAT-H SIMULATION BESU!JS 

The parameters of interest for evaluating barrier performance for both UNSAT·H version 2.0 and 

HELP version 2.0 were the components of the water balance for the two sirrulated layers of the barrier. 

These parameters included precipitation (an input parameter that should be identical for each code), 

evapotranspiration, profile moisture storage, and percolation through the base of the second layer. To 

provide a set of variables common to both simulations for the oomparison, it was necessary to sum the 

water-balance values for both layers. An annual period of summation based on the calendar year (January 

1 to December 31) was selected for conformity with the output reported by HELP. 

Tables 3, 4, and 5 list the water-balance cof1l)Onents on a calendar-year basis predicted by the 

UN SAT -H code for the 1 0-year simulations for the exponential-root-density condition, the constant-root­

density condition, and the zero-transpiration condition, respectively. The components apply to the total 

barrier, i.e., to both layers. These values, except for the input precipitation values, were generated by the 

UNSAT-H code as daily output, from hourly or shorter computations within mass-balance error constraints. 

Although evaporation and transpiration were accounted for and reported separately by UNSAT-H, these 

values can be summed for comparison with the evapotranspiration values predicted by the HELP code. 

The change in moisture storage is computed as the difference in total soil moisture storage on December 

31 of the current and previous years. Figure 3 illustrates the relative magnitudes of the non-zero water­

balance components annually for the constant-root-density simulations (Table 4). 

For reference, two other parameters are included in Tables 3, 4, and 5. The absolute moisture 

storage on December 31 of the year is provided for comparison with the HELP code simulation predic­

tions of total water storage. The annual mass-balance error is included to quantity the confidence in 

UNSAT-H predictions of the water-balance components. The maximum mass-balance error for any day of 

a simulation was explicitly specified to be 1.0 x 1Q-4 em (3.94 x 10-5 in.). UNSAT-H reduces time steps 

from the maximum 1-h increment as needed during sirnulations to achieve the necessary precision to 

constrain this error to the specified limit. The maximum mass-balance error for any single year of any 

simulation was 0.0772 em (0.0304 in.). For the 1 0-year constant-root-zone simulation the total mass­

balance error was 0.5697 em (0.2243 in.). 

No surface runoff was predicted by UNSAT-H in any simulation. Although surtace runoff is a multi­

dimensional phenomenon, it is used as a water-balance component by UN SAT -H to account for the infiltra­

tion capacity of the soil. The rate of infiltration may be less than the rate of precipitation when the infiltra­

tion capacity of the soil is exceeded (Linsley et al. 1982, Freeze and Cherry 1979). If this occurs, excess 
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TABLE 3. Annual Water·Balance Components Predicted by UNSAT·H 2.0 for the 
Exponentiai·Root·Density Condition 

p E T R D t.S s error 
:wr !an) {Qnl !qn! {Qnl {Qnl {Qnl !qn! {Qnl 

1978 6.2641 
1979 14.0460 9.1524 0.6500 0.0000 0.0000 4.1829 10.4470 0.0609 
1980 24.5870 19.5650 2.0594 0.0000 0.0000 2.8950 13.3420 0.0676 
1981 17.8820 15.7580 1.9234 0.0000 0.0000 0.1490 13.4910 0.0516 
1982 20.2690 17.4520 2.1998 0.0000 0.0000 0.5570 14.0480 0.0602 
1983 28.1180 23.3240 2.3411 0.0000 0.0000 2.3760 16.4240 0.0772 
1984 18.4400 19.9400 2.3297 0.0000 0.0000 -3.8880 12.5360 0.0588 
1985 12.9540 10.4130 1.6794 0.0000 0.0000 0.8130 13.3490 0.0491 
1986 18.0090 16.7970 1.9764 0.0000 0.0000 -0.8170 12.5320 0.0524 
1987 12.9030 12.0400 1.8912 0.0000 0.0000 -1.0690 11.4630 0.0406 
1988 10.5920 10.9790 1.6025 0.0000 0.0000 -2.0316 9.4314 0.0422 

Mean 17.7800 15.5420 1.8653 0.0000 0.0000 0.3167 12.7063 0.0561 

Illlal 177.800 155.420 18.653 0.000 0.000 3.167 0.561 

I£>1l~~ ~- Annual Water-Balance Components Predicted by UNSAT-H 2.0 for the 
Constant-Root-Density Condition 

p E T R D t.S s error 
:wr (qnl {Qnl {Qnl {qn) {Qnl {Qnl tgn) (qn) 

1978 6.2641 
1979 14.0460 9.2933 0.6626 0.0000 0.0000 4.0309 10.2950 0.0593 
1980 24.5870 19.6760 3.2549 0.0000 0.0000 1.5860 11.8810 0.0702 
1981 17.8820 15.1560 2.8617 0.0000 0.0000 -0.1880 11.6930 0.0525 
1982 20.2690 17.0070 2.6935 0.0000 0.0000 0.5070 12.2000 0.0619 
1983 28.1180 22.4420 3.2312 0.0000 0.0000 2.3690 14.5690 0.0752 
1984 18.4400 18.8420 3.3836 0.0000 0.0000 -3.8440 10.7250 0.0596 
1985 12.9540 9.7279 2.6331 0.0000 0.0000 0.5450 11.2700 0.0478 
1986 18.0090 15.5350 3.0123 0.0000 0.0000 -0.5940 10.6760 0.0547 
1987 12.9030 11.4710 2.3913 0.0000 0.0000 -1.0035 9.6725 0.0449 
1988 10.5920 10.4220 2.0722 0.0000 0.0000 -1.9459 7.7266 0.0435 

Mean 17.7800 14.9572 2.6196 0.0000 0.0000 0.1463 11.0708 0.0570 

Illlal 177.800 149.572 26.196 0.000 0.000 1.463 0.570 
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Annual Water-Balance Co~nents Predicted by UNSAT-H 2.0 for the 
Zero-Transpiration Condition 

E T R D 6$ s 
(gn) (gD) (gD) (an) (gD) (gn) 

6.2641 
9.4936 0.0000 0.0000 0.0000 4.4929 10.7570 

21 .1880 0.0000 0.0000 0.0000 3 .3280 14.0850 
17.6570 0.0000 0.0000 0.0000 0.1740 14.2590 
19.5610 0.0000 0.0000 0.0000 0.6480 14.9070 
25.7520 0.0000 0.0000 0.0000 2.2920 17.1990 
22.2980 0.0000 0.0000 0.0000 -3.9120 13.2870 
11 .8540 0.0000 0.0000 0.0000 1.0540 14.3410 
19.0470 0.0000 0.0000 0.0000 -1 .0880 13.2530 
13.7720 0.0000 0.0000 0.0000 -0.9120 12.3410 
12.5390 0.0000 0.0000 0.0000 -1 .9890 10.3520 

17.3162 0.0000 0.0000 0.0000 0.4088 13.4781 

173.162 0 .000 0.000 0.000 4.088 

197919801981 1982 198319841985198619871988 
Simulation Year 

error 
(gD) 

0.0595 
0 .0719 
0.0501 
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0.0546 
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0.0424 
0.0424 

0.0551 

0.551 

• Applied Water II Evaporation • Transpiration ~ 6Storage 

FIGURE 3. Non-Zero Water-Balance Components for Constant-Root-Density Sirrulations 
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water which cannot infiltrate the soil is present at the surface. UNSAT-H assigns this excess to the surface­

runoff term. In reality, the ultimate fate of this water depends on the topography of the surrounding area. 

In assigning the water to surface runoff, the underlying assumption of the UNSAT-H algorithm is that the 

excess water is removed through over1and flow. 

The affect of the root-zone-density choice in the UNSAT-H model is reflected in Figures 4, 5, and 6, 

which show the different annual magnitudes of evaporation, transpiration , and change in water storage, 

respectively, resulting from the three conditions applied. Because the exponential root density was 

considered too constraining compared with actual transpiration, two other conditions were simulated to 

bracket the transpiration term: a zero-transpiration condition and a constant-root-zone condition (maxi­

mizing transpiration). 

One of the strengths of using a discrete-based approach such as the one embodied in the 

UNSAT-H code is the ability to examine the variation of a parameter with depth. Figures 7 through 10 

depict the soil moisture profile predicted by UNSAT-H at four specific dates of each year, March 30, June 

30, September 30, and December 31 , respectively. For each figure, 10 lines represent the predicted soil 

moisture profile on that date for each of the 10 simulated years. These figures do not indicate the abso­

lute maximum or minimum of soil moisture predicted by UNSAT-H, but rather are meant to illustrate the 

nature of water movement and storage in the barrier model soils. 

The apparent discontinuity of soil moisture across the interface of layers 1 and 2 in Figures 7 though 

10 merits some explanation. The discontinuity is due to the presence of a capillary break formed by the 

placement of a relatively coarse material, sand, directly underneath the finer-textured silt loam soil. In this 

arrangement, the silt loam close to the interface must approach saturation before water will flow into the 

sand layer, which is at or near atmospheric pressure. The hydraulic head, the actual driving force of soil 

water movement, is continuous across the interface. This effect is largely responsible for the effective­

ness of the simulated barrier. 

The years simulated, 1979 through 1988, included a generally wet period (approximately 1979 

through 1983) followed by drying (1984 through 1988). These two periods are reflected by the tendency 

toward positive values for the change in storage component during the first 5 years and toward negative 

values for the last 5 years. Examination of year-end soil moisture profiles indicated that the highest mois­

ture storage was for 1983, but the capacity of the soil to store the water was not exceeded, and no percola­

tion was predicted by UNSAT-H at the base of the model (i.e., the bottom of layer 2). The model predicted 

a small amount of interfacial flux, ranging from zero for the constant-root density simulation to 0.0005 em 

(0.00020 in.) for the zero-transpiration simulation. This flux represented the net water movement across 

the interface between the two layers during the 1 0 years simulated, and resulted in a small increase in the 
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soil moisture content of the sand layer. In reality such a small amount of water movement would not be 

measurable, and the total amount is meaningless compared with the mass-balance error of these 

simulations. 
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COMPARISON OF SIMULATION RESULTS 

Westinghouse Hanford staff generated HELP 2.0 results by independently modeling the NRDWL 

conceptual design shown in Figure 1. Results are summarized on an annual basis in Table 6. Table 6 is 

similar to Tables 3, 4, and 5, which list water-balance co~nents predicted by UNSAT-H 2.0 for the 

NRDWL simulations. As these tables show, HELP 2.0 reports only evapotranspiration, while UNSAT-H 

2.0 distinguishes between evaporation (E) and transpiration (I). Evapotranspiration values predicted by 

HELP 2.0 are shown in Table 6 under the heading "E +I." 

Table 7 provides an initial basis for comparison. The table lists the currulative water-balance com­

ponents for each of the 10-year sirrulations (three UNSAT-H 2:0 sirrulations and one HELP 2.0 simula­

tion). The UNSAT-H 2.0 and the HELP 2.0 simulations both used HMS data collected from 1979 through 

1988 as the source of precipitation input values. Therefore, the difference in these values (Table 7) 

should be zero. However, this was not the case. Because these values were not in agreement, the 

original HMS climatological-data reports were checked. Table 8 contrasts annual total precipitation 

recorded in those reports with the total precipitation values entered for the UNSAT-H 2.0 and HELP 2.0 

simulations. The UNSAT-H 2.0 input values and the HMS record differed only by 0.04 in. (0.10 em). The 

values applied in the HELP 2.0 simulations may, therefore, have been subject to data-entry errors. This 

was unfortunate because it obscures interpretation of the differences in code outputs for these simula­

tions. The 2.13-cm (0.84-in.) difference in precipitation values is far larger than the mass-balance errors in 

any of the simulations (see Tables 3, 4, 5 , and 6) . 

Barrier effectiveness is sometimes judged in terms of the proportion of precipitation that is returned 

to the atmosphere as evaporation and transpiration. Under this criterion, the efficiency (e) of a barrier is 

defined as 

e = (E + 1)/P (2) 

where E is evaporation, I is transpiration, and P is precipitation. Figure 11 illustrates the 1 o-year efficiency 

predicted from HELP 2.0 sirrulation results and from the three UNSAT-H 2.0 simulations of the NRDWL 

conceptual design. 
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TABLE 6. Annual Water-Balance Components Predicted by HELP 2.0 

p E+T R 0 ~s s error 
..lB.. lgn) lgn) (gnl lgn) (gnl lgn) (gn) 

1978 34.0614 
1979 14.3002 10.7010 0.0000 0.0000 3.6068 37.6682 -0.0076 
1980 24.6380 24.4272 0.0000 0.0000 0 .2032 37.8714 0.0076 
1981 17.8816 18.2194 0.0000 0.0000 -0.3302 37.5412 -0.0076 
1982 20.4978 19.5199 0.0000 0.0000 0.9652 38.5064 0 .0127 
1983 28.1178 25.0114 0.0000 0.0922 3 .0226 41 .5290 -0.0084 
1984 18.4658 23.7617 0.0000 0.2670 -5.5626 35.9664 -0.0003 
1985 13.0048 12.2530 0.0000 0.0000 0.7620 36.7284 -0.0102 
1986 17.6022 17.8537 0.0000 0.0000 -0.2540 36.4744 0.0025 
1987 14.2748 14.2951 0.0000 0.0000 -0.0254 36.4490 0.0051 
1988 11 .1506 13.5331 0.0000 0.0000 -2.3876 34.0614 0.0051 

Milan 17.9934 17.9575 0.0000 0.0359 0.0000 37.2796 -0.0001 

IQ1al 179.934 179.576 0.000 0.359 0.000 -0.001 

TABLE 7. Comparison of 10-Year Sirrulation Water-Balance-Component Totals 

UNSAT-H UNSAT-H UNSAT-H 
Components HELP Exponential Constant No Transpiration 

P,cm 179.93 177.80 177.80 177. 80 

R, an 0.00 0.00 0.00 0.00 

E+ T, an 179.58 174.07 175.77 173.16 

D, cm 0.36 0.00 0.00 0.00 

~S. cm 0.00 0 .32 0.15 0.41 

(E+T)/P 99.8% 97.9% 98.9% 97.4% 
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TABLE B. Comparison of HELP 2.0 and UNSAT-H 2.0 Annual Precipitation Input Values 

Year 

1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

IQ1a1 

No Transpiration 

Constant 

Exponential 

HELP 2.0 

0.0 

HMS Records UNSAT-H Input HELP Input 
((1.) (il.l ((l.l 

5.56 5.53 5.63 
9.68 9 .68 9.70 
7.04 7.04 7.04 
7.98 7.98 8.07 

11.07 11 .07 11 .07 
7.27 7.26 7.27 
5.10 5.10 5.12 
7.09 7.09 6.93 
5.07 5.08 5.62 
4.18 4.17 4.39 

70.04 70.00 70.84 
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FIGURE 11 . Comparison of Barrier Efficiency Predicted by HELP and UNSAT-H Models 
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CONCI US!ONS 

UNSAT-H version 2.0 was used to simulate the performance of a two-layer landfill barrier for a period 

of 10 years, using actual meteorological data for 1979 through 1988 and appropriate soil-property values. 

In this simulation, UNSAT-H predicted 0.125 em (0.0491 in.) of percolation from the base of the top layer 

of silt loam. The model predicted no percolation past the base of the underlying sand layer. The com­

puted mass-balance error, representing the total mass unaccounted for in the 10-year sim.Jiation, ranged 

from 0.55 em (0.217 in.) to 0.57 em (0.224 in.) for the three conditions simulated (exponential-root­

density, constant-root-density, and zero-transpiration). 

Three UNSAT-H version 2.0 simulations representing different treatments of the root-density term 

were compared with a HELP 2.0 simulation performed by WHC personnel. Discrepancies in precipitation 

values derived from HMS records were inspected and compared with original HMS reports. This com­

parison demonstrated that the HELP 2.0 simulation input contained a total error of 2.03 em (0.80 in.) pre­

cipitation for the 10-year period, while the UNSAT-H 2.0 simulation input records were only in error by 

0.10 em (0.04 in.) for the same period. Data-entry errors were suspected to be at least partially 

responsible for the discrepancies in the HELP precipitation input. Because the input precipitation values 

were not precisely equal, caution was exercised in comparing results of these sim.Jiations. Yet in spite of 

the larger amount of applied water in the HELP 2.0 simulation, that code still predicted a greater portion of 

precipitation returned to the atmosphere through evapotranspiration than did any of the UNSAT-H 2.0 

simulations. HELP 2.0 also predicted percolation past the base of the barrier (0.36 em (0.142 in.] in 10 

years), while UNSAT-H 2.0 predicted no percolation in any simulation conducted. These results confirm 

that the HELP 2.0 code is conservative for the semi-arid climate of the Hanford Site for the conditions 

simulated. 

The comparative simulations reported here were sufficient to demonstrate the conservative nature 

of the HELP 2.0 code for the NRDWL barrier conceptual design under recent Hanford Site meteorological 

conditions. However, these results cannot be extrapolated to more stressful conditions involving larger 

amounts of barrier percolation. It is possible that if precipitation had been greater, the HELP code might 

have predicted more percolation while UNSAT-H continued to predict none. For a better assessment of 

code capabilities, the models should be applied to conditions involving sizable percolation and should be 

compared with actual soil-moisture data. 
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