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Response of Variable 
Impedance Stripline to 

Pulse Excitation 

Abstract 
We describe a simple method to predict the transient response of variable impedance 

stripline to pulse excitation. The method uses a finite difference based, quasi-static im
pedance formulation to calculate the reflection coefficient at each point along the direc
tion of pulse propagation and the subsequent short pulse behavior of a variable imj. f i
ance structure. A Fortran computer program is written to determine the quasi-static 
impedance. Excellent agreement of better than 1% between the finite difference imped
ance predictions and experimental results is noted. A second computer program is writ
ten utilizing previous results but essentially incorporating reflection and transmission 
from several discontinuities to analyze the transient response of the structure. This tran
sient analysis yields good agreement between predictions and results obtained by means 
of time domain reflectometrv. 

1. Introduction 
The proposed scheme for Nova temporal pulse shaping1 utilizes passive reflection of a high voltage 

pulse from nonuniform stripline. The distorted voltage pulse is subsequently applied to a Pockels cell gate 
to realize a shaped optical pulse. Of considerable interest, then, is the transient response of variable 
impedance stripline to pulse excitation. In this report, we describe a simple method to predict the resultant 
voltage shape. 

The method uses a finite difference based, quasi-static impedance formulation; the predicted quasi-
static impedance is used to calculate the reflection coefficient at each point along the transmission line and 
the subsequent short pulse behavior of a variable impedance structure. 

We review the transmission line equations in Sec. 2; calculate the quasi-static impedance and com
pare the finite difference calculations with experimental results in Sec. 3; analyze the transient response of 
the variable impedance stripline and compare predictions to measurements on the structure made with 
time domain reflectometry (TDR) in Sec. 4. 

2. Transmission Line Fundamentals 
The voltage, V, and the current, 1, nlong a lossless, uniform transmission line (Fig. 1) are given by the 

telegrapher's equations2 

Ldz a , 
->*muMmn>) »- I + j£-dz 

Cdz V + fdz 
Figure 1. Equivalent circuit of 
transmission line. 
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dV _ 
dz at 

M _ 
dz at 

(1) 

(2) 

where dz is a differential length of line, and L and C are the inductance and capacitance per unit length, 
respectively. Differentiating Eq. (1) with respect to distance and Eq. (2) with respect to time, we obtain 

K - LC*K • P) 
flr df 

Similarly, 

K-LC^;. (4> 

(1:- Af

file solution of Eq. (3) is 

V = F,(f - z/v) + f ;(r + z/v) , (5) 
where f, and F2 are arbitrary functions of (f - z/v) and (( + z/v), respectively, and the phase velocity, v, is 

v = — . (6) 

Substituting Eq. (5) into Eq. (1) and integrating with respect to t, we obtain 

' = y\Fi(l -z/v)- F2(l +:/v)\ , (7) 

where the characteristic impedance, Zu, is 

A, v ^ . (8) 

Of particular interest is the junction between a given uniform line and a line of different characteristic 
impedance. The total voltage in the line may be regarded as the sum of a voltage in a positive traveling 
wave equal to V, at the point of discontinuity and a voltage V _ in a reflected wave. Then 

V. + V = V, , (9) 

where V, is the voltage appearing across the the load impedance, Z(_. Also, the sum of the currents in the 
positive and negative traveling waves of the line at the discontinuity must equal the current into Z,: 

(10) J. + i = h 
Then 

V. 

^ 7 " 
V = v,. 

ZL 
(11) 

Most importantly, the reflection coefficient, p, and transmission coefficient, r, are 
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p = ZL + Z„ 

ZL + Z„ 

(12) 

(13) 

3. Quasi-Static Impedance Formulation 
In this section, we use a finite difference approach to calculate the impedance of stripline. The finite 

difference predictions are subsequently compared with experimental results. 

3.1 Theory 

A cross section of the strip transmission line of interest, here, is shown in Fig. 2. Surrounded by 
ground planes, the line consists of a strip to which microwave signal is applied. We are interested in 
determining the impedance 

7 - IL - iH! 
Z " - V c " c ' 

(14) 

We will first calculate the potential throughout the structure using a finite difference equation for the 
Laplace operator.''1 The function U{x,y) satisfies the linear second-order partial differential equation 

(15) 

(16) 

(17) 

" » + u„„ = 0 , 

with the boundary conditions 

U(.v,y) = U, = 1 (boundary 1) , 

U(.v,y) = U0 = 0 (boundary 2) . 

% - ° \ ^ ^ 
Boundary 3 

^~ Boundary 1 

s- Boundary 2 

-̂ — Boundary 4 

U , - 1 

S f - l ^ 
u 0 = = 0 

Figure 2. Cross section of strip 
transmission line. 
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Figure 3(a). Notation for 
Eq. (19). 

(a) 

U(x 0 -h ,y 0 +h) f- • -f U(x„+h,y 0+h) 

U(x 0-h,y 0) ^ J U o ^ h . > U(x„ + h,y0) 
I 
I 
I 
4 — 

h ^ - U ( x 0 , y 0 ) 
I 

U{x0 - h, y 0 - h) 
U(x„,y 0-h) 

- - * U(x 0 +h,y 0 -h ) 

(b) 

Figure 3(b). Stripline with 
mesh superimposed. 

E E E E E E E 

1 
1 

The problem can be simplified considerably by using the line of symmetry with the additional boundary 
conditions 

— = 0 (boundaries 3 and 4) (18) 

A square mesh with an arbitrary mesh size, It, is now superimposed on the sub-domain. By using the 
notation of Fig. 3, assuming that U(x,y) has partial derivatives of fourth order near the interior mesh point 
(.v0,v„), and by using Taylor's theorem, we obtain 

U\xa + h,y0) + U{x0 -h,y0)- 2U(x0,y0) h2,,, .. v , , , . ,, 
",v(-Wu) jjj 4J-[" m , (?pyo) + ". , ,»(£>*)] • 

Ulx0,ya + rp + U(xa,y„ - rp - 2U(x„,y0) tf 
U.wWv.Vn) = ~2 4f l Uw.v(%'»i) + I W*o. ' f c ) J > 

The coordinates £,, S,v r\x, and r)2 satisfy the following conditions: 

.r„ - h < §, < xa < §, < x0 + It , 
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(19) 

(20) 
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y 0 - h < % < y0 < Vi < y<i + h • (22) 

Combining (15), (19), and (20) we obtain 

U(x„ + h,y0) + U(.v0 - h,y„) + U(x0,ya + ft) + U(x0,y0 - ft) - 4U(x0,y0) = Sib.4) , (23) 

where S (ft4) is an error term of fourth order. 
Methods for the solution of Eq. (23) along with the associated error analysis have been reviewed 

extensively.5'7 The relaxation technique consists of approximating the function U(x,y) with a function Uiik 

which is only defined for each discrete mesh point. The potential values are continuously modified until 
all of the simultaneous equations are satisfied to a sufficient degree of accuracy. The simplest numerical 
procedure is the Liebmann method4 in which the lattice is scanned along successive columns, and old 
values for each mesh point are discarded and replaced by new ones. The relaxation formula for the new 

is value of Ujy' 

rill i 
UU > ? • . ' + U! i. I.I. + iW-'i + wiu (24) 

and the potential throughout the structure is thus calculated. 
To obtain the capacitance, C, and thus the impedance, Z, it is necessary to calculate the charge Q, on 

the conductors." If we form a Gaussian surface with lines parallel to the coordinate directions (Fig. 4), at 
any point P on this surface 

D„-fE„--<-. (25) 

Surface of 
integration 

Conductor 
stripline 

I 
I 

- - • • - + — -
I 
I 
* B 

Figure 4. Stripline with 
Gaussian surface of integration. 



where H is the normal coordinate and D„ and £„ are the normal components of the displacement and 
electric intensity, respectively. Expressing £„ numerically, 

_ 3U = UE-UA 

" dn 2/1 V ' 

where UB and UA are the potentials on either side of P. Thus, if the surface containing the conductor 
consists of S straight line segments each containing v nodes, the charge per unit length normal to the cross 
section is 

Q = (It 
— — \dn Iv (27) 
s p i 

where the symbol 2 ' is used to indicate that th. first and last terms in the summation are halved. Then 

C = § , (28) 

where V is the potential difference between the conductors (unity) and the impedance is thus determined. 

3.2 Programming Details 

A Fortran computer program (Appendix 1) implementing the techniques of Sec. 3.1 was developed. 
The program may be divided into three sections: 

3.2.1 Location Loader 
3.2.2 Relaxation Process 
3.2.3 Capacitance Calculation 

3.2.1 Location Loader 
The relevant structure is shown in Fig. 5, superimposed on a matrix of size Y by Z. The location of the 

inner conductor, the matrix size, and the number of relaxation cycles are input by the operator in the 
following order: 

UL1, UL2, UR1, UR2, LL1, LL2, LR1, LR2, Y, 2, N 

where 

UL1, UL2 are row, column of upper left coordinate of inner conductor, 

UR1, UR2 are row, column of upper right coordinate of inner conductor, 

LL1, LL2 are row, column of lower left coordinate of inner conductor, 

LR1, LR.2 are row, column of lower right coordinate of inner conductor, 

Y, Z are row, column of complete structure, 

N is the number of relaxation cycles. 
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IUL.1,1 

UL1.UL2 

LI IUL1.IUR2 
-f 
I 

UR1.UR2 | 

I 
LL1.LL2 LR1, LR2 I 

1 
ILL1.1 L3 ILL1.IUR2 

Figure 5. Line segments for ca
pacitance calculation. 

A constant potential U, = 1 is assigned to all mesh points on the inner boundary and U0 = 0 to all 
points on the outer boundary. An initial value is assigned to all interior mesh points: 

UJIK = (Y - M Y - LL1) 

Uj K = (J - 1)/(UL1 - 1) 

Uj!K = U(J,LR2)[(Z - K)/(Z - LR2)] 

LL1 + 1 < J < Y - 1 
1 < K < LR2 , 

2 < J < TJL1 - 1 
1 < K < UR2 , 

2 < J < Y - 1 
UR2 + 1 < K < Z 1 . 

(29) 

(30) 

(3D 

3.2.2 Relaxation Process 
The relaxation procedure consists of scanning successive columns from left to right and continuously 

modifying the potential according to Eq. (24): 

" l / ' - ^ - ^ + ^ U + ^ - ' l + ^ l ) - (32) 

Equation (24) is modified along the mirror surface (Column 1): 

UJY1 = ~[2U{j,2) + U{j - 1,1) + U{j + 1,1)] . (33) 
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3.2.3 Capacitance Calculation 
The capacitance calculation consists of determining an integration contour around the inner conduc

tor, calculating the total charge according to Eq. (27), and dividing by the potential difference. Line seg
ments L2 and L3 lie halfway between the inner conductor and the ground plane. Line segments LI and L3 
are the same distance from the inner conductor. That is, let 

1UL1 = UL1 - t(LLl + Y)/2 - LL1] 

ILL1 = (LL1 + Y)/2 , 

LUR2 - (LR2 - Z)/2 . 

(34) 

(35) 

(36) 

Thus the points (IUl.1,1), (IUL1, IUR2), (ILL1, IUR2) and (1LLU) determine the three relevant line seg
ments (Pig. 5) and the total charge may be calculated according to the methods of Sec, 3.1. 

3.3 Experiment 

Impedance predictions from the finite difference analysis are compared with experimental results 
from a fabricated stripline. The impedance of the stripline is determined by means of time domain 
reflectometry (TDR)." TDR analysis is based on the reflection of voltage from a discontinuity or perturba
tion in a transmission system. The components of the HP 7S12 TDR system include a fast-rising voltage 
step generator (t, < 25 ps), a sampling oscilloscope ((,. < 30 ps), and a transmission line system. The 
reflection coefficient vs signal propagation time is read directly from the oscilloscope, and the impedance 
of the stripline may be calculated from Eq. (12). 

A comparison between the finite difference predictions obtained using the computer program in 
Appendix 1 and experimental results is shown in Fig. 6 for a stripline structure, Agreement of better than 
1% between theory and experiment is noted for all four cases. Exact mesh size details are given in 
Appendix 2. 

Figure 6. Finite element im
pedance predictions and experi
mental results. 

BU 1 <L- " 

60 — /* (All dimensions are 
/ in cm) 
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^ 
9. 40 
N 
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0 1 1 1 
1 2 
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4. Variable Impedance Stripline to Pulse Excitation 
We are interested in determining the reflected voltage from a variable impedance stripline system 

(Fig. 7). Note that the impedance variations for the structure of interest are the result of differences in 
conductor to ground plane spacing in the direction of pulse propagation. We assume the following: 

1. A pure TEM mode is excited at Z = 0 (and extracted after reflection). 
2. Coupling to higher order modes along the direction of propagation is negligible. 
3. The stripline system is non-dispersive. 

4.1 Theory 
A schematic representation of the variable impedance stripline is shown in Fig, it. We have approxi

mated the continuous impedance variation by a series of steps in the transmission line. Reflection and 
transmission from a single discontinuity have been examined In Sec, 2. Here; we analyze reflection and 
transmission from several discontinuities. 

Consider two time-separated discontinuities (Fig. 9); the actual reflection caused by p 2 will be altered 
by p, before the actual pj arrives at the TDR.9 Manipulating Eqs. (9), (12), and (13) we obtain 

V,(l +p) (37) 

The incident and reflected voltages from the second discontinuity are V +(l + p,) and V + (l + p,)p2, 
respectively. The voltage appearing at the oscilloscope is V + (l + p,)(l - Pi). Note that the reflection 
coefficient changes sign for travel in the opposite direction. Then, 

ft 
Pi 

measured value 
true value (1 + Pitfl - Pi) = 1 " PI • (38) 

For a system of three discontinuities 

Pi measured value 
true value (i - PW - pi) (39) 

Stripline 

Ground 
wall 

Figure 7. 
stripline. 

Variable impedance 
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n - 1 

"l • ^n 
2 n+1 

By induction, the error in the nth discontinuity with it - 1 discontinuities between it and the sampling 
scope is 

^ - i i - p t X i -pi)- • - ( l - / > ; . , ) . (40) 

The relevant computer program is described in Appendix 3. The reflection coefficient at each point 
along the direction of pulse propagation is calculated from the quasi-static impedance. The velocity of 
propagation is 

; • = — = <:. (41) 
ac 

From Eqs. (40) and (41), the reflection coefficient vs pulse propagation time is calculated, and the short 
pulse behavior of a variable impedance stripline is thus determined. 

4.2 Experiment 

Experimental results from a variable impedance stripline structure are subsequently compared with 
predictions. Again, the short-pulse behavior is determined by time domain reflectometry. A structure 
similar to that of Fig. 7 i.- fabricated. Actual dimensions along with finite element impedance predictions 
are given in Fig. 10. The P'I .icture is approximately 30 cm long (z direction), and the impedance variations 
along the ; direction can . • rbitrarily adjusted by varying the conductor-to-ground-plane spacing with a 
series of micrometers. 

1 Z 

v + -
v + . p v ^ 

V + ( 1 + p t ) x - » — 
(1 - Pi )P2 

Figure 9. Reflection and trans-
miMion from two time sepa
rated discontinuities. etc. 

10 

Figures. Schematic repreten- 1 
tation of variable impedance Z. I « 
stripline. I M » 

2 I 3 

- V + ( 1 + P l ) — * V + ( 1 + p , ) x 
<1+p 2) 

etc. 

V + ( 1 + p , ) p 2 - ^ • * * • 

" V + d + p ^ x 
p-l (-p\) 
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Figure 10. Finite element im
pedance predictions used for 
transient analysis. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
S (cm) 

The computer predictions and experimental results of Figs. 11 to 13 are obtained as follows: 
1. Measure the conductor-to-ground-plane spacing, which varied along the z direction. 
2. Calculate the corresponding impedance using the finite difference formulation of Sec. 3. 
3. Determine the reflection coefficient vs signal propagation time using the analysis of Sec. 4. 
4. Compare to results obtained from an HP 7S12 TDR. 

Good agreement between theory and experiment is noted for all three cases, although the computer 
predictions tend to overestimate the reflection coefficient at later times. We attribute this discrepancy to 
rapid changes in the conductor-to-ground plane spacing along the : direction that cause unwanted cou
pling to higher order modes and subsequent invalidation of the assumptions of Sec. 4. 

400 800 1200 
Time (ps) 

1400 Figure 11. Transient predic-
. Itions and experimental results. 
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Figure 12. Transient predic
tions and experimental results. 

400 800 
Time (ps) 

Figure 13. Transient predic
tions and experimental results. 
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5. Conclusion 
We describe a simple method to predict the transient response of variable impedance stripline to 

pulse excitation. This technique uses a finite difference based quasi-static impedance formulation to calcu
late the reflection coefficient at each point along the direction of pulse propagation; the short pulse 
behavior of the structure is thus determined. Excellent correlation between the finite difference impedance 
predictions and experimental results is noted. Incorporation of the finite difference impedance calculations 
into the transient analysis yields good agreement between predictions and results obtained by time do
main reflectomerry (TDR). 
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Appendix 1 
C FINITE DIFFERENCE PROGRAM (MICROSOFT FORTRAN) TO CALCULATE 
C IMPEDANCE OF STRIPLINE SURROUNDED ON ALL SIDES BY GROUND 
C PLANES. WRITTEN BY BLEN MCWRIGHT, AUGUST 19S4. 

INTEGER UL1(10) ,UL2C10),UR1(10),UR2<10>,LL1(10),LL2(10) 
INTEGER LR1(10>,LR2(10),Y(10),Z(10),J,K,N(10>,A,M 
INTEGER IUL1,ILL1,IUR2,B, Q, NQ,YQ,UR1Q,ZQ, UR2Q,LL1Q 
REAL U(500,101),AVG1,SIsS2,S3,IMP 

C INPUT NUMBER OF CASES (MAX OF 999) 
READ (*,3) B 

3 FORMAT (13) 
DO 8 M=1,B 

C INPUT COORDINATES OF CENTER CONDUCTOR, GROUND PLANES, AND 
C NUMBER OF ITERATIONS 

READ (*,5> UL1(M),UL2(M),URHM),UR2(M),LL1 (M),LL2(M), 
*LR1<M),LR2(M),Y(M),Z<M),N(M> 

5 FORMAT (1013,14) 
8 CONTINUE 

C SET POTENTIAL TO ZERO THROUGHOUT STRUCTURE 
DO 400 0=1,B 
DO 20 J=1,Y(Q> 
DO 10 K=1,Z(Q> 
U(J,K)=0. 

10 CONTINUE 
20 CONTINUE 

C SET POTENTIAL TO UNITY ON CENTER CONDUCTOR 
DO 40 J=UL1(Q),LL1(Q) 
DO 30 K= UL2(Q),UR2<0) 
U(J,K)=1. 

30 CONTINUE 
40 CONTINUE 

C CALCULATE INITIAL GUESSES FOR POTENTIAL THROUGHOUT STRUCTURE 
DO 60 J=LL1(Q)+1,Y(Q)-1 
DO 50 K=1,LR2(Q) 
U(J,K)= l.*(Y(B)-J)/(Y(Q)~LLl(Q)) 

50 CONTINUE 
60 CONTINUE 

DO 80 J=2,UL1(Q)-1 
DO 70 K=1,UR2(Q) 
U<J,K)=1.*(J-1)/(UL1(Q)-l) 

70 CONTINUE 
30 CONTINUE 

DO 100 J=2,Y(Q)-1 
DO 90 K=UR2(0)+1.Z(Q)-1 
AVG1 = l.*(Z(Q)-K)/(Z(Q)-LR2(Q)) 
U(J,K)= AVG1*U(J,LR2(Q>) 

90 CONTINUE 
100 CONTINUE 

NQ=N(Q) 
YQ=Y(Q) 
UR1Q=UR1(Q) 
UR2Q=UR2(Q) 
ZQ=Z(Q) 
LL1Q=LL1(Q) 
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BEGIN RELAXATION LOOP 
DO 140 A=1,NQ 
DO 110 J=2,UR1Q-1 
U<J„1>= 0.25*<2.*U(J,2)+U(J-1,1)+U(J + 1,D) 

110 CONTINUE 
DO 115 J=LL1Q+1,YQ-1 
U(J,1)= 0.25*(2.*U(J,2)+U(J-1,1)+U(J+1,1)) 

115 CONTINUE 
DO 120 K=2,UR2Q 
DO 117 J=2,UR1Q-1 
U<J,K)=0.25*<U(J-l.K)+U(a+i,K)+U<J,K-l>+U(J,K+l)) 

117 CONTINUE 
DO 119 J=LLiQ+l,YQ-i 
U(.7,K> = 0.25* (U(a-l,K)+U(J+l,K>+U(J,K-l)+U<J,k+l) ) 

119 CONTINUE 
120 CONTINUE 

DO 135 K= UR2Q+1.ZQ-1 
DO 130 J=2,YQ-1 
U(J,K)= 0. 25* <U <J-l,K>+U< J + l,K)+U(J,K-1)+U(J,K+1)) 

130 CONTINUE 
135 CONTINUE 
140 CONTINUE 

WRITE (*,150) UL1 (G),UL2(Q),UR1(Q)1,UR2(Q),LL1 (Q),LL2<Q), 
*LR1(Q),LR2(D),Y(Q),Z<Q),N(Q> 

150 FORMAT (IX,1113) 
DETERMINE GAUSSIAN SURFACE OF INTEGRATION 
IUL1= UL1(Q)-((LL1(Q)+Y(Q))/2~LL1<Q>) 
ILL1= (LL1<G>+Y<Q>)/2 
IUR2= <LR2«2)+Z<Q> >/2 
CALCULATE CHARGE ALONG EACH SEGMENT OF GAUSSIAN SURFACE 
si---=o. 
DO 250 K=2;IUR2-1 
Sl= S1+0.5*(U«ILL1~1,K)-U(ILL1+1,K)) 

250 CONTINUE 
Sl= 0.25*ai(ILLl-l, IUR2)-U<ILL1 + 1, IUR2>)+S1 
S2=0. 
DO 270 J -1UL i -•-1, ILL1 -1 
S2= S2+0.5*<U(j|IUR2-1>~U(J,IUR2+1)) 

270 CONTINUE 
S2=0.25*(U(ILL1,IUR2-1)-U(ILL1,IUR2+1))+ 
*0.25*<UUUL1, IUR2-1)-U(IUH, IUR2+1) >+S2 
S3=0. 
DO 290 K=2,IUR2-1 
S3=S3+0.5*(U(IUL1+1,K)-U<IUL1-1,K>) 

290 CONTINUE 
S3=0.25* (UdUL l + 1 , IUR2)-U<IUL1-1, IUR2) )+S3 
CALCULATE TOTAL CHARGE 
CH= 2.*(S1+S2+S3)+0.5*<U(IUL1 + 1!1 1 > -U (IULi-1, 1) ) + 
*0.5*<U(ILL1-1,1>-U(ILL1+1,1)> 

II1P=377./CH 
WRITE (*,300) IMP 

300 FORMAT (ix,FS.5> 
400 CONTINUE 

STOP 
END 
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Appendix 2 
Computer input for finite element calculations of Fig. 6. mesh size, h = 0.1 cm. 

S = 0.3 cm 095001095011098001098011101021999 

S = 0.4 094001094011097001097011101021999 

S = 0.5 093001093011096001096011101021999 

S = 0.6 092001092011095001095011101021999 

S = 0.7 091001091011094001094011101021999 

S = 0.8 090001090011093001093011101021999 

S = 0.9 089001089011092001092011101021999 

S = 1.0 088001088011091001091011101021999 

S = 1.4 084001084011087001087011101021999 

S = 1.8 080001080011083001083011101021999 

S = 2.4 074001074011077001077011101021999 

S = 3.0 068001068011071001071011101021999 

S = 3.6 162001162011165001165011201021999 

16 



Appendix 3 
C PROBRAM (MICROSOFT FORTRAN) TO CALCULATE TRANSIENT 
C RESPONSE OF STRIPLINE TO PULSE EXCITATION. WRITTEN 
C BY 3LEN MCWRIGHT, NOVEMBER 1984. 

INTEGER A,B,C,D,E,F,G 
REAL Z(50>,P<50>,PR(50>,TDR(50),PP<50) 

C INPUT NUMBER OF IMPEDANCE STEPS 
READ (*,5) A 

5 FORMAT (13) 
DO 10 B=1,A 

C INPUT IMPEDANCE 
READ <*,8> Z(B) 

8 FORMAT (F7.2) 
10 CONTINUE 

DO 20 r>l,A--l 
C CALCULATE REFLECTION COEFFICIENT 

P(C) = (Z(C+1)-Z(C))/(2(C)+Z(C+1)) 
20 CONTINUE 

C CALCULATE REDUCED REFLECTION COEFFICIENT 
PR(2>= (l.-(P(l)*P(l))) 
DO 30 D=3,A-1 
PR(D)= (l.-(P<D-l)*P(D-l)))*PR(D-1) 

30 CONTINUE 
PP(1)=P(1) 
DO 40 B=2,A--1 
PP(G)=PR(G)*P(G) 

40 CONTINUE 
TDR(1)=PP<1) 
DO 50 E=2,A-1 
TDR(E)=TDR(E-1> +PP(E) 

50 CONTINUE 
C PRINT REDUCED REFLECTION COEFFICIENT AT EACH IMPEDANCE STEP 

DO 60 F=1,A-1 
WRITE (*,55) TDR(F) 

55 FORMAT <ix,F8.5) 
60 CONTINUE 

STOP 
END 
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