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Response of Variable
Impedance Stripline to
Pulse Excitation

Abstract

We describe a simple method to predict the transient response of variable impedance
stripline to pulse excitation. The method uses a finite difference based, quasi-static im-
pedance formulation to calculate the reflection coefficient at each point along the direc-
tion of pulse propagation and the subsequent short pulse behavior of a variable imj. »d-
ance structure. A Fortran computer program is written to determine the quasi-static
impedance. Excellent agreement of better than 1% between the finite difference imped-
ance predictions and experimental results is noted. A second computer program is writ-
ten utilizing previous results but essentially incorporating reflection and transmission
from several discontinuities to analyze the transient response of the structure. This tran-
sient analysis yvields good agreement between predictions and results obtained by means
of time domain reflectometry.

1. Introduction

The proposed scheme for Nova temporal pulse shaping' utilizes passive reflection of a high voitage
pulse from nonuniform stripline. The distorted voltage pulse is subsequently applied to a Pockels cell gate
to realize a shaped optical pulse. Of considerable interest, then, is the transient response of variable
impedance stripline to pulse excitation. In this report, we describe a simple method to predict the resultant
voltage shape.

The method uses a finite difference based, quasi-static impedance formulation; the predicted quasi-
static impedance is used to calculate the reflection coefficient at each point along the transmission line and
the subsequent short pulse behavior of a variable impedance structure.

We review the transmission line equations in Sec. 2; calculate the quasi-static impedance and com-
pare the finite difference calculations with experimental results in Sec. 3; analyze the transient response of
the variable impedance stripline and compare predictions to measurements on the structure made with
time domain reflectometry (TDR) in Sec. 4.

2. Transmission Line Fundamentals

The voltage, V, and the current, I, along, a lossless, uniform transmission line (Fig. 1) are given by the
telegrapher’s equations®
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Figurel. Equivalent circuit of
transmission line.
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where 3z is a differential length of line, and L and C are the inductance and capacitance per unit length,
respectively. Differentiating Eq. (1) with respect to distance an Eq. (2) with respect to time, we obtain

W )
az* o

Similarly,

ar o

P LC Pl )
The solution of Eq. (3) is

V = F(t - z2/v) + F(t + 2/v), (5)

where F, and F, are arbitrary functions of (t — z/vyand (# + z/v), respectively, and the phase velocity, v, is

U= .l_ . (6)
WLC
Substituting Eq. (5) into Eq. (1) and integrating with respect to ¢, we obtain
1= IR - o) - B+ )] %
Z, '
where the characteristic impedance, Z,, is
@

Of particular interest is the junction between a given uniform line and a line of different characteristic
impedance. The total voltage in the line may be regarded as the sum of a voltage in a positive traveling
wave equal to V', at the point of discontinuity and a voltage V _ in a reflected wave. Then

V.+V =V, : 9)

where V, is the voltage appearing across the the load impedance, Z;. Also, the sum of the currents in the
positive and negative traveling waves of the line at the discontinuity must equal the current into Z;:

I +1 =1 . (10)
Then

v..vr. an
Z, 4y I '

Most importantly, the reflection coefficient, p, and transmission coefficient, 7, are
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PV, "z, +2, 12)
v, 2z

= e— . 13

4 v, Z, + 2, (13

3. Quasi-Static Impedance Formulation

In this section, we use a finite difference approach to calculate the impedance of stripline. The finite
difference predictions are subsequently compared with experimental results,

3.1 Theory

A cross section of the strip transmission line of interest, here, is shown in Fig. 2. Surrounded by
ground planes, the line consists of a strip to which microwave signal is applied. We are interested in
determining the impedance

Z, = JL - 2HE | (14)

¢ C

We will first calculate the potential throughout the structure using a finite difference equation for the
Laplace operator."'4 The function U(x,y) satisfies the linear second-order partial differential equation

u, + u_w =0, (15)
with the boundary conditions
U(xy) = U, = 1 (boundary 1) , (16)

Ux,y) = Uy, = 0 (boundary 2) . (17)

|_— Boundary 3

/- Boundary 1
/- Boundary 2
/— Boundary 4

e
g

sle

Figure2. Cross section of strip
transmission line.




Figure 3(a). Notation for (a)
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Figure 3(b)., Stripline with
mesh superimposed.

The problem can be simplified considerably by using the line of symmetry with the additional boundary
conditions

g—x— =0 (boundaries 3and 4) . (18)

A square mesh with an arbitrary mesh size, h, is now superimposed on the sub-domain. By using the
notation of Fig. 3, assuming that LI(x,y) has partial derivatives of fourth order near the interior mesh point
(XyrYp), and by using Taylor's theorem, we obtain

Uixg + Iye) + Uixy — foy) — 2U(xp00) 32 )
0 o ;: o o) %[u‘__‘l_"_(gl,y(,) + Uyl Eahy)] » (19)

U, {xod) =

Ulxgye + M + Ulxelo — 1) — 2U(XoYy)
h’.’

R .
U, (Xp) = - ""'!lu,uyy.u(xw’h) + Up(Xo2)] (20)

The coordinates &,, &, 1, and 1, satisfy the following conditions:

n-h<é<p<éb<x+h, 21)



p-h<m<yy<m<y+h. (22)
Combining (15), (19), and (20} we obtain
Ulxy + hyg) + Ulxg ~ hyg) + Ulxglo + ) + UXgyy — h) — 4U(xayo) = 1), (23)

where 8 (i) is an error term of fourth order.

Methods for the solution of Eq. (23) along with the associated error analysis have been reviewed
extensively.”7 The relaxation technique consists of approximating the function U(x,y) with a function U;,
which is only defined for each discrete mesh point. The potential values are continuously modified until
all of the simultaneous equations are satisfied to a sufficient degree of accuracy. The simplest numerical
procedure is the Liebmann method* in which the lattice is scanned along successive columns, and old
values for each mesh point are discarded and replaced by new ones. The relaxation formula for the new
value of U} 1 is

P N (¥ A TIC P LR (AL P PO I (29)

| —

and the potential throughout the structure is thus calculated.

To obtain the capacitance, C, and thus the impedance, Z, it is necessary to calculate the charge Q, on
the conductors.” If we form a Gaussian surface with lines paralle! to the coordinate directions (Fig. 4), at
any point P on this surface '

au

D, = EE,, = —GE ’ (25)

— Surface of

|~ integration
_______ Conductor
r | / st.ripline

®A
|
h |
-=-1_ .+ S
h {
| Figure 4. Stripline with
1 1] Gaussian surface of integration.



where n is the normal coordinate and D, and E, are the normal components of the displacement and
electric intensity, respectively. Expressing E, numerically,

au Ug-U,
Bl P T 26)

where U, and U, are the potentials on either side of P. Thus, if the surface containing the conductor

consists of S straight line segments each containing v nodes, the charge per unit length normal to the cross
section is

Q- ;[_ v (gg.)l,] , @

where the symbol £’ is used to indicate that th. first and last terms in the summation are halved. Then

c % (28)

whaere V is the potential difference between the conductors (unity) and the impedance is thus determined.

3.2 Programming Details

A Fortran computer program (Appendix 1) implementing the techniques of Sec. 3.1 was developed.
The program may be divided into three sections:

3.2.1 Location Loader

322 Relaxation Process
323 Capacitance Calculation

3.21 Location Loader
The relevant structure is shown in Fig. 5, superimposed on a matrix of size Y by Z. The location of the

inner conductor, the matrix size, and the number of relaxation cycles are input by the operator in the
following order:

UL1, UL2, URI, UR2, LL1, LL2, LR1, LR2, Y, Z, N

where

UL1, UL2 are row, column of upper left coordinate of inner conductor,

UR1, UR2 are row, column of upper right coordinate of inner conductor,

LL1, LL2 are row, column of lower left coordinate of inner conductor,

LR1, LR2 are row, column of lower right coordinate of inner conductor,

Y, Z are row, column of complete structure,

N is the number of relaxation cycles.



| Figure 5. Line segments for ca-
r pacitance calculation.

L1 L1 IUL1,IUR2 Y
————————— *
(
UtL1,UL2 UR1,UR2 |
|
: L2
LL1,LL2 LR1,LR2 |
ILL1,1 L3 ILL1,IUR2 Y
— Z -

. A constant potential U; = 1is assigned to all mesh points on the inner boundary and U, = 0 to all
points on the outer boundary. An initial value is assigned to all interior mesh points:

Uk = (Y - DAY - LL1) Ll+1<)=Y-1
1=K=LR2, (29)
Uk = 0 - D/ULL - 1) ‘ 2=<]=ULl-1
1=K=<UR2, (30)
Uk = UQ.LR2[(Z - K)AZ - LR2)] 2=f=Y-1
UR2 + 1 =K=Z-1. (31)

3.2.2 Relaxation Process

The relaxation procedure consists of scanning successive columns from left to right and continuously
modifying the potential according to Eq. (24):

(! 1 i + t
Ut = Z(ui'fll,k + U+ Y+ U (32)

Equation (24) is modified along the mirror surface (Column 1):

Uit = S UGR) + UG - 11) + U + 11)] . (33)

| =



323 Capacitance Calculation

The capacitance calculation consists of determining an integration contour around the inner conduc-
tor, calculating the total charge according to Eq. (27), and dividing by the potential difference. Line seg-
ments L2 and L3 lie halfway between the inner conductor and the ground plane. Line segments L1 and L3
are the same distance from the inner conductor. That is, let

IUL1 = UL1 - [(LL1 + Y)/2 - LL1], (34)
ILL1 = (LL1 + Y)/2, (35)
LUR2 ~ (LR2 - 2)/2 . (36)

Thus the points (IUL1,1), (IUL1, IUR2), (ILL1, [UR2) and (ILL1,1) determine the three relevant line seg-
ments (Fig, 5) and the total charge may be calculated according to the methods of Sec. 3.1.

3.3 Experiment

Impedance predictions from the finite difference analysis are compared with experimental results
from a fabricated stripline, The impedance of the stripline is determined by means of time domain
reflectometry (TDR)." TDR analysis is based on the reflection of voltage from a discontinuity or perturba-
tion in a transmission system, The coraponents of the HP 7512 TDR system include a fast-rising voltage
step generator (f, < 25 ps), a sampling oscilloscope (¢, < 30 ps), and a transmission line system. The
reflection coefficient vs signal propagation tiine is read directly from the oscilloscope, and the impedance
of the stripline may be calculated from Eq. (12).

A comparison between the finite difference predictions obtained using the computer program in
Appendix 1 and experimental results is shown in Fig, 6 for a stripline structure, Agreement of better than
1% between theory and experiment is noted for all four cases. Exact mesh size details are given in
Appendix 2.

(Alt dimensions are

60 T
incm)

40

Z ()

Finite element predictions
A Experimental points

20

Figure 6. Finite element im- 0 0 ‘Il é L
pedance predictions and experi- 3 4
mental results. S (em)



4. Variable Impedance Stripline to Pulse Excitation

We are interested in determining the reflected voltage from a variable impedance stripline system
(Fig. 7). Note that the impedance variations for the structure of interest are the result of differences in
conductor to ground plane spacing in the direction of pulse propagation. We assume the following:

1. A pure TEM mode is excited at Z = 0 (and extracted after reflection).

2. Coupling to higher order modes along the direction of propagation is negligible.

3. The stripline system is non-dispersive,

41 Theory

A schematic representation of the variable impedance stripline is shown in Fig, §. We have approxi-
mated the continuous impedance variation by a series of steps in the transmission line, Reflection and
transmission from a single discontinuity have been examined in Sec, 2. Here; we analyze reflectiori and
transmission from several discontinuities.

Consider two time-separated discontinuities (Fig. 9); the actual reflection caused by p, wiil be altered
by p, before the actual p, arrives at the TDR.” Manipulating Egs. (9), (12), and (13) we obtain

V.(l+p=r1. 37)
The incident and reflected voltages from the second discontinuity are V(1 + g)) and V,(1 + p)p,,

respectively. The voltage appearing at the oscilloscope is V,(1 + p}{1 ~ p;). Note that the reflection
coefficient changes sign for travel in the opposite direction. Then,

P measured value 2 .
s = 1-p)=1-p7.

Y true value 1+ ph1 - py) Pi (38)
For a system of three discontinuities

Pr measured value s . .
P, truevalue (1-0i1-p3). 39)

Stripline
Ground

wall—\

Yy 2
! : Figure7. Variable impedance
x stripline,



Figure8. Schematic represen-
tation of variable impedance

stripline.

By induction, the error in the nth discontinuity with #~1 discontinuities between it and the sampling
scope is

p—=tl—mkl-ps)'-‘tl-m.l}. (40)

The relevant computer program is described in Appendix 3. The reflection coefficient at each point
along the direction of pulse propagation is calculated from the quasi-static impedance. The velocity of
propagation is
S (41)

U= e =

Nig

From Egs. (40) and (41), the reflection coefficient vs pulse propagation time is calculated, and the short
pulse behavior of a variable impedance stripline is thus determined.

4.2 Experiment

Experimental results from a variable impedance stripline structure are subsequently compared with
predictions. Again, the short-pulse behavior is determined by time domain reflectometry. A structure
similar to that of Fig. 7 i- fabricated. Actual dimensions along with finite element impedance predictions
are given in Fig. 10. The =% .cture is approximately 30 cm long (2 direction), and the impedance variations
along the = direction can . . .rbitrarily adjusted by varying the conductor-to-ground-plane spacing with a
series of micrometers.

1 Z
Vi———=|—=V, (1+p,) —=V, {(1+p4)x
VR S (140,)
etc.
Vi(l+p ) x=—l  V, (1+py)py—=—
Q1 ‘p1,02 ‘ ‘
*—"V+ (1 +p1) X
Figure 9. Reflection and trans- 0o (-pq)
mission from two time sepa- 2+
rated discontinuities. etc.
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I i | R T I Figure 10. Finite element im-
1201- - pedance predictions used for
transient analysis.

100 - —
80— —
110025
a S ]1.27
"’ h.U
= | 4
N 60
(All dimensions are |
40— in cm)
- s
20 ]
0 L ] 1 | S | 1
0 02 04 06 08 10 12 14 16
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The computer predictions and experimental results of Figs. 11 to 13 are obtained as follows:

1. Measure the conductor-to-ground-plane spacing, which varied along the z direction.

2. Calculate the corresponding impedance using the finite difference formulation of Sec. 3.

3. Determine the reflection coefficient vs signal propagation time using the analysis of Sec. 4.
Compare to results obtained from an HP 7512 TDR.

Good agreement between theory and experiment is noted for all three cases, although the computer
predictions tend to overestimate the reflection coefficient at later times. We attribute this discrepancy to
rapid changes in the conductor-to-ground plane spacing along the : direction that cause unwanted cou-
pling to higher order modes and subsequent invalidation of the assumptions of Sec. 4.

+

400 T T T T T T T | T

300 ’- = = = = = Theoretical -
— Experimental 4

200 —l

Reflection coefficient {mp)

S Figure 11. Transient predic-
Time (ps) © == __.tions and experimental results.
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Figure 12, Transient predic-

< 400 T T
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£ 300|— Experimental -

£ 200 .

8

c 100 -1

2

g 0 -

3 P I B RS S

0 400 800 1200 1400
Time (ps)
'g_ 400 T T T T T T T I T
= 300 =—=—== Theoretical o ]
§ —— Experimental
£ 200 —
-]
o 100 —
L
g o -
< S IS SR N R N
a 400 800 1200 1400

Figure 13. Transient predic-

tions and experimental results. Time (ps)

5. Conclusion

We describe a simple method to predict the transient response of variable impedance stripline to
pulse excitation. This technique uses a finite difference based quasi-static impedance formulation to calcu-
late the reflection coefficient at each point along the direction of pulse propagation; the short pulse
behavior of the structure is thus determined. Excellent correlation between the finite difference impedance
predictions and experimental results is noted. Incorporation of the finite difference impedance calculations
into the transient analysis yields good agreement between predictions and results obtained by time do-

main reflectometry (TDR).

12
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Appendix 1

FINITE DIFFERENCE PROGRAM (MICROSOFT FORTRAN) TO CALCULATE
IMPEDANCE OF STRIFLINE SURROUNDED ON ALL SIDES BY GROUND

FPLANES. WRITTEN BY GLEN MCWRIGHT, AUGUST 1984.
INTEGER UL1(10),ULZ(10),UR1(10),UR2(10) ,LL1 (1) ,LL2(10)
INTEGER LR1{10) LRI (10),Y(10),Z(10) 4J, K, N(10) yA,M
INTEGER IUL1,ILL1,IURZ,E,R,N8,YR,URID,Z0,UR2E,LLIE
REAL U(500,101),AV51,51,52,83, IMF
INFUT NUMEER OF CASES (MAX OF 999)
READ (%,3) B
FORMAT (I)
DO 8 M=1,R
INPUT COORDINATES OF CENTER CONDUCTOR, GROUND FLANES, AND
NUMBER OF ITERATIONS
READ (%,5) UL1 (M) UL2 (M) (URL (M) JURS (M) (L1 (M) JLLE (M),
XLR1L (M) JLR2 (M) oY (M) ¢ Z (M) (N (M)
FORMAT (10I%,14)
CONTINUE
SET POTENTIAL TO ZERO THROUGHOUT STRUCTURE
DU 400 0=1,E
DO 20 J=1,Y(D)
DO 10 K=1,Z ()
U (I, ) =0,
CONTINUE
CONT INUE
SET POTENTIAL TO UNITY ON CENTER CONDUCTOR
DO 40 J=UL1 (&) ,LL1¢)
DD 30 K= ULZ(R),URZ (D)
UI K =1.
CONT INUE
CONT INUE

CALCULATE INITIAL GUESSES FDR FPOTENTIAL THROUGHOUT STRUCTURE

DD 60 J=LL1(E)Y+1,Y(@)~-1
DD SO K=1,LRZ(®M)

UGIakD = 1.%(Y(R)~J) /(Y (R)~-LL1())
CONTINUE

CONTINUE

DD 80 J=2,UL1(Q)-1

DO 70 K=1,UR2(Q)

U(J ) =1.%(J-1) /(UL @ ~1)
CONTINUE

CONTINUE

DO 100 J=2,Y @ -1

DO 90 K=URZ@)+1,Z()~-1
AVEL= 1.%(Z) =)/ (Z (@) -LR2 (D))
U{d, )= AVGLIXU(J,LR2())
CONTINUE

CONTINUE

NE=N (&)

YR=Y ()

UR18=UR1 (&)

URZ=UR2 (&)

28=Z ()

LL1@=LL1 (@)

14



BEGIN RELAXATION LOOF
DO 140 A=1,N&
DO 110 J=2,UR1G-1
U{J.1)= 025k (2. %xUJ, ) +UI~1,1)+U(I+1,1))
110 CDNTINUE
DO 115 J=LL1G+1,YE-1
UJ, 1)= 0.25% (2. %UI, ) +UI~-1, 1)+U(J+1,1))
115 CONTINUE
DO 120 kK=2,UR20
DO 117 J=2,UR1Q-1
UG, k) =0, 25% (U(J~1, KD +U(J+1,K) +U(I  K=1) +U (T K+1) )
117 CONTINUE
DO 119 J=LL1@+1,Y0~1
UGT B = Q25K (U (T-1  K) +U(T+1, K) +U (T K=Y +U T K+1))
119 CONTINUE
120 CONTINUE
DO 1735 K= UR2Q+1,Z0~1
DO 130 J=2,Y.~-1
UCT k)= O.29X U (J=-1 ) +U(I+1 K) +U (T R-1)+U (T K+1))
130 CONTINUE
135 CONTINUE
140 CONTINUE
WRITE (%,150) UL1D) UL2(@) URL(Q) ,UR2(EH ZLLIA) LLE(E)
*¥LR1 Q) , LF\"‘(G!) Y(U).Z(L') N(R)
150 FUF\MQT (1%, 111;:-)
DETERMINE GAUSSIAN SURFACE OF INTEGRATION
IULLI= UL1{)~ (LI +Y@))/2~LL1(B))
ILL1= (LL1I(CHO+Y (D)) /2
S IURZ= (LRI HZ(@)) /2
CALCULATE CHARGE ALONG EACH SEGMENT OF GAUSSIAN SURFACE
Fi=0.
DD 250 K=2, IURDZ~1
Sl= S1+0.9% (U(ILL1~1,E)~UCILLI+1,E))
280 CONTINUE
Sl= O, 2% (UCILL1I-1, TURR2) ~U(ILLT+1, TUR2)) +51
B|2=0,
DO 270 JI=IUidsy Tit 11
B2= S2+0.5% (U(J, TUR2~1)-U(J, IUR2+1))
270 E‘UNTINUE
Q. 25X (UCILLYL, TUR2-1)-UCILLY, IUF\”+1))+
*U...._n*(U(IULl TURZ—1)=UCIULY, IURS+1) ) +8
S3=0,
DO 220 K=2, IURZ-1
BE=8T+0. Sk (U (IULL1+1 ED -U(IUL1~1,K))
290 CONTINUE
S3=0,25% (U(IUL1+1, TUR2)-U(IUL1~1, IURS) }+83
CALCULATE TOTAL CHARGE
CH= 2, X (S1+82+83)+0. . Sx{(U(TUL1+1, 1) ~-U(IUL1I-1,1))+
KOLSR(UICILE1-1,1)~-UCILL1+1, 1))
IMF=377./CH
WRITE (%,300) IMF
300 FORMAT (1X.F8.95)
40¢ CONTINUE
STOF
EMD

15



Appendix 2

Computer input for finite element calculations of Fig. 6. mesh size, h = 0.1 cm.

S = 0.3 cm 095001095011098001098011101021999
5 =04 094001094011097001097011101021999
S=05 093001093011096001096011101021999
S =106 092001092011095001095011101021999
S =07 091001091011094001094011101021999
S =08 090001090011093001093011101021999
5 =109 089001089011092001092011101021999
S =10 088001088011091001091011101021999
5 =14 084001084011087001087011101021999
S=18 080001080011083001083011101021999
S =24 074001074011077001077011101021999
S =230 068001068011071001071011101021999

S =36 162001162011165001165011201021999

16
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Appendix 3

FROGRAM (MICROSOFT FORTRAN) TO CALCULATE TRANSIENT
RESFONSE OF STRIFLINE TO PULSE EXCITATION. WRITTEN
BY GLEN MCWRIGHT, NOVEMBER 1984.

INVEGER A.B,C,D.E,F,B

REAL Z(50),F(S0),PR(S0), TDR(50) ,FF(50)
INPUT NUMBER OF IMFEDANCE STEFS

READ (%,5) A

FORMAT (I3)

DO 10 B=1,6

INFUT IMPEDANCE

READ (%,8) Z(R)

FORMAT (F7.3)

CONT INUE

DO 20 C=1,A-1

CALCULATE REFLECTION COEFFICIENT

F(C)= (Z(C+1)=2(C))/ (Z(D)+Z(C+1))

CONT INUE

CALCULATE REDUCED REFLECTION COEFFICIENT
FR{D = (1.~(R{1YAR(1D))

DO 30 D=3,A~1

FR(D)= (1.=(P{D-1)%F(D~1)))%PR(D~1)
CONTINUE

PRI =P (1)

DO 40 B=2,A-1

EF(B3) =PR(G) ¥F (&)

CONT INUE

TDR (1) =FF (1)

DO S5O E=2,A-1

TDR{E)=TDR(E-1) +FF(E)

CONTINUE

FRINT REDUCED REFLECTION COEFFICIENT AT EACH IMFEDANCE STEP

DD &0 F=1,A~1
WRITE (%,55) TDR(F)
FORMAT (1X,F8.5)
CONTINUE

STOP

END
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