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LBL—27012 
ANGULAR - MOMENTUM - BEARING MODES IN FISSION „ „ . - . „ „ 

Luciano G. Moretto, Graham F. Peaslee, and Gordon J. Wozniak 

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., 
Berkeley, CA 94720 

The angular-momentum-bearing degrees of freedom involved in the fission process are 
identified and their influence on experimental observables is discussed. The excitation of 
these modes is treated in the "thermal" lin»* -"id th . resulting distributions of observables 
are calculated. Experiments demonstnvr.g tin: ole of these modes are presented and 
discussed. 

1. INTRODUCTION 
The appreciation of the role of angular momentum in fission can be described as a punctuated 

evolution of ideas, some indigenous to the field itself, some borrowed from allied disciplines. The 
discovery of a critical stage in fission, involving the passage of the system through a deformed 
configuration (saddle point) by the negotiation of a barrier, brought to light the associated "rigid" 
rotational modes. The application of angular momentum to one such mode, through rotation about 
an axis perpendicular to the elongation axis, led to the conclusion that fission barriers would 
decrease and eventually vanish with increasing angular momentum. Quantitative predictions of 
such a dependence were obtained within the framework of the liquid drop model1. 

The analogy of the axially symmetric nucleus at the saddle point with deformed ground state 
nuclei suggested a "rotational" spectroscopy in the saddle-point transition state. The assumption of 
conservation of the K quantum number from saddle to scission prompted attempts to study this 
spectroscopy by means of fission-fragment angular distributions2. Evidence for discrete rotational 
bands in the transition state of nuclei in the U - Th region was reported in low-energy fission 
induced by neutrons3, gammas4, etc. At higher excitation energies, the introduction of the 
statistical distribution in K quantum numbers and the connection of its variance (K 0

2) to the nuclear 
temperature and to the principal moments of inertia at the saddle point, led to the classical theory of 
fission-fragment angular distributions as developed by Halpem and Strutinski5. 

So much about the "rigid" rotor degrees of freedom. The possibility that other intrinsic angular-
momentum-bearing modes could be active in the fission process surfaced with the early observation 
of a sizeable amount of angular momentum (and aligned, at that!) in fission fragments from the 
spontaneous fission of ^Cf 6. The magnitude of the fragment angular momentum (-7fl / fragment) 
despite the 0* ground state of the parent suggested a prescission origin and thus the involvement of 
non-rigid modes. A listing of such modes at the saddle point can be found in the thesis work of 
Nix7, but their major involvement with the fragment angular momentum had to wait for the advent 
of heavy ion reactions. 
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The lesson of heavy ion reactions was both extensive and incisive. Deeply inelastic reactions 
showed that the entrance-channel orbital angular momentum could be dissipated in a continuous 
fashion all the way down to the rigid rotation limit 8 , 9. This implied the existence of an intrinsic 
mode coupling the orbital angular momentum to the spins of both fragments. The "wriggling" 
mode, described below, satisfies this requirement. Further studies of the magnitude of the fragment 
spins by means of y-ray multiplicity measurements suggested that the fragments had angular 
momenta in excess of what was expected from rigid rotation10. The explanation was found in the 
(diffusive or thermal) excitation of additional intrinsic angular-momentum-bearing modes. 

A beautiful confirmation of the excitation of these modes came from the misalignment of the 
fragment spins. The key experiments were the measurements of fragment y-ray angular 
distributions1 1*1 0, sequential particle evaporation2 1"2 4, and sequential-fission-fragment angular 
distributions 2 5" 3 0. Such a misalignment was shown to arise from the coupling of the aligned 
angular momentum component associated with rigid rotation to that associated with the random 
fluctuations of those intrinsic modes, whose angular momentum is perpendicular to the rigid 
rotation component31. 

A framework for a global interpretation of these phenomena was offered in the work of Moretto 
and Schmitt 3 1 ' 3 2, where the angular-momentum-bearing modes in a symmetric dinuclear system 
were illustrated, and their statistical mechanics worked out. There are five intrinsic modes: two 
wriggling modes, two bending modes, and one twisting mode, plus the tilting mode arising from 
the angle between the total angular momentum and the symmetry axis. On this basis, a large 
amount of data from heavy ion reactions found a rational and systematic explanation. 

Another degree of freedom that, while unable to carry angular momentum, is deeply affected by 
it, and requires some attention, is the mass-asymmetry degree of freedom. Recently this degree of 
freedom has come into the limelight because of its dominant role in the compound nucleus emission 
of complex fragments 3 3 , 3 4. This process has been described as an asymmetric mode of decay 
controlled by an associated conditional barrier3 3. The saddle point in this description is a 
conditional saddle, because the mass asymmetry is assumed to be frozen. The locus of these 
conditional barriers along the mass asymmetry mode coordinate is called the ridge line. Since the 
seminal work of Businaro and Gallone35, it was appreciated that the topology of the ridge line 
changes from low x values to large x values, the mass asymmetry mode evolving from stability to 
instability as the fissility parameter x is decreased across the "Businaro-Gallone" point 
(xB C=0.396). The Businaro-Gallone point was also found to decrease with increasing angular 
momentum1. As a consequence, drastic changes are produced in the fragment mass distributions as 
the angular momentum is increased. Furthermore, the mass asymmetry parameter strongly affects 
the nature and importance of the intrinsic angular-momentum-bearing modes. In particular, the 
tilting mode becomes very soft with increasing mass asymmetry. A thorough study of the mass 
asymmetry dependence of these modes has been carried out by Schmitt and Pacheco3 6, as a 
generalization of the theory presented by Moreno and Schmitt,31 for symmetric dinuclear systems. 

Finally, in recent times there has been a revisitation of the rigid rotation modes in the study of 
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fission-fragment angular distributions associated with heavy-ion-induced fission 3 7 ' 4 6 . These 
studies have demonstrated that the K quantum number may not be frozen at the saddle point after 
all, but may be determined at scission, or somewhere in between. This opens up a problem that has 
never been truly solved, namely whether this and the other angular-momentum-bcaring modes arc 
thermally or dynamically excited, and, if they are thermally excited, whether the statistical 
equilibrium relevant for the description of the various observables is at the saddle or at the scission 
point. A great deal of information bearing on this problem is about to be released from the study of 
the fission fragment spins obtained by means of the latest, most powerful techniques made available 
by high spin spectroscopy47. So, despite the large amount of work performed in the first half 
century of fission, there seems to be enough work left for a second half century. 

2. THE DINUCLEAR SYSTEM: ITS DEGREES OF FREEDOM AND STATISTICAL 
MECHANICS 
If the nucleus at the saddle point (or for that matter, at the scission point) is considered as a 

single rigid body, it can be characterized by a total of six degrees of freedom: three translational 
modes associated with the motion of the center of mass, and three rotational modes. Furthermore, 
if the nucleus is axially symmetric, as it is commonly assumed, the tluee rotational degrees of 
freedom can be reduced to a rotation about the symmetry axis, plus a (doubly degenerate) rotation 
about an axis perpendicular to the symmetry axis. This requires that the component K of the 
angular momentum along 'lie symmetry axis be a constant of motion. Thus, the angle between the 
angular momentum and the symmetry axis is conserved; because of its relevance, such an angle is 
called the "tilting" angle. 

The experimental measurements of fragment angular momentum 1 1" 3 0, and its alignment, 
indicate the relaxation of the rigid body condition, and require the introduction of intrinsic angular-
momentum-bearing modes characteristic of a dinuclear system. These modes are easily visualized 
for a symmetric dinuclear system constituted by two equal spheres in contact 3 1, although the 
generalization to an asymmetric system of two touching, unequal spheroids is rather 
straightforward. 

The enumeration of the degrees of freedom of a dinuclear system is immediate: two rigid bodies 
require 6+6=12 degrees of freedom. The condition of contact removes one, which leaves eleven. 
Of these, three are translational degrees of freedom, so there arc eight angular-momcntum-bcaring 
modes left. Of these, three are associated with the "rigid" rotation of the dinuclear system. The 
remaining five degrees of freedom are "intrinsic" angular-momentum-bearing modes. These modes 
are associated with rotations of one nucleus with respect to the other in such a way that the 
whole system need not carry a net amount of angular momentum. The five normal modes (plus the 
tilling mode) are illustrated in figure 1. They are: two degenerate "bending" modes, two degenerate 
"wriggling" modes and one "twisting" mode. These names have been chosen to correspond with 
the normal modes at the saddle point as described by Nix7, although the correspondence is not 
completely obvious. 
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Figure 1. (Left) Schematic illustrating the twisting and the doubly degenerate bending modes 
for a two-equal-spheres model. In each case the spin vectors of the fragments (symbolized by the 
shorter arrows) are of equal length but point in opposite directions. (Right) Schematic illustrating 
the tilting mode and the doubly degenerate wriggling modes for a two-equal-spheres model. The 
long arrows originating at the point of tangency of the two spheres represents the orbital angular 
momentum vectors31. 

The bending mode consists in the rotation of one sphere about an axis perpendicular to the 
symmetry axis, and in the corresponding counterrotation of the other sphere. This mode is doubly 
degenerate. 

The twisting mode consists in the rotation of one sphere about the symmetry axis, and in the 
corresponding counterrotation of the other sphere. This mode is not degenerate. 

The wriggling mode is somewhat more complicated. Both spheres corotate about parallel axes 
perpendicular to the symmetry axis, and simultaneously counterrevoive about each other about an 
axis parallel to the rotation axes. This mode is doubly degenerate. 

In the bending and twisting modes, the spin of one sphere is compensated by that of the other, 
so that the net angular momentum is always zero. In the wriggling modes, the spins of the two 
spheres are equal and parallel, and they are exactly compensated by the orbital angular momentum 
associated with the revolution which is antiparallel to the fragment spins. Therefore, the excitation 
of the bending and twisting modes produces fragment spins which are antiparallel, while the 
excitation of the wriggling (and tilting) modes produces fragment spins that are parallel. 
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2.1. Statistical Coupling Between Orbital and Intrinsic Angular Momenta: The Wriggling Modes 
As we have mentioned above, the coupling between orbital and intrinsic angular momentum is 

mediated by one wriggling mode. This is illustrated in figure 2, where it is shown that the addition 
of orbital motion to an excited wriggling mode leads to a decrease of the orbital and to an increase of 
the intrinsic angular momentum. 

CO + C& 
Figure 2. Schematic showing how the addition of orbital angular momentum (symbolized by 

the long arrow) to an excited wriggling mode leads to a decrease of the orbital angular momentum 
and an increase of the intrinsic angular momentum. 

If the total angular momentum is I and the fragment spin is s, the energy for an arbitrary partition 
between orbital and intrinsic angular momentum is: 

E(s) ( l - 2 s r 

2nr2 

2s_ 
23 V 

2 21 T 
s - s + — - (1) 

Hr 2HT* 

The first term is the orbital and the second is the intrinsic rotational energy, 3 being the moment of 
inertia of one of the two equal spheres. The partition function is: 

•E(s)/T ^ / j i n r ' S T I 2 

- ! • 
ds 

23 + jir* 
T e x P 2T (23 + nr*) 

The average spin for both fragments is given by: 
-E(s)fT 

23 iK ds 
7 1 - 2 1 R . 

|ir* + 23 

This is, of course, the rigid rotation limit. The second moment s 2 is given by: 

, - 2nr 2 3T 4 I 2 3 2 

4s \ix + 23 (nr* + 23)* 

From this we obtain the standard deviation: 

4<,= . i f i ! L L , J ° 5 T 
fir 23 

(2) 

(3) 

(4) 

(5) 
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The result in (3) is temperature independent, as one should expect from the fact that (1) is quadratic 
in s. This result could be obtained by solving the equation: 

*T-°- ( 6 ) 

This result corresponds to the mechanical limit of rigid rotation when the orbital and the intrinsic 
angular velocities are matched. 

The result in (5) could have been obtained also by appreciating that the thermal fluctuations 
about the average in (3) are controlled by the second derivative of (1) at the minimum, or: 

4 as

2 = 4 T/b (7) 

where: 

9"E 
^ 

(8) 

s 

In the case of I • 0, the fragments are still going to acquire angular momentum as shown by (4): 

s " - ^ - T - T T 3 7 ' ( 9 ) 

*• ur* + 23 ' 
Since there are two wriggling modes, the mean square angular momentum of each fragment is: 

?-2?-J^£L -.* ST. (10) 
Hr* + 23 ' 

2.2. The Bending and Twisting Modes 
These three degrees of freedom are illustrated in figure 1. They are degenerate in our 

two-equal-sphere model. A splitting of the degeneracy could easily occur in the case of fragment 
deformation. We shall not consider this important possibility at the moment, although it is 
completely trivial, because of the arbitrariness in the choice of deformation. 

The partition function for these three degenerate modes can be written as: 

Z « f R 2 e " d R . l n Z - A - ^ l n — (11) 
J 2 3T 

from which : 

R . 2 . / 2 I , R"2 . - - i ! ! i - i3T (12) 
7t '[Fj 

2 

or 1/2 3T per degree of freedom. 
Notice that R is the angular momentum of each fragment and that, for each mode, the angular 

momenta of the two fragments cancel out pairwise. Furthermore, for each fragment the resulting 
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angular momentum is randomly oriented. It is worth stressing again that, as for the wriggling 
modes, this angular momentum can exist even when the total angular momentum is zero because of 
the pairwise cancellation mentioned above. 

Ai this point the (frequently asked) question may arise: "The bending and twisting modes in the 
two sphere model have no restoring force. Wouldn't the results be different if we were to introduce 
them?" The answer is no. Neglecting the degeneracy for the moment, the Hamiltonian would look 
like: 

,2 
(13) H - i L + i k t o 2 

3 2 

where co is the conjugate angle and k is the stiffness. The partition function thus factors the kinetic 
and potential energy components: 

3T 
k a 2 

2T Z - J e 0 T dR fe " dco . 

As a consequence, any moment of R is strictly independent of the value of the stiffness k. 

(14) 

2.3. The Tilting Mode 
This mode is unlike the other five "intrinsic" modes in the sense that it cannot confer angular 

momentum to the fragments, while keeping the total angular momentum equal to zero. However, 
we treat its statistical mechanics here because of its importance. 

In their most stable configuration, the two touching fragments are aligned with their common 
axis perpendicular to the total angular momentum. Because of thermal fluctuations, this condition 
can be relaxed. If we now assume that the two fragments are rigidly attached one to the other, the 
energy is given by: 

2 2 
r - K * 

i - 2 
+ -*— = + K' 

23 ± 23 „ 2 3 ± 2 3 e f f 

(15) 

where 3j_ * 2 3 + n r , 5||= 2 3 and3 e f f - '= 3 | | " ] - 3j_ ; K is the projection of the angular 

momentum I along the line of csnters. The partition function is: 

77 exp 
I 

23 T T^erf 
I 

7^7 (16) 

from which: 

K" • e l f T - W 2 3 * 7 

T ; 

I 2 

exp 23 c f f T 

I 
erf V 2 3 * 7 

(17) 
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For small I we have: 
—" 1 2 

while for large I we have: 
""5 14 
K - 3 e f f T - ± - 3 T . 

The total fragment spin is given by: 

*-J** •*[*-*] 
and the averaged sauare quantity is: 

±l2-49 49 4? - K2+ ± l 2 - ±K2 - £K2+ *12 

49 49 
and for large I: 

4? 7 49 

(18) 

(19) 

(20) 

(21) 

(22) 

2.4. Summary and Generalization to Asymmetric Oinuclear Systems 
The overall statistical treatment of the angular-momentum-bearing modes allows us to describe 

the angular momentum distribution of one of the two fragments as a tridimensional Gaussian 
distribution in the angular momentum components Ix, Iy, lz: 

P ( I ) •< exp -
(K-Tf 

2c2 2°S la* 

where lz is the rigid rotation component: 

* * -
3 : I 

nr+ 23; 
for equal touching spheres, and 

* ' 

l l l l 
= - L 3 T + -2-3T - ^ 3 T 2 10 5 

o 2 a 2

 A + c2 . = 1ST + -£-3T - £3T 
"bend "wrig 2 14 7 

1 o 2 = c 2 . + a 2 = - 3 T 
z bend wrig 2 

£ 3 T - « 3 T . 

(23) 

(24) 

(25) 

(26) 

(27) 

In the case of an asymmetric system, the results are qualitatively similar36. The three variances in 
dimensioniess units are shown in figure 3 as a function of mass asymmetry for two tciching 
spheres. The most remarkable feature of this figure is the rapid increase of the variance c^2 with 
increasing asymmetry. This effect is almost exclusively due to the softening of the tilting mode. 
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As one of the two spheres becomes smaller, the 
rotational energy increase associated with an 
increasing projection K becomes smaller. The 
corresponding K 0

2 increase for the very asym­
metric configurations associated with the 
emission of an alpha particle, a proton, or a 
neutron is responsible for the small anisotropy in 
the angular distributions of these particles in 
comparison with those for symmetric fission. 

3. ANGULAR MOMENTUM DEPENDENCE 
OF THE FISSION BARRIERS AND THE 
MASS ASYMMETRY COORDINATE 

The decrease of the fission barrier height with 
increasing angular momentum, and its eventual 
disappearance, was appreciated by the earliest 
studies based upon the liquid drop model. The 

Figure 3. The heavy fragment spin variances classical work by Cohen, Plasil and Swiatecki1 

for a dmuclear complex are shown as a function . . . . . . 
of mass asymmetry. The variances are shown describes all the stationary points of a rotating 
in dimensionless units after division by 3 $ y m T, liquid drop potential-energy surface in terms of 
the moment of inertia of a mass symmetric two dimensionless parameters: 
spherical fragment times the temperature60. y , F ,JL . . -_ / P , . 

* * * ccoulomr ^surface' • i m I fcrot 'Surface' 
where the various energies, E c o u ] o m b , E r o t , and E s u r f a c e are calculated for the equivalent spherical 
configuration. However, the topolog, of the potential energy surface with explicit incorporation of 
mass asymmetry was already understood in the pioneering work of Businaro and Gallone35. 
Within the two sphere model, the symmetric saddle point is unstable (degree of instability 2) below 
the value x • x B G ( x B G - 0.396 in the liquid drop model and x B 0 «0.6 for two touching spheres at 
y = 0). For x > x B G the saddle point branches out into three new saddles: one, ai "ymmetry, is 
stalle with respect to the mass-asymmetry mode (degree of instability 1), and the other two move 
out at mirror asymmetry and have degree of instability 2. They are sometimes vividly called 
Businaro-Gallone mountains. This topology is retained at higher angular momentum, with the 
Businaro-Gallone point decreasing with increasing angular momentum. More recently, the 
association of the ridge line (locus of conditional saddle points at fixed mass asymmetry) with 
complex fragment emission33"34 has prompted the calculation of the potential energy surface as a 
function of mass asymmerry, using both the liquid drop model and the finite range model''8. The 
latter model, an improvement upon the liquid drop model, explicitly treats the surface-surface 
interaction that is so important for highly necked-in configurations. 

An example of the overall dependence of the fission barrier upon angular momentum and mass 
asymmetry is shown in figure 4. The calculation has been performed for the nucleus 1 I 0Sn with 
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Figure 4. Surface plot of the asymmetry and Figure 5. Differential cross sections for 200 
angular-momcntum-dependent barriers for the MeV 4 5 Sc + 6 5 Cu (solid symbols ) and 781 
decay of 1 1 0 S n * calculated with a 
finite-range-corrected rotating liquid drop 
model49. 

MeV "Nb + 9 Be (open symbols) 4 9. The 
compound nuclei formed in the two reactions 
are very similar in mass and excitation energy, 
differing primarily in angular momentum. 

the finite range model49. At zero angular momentum the nucleus is very close to the Businaro-
Gallone point, and the ridge line is very flat. With increasing angular momentum, the Businaro-
Gallone point moves downward and the ridge line develops a minimum at symmetry which 
becomes more pronounced as the angular momentum increases. 

There is ample but scattered experimental evidence for the development of a minimum in the 
ridge line with increasing angular momentum49, as seen in figure 5. Extensive evidence of the 
angular momentum dependence of the ridge line should come from the study of complex fragment 
emission throughout the periodic table. 

4. ANGULAR MOMENTUM PARTITION BETWEEN FRAGMENTS: RIGID ROTATION 
AND ANGULAR MOMENTUM FRACTIONATION 

The partition of the total angular momentum between the fragment spin and the orbital rotation is 
strongly effected by the mass asymmetry. In the limit of rigid rotation, the expected spin Ij of one 
of the fragments is: 

Ii - 3 . I T / ( Z . 3 i + ( id 2 ) (28) 

where 3 . are the relevant fragment moments of inertia, nd 2 is the moment of inertia associated 
with the dinuclear system, and I T is the total angular momentum. 

This apparently trivial effect has been demonstrated in some reactions like Ne + Ag at 175 MeV8 
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• 237 MeV « 0 Ar - 6 9 Y -J 
• 175 MeV 2 0 Ne+Ag 

and Ar + Yb at 237 MeV9, by measuring the 
y-ray multiplicity (M )̂ as a function of mass 
asymmetry. M should be approximately pro­
portional to the sum of the fragment spins, and 
thus should increase with increasing asymmetry 
as predicted by (28). This signature is indeed 
seen in these reactions, as shown in figure 6. It 
is in fact seen more clearly in reactions like Kr + 
Ag 2 3 and Ar + Ni 2 1 where the spin of one of the 
two fragments was measured from the 
out-of-plane angular distributions of sequentially 
emitted alpha particles, as shown in figure 7. On 
the other hand, this signature is singularly absent 
in many other reactions where rigid rotation is 
expected because of the complete relaxation of the 

Figure 6. y-ray multiplicity versus fragment kinetic energies30-". In these reactions 
fragment atomic number for the reactions 175 , , , 
MeV 2 0 Ne + n , t Ag (open circles)8 and 237 t h e t o t a l f r a 8 m e i " spin is nearly independent of 
MeV 4 0Ar + 8 9Yb (filled circles)'. mass asymmetry (see figure 8). 

til 

p. 
' ' I ' 

10 15 20 S5 
ATOMIC NUMBER 

J L 
30 

Charge of n«o»y Irogment 2. 

10 n )0 H J) 

Ar t?|0 Mrvt • Ni 

\ 
\ lAtriflti.* II'M •' r*ff trt^tntnt 

30 \ \ ' * \ • » 2H » 

. tlWvitttt «•'* tfct ir>tli)i« *r*«>»fi<i 

X 1 1 V 
I 
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Figure 7. (Left) Experimental intrinsic spins of the individual fragments compared with the 
results of calculations for the sticking limit for rigid bodies21. (Right) The spin of the heavy 
fragment extracted from the a-particleangular distributions (full circles) and the sum of the spins 
inferred from the a-particle angular distributions (squares) and from M„ data (open circles), for the 
reaction 664 MeV M Kr + M l Ag 2 3 . The lines correspond to rigid rotation calculations. 
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The explanation for this apparent contradiction 
40, . 

j 618 Mev a s K r TKEiMew! h c s i n w h a t h a s b c c n c a l l c d a n S u i a r momentum 
L j '07.iosflg 90-2XH fractionation3 2, namely a predominance of low 

»j- " ' —I J2.-wave populations at large asymmetries. This 
. ! fractionation of angular momentum along the 

2 0 ~ \ ^ *'/> 250-360" mass-asymmetry coordinate can be one of two 
° 0 kinds. The first kind arises from statistical 

| equilibration along the mass asymmetry 

2 s ' t . . wo-270 coordinate3 1. The larger the i-wave, the deeper 
the potential energy minimum at symmetry. As a 

consequence, high £ -waves should be 
; - concentrated in more nearly symmetric divisions, 

i 2'O-OSO 
\ y - while low Jl-waves should be spread out more 

evenly, and thus dominate at larger 
asymmetries31. 

The second kind is a dynamical fractionation 

a— 

\^« 

5 typically associated with deeply inelastic 
Figure 8. M v vs. atomic number for the • , , _ , , . 

„ . . . ; , « , , „ , . , , . „ . , . processes". The lower Jl-waves are associated reactions 618 MeV 8 6Kr + " lAg and 618 MeV 
8 6Kr + 1 6 S Ho. The full and the open symbols w ^ a long interaction time and spread out their 
^ f ^ / w c H ^ t " ° n t h C d e e P i n e | a s t i c i r d population to asymmetries far removed from that quasi- elastic reactions, respectively. The 
curves are diffusion model calculations61. o f the injection point, while the higher i-waves 

are associated with a short interaction time and concentrate their strengths in the vicinity of the 
entrance channel asymmetry. 

5. THE TILTING MODE AND FISSION FRAGMENT ANGULAR DISTRIBUTIONS 

The standard assumption employed in calculating the fission fragment angular distribution is 
that the orientation in space of the saddle or scission configuration corresponds to the distribution of 
fragments at infinity. This is correct only in the limit in which the velocity arising from Coulomb 
repulsion is much greater than the velocity that the fragments possess because of their orbital 
rotation. Thus, this assumption is adequate for relatively small angular momenta, but should be 
used with caution in the case of the large angular momenta present in heavy ion reactions. 

The role of the tilting mode in the angular distribution can be observed by substituting in the 

Gaussian K distribution: K = I cos a : 

f4 ( a ) dft = r° exp - • 
"> r 

r i i i 
2 T K s. exp 

I- cos a 

2K\ 
dft , (29) 
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where a is the emission angle, K 0

2 - ( 3 | | - ] - 3 X - 1 ) - 1 T, and 3 y, 3 ± are the principal 
moments of inertia c 
compound nucleus. 
moments of inertia of the saddle or scission configuration, and 3 C is the moment of inertia of the 

For a decay following complete fusion, the angular distribution becomes ( I"p < T n r 3 : 

W(9)« e x p ( - s ) 
m«' 

I 0(sm) • Ifa) + ^S. { I0(sB) + \ 1,(1.) - i I2(sj | (30) 

where s m = In,2 sin2e / 4K 0

2 , I m is the maximum angular momentum, and I 0 , 1 , , I 2 are the 
modified Bessel functions of order 0,1,2. There are two interesting limits: 

Iim W(9) <* (sin 8 )"' , lim W(8) = constant (31) 
p - - P-»o 

where p - I m

2 / 4 K 0

2 . 

An analysis of the fission-fragment angular distribution allows one to extract the quantity K 0

2 

which, in tum provides information regarding the shape of the critical stage. What should this 
critical stage be? Early opinions favored the saddle point configuration, presumably because of its 
fundamental role in controlling the decay rate5. The reason why this configuration should be 
relevant to the angular distributions has never been made clear. Conservation of the K quantum 
number from saddle to scission is assumed, but there is no fundamental conservation law requiring 
it. The reasons advanced lor the conservation of the K quantum number seem rather unconvincing. 
In fact, to at least one of the authors, such a K conservation appears little short of a miracle. 

Miracle or not, early measurements at extremely low energies showed rapid variations of the 
angular distribution with changes of excitation energy in the 100 KeV range, which were interpreted 
in terms of discrete sutes at the saddle point with well-defined K quantum numbers3-4. At 
somewhat higher excitation energies, angular distributions and angular momenta seemed to be in 
accord with the statistical K distributions at the saddle, and the deduced moments of inertia appeared 
to agree with the saddle shapes predicted by the liquid drop model2. However, more recent data 
from fission inducer? by heavy ion reactions covering a broader range of excitation energies and 
angular momenta seem to be somewhat inconsistent with the predicted compact saddle shapes, and 
perhaps more in line with the more elongated scission configurations37"46. 

An alternative theory by Ericson54, in which fission rates and angular distributions are predicted 
from the phase space of the fragments at infinity and the inverse cross section, has been revisited 
recently 4 2 , 4 3 , 4 5. In a way, it could also be considered a "scission" theory. A comparison of the 
data with all three theories55 seems to indicate that none is fully adequate to explain all the data and 
their energy dependence. An incomplete relaxation of the K quantum number from saddle to 
scission may be responsible for the observed features56. Unfortunately, knowledge of the 
relaxation times associated with this and possibly other degrees of freedom together with the 
knowledge of the transit time from saddle to scission are necessary to test this theory. 
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6. INTRINSIC ANGULAR - MOMENTUM - BEARING MODES: THEIR EFFECT ON 
THE MAGNITUDE AND ALIGNMENT OF THE FRAGMENTS SPIN 

We have already illustrated how the thermal excitation of the bending, twisting, and wriggling 
modes can provide the fragments with spin, even when the total angular momentum is zero. This 
thermally-excited fragment angular momentum adds to that arising from rigid rotation, thus 
increasing the overall fragment spin, but, at the same time, introduces a misalignment of the 
fragment spin with respect to the normal of the fragment separation axis. The excitation of the 
tilting mode cannot provide any fragment spin if the total angular momentum is zero. However, it 
can increase the angular momentum of the fragments and can contribute to its misalignment. For 
instance, a full excitation of the tilting mode (I * K) leads to a complete transfer of the total angular 

momentum into fragment spin ( I T * 1 ( + I 2 ) and to a spin alignment parallel, rather than 

perpendicular to the separation axis. 

The first effect, an increase of the fragment spin over the amount expected from rigid rotation 
should be more evident in low angular momentum systems. It has been observed in a variety of 
reactions leading to fission, but also in many deeply inelastic reactions 5 7 . The observed fragment 
spin is always higher than that expected from rigid roution, and seems to be consistent with the 
thermal excitation of the angular-momentum-bearing modes. Recent determination of the fragment 
spins based upon the measurement of discrete 7-ray lines associated with individual isotopes seems 
to indicate a high variability of the primary fragment spin, possibly associated with different shapes 
at the scission point 4 7 . 

The second effect, the fragment spin misalignment, is perhaps the most obvious expression of 
the excitation of the angular-momentum-bearing modes. It has been studied experimentally in rather 
extensive work on deeply inelastic reactions involving the measurement of in-plane and out-of-plane 
angular distributions of sequential fission fragments 2 5" 2 9 , or sequential y-decay from the primary 
deeply inelastic fragments 1 1" 2 0. 

6.1. Angular Distribution of Sequentially Emitted Particles 

The decay width of a particle as a function of the angle with respect to the angular momentum 

direction is given by (29). If the angular momentum has sn arbitrary orienuiion with respect to our 

chosen frame of reference, defined by its components I x , I v . 1^ the angular distribution can be 

easily rewritten by noticing that: 

K * Icos a = I • n =* I sin 9 cos $• + l v sin 9 sin © + I. cos 9 , (32) 
* J * 

where n is a unit vector pointing along the direction of particle emission with polar angles 9 , 0 . 
If the orientation of the angular momentum is controlled by the distribution in (23), we can integrate 
over the distribution of orientations and the fragment decay width becomes 5 8: 

I 2 cos 2 6 I"1 (9.0) dQ ~ exp U — - — I __!_ c x p _ 
1 3 X 3 c J S < 9 ' W 2 S*(9, 0) 

dT2 (33) 

14 



where: 

S (9,<t0 = K* + (07 cos* $ + o~ sin" <W sin* 6 + a 2 cos* 9 (34) 

In (33) we set Ij = I, in other words we average over the orientation but allow the decay width to 
depend upon only the average angular momentum, set equal to its z component. This expression 
should then be considered only as a higl. angular momentum limit (c // « 1). 

The final angular distribution is obtained by integrating over the fragment angular momentum 
distribution, which is assumed to reflect the entrance-channel angular momentum distribution. One 
obtains58: 

w<e,4» - i A~7 e x p ( ***> T « P ( " A m « ) 

If L n - 0, then: 
QUO ~ 

W (9,<t») 
1 

SA 

where: 

1 - exp (-A) 

2S* 

cos*9 
•> 

2S* P 2T 
J 1_ 

L s / s l 

(35) 

(36) 

(37) 

The quantity 3 a is the moment of inertia of the nucleus after neutron emission, 3 ± is the moment of 
inertia of the critical shape for the decay (e.g. saddle point). It is important to notice that the angular 
momentum dependence of the particle/neutron competition or fissionyneutron competition is 
explicitly taken into account through p. 

The final ingredient necessary for an explicit calculation of the angular distributions is the 

quantity K 0

2. This quantity can be expressed in terms of the principal moments of inertia of the 

critical configuration for the decay: 

K: V (38) 

For fission 3 e f f can be taken from liquid drop calculations1. For light particle emission, the 
calculation of 3 f f can be worked out trivially. 

6.2. Angular Distribution of Sequentially -Emitted y-rays 
Fragments with large amounts of angular momentum are expected to dispose of it mainly by 

stretched E2 decay. If the angular momentum of the fragment is aligned, the typical angular pattern 
of quadrupole radiation should be observed. Any misalignment should decrease the sharpness of 
this angular distribution. If the distribution of the angular momentum components I x , Iy, lz is 
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statistical, it is straightforward to derive an analytical expression for the angular distributions52. 
For a perfectly aligned system: 

W(cO = 1 ( 1 + cos 2 a) ; W ( o ) = ~(l - c o s 4 a ) ; (39) 
4 4 
For El ForE2 

If the angular momentum is not aligned with the z axis, one must express a in terms of 9 and 0, 
which define the direction of the angular momentum vector. In particular: 

f • n I sin 8 cos 0 + F sin 9 cos 0 + I cos 9 
cosa = — . « - ! , \ I . (40) 

For any given I, the angular distribution is obtained by integrations over the sutistical distribution 
P(I) of the angular momentum components: 

W(8, «) - J W ( o ) P ( f ) df . (41) 

It is not possible to obtain an exact analytical expression for the general case. However, if we are 

willing to assume a 2 * o , : >= c , : « a 2 , then an exact result can be obtained. For the El 
X J Z 

distribution one obtains58: 
W ( 9 ) E i = J { ' + c o s 2 9 + P 2 1 1 " D ( P > ] < ! " 3 c o s I e> } • ( 4 2 ) 

For the E2 distribution one obtains: 

W(9) E = 4 1 !-cos 4 6 - 2 p : 3 sin29 cos28 - 2 cos49 - 2 D ( P ) (SUI29 - 4 cos28) sin28 

- 3 P V cos49 + 1 sin48 - 12 sin28 cos29) [ 1 - Dfl3)] J . (43) 

In these equations P * o l \ and D (p) = VT'P F( -flil P) where: 
X 

F(x) - e - * ! J e ' d t («) 
o 

is the Dawson's integral. One can verify immediately that both expressions behave as expected in 
the limits of p - 0 and p - ° o . • The anisotropy W(0°) / W(90°) tends to 1 when P tends to 
infinity for both El and E2 transitions, while it tends to 0 for E2 and to 2 for El when P = 0. 

These results are graphically summarized in figure 9, where the anisotropy is plotted as a 
function of the fraction of El radiation for various values of cr < p . The two extreme 
possibilities of stretched and nonstretched El decay are considered. If one has a fairly good 
experimental idea of the amount of El radiation to be expected from a given fragment and of its 
degree of stretching, the measurement of the anisotropy yields cr / 1 2 , which is of course the 
most direct information about the misalignment. 
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Figure 9. Calculated y-ray anisotropics for 
mixtures of stretched El and £2 transitions as a 
function of the fraction.of El radiation for 
various values of G2 /^ J 8 . 

Figure 10. Sum of the spin magnitudes (I,+ 
I 2) as a function of Q value for the reactions 
1400 MeV 1 6 5 Ho + n a l Ag, 1 4 8 Sm and 1 7 6 Yb 2 0 . 

6.3. Experimental Spin Alignment from Y -Ray Angular Distributions 
The continuum y-ray anisotropy in heavy ion reactions has been extensively studied for the deep 

inelastic reaction 8.5 MeV/A Ho+Ho 1 B > 1 9 and extended to the reactions 8.5 MeV/A Ho + Yb, Sm, 
Ag 2 0 . The Q-value spectrum was divided into a series of energy bins for which the y-ray 
multiplicity, energy spectra, and anisotropy were measured. 

The sum of the spins obtained from the y-ray multiplicity as a function of Q value is shown 
in figure 10. As in other reactions32, an increase in the energy loss leads to an initially rapid 
transfer of angular momentum to the fragments, followed by a relatively slow decrease as one 
moves toward the greatest inelasticities. These data (figure 10) show that each fragment can pick up 
as much as 35 - 40 f) of angular momentum. 
The anisotropy of the y-rays (in the region of the y-ray spectrum dominated by quadrupole 
radiation) as a function of Q value is shown in figure 11. In all cases, but more visibly for Ho + 
Yb, the anisotropy rises initially with increasing energy dissipation to values as high as two, and 
then declines slowly with further energy dissipation. 

Qualitatively, the rise and fall of the y-ray anisotropy with increasing energy dissipation is 
easily understood if studied simultaneously with the spin transfer. For small energy dissipations 
there is a small amount of angular momentum transferred to the fragments, which in rum can be 
easily depolarized by in-plane components arising from specific spectroscopic effects. As the 
energy dissipation increases, angular momentum is rapidly transferred to the fragments. This 
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transferred angular momentum is aligned and is 
little perturbed by the in-plane thermally-fluctuat­
ing components, which increase very slowly with 
excitation energy (<r « T «= Q 1 ' 2 ) . The 
resulting strong alignment is manifested in the 
substantial rise of the y-ray anisotropy. 

A further increase in the energy dissipation docs 
not increase the transferred angular momentum 
but it increases the excitation energy and thus the 
thermal fluctuations of the in-plane components. 
As a consequence the total angular momentum 

... , . _ , . , becomes progressively less aligned and the y-rav 
Figure 11. y-ray anisotropy as a function of y b ' " ' • 

Q value for the reactions 1400 MeV , 6 5 H o + anisotropy decreases. Of course, there are 
n a l A g , l 4 8 S m and l 7 6 Y b , Tor heavy ions additional sources of angular momentum mis-
detected near the grazing angle. Error ban for .. ... , , . , , 
the three svstems are similar and are shown alignment, like particle evaporation from the 
only for l 6 S Ho + 1 7 6 Yb 2 0 . primary fragments, but it appears that the main 

cause of angular momentum misalignment is the "thermal" excitation of the angular-
momentum-bearing modes. The inclusion of thermal fluctuations provides us with picture almost 
coincident with the experimental data, as seen in figure 12. It should be pointed out that the 
calculation uses the experimental My as input for the fragment angular momentum and uses 
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Figure 12. (Left) Comparison between experimental (circles) anisotropics of y-rays (E = 0.8 -
0.95 MeV) in the reactions 1400 MeV l 6 5 Ho + M t Ag, 1 4 8 Sm and 1 7 6 Yb : 0 and a calculation based 
on the equilibrium statistical model (squares) as a function of Q value. Lines are drawn through the 
calculated points to guide the eye. (Right) Alignment parameter P M as a function of Q value, for 
each of the two inelastic fragments. 
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the theory only to calculate the a's. In this way, the use of the theory may be valid even in Q-value 
regions where the full equilibrium limit has not been attained, since it is well known that 
fluctuations tend to their equilibrium limit a great deal faster than the average values59. 

From the above analysis one can calculate the alignment for each individual fragment, although 
this decomposition is far less certain that the calculation of the anisotropy. In figure 12 the 
alignment P^ is shown for each of the two fragments. In general, alignments as great as 0.7 are 
observed, with the greatest alignments being associated with the heavier partner. 

7. CONCLUSIONS 
The relevance of the angular-momentum-bearing modes to the fission process at large is quite 

clear at this point, but specific understanding of their behavior is still somewhat elusive. More 
specifically, the outstanding question is: "Do the relevant observables reflect conditions frozen at the 
saddle point or at the scission point?" Fission decay widths seem to indicate that angular-
momentum degrees of freedom depress the fission barriers and affect the transition state at the 
saddle point. However, fission angular distributions sugge ,t K quantum numbers are frozen at the 
saddle point only for low energy and angular momentum, but not at higher energies and angular 
momen i. The intrinsic modes such as wriggling, bending and twisting should be relevant at 
scission. However, the most important experiments involving them have been carried out for deep 
inelastic reactions, and not for fission. Thus, the role of the angular-momentum-bearing modes in 
fission will remain an interesting and open question for quite a few years to come. 
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