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EQUATION OF STATE OF STRONGLY COUPLED PASMA MIXTURES* 

Hugh E. DeWitt 

U n i v e r s i t y of C a l i f o r n i a 

Lawrence Livermore Nat iona l Labora to ry 

Livermore, CA 94 550 

• Thermodynamic p r o p e r t i e s of s t rong ly coupled (high d e n s i t y ) 
p l a smas of mix tu re s of l i g h t elements have been ob ta ined by 
Monte C a r l o s i m u l a t i o n s . For an assumed uniform charge 
background t h e e q u a t i o n of s t a t e of i o n i c mixtures i s a 
s i m p l e e x t e n s i o n of t h e one-component plasr.ia EOS. More 
r e a l i s t i c e l e c t r o n s c r e e n i n g e f f e c t s a r e t r e a t e d in l i n e a r 
r e s p o n s e theory and wi th an a p p r o p r i a t e e l e c t r o n d i e l e c t r i c 
f u n c t i o n . R e s u l t s have been obta ined for the ion ic p a i r 
d i s t r i b u t i o n f u n c t i o n s , and for the e l e c t r i c mic ro f i e ld 
d i s t r i b u t i o n . 

I . INTRODUCTION 

The pu rpose of t h i s paper i s t o give a s h o r t summary of c u r r e n t 

unde r s t and ing of the thermodynamic p r o p e r t i e s of s t r o n g l y coupled Coulombic 

systems and a few r e c e n t r e s u l t s . The s t a t e of m a t t e r descr ibed by t h e term 

' s t r o n g l y coup led plasma ' i s c h a r a c t e r i s e d as a p a r t i a l l y or f u l l y i o n i z e d 

system in which t h e thermodynamic p r o p e r t i e s a r e l a r g e l y dominated by s t r o n g 

c o r r e l a t i o n s induced by Coulomb i n t e r a c t i o n s among the i o n s . S t r o n g l y coupled 

plasmas i n c l u d e t h e p a r t i a l l y ion ized plasmas in magneto-hydrodynamic 

g e n e r a t o r s , e x p l o d i n g wi re expe r imen t s , l a s e r - f u s i o n compression e x p e r i m e n t s , 

l i q u i d m e t a l s , i n t e r i o r s of l a r g e gaseous p l a n e t s , many s t e l l a r i n t e r i o r s , 

white dwarf s t a r s and neu t ron s t a r c r u s t s . For a more complete review of t h e 

l a r g e body of r e s e a r c h in t h i s a r ea of phys ics d u r i n g the p a s t two decades the 

reader i s r e f e r r e d to e x c e l l e n t review a r t i c l e s by Baus and Hansen and by 
T U- 2 

Ichimaru. 

*Work performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under contract #w-7405-Eng-48. 
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The significant thermodynamic properties of these systems are largely 
determined by the Coulomb interactions among ions. The Coulomb potential will 
be modified by bound electron cores in the case of partially ionized plasmas 
and in general by the screening effect of the free electrons. Since the 
nuclear masses of the ions are large, the ion motion is, to a large extent, 
classical in most strongly-coupled plasmas. By contrast, the small mass of 
the electrons leads to the onset of Fermi degeneracy for the electrons at 
sufficiently high density so that the electron description is usually quantum 
mechanical. Since the electron Fermi energy is normally far larger than the 
average ion kinetic ene-gy, kT, the electrons often become somewhat decoupled 
from the ions. The role of the electrons is to provide sufficently high 
pressure due to Fermi degeneracy to prevent the plasma from collapsing and to 
provide negative charge to neutralize the ions. Hence, a strongly coupled 
plasma may be regarded as a two-fluid mixture: a fluid of classical positive 
charges moving in the neutralizing electron fluid. The two fluids interact 
with each other mainly by means of the electron screening effect due to 
accumulation of fast moving electrons around each ion. Most of the 
computations of thermodynamic properties to date have made the additional 
approximation of regarding the electrons as a continuous fluid so that 
classical statistical-mechanical methods may be used for calculation of the 
ion-ion correlations. These methods use brute force numerical simulation of a 
few hundred ions by Monte Carlo or molecular dynamics procedures, or with 
appropriate integral equations from liquid state theory usually various forms 
of the hypernetted chain (HNC) equation. 

Strongly coupled plasmas are mainly characterized by the classical 
Coulomb coupling parameter: 

* 2 2 

where Z* is nuclear charge in the case of bare nucleus or the effective ion ic 
charge in the case of a p a r t i a l l y ionized plasma, a i s the ion sphere r a d i u s , 
and p. = N./V i s the ion number densi ty . The concept of Debye length i s 
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not normally useful for descr ipt ion of a strongly coupled plasma. Electron 
screening for degenerate e lec t rons requires a second parameter: 

r s = V a B <2> 
- V 3 

a e = ( r P e j 

where a i s the e l y t r o n ion sphere radius (also called the Wigner-Seitz 
radius) and p = Z*p.. For ionic mixtures the parameter l i s t wi l l 
require the charge number of each ionic species and the chemical composition. 
For p a r t i a l l y ionized plasmas addit ional parameters will be required for 
charac ter iz ing the bound e lec t rons forming the ionic cores. 

A summary of strongly coupled plasma propert ies for various poss ib le 
systems could be given in terms of the following sequence of complexity: 

1) C lass i ca l Point Ions in a Uniform Background (OCP) . This system has 
been the subject of an enormous amount of numerical and ana ly t i ca l 
s tudy. As a simple mathematical model i t plays the same ro le in 
s t rongly coupled plasma physics as the hypothetical hard-sphere 
f lu id plays in the theory of neutral l iquids such as l iqu id argon. 
The OCP is approximated in nature in only extreme density 
astronomical ob jec t s , white dwarf s t a r s and neutron s t a r s . 

2) Mixtures of Point Ions in a Uniform Background. This i s e s sen t i a l l y 
the OCP but with mixture of different nuclear charges. Simulations 
on th i s system give the means of t es t ing simple mixing r u l e s . 

3) Point Ions in a Responding Background. In white dwarf s t a r s the 
electron Fermi energy i s r e l a t i v i s t i c and so large t ha t the elecrons 
are well approximated by a uniform background. At lower dens i t i e s 
as in l iquid metals the electrons are degenerate but c l u s t e r around 
each ion in a manner that in some cases can be approximated by 
l inear response theory and an appropriate electron d i e l e c t r i c 
function. This descr ipt ion applies , for example, to the i n t e r i o r of 
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the planet Jupiter for which the ionized hydrogen is a strongly 
coupled plasma with :' ^ 30 and r ^ 1. 

4) Partially Ionised Plasmas. Examples are found in magneto-hydro-
dynamic drivers, and laser-fusion experiments. The ion-ion potential 
now deviates signficantly from the Coulomb potential at short 
distances as the ion cores come into contact. Simple forms of the 
effective potentials for various ionization states that reproduce 
known ionic energy levels are available for use in numerical 
simulations and integral equations. The effective ionic charge, 
* Z. = Z. - N. where N. is the number of bound electrons, 
i l l l 

must be obtained first with a suitable ionization equilibrium 
calculation. 

The feature common to all the diverse systems described as strongly 
coupled plasmas is liquid-like behaviour in contrast to a gas-like description 
of weakly coupled plasmas. The strong correlations induced by the Coulomb 
interactions cause the short range order that shows up as oscillations in the 
ion-ion pair distribution function. At extreme densities as possibly in white 
dwarf stars and certainly for neturon star crusts the plasma goes into a 
crystalline state. 

II. THE ONE-COMPONENT PLASMA (OCP) 

Before discussing the mathematical abstraction called the OCP, it is 
useful to note that strongly coupled plasmas have a two-component Hamiltonian 
and that the total internal energy is given by a canonical ensemble average of 
that Hamiltonian: 

E = <H> = <K. + K + U.. + U . + U > l e li ei ee 

| NkT + 4 N E + U 2 5 e F 

(3) 

where N = ZN, z is the electron Fermi energy, and u is the average e F 
Coulombic interaction energy: 
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. N Z . Z . e 2 V e Z. e 2 

i>3 i 3 i , a i B 
(4) 

e 2 
+ V e 

^ n I X - J T n I a<B a 3 

When t h e d i s c r e t e e l e c t r o n s a r e rep laced wi th a uniform background, u 

s i m p l i f i e s g r e a t l y t o : 

2 N Z.Z .e 
U/NkT = —— < y T ^ - 3 r + background > HkT . J . U . - X . I i<3 l 3 

i N r 
" i ^ . TJT=xT f • • • * 

l<3 1 3 

(5) 

= | J x 2 d x ^ (g(x) - l) 
o 

= f (I") 

x = r / a 

where f (F) i n d i c a t e s the func t ion of the s i n g l e parameter F which 

c o m p l e t e l y d e s c r i b e s the thermodynamics of t h e system, in the weakly coupled 

or low d e n s i t y l i m i t t h e energy fuc t ion i s g iven exac t ly by t h e Debye-Huckel 

r e s u l t : 

£(F) = - | ' ~ - , T « 1 (6) 
2 4npX 3 

2 

4 which is also the exact lower bound on the energy. Deviations from the 
Debyo results were first calculated using the cluster expansion for plasmas 
due to Abe. Later it was found that the Abe expansion was embedded in the 
framework of the HNC equation which can now be used to give the function to 
adequate accuracy for T < 1. At approximately F ~ 1, that is. 
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2 2 where the average Coulomb energy of an ion, Z e /a, is approximately kT, 
the total Coulombic energy of the sytem may be divided into two parts: 

U/NkT = (u (P) + U . (P,T))/NkT o tn 

= Ar + gjrj 

where U is a static energy of the OCP fluid that is approximately the 
Madelung energy of a lattice of ions, and U is the thermal energy of the 
ions in this liquid-like system of charges with short range order. The 
constant A in Eq. 7 may be estimated from an elementary approach, the ion 
sphere model, which gives: 

(U/NkT) = - -r-| r (8) 
ion-sphere 10 v ' 

Equation 0 is also the exact Lieb-Narnhofer lower bound on the energy. The 
Madelung constant for the lowest energy Coulomb lattice, the bcc lattice, is 
A, = - 0.895929, which is about .45% above the Lieb-Narnhofer lower bcc 
bound. Presumably the bcc lattice is the true lowest possible energy of the 
OCP in the T > m limit. Most simple theories of the OCP, e.g., the 
ion-sphere model, give A = - 9/10 and the numerical solution of the HNC 
equation comes very close to this value. 

Beginning with the pioneering work of Brush, Sahlin, and Teller in 
1966, the OCP has been studied in detail in the strongly coupled region, V 

> 1, by 'numerical experiments', numerical simulation by means of Monte 
Carlo or molecular dynamics. Readers should consult Refs. 1 and 2 for the 
earlier work. The most recent and most accurate Monte Carlo study was a joint 

9 10 Liverraore and Los Alamos collaboration using Cray computers. ' The total 
interaction energy function, f(F), is shown schematically in Fig. 1 which 
indicates the OCP fluid and OCP solid phases. The actual change in the 
internal energy at the phase transition is quite small, only about .5% of the 
total enegy. The thermal energy of the two phases is shown on Fig. 2 with 
U defined to be the bcc lattice value. At the phase transition, which o 
current data indicates at f = 178, the thermal energy is only 1.5% of the 
total energy so that extremely long and time-consuming Monte Carlo simulations 
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are required to give reasonable accuracy for the fluid state. In the recent 
study we used up to 1024 particles in the simulation and computed the average 
energy from as many as 40 million configurations. The total energies thus 
obtained are believed to be accurate to a few parts in 10 . Hence, the 
thermal energies are believed to be known to about .1%. The question of 
accuracy is complicated by possible N dependence in the simulations, but 
empirically we found that the number dependent correction was 0(F/N) and 
small enough to give a good result for the N -*- m limit. 

An earlier analysis of Monte Carlo simulation data for the OCP 
indicated that the thermal energy, U ./NkT, behaved as a low power of V, 

probably Y ' . DeWitt and Rosenfeld using a variational hard-sphere 
model and the entropy obtained from the virial pressure of the Percus-Yevick 
equaton, found that OCP fluid energy could be expressed in an expansion of 
powers of 1 : 

u/NkT = - JJ r + ( f , 1 / 4 r 1/ 4 - | + ( il, ( I i , V ! ... (9, 

The most exact OCP Monte Carlo data obtained recently is cons is ten t with 
t h i s ana ly t ic form. The f i t to the data i s : 

U/N = - 0.8977 T + 0.9594 T 1 / 4 - 0.8149 
+ o.i896 r~ 1 / 4 + . . . 

The pressure is obtained exactly for the OCP from the virial theorem as: 

fjp/p = j Bu/N (11) 

Equation 10 is the currently best available equation of state for the OCP. It 
is valid for the OCP fluid phase from approximately T = .8 to the freezing 
value of f at approximately 180. It also seems to fit well the small amount 
of Monte Carlo data so far obtained for the metastable OCP fluid for 
temperatures below the freezing temperature, i.e., for F > 180. For the 
OCP solid phase the energy was found to be that of the expected harmonic solid 
with a small anharmonic contribution: 
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Bu/N = ~ 0.895929 T + | + 3225/r 2 + . . . (12) 

The actual freezing value of T i s d i f f i c u l t to locate precisely. The 

procedure used i s to obtain the Helmholtz free enrgy for each phase using Egs. 

10 and 12. Thus, the Helmholtz free energy for the fluid phase is obtained by 

integrat ing Eg. 10: 

BF/N = | (BU(B')/N) ^ + BF(Bn) 
D P i 

/N 
1 

r d3) 
= I ^ s ( r ' ) + e(r.) 

r i 

and the integration constant is obtained by numerical integration from T = 0 
to T = 1. R similar calculation of the Helmholtz free energy of th solid 
phase uses Eq. 12 and a lattice vibration constant for the bcc lattice (see 
Ref. 9). The location of the freezing transition is obtained from the 
crossing point of the fluid and solid free energies. Estimates of the 
freezing value of T obtained this way have ranged from T ~ 125 (Ref. 8) 
to f = 178 i 1 as our best current estimate. 

The pure HNC equation was found in 1974 to be a moderately good 
representation of the OOP but gave an incorrect result for the thermal 
energy. Since the Monte Carlo simulations are very long and expensive, there 
has been considerable challenge to theorists to improve the HNC equation in 
suc!i a manner as to reproduce as accurately as possible the Monte Carlo data. 
The relevant approxiamtions may be seen from the cluster diagrams for the pair 
distribution function and from the Ornstein-Zenicke equation: 

g(r) = exp [-Bu(r) + N(r) - B(r)] 

h(r) H g(r) - 1 = c(r) + pjd3r' c(r)'h (lr~- r^l) (14) 

= c(r) + N(r) 

N(r) is the sum of all convolution diagrams, and B(r) is the sum of the 
so-called bridge diagrams, i.e., those which have no convolutions. The HNC 
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e q u a t i o n i s ob ta ined with B( r ) = 0 . For the OCP, i . e . , the Coulomb p o t e n t i a l , 

8 u ( r ) = T /x . Ng solved t h e e q u a t i o n with an i n t e r a c t i v e method t o 

g r e a t a ccu racy for g ( r ) , and t h e i n t e r a c t i o n energy was ob ta ined t o e i g h t 

f i g u r e a c c u r a c y from Eq. 5 . A comparison of the Monte Car lo r e s u l t s for g ( r ) 

wi th t h e HNC g ( r ) sugges ted an a p p r o p r i a t e form for the br idge graph 

f u n c t i o n . Rosenfeld and A s h c r o f t showed t h a t t h e br idge func t ion for the OCP 

and o t h e r s imple s o l i d s cou ld be wel l approximated by a hard s p h e r e form 
13 ob t a ined from the a n a l y t i c s o l u t i o n of the Percus-Yevick e q u a t i o n . The 

a p p r o p r i a t e v a l u e of the e f f e c t i v e hard sphere r equ i r ed for t h e b r i d g e 

func t ion i s ob ta ined by imposing the requirement of thermodynamic 

c o n s i s t e n c y . We have r e c e n t l y so lved t h i s modified HNC e q u a t i o n , and found 

t h a t t h e g ( r ) r e s u l t s in t h e energy i n t e g r a l ag ree with the Monte C a r l o OCP 

e n e r g i e s t o f i v e f i g u r e s for a l l va lues of T i n the f lu id phase . F i g u r e 

3 shows t h e comparison of t h e modified HNC g ( r ) s o l u t i o n with t h e Monte c a r l o 

g ( r ) for T - 170. There i s s l i g h t d e v i a t i o n from the MC da ta near t h e f i r s t 

peak and t h e f i r s t v a l l e y which i n d i c a t e s t h a t the hard sphere b r i d g e graph i s 

s l i g h t l y i n c o r r e c t . N e v e r t h e l e s s , the modified HNC equat ion i s s u f f i c i e n t l y 

a c c u r a t e t h a t i t can be used for p r a c t i c a l c a l c u l a t i o n s of thermodynamic 

q u a n t i t i e s for o the r s t r o n g l y coupled plasmas in a small f r a c t i o n of t h e t ime 

r e q u i r e d for the Monte C a r l o s i m u l a t i o n s . 

I I I . EQUATION OF STATE OF BINARY IONIC MIXTURES 

The d i s c u s s i o n in t h i s s e c t i o n may be a p p l i e d to any number of d i f f e r e n t 

p o i n t n u c l e a r cha rges i n a responding e l e c t r o n background, bu t for s i m p l i c i t y 

we c o n s i d e r h e r e two nuc l ea r components of charge Z1 and z wi th chemica l 

c o m p o s i t i o n s : 

x i = N i / ( N i + V • x 2 = V N i + V 

The Helmholtz free energy for the mixture may be expressed as a function of a 
number of parameters in the following manner: 

Fj/NkT = f 2 (Z rX l fZ 2,X 2 rr o.E s) (15) 
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where f denotes the free energy function for m ionic components and m 

r = e2/akT (16) 
o 

The problem is to find a simple mixing rule which as far as possible requires 
only a knowledge of f_, the free energy function for the OCP. This is 
possible in the absence of electron screening, i.e., when r = 0, We first 

s 
note that given a free energy function as otate in Eq. 15 that the energy is 
obtained from a temperature derivative: 

3f 
U/NkT = T rp^ (17) 

" o 

and the pressure is obtained by differentiation with respect to volume: 

Pv/»kT - I { r o ^ a _ c | L . } ( 1 8 ) 

o s 

In the absence of electron screening, Eq. 16 reduces to th virial theorem 
result. 

A large amount of numerical simulation data is available from Monte Carlo 
runs done at Livermore and Los Alamos for binary ionic mixtures both with and 
without electron screening. Hansen and his colleagues in Paris have also 
reported extensive results on mixtures. We first note that the ion sphe 
model gives an elementary extension of the OCP reseult, Eq. 8: 

9 5/3 -1/3 (U/NkT) . t = - Tn" Z Z1' i T (19) 
1 mixture 10 o 

where 

Z S = Z l
S
 X ; L + Z 2

S x 2 - (20) 

Our simulations in strong coupling (F >> 1) for a wide variety of 
mixtures and of charge numbers as far apart as Z = 1 and Z = 10 amply 



11 

confirmed t h e c o r r e c t n e s s of t h e ion sphere mixing r u l e for t h e b i n a r y mixture 

f l u i d s t a t i c energy , t h e g e n e r a l i z a t i o n of U in Eq. 7 . AS in t h e OCP c a s e , 

t h e mix tu re thermal ene rgy i s l e s s c e r t a i n . Hansen, et_ a l . sugges t ed the 

' l i n e a r l aw ' as a s u i t a b l e f i t t o t h e i r Monte Ca r lo and HNC m i x t u r e d a t a : 

F / N k T = x f ( Z . 5 / 3 Z 1 / 3 r ) + x f ( Z , 5 / 3 Z l / 3 r ) (21) 
I 1 1 1 o <£ 1 2 o 

where f, i s t he OCP f r e e energy funct ion as obtaned from EQ. 13 ( see Ref. 

1 1 ) . The same mixing r u l e c l e a r l y a p p l i e s t o the i n t e r n a l energy and the 

p r e s s u r e us ing Eqs . 10 and 1 1 . This mixing r u l e f a i r l y we l l p r e d i c t s the 

Monte C a r l o mixture r e s u l t s t h a t have been genera ted to da t e for 

- 5 / 3 - 1 / 3 

z V J z r > i , o 

as might be expected since this rule reproduces the ion—sphere model result. 
It is clear, however, that Eq. 21 cannot be a completely general result for 
mixtures of all degree of coupling since it is incorrect in the weak coupling 
limit for which the Debye-Huckei result is: 

F/NkT = - / 3- (Z2) T 3 / 2 

I 3 o (22) 

Using arguments based on the known lower bounds for the free energy, 
i.e., the Debye results for weak coupling and the Lieb-Narnhofer results for 
strong coupling, Rosenfeld has obtained mixing rule which satisfies both 
T •». 1 6 

l i m i t s : 

I , r Z l / 3 Z 2 Z V 3 , 
F/NkT = ^ {x Z f (- i 5 - 5 r 1 

? x z ° 
z" 

(23) 
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In strong coupling the Rosenfeld mixing rule, Eq. 23, satisfies our available 
Monte Carlo mixture data slightly less well than the linear law, Eq. 21. 
However, the inherent errors in the Honte Carlo data due to limited length of 
the simulations and the number dependence does not make it possible as yet to 
definitely decide whether Eq. 21 is to be preferred over Eq. 23. In the 
intermediate coupling regime, T < 1, Eq. 23 is probably more accurate 
since it tends to the correct limiting result in weak coupling. For 
calculations of the screening enhancement of the thermonuclear reaction rates 
in stellar interiors the Rosenfeld mixing rule is probably more 
appropriate than the linear law. 

For the situation with a respondi.-j background of electtrons the mixture 
probem is made more complicated by the r dependence. The approach taken to 
analyze the Monte Carlo simulations in which the electron background is 
treated as a polarizable fluid described by linear response theory has been to 
assume a model free energy of f-.e form: 

F /NkT = hT + Dl'1/'4 + ClriT + D (24) 
I o o o 

-1/4 (Existing data does not justify the inclusion of a Y term at this 
time.) For the OCP, Eq. 24 would simply be the function f from Eq. 13. In 
general the coefficients A,B,C, and D are treated as functions of the charge 
numbers, the chemical compositions, an r . in linear response theory it is 
easily demonstrated that the screening correcton to the OCP and the binary 
mixture results in a uniform background, Eq, 21 or 23, begins with a linear 
term in r . Initial results for screening corrections to the ior.ized s 
hydrogen in Jupiter and for fully ionized hydrogen-helium mixtures were given 

18 for a large number of simulations from Lvermore in 1976. The Lindhard 
dielectric function was used for the description of electron screening. Our 
more recent Monte Carlo mixture simulations on hydrogen and helium mixtures 

19 used longer runs and values of r up to about 1.5. We found that at 
least for the mixture static energy term, i.e., the coefficient A, that a 
quadratic dependence on r was present. The coefficients of powers of 
T in Eq. 24 were written as: o ^ 
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A = a
1 f x i z i 5 / 3 + X

2
Z 2 / 3 ] + rs l a2 Xl + a 3 X 2 5 + r

S
2 t a2 Xl + a 2 X 2 ] ( 2 5 ) 

B = b^Z^12 + X 2Z 2
5 / U] + r s[b 2 X l + b 3X 2] (26) 

C " C l + rs < X 1 C
2
 + V 3

] ( 2 7 ) 

D = d 1 - C ; LX 2 2.n(Z 2/Z l) 5 / 3 + rsIcl3X1 + d ^ ] (28) 

The unscreened coefficients in Eqs. 25 to 28 were taken from a fit to OCP 
data, and the powers of Z.. and Z are those obtained from the ion-sphere 
model and the linear law, Eq. 21. With these first four coefficients 
determined, we still had 10 remaining coefficients to fit to our Monte Carlo 
mixture energy and pressure data. This was done with a least-squares 
procedure. For each run we calculated the model value of the interaction 
energy and the pressure (from Eqs. 17 and 18) , and then computed the residuals 
between the model values and the Monte Carlo values. The residuals were 
squared, summed, and the 10 parameters were adjusted until the sum was 
minimixed. The results are shown in Table I. 

TABLE I. Values of'coefficients in the model interaction free energy, Eq. 24. 

ad x = 0.89461 

b = 3.26591 
c = -0.50123 
d = -2.81630 

The r dependence in this free energy model is more general than the 
s 2 1976 model because of the presence of te r terms in A(r ). This is s s 

essential to properly fit the Monte Carlo data for the pressure. Note that 
a and a are small compared with a. and a , the coefficients for the 
term linear in r . The primary effect of the electron screening is to s 

a 2 = 0.04663 a = 0 .46312 
a, = -0.00479 4 a 5 = - 0 . 0 4 9 0 9 

b 2 = - 1 . 7 4 4 1 b 3 = 2 .71013 

c = -0.17267 c 3 = 1.47087 
d 3 = 1.13216 d, = - 2 . 3 1 3 5 7 4 
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increase the magnitude of A(r ) . since A(r ) is negative as a consequence 
of the e3ectron background, the 'static' energy of the dense plasmas is 
lowered significantly for r ~ 1. The physical reason for this lowered 
fluid energy is the increased density of free electrons clustered around each 
ionic nucleus. The pressure change due to screening is very small since the 
pressure is little affected by the screening cloud of electrons surrounding 
each ion. Indeed, since r T in the free energy model is independent 
of density, it is apparent that this terra will give no contribution to the 
pressure. Consequently the actual change of pressure due to electron 
screening is largel 
small and positive. 

2 
s c r e e n i n g i s l a r g e l y determined by t h e r t e rms . T h i s p r e s s u r e change i s 

IV. ELECTRIC MICROFIELD IN STRONGLY COUPLED PLASMAS 

The Monte C a r l o code used t o s i m u l a t e the energy and p r e s s u r e of s t r o n g l y 

coupled plasmas con a l s o gene ra t e the e l e c t r i c m i c r o f i e l d d i s t r i b u t i o n around 

a given ion due t o ne ighbor ing i o n s . Such m i c r o f i e l d s a r e needed for the 

c a l c u l a t i o n of s p e c t r a l l i n e shapes due co the S ta rk e f f e c t for high z 

t empera tu re l a s e r - i n d u c e d p lasmas . For t empera tu res in the hundreds of eV 

r a n g e , h i g h l y s t r i p p e d neon and argon plasmas can be fproduced in which t h e 

e e l e c t r o n s a r e n o n - d e g e n e r a t e . The i o n - i o n p o t e n t i a l in t h i s s i t u t a t i o n can 

be de s c r i be d w i th a screened Coulomb form and a Debye l e n g t h due to e l e c t r o n s : 

„ , * ( 2 e ) 2 - r A . , kT %

1 / 2 

u i i ( r ) = —r~e D e ' x o e = < — — » 4lle n e 

n i s the e lec t ron number density and Z is the ef fect ive charge of the e 3 

p a r t i a l l y s t r ipped ion. TO compute the e l ec t r i c raicrofield for plasmas in 
these conditons the Monte Carlo code was modified s l i g h t l y by inserting the 
high temperature Debye electron d i e l e c t r i c function: 

e(k) = 1 + l/(kX ) 2 (30) 

Honte Carlo runs with 50 charges an 200,000 configurations were sufficient to 
give accurate microfield sitrbutions along with the usual u/NkT, PV/NkT and 
g(r) results. 
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Detailed comparisons of the MOnte Carlo microfields with recent 
microfield theories are given in a recent report.20 Figure 4 shows the 
Monte Carlo microfield for hydrogenic neon with T = 4.32. The detailed 
many-body treatment of Tighe and Hooper 2 1 and also the simpler Independent 
Perturber (IP) Model compare favorably with th Monte Carlo microfield which 
may be regarded as a 'numerical experimental result'. This kind of comparison 
indicates that the numerical simulation of microfields plays a very useful 
role in providing a guide for developing better theoretical calculations of 
microfield distributions for future experiments. 
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Figure Captions 

FIG. 1 Schematic representat ion of the OCP Coulombic interaction erngy for 
the fludid and solid phases. The two curves are nearly s t r a i g h t 
l i n e s because of th dominance of the s t a t i c energy. 

FIG. 2 Thermal energy for both the fluid and sol id OCP phases. The er ror 
bars are hardly v i s i b l e a t th is sca le . 

FIG. 3 g( r ) for the OCP f lu i c a t T = 170. Solid l ine is the so lu t ion of 
the modified HNC equation, and x ' s are representative Monte Carlo 
va lues . 

FIG. 4 A comparison of the microfield d i s t r ibu t ions calculated with IP and 
TH methods with Monte Carlo resu l t s (MC) . All ionic consis tuents 
car ry a charge of +9. The dimensionless field variable i s scaled in 
terms of the electron sphere radius . 
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