
A v Fermi National Accelerator Laboratory

TM-1707

Table of Tables - A Database Design Tool for SYBASE

Bruce C. Brown, Karen Coulter, Henry D. Glass, Richard Glosson, Raymond W. Hanft,
David J. Harding, Kelley Trombly-Freytag, Dana G. C. Walbridge and David B. Wallis

Fermi National Accelerator Laboratory
P.O. Box500

Batavia, Illinois 60510

Michael E. Allen
SSC Laboratory

Dallas, Texas 75237

January 4, 1991

0 Operated by Universities Research Association Inc. under contract with the United States Department of Energy

TABLE OF TABLES - A DATABASE DESIGN
TOOL FOR SYBASE

Bruce C. Brown, Karen Coulter, Henry D. Glass,
Richard Glosson, Raymond W. Hanft, David J. Harding,

Kelley Trombly-Freytag, Dana G. C. Walbridge, David B. Wallis
Fermi National Accelemtor Labomtory •

P.O. Boz 500
Batavia, Rlinois 60510

Michael E. Allen
SSC Labomtory*

2550 Beckleymeade Avenue
Dallas, TX 75237

January 4, 1991

Ab.tract

The 'Table of Tables' application system captures in a set of SYBASE
tables the basic design 1peciflcation for a datab&IO 1chema. Specifica
tion of tables, columns (including the related defaults and rules for the
stored values) and keys is provided. The feature which makes this ap
plication specifically useful for SYBASE is the ability to automatically
generate SYBASE triggen. A description field is provided for each
databue object. Bued on the data stored, SQL scripts for creating
complete schema including the tab! .. , their default. and rules, their
indexeo, and their SYBASE triggen, are written by TOT. Inaeri, up
date and delete triggen are generated from TOT to guarantee integrity
of data relatiom when tab! .. are connected by single eolumn foreign
keys. The application is written in SYBASE's APT-SQL and includes
a forms based data entry system. Using the features of TOT we can

"Operated by the UnivenilU.. Research Auocialion under contract wilh lhe U. S.
Deparlmenl oC Ener11

1

TM-1707

create a complete database schema for which the data integrity speci
fied by our design is guaranteed by the SYBASE triggers generated by
TOT.

1 Introduction

To provide a systematic tool for defining and creating SYBASE database
schemas, we have created an application - Table of Tables (TOT)1 • With it
we create and document database schema for a variety of SYBASE2 applica·
tions. TOT supports both the usual features of a relational model database
and many SYBASE-specific extensions. Existing computer assisted software
engineering tools provide no SYBASE-specific features and in addition are
costly and contain features not directly applicable to the SYBASE applica·
tions we choose to develop.

A relational database schema consists of a set of (usually related) multi
column tables. Values to be stored in columns can be limited by use of Rules
and Defaults (see Appendix G). A key is a column or set of columns whose
contents are guaranteed to be unique among all rows in a table. SYBASE
recognizes three types of keys: primary keys, common keys and foreign keys.
To this we add (from the literature on Relational Databases) the concept of
an alternate key. A primary key is the column or set of columns which serves
as the principle unique specifier for the table. We choose to implement this
for most of our tables using a special column consisting of a serial number.
This is sufficient for making the row unique for retrieval, but since the serial
number contains no data, we want something other than the serial number
to uniqueiy define the row. That combination which uniquely defines the
data in the row we call an alternate key. To facilitate joining information
from different tables, SYBASE maintains a table which lists the keys shared
between two tables - the common keys. A foreign key is a column or set
of columns in a table which can only assume values of an existing primary
key in another table. In Appendix F the support for keys within TOT is
discussed more fully.

TOT consists of three parts:

1Table 0£ Tables (TOT) user interface application was designed and implemented by
Richard Gloeson. Thil application includes the data entry application and the automatic
generation 0£ SQL code, which uaes SYBASE to create tables, key1, indexes, triggers,
datatype•, ruin and default1.

2 SYBASE, APT-SQL, APT-Execute, APT Workbench, Transact-SQL and Data Work·
bench arc l'Cgistercd tradcmarb of Sybase, Inc.

2

1. A schema for describing a SYBASE relational database schema. (The
information is stored in a set of related SYBASE tables.)

2. A data entry application to assist in filling the tables defined for TOT

3. Application code which allows

• TOT to create SQL scripts which can be executed to create the
database system which has been described in TOT tables

• TOT to create datatypes which have been defined in the TOT
schema

Complete prescriptions for a large class of SYBASE database schema can
be captured in TOT and the required database can be created using SQL
scripts output by TOT. When required, the scripts written by TOT can be
modified with additional trigger3 or other SQL code. The complete data
integrity features provided by SYBASE through its trigger mechanisms was
a major factor in our choice of the SYBASE database management system.
By developing TOT as an application specific to our needs, we can take full
advantage of these features. They make it possible to preserve data integrity
while using only a general tool (such as the SYBASE Data Workbench) for a
large variety of database entry requirements, thus avoiding creation of some
special data entry applications.

The feature missing from Table of Tables is a graphic display of table
design. We have chosen to provide graphic descriptions manually, utiliz
ing a graphic representation suggested in the text A Visual Introduction to
SQL[l]. We adapted it to capture additional features we find useful in our
specific design. While our graphic representation could be drawn using any
convenient graphical drawing package, we have used the !DRAW package
which is part of the Interviews[2][3] system, a public domain product avail
able for UNIX machines. The capture of these visual descriptions is thus a
manual operation uncoupled from the TOT application itself.

1 SYBASE provides the stored procedure mechanism to store SQL procedures within
the databue itldf for execution by the database server. A Trigger ii a special stored
procedure deaigned to provide integrity by tying its execution to an imertion, update or
deletion or a data row.

3

2 TOT Database Schema

In Fig 1 we illustrate the TOT schema 4 devised to store a description of
a general database schema within SYBASE. A complete description of the
TOT tables is included in Appendix B. It consists of a SYBASE report of
our captured description of TOT stored in TOT. The dataowners, tables,
columns, column..defaults, column.rules and foreignkeys tables capture the
description of a database schema.

The datatypes, datatype.ntles, and datatype_defaults tables allow the
specification of application specific datatypes in terms of the SYBASE data
types. For example, we define a serial number type (sntype) to be integer.
This allows us to indicate its use by its name now, and in the future we could
implement a different serial number scheme and need to make very limited
changes in the contents of the TOT descriptions of our database schema.

Use of the overall hierarchical scheme available for grouping SYBASE
database information (database, owner, table) is limited by the ability to
share datatype definitions and to make joins and triggers across databases.
In addition, some SYBASE administration is easier with a single database.
A self-consistent back-up is only guaranteed at the database level. We have
therefore chosen to store all the data for a project in a single SYBASE
database. We desire to provide some structure to a database other than
the user names that are typically associated with tables. We do that by
establishing "dataowners", special "users" in the system which own a group
of related tables. A single person has responsibility for each dataowner
account. For example, TOT could label the dataowner of the TOT tables.
Separate portions of the project with different dataowners will have their
SYBASE entities stored and accessed using that dataowner information.

The columns of the dataowners table are the dataowner .name, descrip
tion (why is this data stored separately), responsible_person (an individ
ual who assumes responsibility for this portion of the schema being imple
mented) and entry _date.

The tables table lists the dataowner, table.name, and description along
with a responsible_person, and entry _date. The table.name is to be unique
across the entire database, independent of
dataowner .name. The columns table provides a complete description of the
columns in all tables. The column.name, table.name, and the data type

"Aa diacm1ed previo11.1ly, it is drawn ming the IDRAW package which captures it as a
postscript file ready Co:r printing.

4

~

Table of Tables

3JIDaal')' 1990

............
d&ta0Wll9r n ...
deacr1pt1iin
r•spon• U.l• _psraon
•11.tiry_d.at•

.......
d&taown•r n ...
Utile n_.
dncript1oa
respc,11.aible _peraon
entry_da.te

--
dataownar_n_
tUle_n ...
c:olumn n-
d&tatYP.
type lenqch
11n1ti ._,
deaeriptioa
11.1111 •llcnMd
parc:ot_J>rtm.ry _t•y
part_ ot_altarn•t•_key
antry_d&t•
coliaan_order

ool._._dafaal.t•

da.t•own•r nNW
t•bol• n_.
co1-n ~
deta111t n ...
def•11lt-t••t
antry_di"t•

Dat:&~Jp9= -
dak~t:a.p

... -. ...
.. p ...
"' d"

.... -.,,.
t n•

I
or

i:: p

! n•
I dt• '

.... -....
! "' : P r I" !,, na l P .. ' r
lnt Nj

111.a N
•Ila Ml
'u :
!bit !
!btt :

!!!! i ~int

... bp

I
! " r

•• r
•• ~ . r ! d<O

.. dMG#t.Z' -- TaZoabu-(2.55)
•

._ ... -- TaZoab&r(30) _ _,,
llllLL~

-....

........

.._

...... ,__ ,__

.....
• r

dat ,,,..
dll.t&type
deflnltlon
daacr!.llotlon
rnpo11.aibla_peraon
-cry_dat•

clab&:n-_Z'O.l.d

da.tatypa
r•le ~
rale-t9J(t
ent.ri_clat•

.._,.._a&.uJ.t.•

da.t&tw

:i::1~--~=
-cry_dite

·-· i:~:t::::6..!t:~:."-
fDHiqn-eoluan_n ...
pr1auy_dataowner_n-
pr1-ry_cabl•_~
pr1-.ry_col111111_n ...
iatttry_da.ta

oo.1.-_ral._

=1:~:;.na.•
c:olimn_n_
rol•_"--
ru.l• t••t
et1tri_ctat•

Note: Tb• colullln 'tabl•_name1 i• of type n-•trinq which la varcharflOl
howe-r, it is required. to be unique within 26 ~ac:tara.

Figu:re 1: Database Schema for TOT

5

-,,.
!na
!11.a

p

i•
:na
jdta

... bp
: na r
j na ' I"' i dta

.... ..,

I
•• r
•• ' ..
"''

... ..p .,,.

i "' P r
: na P r
: "' ' r ! na r
: na r
: "' r
: d.ta

'

.... k•r• .,,.

I :: r
r

•• r . " p
!do
: dta

'

(and length if needed) are required.5 We store whether the column is part
of the primary key, part of the alternate key, and whether NULL is allowed.

The column order provides a default order for ad hoc queries (as well
as the column order for multicolumn Jceys). TOT requires the designer to
specify the column order. It is left to the database designer to make these
sequential and meaningful. The TOT application does not assign them or
require them to be sequential. An ordered list of columns will be provided
based on the values in the column order field. Duplicate values will assume
an order which is not guaranteed by the design.

In addition to the minimum information required to define the schema,
we include information on the unit of measure for the column and a label
which can be used in place of the column name for labeling a report. It is
our intention to utilize SI Units (System International), but that restriction
must be implemented through the contents one builds into the units column
rather than through the design of TOT itself.

The column_defaults table allows one to specify a default value for a
column as prescribed in the SYBASE documentation. Similarly, the col
umn..rules table provides for capture of SYBASE rules. Since Rules and
Defaults can be bound to user defined datatypes as well as to columns,
TOT provides for the capture of datatype.rules and datatype_defaults. 6 For
a complete description of the columns table, see Appendix B. See Ap
pendix G for a discussion of defaults and rules.

To enforce referential integrity for a database schema in SYBASE one
can create triggers based on foreign keys. TOT's foreignkeys table pro
vides a place to specify foreign keys when the key is a single column. The
current TOT requires that the dataowner, table.name, and column.name
must be specified for both the primary and foreign key (primary _data
owner, primary .table.name, primary .column.name, foreign...dataowner, for
eign_table.name, and foreign.column.name)1 • From this information TOT
writes insert and update triggers which guarantee that a row may not be

1Dataowncr i. also included, a relic of the days before we required table names to be
unique within the database, instead of only requiring uniqueness within the dataowncr.

15 Thc names of the rulea and defaults muat be unique in the databuc 10 TOT
enforces uniqueness for co]umn_rulea and datatypc..rulcs and for column..defaults and
dalalype..defaulh.

'The redundancies arc a .combination of historical artifact and accommodation of cod
ing cue. The dataowncrs arc not needed if' the table-names arc required to he unique in
the database. The primary column name is not needed since we follow the usual relational
requirement that a foreign key point to a primary key, and there U only one primary key
for any table.

6

added or changed unless the value of each foreign key matches a value in the
primary key of the corresponding table. The delete triggers on the primary
keys are written which guarantee that they will not be deleted while rows of
other tables point to them as a foreign key. Note that more than one foreign
key in a table is allowed to point to the primary key of another tables.

By utilizing a serial number9 as the primary key in most tables, and
by utilizing that for most of our foreign keys, the foreignkey table of TOT
satisfies more than 953 of our requirements for triggers in an absolutely
straightforward fashion.

The SQL Permissions model which is incorporated within TOT is a
simple one based on a set of groups. The initial implementation of TOT
simply provides that various permissions (INSERT, UPDATE, DELETE) be
granted for various predefined SYBASE groups. The permissions granted
are the same for all tables and the APT-SQL code which defines the SQL
script-writing section of TOT has this structure coded into it (hard-coded).

The indexing scheme for a database may have substantial complications
to provide suitably responsive behavior for both insert and query. TOT pro
vides only a "natural" start on the complete index scheme. Indices for tables
created by TOT are, by default, created for primary, alternate and foreign
keys. Additional or alternative indices can be created by the Database Ad
ministrator. By default, the SQL code created by TOT will provide

1. A clustered, unique index on the primary key

2. A unique index on the alternate key

3. An index (non-unique, non-clustered) on the foreign key

•An alternate foreign key po1aibility which could alto be easily coded allows a foreign
key with an arbitrary number of columns but with only one foreign key from a given table
allowed to point at any one primary table. Our 11y1tems require multiple foreign keys to
the same primary and our reliance on serial numbers mjnjmi•e1 the need for multi-colwnn
foreign keys. Support for both multi-column foreign keys and multiple occurrences in
a oingle table is 1traighl-forward but 1uflicienlly tediouo that ii was decided lo defer
implementation.

9The creation of serial numbers for MTF SYBASE databues ii handled by a serial
number generator implemented as a SYBASE stored procedure, allowing the application
progranu to avoid consideration of this problem. Thete serial numbers are unique within
the database, not just within a specific table.

7

D t rs!

Figure 2: The Top Level Menu for the TOT Application

3 TOT Data Entry Application

Utilizing APT Workbench from SYBASE10 , we have built applications based
on the tables described in the previous section to capture database designs.
In this section we will briefly describe the functionality of that system. A
step by step description of its use is available in Appendix D.

Figure 2 illustrates the screen view of the TOT main menu. From here
we can choose to view or enter information into the dataowners, tables,
columns or datatypes tables using a standard SYBASE type of display. Fea
tures for FINDing and SCROLLING assist in manipulating the displays to
view entered or stored data. . From each of these displays, we can either
return to the main menu or move down the natural hierarchy to the next
table, carrying along the environment of what we have just specified. One
reaches the columns.defaults and columns.rules and foreignkeys table dis
plays from the columns display. Similarly, we reach the datatype.defaults
and datatype..rules via the datatype display.

••APT W.orltbench U. a 4GL wilh a ocr maaipulalion language lhal inlerf'aceta with
lhe dalabue.

8

4 Writing Table Definition SQL from TOT

The SQL-writing portion of TOT can be invoked for any tables that have
been entered into the columns form, regardless of whether they have been
saved yet. When the information needed for the specification of a system
of tables is defined by entering data for dataowners, tables, columns and
their keys, one can invoke the SQL·writing (BUILD) portion of TOT to
provide SQL script files in your current working directory. These scripts
can be executed to create tables and triggers. The created files contain
SQL commands in ASCII so they can be viewed (or modified) with a text
editor.11

BUILD commands are provided by TOT to create the output SQL
scripts. The SQL to create a single table (including keys and indices) is
provided by one BUILD command. The triggers scripts which apply to this
table are created with an additional two BUILD commands. Datatypes are
created by SYBASE directly from a CREATE command. Some applications
may require additional SQL code for complete definition of the relationships
specified by the designer. A detailed description of the code produced by
TOT for creating table definitions and triggers from the information stored
by TOT is contained in Appendix E. Examination of that information will
allow one to understand the details of the relationship between the table
entries and the SQL code generated.

A few guidelines are useful to describe how one employs TOT output
and maintains a complete set of database descriptions. We emphasize that
SYBASE allows flexibility for defining triggers which maintain data integrity
with a complexity far greater than is provided in TOT. Thus in addition to
the files provided which contain SQL for creating tables, their keys, and trig·
gers relating tables, one might write more complex trigger code which could
then be incorporated with the TOT output in order to create a complete
trigger system.

Although the BUILD portions of TOT are available to all users and
reading the code generated may clarify some design issues for users, we
believe that a single Database Administrator should usually execute all of
the scripts output by TOT. The trigger scripts, in particular, affect the
entire database and must be carefully integrated.

11The variant of SQL which is created is SYBASE Transacl·SQL. This is the SYBASE
implementation o(the SQL •tandard with enhancement., to be distinguished from the
APT ·SQL venion. One can execute Tramact-SQL ocripll using the SYBASE isql
application. ,

9

5 Using TOT

5.1 New Applications and Data Entry

The appendices contain specific instructions for TOT. We will describe here
the general pattern for use.

Suppose we wish to add a new SYBASE-based application involving
several new tables and several existing tables which have been previously
captured in TOT. We begin by deciding to create a new dataowner category
or use an existing one. We add any new datatypes specific to our applica
tion. Then we enter the table names and descriptions into the tables table.
For each table we complete the columns table and the foreign keys table if
required. We enter any needed rules and defaults.

With the data captured, we may then .Proceed to build the SQL code
which will create the new tables with their associated keys. We will also
build insert and update trigger code for each table, based in part on the
foreign key information. When we seek to create the new delete triggers, an
additional complication must be noted. New delete triggers should now be
created for all tables related to the new tables through a foreign key12 • In
particular, if a column in one of the new tables has a foreign key pointing
to a table described previously, we would want to be sure to update the
triggers associated with deletion from that previous table. As part of the
'Fkey And Insert Trigger Code' option which creates the foreign keys for
the new table, TOT will automatically create the delete trigger code for all
of the associated primary tables to which the foreign keys point13•

Let us specify the steps required to build a table from its TOT definition.

1. Use TOT procedure to create scripts to build table definition.

2. Use TOT procedure to create foreign keys and create insert and update
trigger code.

3. Use TOT procedure to create delete trigger code.

4. For any features of this database schema which are not specified in
TOT but can be supported in SYBASE, edit the required additional
code into the trigger (or BUILDTABLE) scripts.

12This version 0£ TOT does not include update trigger modification £or the foreign key.
Instead, by default, the update trigger forbids the modification oC the primary key.

11ll we have added extra code to the delete trigger• 0£ these tables, we need to add
those changes to the SQL 1cript file1 created by TOT be/ore executing them.1 so u not to
lose tho1e changes.

10

5. If this is not a new application, save the data stored in existing versions
of the table.

6. Create the new or revised tables by executing the SQL BUILDTABLE
files.

7. Exercising due care for the existing tables, execute the scripts which
create the trigger code.

8. If necessary, restore previously saved data into the newly created
schema.

If we observe these simple rules, it is straightforward to ask SYBASE to
produce and execute all required SQL code and have a complete new set of
tables.

5.2 Changing Table Definitions

A few additional steps may be required when we have designed and brought
into use a set of tables and then discover a requirement to revise those tables.
We can capture the new design in TOT, but we must be aware that it will
affect our ability to recreate the current situation. It is likely to be desirable
to retain the SQL code that allowed us to create the present set of tables
and triggers, so we first make an archival copy of that code. A standard
code management system is an appropriate vehicle. We then modify the
TOT description, create new SQL for defining the database and proceed as
above, again preserving a copy of the critical SQL files. Depending upon the
complexity of the TOT descriptions, we may wish to preserve a record of
them, also, to avoid data entry errors if we want to reverse a TOT description
change.

To preserve existing data stored in the table, we can extract the contents
of the table using, for example, a bulk copy. Then, we use the SQL script for
deleting and recreating the table. Finally we can bulk copy in the previous
contents. For simple tables when no columns have been added, such a
procedure is efficient and straightforward. Substantially more complicated
efforts may be required in cases where large numbers of foreign keys carry us
back perhaps several steps through a database. In this case, the procedure
described might be sufficient but there are potential modifications for which
additional trigger generation code will be required in place of the simple
bulk copy before we can reinsert the data in the database.

11

6 Summary

Users of the SYBASE database may capture nearly complete descriptions
of the database schema using the TOT application. They may wish to
supplement the information they store in TOT with perhaps some additional
trigger information for those triggers which go beyond the model supported
in TOT and with modification of the indexes to optimize performance.

Complete prescription as well as documentation of the design is available
from the reports stored in SYBASE. SQL code output in the TOT applica
tion can be used directly to build tables, triggers and keys for the desired
schema.

A Appendix: Versions Status of TOT

This document describes TOT version 1.0 released in January 1991. It
was developed initially under SYBASE Release 4.0 and updated to run un
der SYBASE Release 4.0-1, both rimning under SunOS Ver 4.0.3 on a Sun
SPARC platform.

B Appendix: Complete reports of the TOT de
scription of it database schema.

The following pages contain reports created from data stored in the columns
table to describe the various TOT tables. This is followed by a table which
describes the foreign keys required by the TOT schema. Most of these cannot
be described by the TOT foreign keys table since they involve multicolumn
keys.

12

Dec 28 19911

Dbo.column• Report
d•t•own•r t•ble name column column_name datatype t.yp• nul I rr• •• t. deocrl pt. I on
n•me order Ieng ? ey key
t.ot. column_defaulta 1 default_name na1ne•tr NULL e l e The unique no.,. of t.hla

defoult. (muat be unique
compared to other column
defoults ond the dototype

name•tr NULL
dehults)

2 dat.aowner_name e e e The ••ct.Ion of the
databaae that contain•
the columns th• defoult

NULL
opp I lea to

3 t.oble_no.,. name•tr e e e No.,. of the t.oble
contaln1ng a column thla
defoult lo bound t.o

4 column_name nameatr NULL e f/J e Name of a column thla
defoult. la bound to

6 dehult_text deacatr NULL e e e Th• Tranaact SQL code
needed to create thla
dehult

e entry_ date datetl ... atamp NULL f/J e e Date this default waa
entered or chonged In TOT

column_rulea l rule_name nameatr NULL e l f/J Th• unique name of thla
rule (must be unique
compared to other column
rule• ond the dat.otype

NULL
ruleo)

2 dat.aowner_na1ne nameatr e e e The ••ct.Ion of the
database that contain•
the columns thla rule

.... appllea to
w 3 table_name nameatr NULL e II f/J Nome of the table

containing a column this
rule la bound t.o

4 column_nant9 nameatr NULL e f/J II Name of a column thia
rule la bound to

6 rule_te)(t deacatr NULL e e e The Transect SQL code
needed to creote this
rule

e ent.ry_date datetlmeatamp NULL e e e Date this rule waa

NULL
entered or chonged In TOT

column• l dat-aowner_naM nameatr e l e Th• aect.lon of the
dot.abaae the table thot
t.hla column belonga t.o
realdea under

2 tab le_name nameatr NULL e l II Na- of t.he table thla

NULL
column belong• to

a column_name n•11te•tr e l e Name of the column being
described In TOT

4 dot.type n•me•tr NULL Ill e e Datatype of the column,
either built in or user
defined

Poge 1

Dec 28 111911

dataowner toble n•- coluam column_name dototype type null crl olt deocrlptlon
nome order Ieng ? ey key
tot. columna 6 type_ length Int NULL 1 • • Lenyth of dat.ot.ype If

bul t. In. Uoer defined
type• •hould not enter
dote here.

e uni ta nameatr NULL 1 • • Uaed only for column•
which contoln dote that
can be expreaaed •• unite
of meaaure. Contains the
St.ondord Internot.lonol
Unit.• of phylcol
quont.lt.le• the dot.• In
thlo column •hould be

7 lobe I na-atr NULL 1
Interpreted aa.

• • Nome or Brief tltle of
the column to be u•ed In
report.a. If left. blonk,
It. I• fl I led with the
column name (underacorea
lncludedl

8 de•crlptlon deacatr NULL • • • De•crlpt on of the
function or purpose of
the column

" nul l_•l lowed bit NULL • • • 1 ~f••) or 8 (no)
In cote• whether null
inputs are allowed in the
column being described in
TOT

.... 18 port._of_prlmory_key bit NULL • • • 1 jf••) or 8 (no) ... In cote• If thla column
lo port of the crlmory

port_of_olternote_ke
key for thla to le

11 bit NULL • • • 1 jf••) or I (no)
y In cote• If thla column

la port of the olternate
key for thl• toble

12 column_order Int NULL • • • Numerlcol order In which
thl• column wlll be
present.ad on a re~ort
with re•f•ct. to t • other
columns n the table.
Alao the column order for
multl-column keya. Should
not. du~llcote number•

11 ent.ry_dote dotetlmeat•mp NULL • • • Date t la column waa
entered or changed In TOT

dataownera 1 dataowner_na ... nameiatr NULL • 1 • Name of a aubaectlon
within the database

2 deacrlptlon deacatr NULL • • • Description of the
function or purpose of
this ••ct.Ion of the
database

Poge 2

Dec 28 1998

d•taowner table name column column_name dat.atyp• type nul I ~d a It description
name order Ieng ? ey key
tot dataownera 3 reaponaible_peraon nal'fteatr NULL e e e Name of the ~eraon

reaponelble or thla

4 entry_date datetlmeat.amp NULL e
section of th• database

" e Date th1e dataowner was

datatype_dehul default_name nameatr NULL "
entered or changed In TOT

1 1 e The unique name of thla
to default (•uot be unique

compared to other
datatype default• and th•

NULL·
column defaults)

2 datatype nameatr " " " The datatype thla default
la bound to

3 dehult_text deacatl"' NULL " " " The Tranaact SqL code
needed to create thia
dehult

4 entry_date datetlmeatamp NULL e " " Date thla default •••

NULL
entered or changed In TOT

datatype_ru lea 1 rule_name nameatr " 1 e The unique nome of thla
rule (muat be unique
compared to other

2 dotatyp• nameatr NULL "
dototype rule• ond the
column ruleal

" " The user def ned dotatype
thla rule la bound to

3 rule_ text deacatr NULL " " " the Tronaoct SqL code ... needed to create th1a
en rule

4 entry_ dote datetlmeatamp NULL " " " Dote this rule •••
entered or chonged In TOT

dototyp .. 1 datotype na11eatr NULL " 1 " The name of the user
defined dototfpe being
deocrlbed In OT

2 definition nameatr NULL " " " The Tronaoct SqL code

deacrlptlon NULL
defining thlo dototype

a deacatr e " " Description of the
function or purpose of

NULL
th la dototype

4 reaponaible_peraon nameatr " " " The peraon who dealgned

dotetlmeatomp NULL
thla dototype

6 entry_dote " " " Dote thla dototype waa

NULL
entered or chonged In TOT

forelgnkeye 1 forelgn_dataowner_na nameatr e 1 " Th• eectlon of the ... dot.obos• the toble the
foreign key belong• to la
In

2 forelgn_table_name nameatr NULL e 1 " The table the foreign key
belongs to

3 foreign_column_name nameatr NULL e 1 " The column that la the
foreign key

Pog• 3

Dec 28 19911

d•t•owner table n•- column column_n•Me d•tatyp• type nul I er• •It de•crlptlon
n•,.. order Ieng ? •Y key
tot for•lgnkeya 4 prlmary_dataowner_na nalftllatr NULL fl 8 8 Th• section of the ... database the &rimary key

thl• foreign ey I•
aaaoctated with reaidea
In

6 prlm•ry_t•ble_n•me nameetr NULL 8 8 8 The t•ble the prl••ry key
thla forlegn key I•
•••oclsted with resides
In

e prlmary_column_name nameatr NULL 8 8 8 The column th•t la th•
erl .. ry key thla foreign

ey Is ssaocl•ted with
7 entry_d•t• d•tetl-•t•mp NULL 8 8 II Date thl• foreign key waa

entered or ch•nged In TOT
tab I•• 1 dataowner_name nameetr NULL 8 1 II The aectlon of the

d•t•b••• thl• t•ble
reside• under

2 table_name nameatr NULL fl 1 II Name of • table In the
database being d9acribed
In TOT. Thia should be
unique within the entire
dat•baae In the first 28
character•.

3 deacrlptlon deacatr NULL fl 8 fl Description of the
function or purpose of

.... the table ... 4 reaponaible_peraon nameatr NULL fl fl fl The person who dealgned
the table

6 entry_ date d•tetl-stamp NULL fl fl fl Date thla table •••
entered or changed In TOT

End of Report

Page 4

...

Foreign
Table

tab lea

column•
column•

column•

co I um_defau lta
co I um_defau lta
colum_dafaulh

coluM_rul••
column_rule1
coluM_rulea

datatJpe_ru lea

datat7pe_defaulta

forelgnk•1•
foralgnke7a
foralgnke1•

forelgnk•1•
forelgnke1•
forelgnka7a

Deflnltlona:

Foreign
Column

dataown•r_n•sne

dataown•r _name
hble_name

datat1p•

detaowner_na•
tabla_no_
co I umn_name

dataowner_n•-
table_name
column_name

datatJp•

datat1p•

fore1gn_dataowner_na ..
foralgn_table_na,..
foralgn_colUIDll_na,..

prl .. r7_dataowner_na ..
prlmar7_t1ble_nama
prlmar7_column_name

Pr 1.nery
Table

dataown•r•

tab lea
tab lea

datat1pea

column•
column•
column•

colunma
column•
column1

datat1pea

datat7p ..

column•
column•
column•

column•
column•
column•

Pd1aar1
Column

dateowner_name

dataowner_na-.
table_name

datat1pe

) 2-fart
pr ur1

dataownar~na .. \
tab le name I a-fart
coluniii_name / pr mar1

dataowner_n• .. \
tab 1 a_name I a-fart
column_name / pr mar1

datat1p•

datat7p•

dataowner_na .. \
tabla name I a-fart
column_nama / pr mar1

d1t1owner_na .. \
tab 1 a_na- I a-fart
colunm_name / pr mar7

Foreign Table - the table that haa the forel~n k•J
Foreign Column - a column that la a part of t a foreign ke7

Prlmar7 Table - th• table with the prlmar1 ke7 for
the foreign ke1 belny described

Prlmar7 Column - the column of the pr mar7 ke7
that correa~onda to the aaaoclated
column of t • foreign ka1

C Appendix: TOT triggers not stored in TOT.

The TOT data schema contains the following triggers which are not specified
by the definition of TOT stored within the TOT database.

The insert and update triggers are identical for all of the triggers used
by TOT. This is because of the similarity of the actions in an ins~rtion and
an update.

C.1 Dataowners triggers

C.1.1 Dataowners Insert and Update Trigger

IF the dataowner being added or updated already exists in the 'dataown
ers' table

rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.1.2 Dataowners Delete Trigger

IF there is an entry in the 'tables' table that is using the dataowner
that is to be deleted

Give the message "This dataowner is in use"

Rollback the transaction

C.2 Tables triggers

C.2.1 Tables Insert and Update Trigger

IF the first 26 characters of the table name being inserted matches the
first 26 characters of any existing table name,

Give the message "A table by this name alread:r exists"

Rollback the transaction

ELSE IF the dataowner specified for this record does not exist

Give the message "No dataowner by this name exists"

Rollback the transaction

18

ELSE

set the entry date to today's date for the record to be updated

C.2.2 Tables Delete Trigger

IF there is an entry in the 'columns' table using the table to be deleted

Give the message "A table by this name has columns"

Rollback the transaction

ELSE IF there is an entry in the 'foreignkeys' table using the table to
be deleted

Give the message "A table by this name has foreign keys"

Rollback the transaction

ELSE IF there is an entry in the 'group_permissions' table using the
table to be deleted

Give the message "A table by this name has permissions"

Rollback the transaction

Comment: the group_permissions table is part of our application. It is
coupled to TOT to help insure database integrity. This aspect of TOT is
not documented elsewhere in the TOT documentation.

C.3 Columns triggers

C.3.1 Colwnns Insert and Update Trigger

IF the dataowner/table/column name combination being inserted al
ready exists

Give the message "A column by this name already exists"

Rollback the transaction

ELSE IF the dataowner/table combination specified for this record
does not exist in the 'tables' table

Give the message "No table by this name exists"

Rollback the transaction

19

ELSE

Set the entry date to today's date for the record to be updated

IF the column label field is null

Make the label the same as the column name

C.3.2 Columns Delete Trigger

IF there is an entry in the 'column..rules' table using the column to be
deleted

OR there is an entry in the 'column..defaults' table using the column
to be deleted

OR there is an entry in the 'foreignkeys' table using the column to be
deleted

Give the message "A column by this name is in use"

Rollback the transaction

C.4 Column_Rules triggers

C.4.1 Column__Rules Insert and Update Trigger

IF the column..rule name is already in the 'datatype..rules' or 'col
umn..rules' table

Give the message "A rule by this name already exists"

Rollback the transaction

ELSE IF the dataowner /table/ column name combination specified for
the rule does not exist in the 'columns' table

Give the message "There is no column by this name"

Rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.4.2 Column__Rules Delete Trigger

No delete trigger

20

C.5 Column_Defaults triggers

C.6.1 Column_Defaults Insert and Update Trigger

IF the column_default name is already in the 'datatype_defaults' or
'column_defaults' table

Give the message "A default by this name already exists"

Rollback the transaction

ELSE IF the dataowner/table/column name combination specified for
the default does not exist in the 'columns' table

Give the message "There is no column by this name"

Rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.5.2 Column_Defaults Delete Trigger

No delete trigger

C.6 Foreignkeys triggers

C.6.1 Foreignkeys Insert and Update Trigger

IF the transaction has more than one row14

Give message "Multiple row transactions not allowed for for
eignkeys"

Rollback the transaction

Do not allow any input fields to be null except entry _date

ELSE IF the dataowner /table/ column name combination specified for
the foreign key already exists in the 'foreignkey' table

Give message "This column already is a foreign key"

Rollback the transaction
14 Multiple rows will not occur with the data entry portion of TOT or Data Workbench,

bul could be created (and musl be avoided here) llling isql or lhe SQL form in DWB.

21

ELSE IF the dataowner /table name combination specified for the for
eign key does not exist

Give message "This table does not exist"

Rollback the transaction

ELSE IF the dataowner/table/column name combination specified for
the foreign key does not exist in the 'columns' table

Give the message "There is no column by this name"

Rollback the transaction

ELSE IF the dataowner/table/column name combination specified for
the primary key does not exist in the 'columns' table

Give the message "There is no column by this name"

Rollback the transaction

ELSE IF the primary key column specified is not noted as a primary
key in the 'columns' table

Give the message "The primary key specified is not a primary
key"

Rollback the transaction

ELSE IF the datatypes for the foreign key and primary key are not
the same

OR (the lengths of the datatypes for primary and foreign keys are not
equal

AND the lengths of the datatypes are not both null)

Give the message "Datatypes of foreign and primary column
names do not match"

Rollback the transaction

ELSE

Set the entry date to today's date for the record to be updated

22

C.6.2 Foreignkeys Delete Trigger

No delete trigger

C. 7 Datatypes triggers

C.7.1 Datatypes Insert and Update Trigger

IF the datatype name is already in the 'datatypes' table

Give the message "A datatype by this name already exists"

Rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.7.2 Datatypes Delete Trigger

IF there is an entry in the 'columns' table using the datatype to be
deleted

OR there is an entry in the 'datatype..rules' table using the datatype
to be deleted

OR there is an entry in the 'datatype_defaults' table using the data
type to be deleted

Give the message "This datatype is in use"

Rollback the transaction

C.8 Datatype_Rules triggers

C.8.1 Datatype_Rules Insert and Update Trigger

IF the datatype..rule name is already in the 'datatype..rules' or 'col
umn..rules' table

Give the message "A rule by this name already exists"

Rollback the transaction

ELSE IF the datatype specified for the rule does not exist in the
'datatypes' table

23

Give the message "There is no datatype by this name"

Rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.8.2 Datatype_Rules Delete Trigger

No delete trigger

C.9 Datatype_Defaults triggers

C.9.1 Datatype_Defaults Insert and Update Trigger

IF the datatype_default name is already in the 'datatype_defaults' or
'column..defaults' table

Give the message "A default by this name already exists"

Rollback the transaction

ELSE IF the datatype specified for the default does not exist in the
'datatypes' table

Give the message "There is no datatype by this name"

Rollback the transaction

ELSE

set the entry date to today's date for the record to be updated

C.9.2 Datatype_Defaults Delete Trigger

No delete trigger

D Appendix: Instructions for use of the TOT
data entry application

Before TOT can be run, several environmental conditions must be met. The
user must have :

1. permission to use TOT

24

2. a login on the Sybase server

3. a login on the TOT database

4. permission to use the TOT database

• A user who is planning on adding or updating data in TOT must
have insert/update permission in the database. Select permission
is required for reading.

• A user who wishes to use the code generation portion of TOT
must have write permission to the directory from which TOT is
invoked.

It is assumed that the user is familiar with the commands used in the APT
forms management system for moving through a form, invoking menu items,
moving through fields on the form and exiting forms. See the Sy base "APT
Workbench" manual for instructions.

D.l TABLE OF TABLES FORM

The operational structure of TOT has the following hierarchy:

1. Dataowners

2. Tables

3. Columns

• Columns

• Defaults

• Rules

• Foreign Keys

• Build Code

4. Datatypes

D.2 DATAOWNERS FORM

The dataowners form contains the following menu items and sub-menu
items:

1. Find

25

• By Example - searches the database for data matching what has
been input by the user on the form. The first matching record
found is displayed on the form. H the fields that are input do not
correspond to any existing data, you are told so.

• Next - finds the next instance of the data that match the fields
on which you ran Find=? By Example. H there are no more data
that match this example, you are told so. H you select the Next
option without previously selecting any of the Find options, all
records for that table will be found.

• Previous - finds the previous instance of the data that match the
fields on which you ran Find=? By Example. H you have already
backed up to the first instance that matches, you are told so.

You can also find by example using relational operators and wildcard
characters. You may only do this on character fields, because the other
datatypes do not accept relational operators and wildcard characters
as input.

2. Do It

• Add - allows the user to add new rows to the database. This op
tion assumes that key fields are unique. H you try to add a row in
which the primary keys already exist in the TOT database, an er
ror message appears and the add transaction is rolled backed. See
the "Modify" explanation for advice on handling this situation.

• Modify - modifies existing rows. Modify only allows changes to
non-key field values. To determine which are the key field, see
Figure 1 or Appendix B . H you change a key field and then pick
Modify, an error message appears. H you want to change a key
field value, delete the current one and add a new row. In order to
use Modify, you must first fill the form using Find=? By Example.

• Delete - deletes the row showing on the screen from the database.
Like Add and Modify, Delete uses key field information. It checks
the key fields to determine which rows to delete. H the key fields
are the same as an existing row, then the row is deleted, whether
or not the non-key fields are the same as the existing row.

3. Clear - just clears the form. It has no effect on the database tables.

26

4. Tables - calls the Tables Form and automatically fills in the dataown
ers.name field.

5. Special Features

o While your cursor is positioned on the dataowner .name field, you
may press CTRL-v (values key toggle). This will display a win
dow with a list of valid dataowner.name's. The Display window
may be too small to show the entire list. Use down-arrow key to
see if further entries exist. Select a dataowner.name by position
ing the cursor on it and pressing return will highlight it. Since
this is a toggle, you must press CTRL-v again to put the selected
dataowner.name in the dataowner.name field.

o You do not have to enter a date in the entry _date field, the current
date and time will automatically be put in for you when the row
is Added or Modified. This will be true of any form in the TOT
application where there is an entry _date field.

o The last line on this form (and many of the other forms in TOT),
is just an informational line. The number displayed after 'Rows
Found:' prompt is the number of rows that matched the fields on
which you ran Find*BY Example. The 'Current Row:' number
reflects the number of the row you are currently enjoying. The
'First Row in Buffer:' number is the record number of the first
row still retained in the buffer.

D.3 TABLES FORM

The tables form contains the following menu items and sub-menu items:

1. Find - See the description of these options in the Dataowner section.

•By Example

•Next

• Previous

2. Do It - See the description of these options in the Dataowner section.

• Add - Since every table name must be unique within 26 charac
ters across the entire database, no duplicate table names will be
allowed to be added.

27

o Modify

o Delete

3. Clear - See the description of this option in the Dataowner section.

4. Columns - calls the Columns Form and automatically fills in the data
owners.name and the table..name fields.

5. Special Features

o While your cursor is positioned on the dataowner..name or ta
ble.name fields, you may press CTRL-v (values key toggle). When
you press CTRL-v while your positioned on the table.name field,
only the tables that are associated with the dataowner entered in
the dataowner..name field will be shown as valid tables.

o After moving out of the dataowner..name field, if the field is not
null, the data entered in that field is checked to see if it actually
exists in the dataowners table.

o After moving out of the table.name field, if the field is not null,
the data entered in that field is checked to see if it actually exists
in the tables table.

D.4 COLUMNS FORM

The columns form contains the following menu items and sub-menu items:

1. Find - Searches the database for data matching what has been input by
the user on the form. H the fields that are filled in do not correspond
to any existing data, you are tofd so.

2. Do It - See the description of these options in the Dataowner section.

o Add

o Modify

o Delete - Same as the description for Delete in the Dataowner
section, but due to the Column form showing several columns
information, only the column that the cursor is positioned on
will be deleted.

3. Clear - See the description of these options in the Dataowner section.

28

4. Scroll - Move the cursor Down or Up a row on the form.

•Down

•Up

5. More

• Defaults - calls the Column Defaults form.

• Rules - calls the Column Rules form.

• Foreign Keys - calls the Foreign Key form

• Build Table SQL Code

- Build Table From Database - Builds the SQL code for the cre
ation of a table from the description stored in the database.
If the table contents entered on the form differs from that de
scribed by data stored in the columns table in the database,
you will be warned and asked if you would like to modify
the columns table entries with the information on the form
before creating the code.

- Build Table From Form - Builds the SQL code for the cre
ation of a table from the information stored on the form. If
you have altered the data on the form, you will be given a
warning message informing you that the code created may
not be consistent with what is stored in the database and
then asked if you want to proceed.

6. Special Features

o While your cursor is positioned on the dataowner.name field, ta
ble.name field or the datatype field, you may press CTRL-v (val
ues key toggle) for a list of valid entries. When you press CTRL-v
while your positioned on the table.name field, only the tables that
are associated with the dataowner entered in the dataowner.name
field will be shown as valid tables.

o After moving out of the dataowner.name field, if the field is not
null, the data entered in that field is checked to see if it actually
exists in the dataowners table.

o After moving out of the table.name field, if the field is not null,
the data entered in that field is checked to see if it actually exists
in the tables table.

29

o After moving out of the datatype field, if the field is not null, the
data entered in that field is checked to see if it is in the systype
system table. If it is a valid datatype, it is then checked to see
if a length is needed. If no length is needed then the type.length
field is skipped over.

o When the down arrow in the menu section is activated, you may
select it to browse through the data at a faster pace than by using
the Scroll=?Down option. The same is true for the up arrow.

D.5 COLUMN DEFAULTS FORM

The columns defaults form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

• By Example

• Next

• Previous

2. Do It - See the description of these options in the Dataowner section.

•Add

• Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features ·

o While your cursor is positioned on the dataowner..name, table.name,
or column name fields, you may press CTRL-v (values key tog
gle). When you press CTRL-v while positioned on the table.name
field, only the tables that are associated with the dataowner en
tered in . the dataowner ..name field will be shown as valid tables.
When you press CTRL-v while positioned on the column.name
field, only those columns in the table entered in the table.name
field will be shown as valid columns.

o After moving out of the dataowner ..name field, if the field is not
null, the data entered in that field is checked to see if it actually
exists in the dataowners table.

30

o After moving out of the table..name field, if the field is not null,
the data entered in that field is checked to see if it actually exists
in the tables table.

D.6 COLUMN RULES FORM

The columns rules form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

• By Example

• Next

• Previous

2. Do It - See the description of these options in the Dataowner section.

•Add

•Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features

o While your cursor is positioned on the dataowner..name, table..name,
or column..name fields, you may press CTRL-v (values key tog
gle). When you press CTRL-v while positioned on the table..name
field, only the tables that are associated with the dataowner en
tered in the dataowner ..name field will be shown as valid tables.
When you press CTRL-v while positioned on the column..name
field, only those columns in the table entered in the table..name
field will be shown as valid columns.

o After moving out of the dataowner..name field, if the field is not
null, the data entered in that field is checked to see if it actually
exists in the dataowners table.

o After moving out of the table..name field, if the field is not null,
the data entered in that field is checked to see if it actually exists
in the tables table.

31

D. 7 FOREIGN KEYS FORM

The foreign ~eys form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

o By Example

o Next

o Previous

2. Do It - See the description of these options in the Dataowner section.

o Add

o Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. Build Code - See the description of these options in the Tables of Table
section.

o Fkey And Insert Trigger Code - writes the code for creating for
eignkeys and for creating the insert and update trigger.

o Build Delete Trigger Code - writes the code for creating the delete
trigger.

5. Special Features

o While your cursor is positioned on any field in this form except
entry_date, you may press CTRL-v (values key toggle). When
you press CTRL-v while positioned on the foreign_table..name
or primary _table.name fields, only the tables that are associ
ated with the dataowner entered in the foreign_dataowner..name
or primary ..dataowner ..name fields will be shown as valid tables.
When you press CTRL-v on either of the column.name fields,
only the columns in the corresponding table will be shown as
valid columns.

o After moving out of the foreign_dataowner ..name or the
primary _dataowner..name fields, if the field is not null, the data
entered in that field is checked to see if it actually exists in the
dataowners table.

32

o After moving out of the foreign_table..name or the primary _ta
ble..name fields, if the field is not null, the data entered in that
field is checked to see if it actually exists in the tables table.

D.8 BUILD SQL CODE FORM

The build SQL code form contains the following menu items and sub-menu
items:

1. Create SQL Code

• Build Table SQL Code - writes the S QL code for the creation of
a table.

• Fkey And Insert Trigger Code · writes the SQL code for creating
foreignkeys and for creating the insert and update trigger.

• Build Delete Trigger Code - writes the SQL code for creating the
delete trigger.

• Build All Of The Above· writes all SQL code for creating tables,
foreignkeys and insert and up date triggers , and delete triggers
with all scripts in one file.

D.9 DATATYPES FORM

The datatypes form contains the following menu items and sub-menu items:

1. Find - See the description of these options in the Dataowner section.

• By Example

• Next

• Previous

2. Do It - See the description of these options in the Dataowner section.

•Add

• Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. More

33

• Create Type - this option will actually create the datatype, which
can then be used in the columns table. If there were any defaults
or rules defined for that datatype, it will bind them to it.

• Defaults - calls the Datatype Defaults form.

• Rules - calls the Datatype Rules form.

D.10 DATATYPE DEFAULTS FORM

The datatype defaults form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

• By Example

• Next

• Previous

2. Do It - See the description of these options in the Dataowner section.

•Add

•Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features

o While your cursor is positioned on the datatype field, you may
press CTRL-v (values key toggle). This will display a window
with a list of valid datatypes.

D.11 DATATYPE RULES FORM

The datatype rules form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

• By Example

• Next

34

• Previous

2. Do It - See the description of these options in the Dataowner section.

•Add

• Modify

• Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features

o While your cursor is positioned on the datatype field, you may
press CTRL-v (values key toggle). This will display a window
with a list of valid datatypes.

E Appendix: lnstructions for TOT Build Appli
cations

E.l BUILDTABLE

The Buildtable procedure produces a SQL script for creating the table, the
primary key, the primary index, the alternate index (if needed) and the table
permissions.

* This procedure can be invoked when you select one of the following:

- 'Build Table Sql Code' item under the 'Create Sql Code' option
in the 'BUILD SQL CODE' form.

- 'Build Table Sql Code' item under the 'More' option in the
'COLUMNS' form. Under this item you are given the option of
either building the code based on what is stored in the database
or based on what is currently stored on the form. ff you build
the code based on what is currently stored on the form, you will
be given a message warning you that the code created may no be
consisted with what is stored in the database.

* Output: " 'dataowner..name'_'table..name'.sql" - stored in the direc
tory that TOT was invoked from.

* Actual Code:

35

1. The database name 'mtfmsa' is hardcoded. In a future release,
the current database name should be used.

2. Before a table is created, first drop the existing table. The syntax
for dropping a table is as follows:

DROP TABLE [[database.]owner.]table..name

3. Create table:

CREATE TABLE [[database.]owner.]table..name
(column..name datatype [NOT NULL J NULL]
(,column name datatype [NOT NULL J NULL]] ...)

To do this we create a dynamic string for each column row,
consisting of 'column..name datatype((typeJength)] [NULL]'. The
following rules are checked against each column's information:

IF the field 'typeJength' is not null THEN append the typeJength
to the dynamic string.
IF the bit field 'nulLallowe<i' is set THEN append NULL to
the dynamic string.

IF the bit field 'parLoLprimary Jcey' is set THEN append
the column name to the dynamic string that is being built
for the primary key. The syntax of this dynamic string will
be shown later. .

4. Create primary key:

EXECUTE sp_primarykey table..name, coll [, col2, col3, ... ,
cols]

'coll' is the first column that makes up the primary key. The
primary key can consist of one to eight columns. Note: The
column order within the key is specified by the 'column..order'
field in the 'columns' table.

5. Grant permissions:

GRANT [SELECT J INSERT J DELETE J UPDATE] ON
table..name TO nameJist
REVOKE (SELECT J INSERT J DELETE J UPDATE] ON
table..name FROM namelist

'nameJist' can be either Sybase users name or group..name. At
present, SELECT is GRANTed to the public, INSERT is GRANTed
to the groups (administrator, developer, test..manager, measurer,

36

data.clerk), DELETE is GRANTed to the groups (administra
tor and developer), and UPDATE is GRANTed to the groups
(administrator and developer).

6- Create a clustered index on the primary key:

- CREATE CLUSTERED INDEX sn...index ON
'dataowner...name'. 'table...name' (pkey)

'pkey' is the primary key for the table entered on the form_ This
key is found querying the columns table to find the column(s)
that have the bit field 'parLoLprimary Jcey' set for this table.
See above note regarding column order.

7. Create a unique nonclustered index on the alternate key:

- CREATE UNIQUE NON CLUSTERED INDEX altJcey ...index
ON 'dataowner...name'.'table...name' (altJcey [, altJcey] ...)

'altJcey' is a single or multi-column key that uniquely identifies a
row in this table. By making this a UNIQUE index, we instruct
Sybase to check for duplicate rows, thus eUminating the need
for creating trigger code to do this. Column order in the key is
specified by the column_order field of the columns table as for the
primary key.

8. Add column rules, if needed. See Appendix E.4

9. Add column defaults, if needed. See Appendix E.5

E.2 BUILDFKEY

The Buildfkey procedure produces two SQL scripts. One script creates the
foreign keys and creates indices on those foreign keys and the other script
creates the insert and update trigger as one trigger. The trigger is created
to insure the integrity of the foreign keys. Also, for every distinct table
that a foreign key points to, a new delete trigger code will be generated
and appended to the 'dataowner...name'-'table...name'-1key.sql' code that this
procedure creates.

* This procedure is invoked when you select one of the following:

- 'Fkey And Insert Trigger Code' item under the 'Create Sql Code'
option in the 'BUILD SQL CODE' form.

- 'Fkey And Insert Trigger Code' item under the 'More' option in
the 'FOREIGNKEYS' form.

37

* Output:
" 'dataowner..name' _•table..name' ..fkey.sql" and
" 'dataowner..name'-'table..name' _trig.sql"
- stored in the directory that TOT was invoked from. The code created
is based on the data that is stored in the database. This should be run
after you are done entering all of the information for the table that
has the foreign keys and the tables that the foreign keys point to.

* Actual Code: - " 'dataowner..name'-'table..name' ..£key.sq!"

1. Since all of .our application tables are stored in the 'mtfmsa'
database, our first step is to hardcode which database to use.

2. Before foreign keys are created, existing foreign keys between the
two tables are dropped. The syntax for dropping a foreign..key is
as follows:

- EXECUTE sp.dropkey foreign, foreign_table..name,
deptabname

'foreign_table..name' is the name of the table that contains the
foreign key to be dropped.
'deptabname' is the name of the dependent table (in the form of
"'dataowner..name'.'table..name' ") that contains the column(s)
that the foreign key points to.
For each dependent table that this table's foreign keys point to,
an EXECUTE sp_dropkey line is created.

3. EXECUTE 'sp.foreignkey' to add foreign key for each new one
required.

4. Create index:

- CREATE INDEX fk#Jndex ON 'dataowner..name'. 'tab!e..name'
(Ikey) 'Ikey' is the foreign key for the table entered on the
form.

* Actual Code: - " 'dataowner..name'-'table..name' _trig.Sql"

1. Since all of our application tables are stored in the 'mtfmsa'
database, our first step is to hardcode which database to use.

2. Before a trigger is created, first drop any existing trigger. The
syntax for dropping a trigger is as follows:

- DROP TRIGGER trigger..name

38

'trigger.name' is the name of the trigger.

3. Create trigger:

CREATE TRlGGER trigger.name ON table.name FOR IN
SERT, UPDATE AS
BEGIN

END

'trigger ..name' is the name of the trigger. The trigger name has
the following format, " 'table.name' _i". Since trigger names can
only be 30 characters or less, if necessary the 'table.name' is
trimmed to 26 characters.

* Body of trigger:

1. Declare variables.

2. Check to see if there were any rows entered.

3. H the primary key is of sntype and is not a foreign key, make sure
that it is not updated or inserted.

4. For each foreign key row, check to see if the primary key that the
foreign key is attached to exists. IF the primary key does not
exist THEN set the 'problem' ft.ag.
Since some foreign keys are allowed to be NULL, the following
rules are checked:

- IF there are any rows being inserted or updated with NULLs
for this field THEN ignore them.

- To allow for multi row inserts, only check the ones that are
not NULL. IF a primary key is not found for any of these
THEN rollback the whole transaction.

5. Check to see IF the 'problem' ft.ag was set THEN print error
message and exit the trigger.

6. For each record inserted for which the primary key is a single
column of type sntype and for which the primary key is not a
foreign key to another table, generate a serial number15•

11Th.it U done with a stored procedure which auigm a generated serial number to the
record that hu a NULL primary.key.

39

E.S BLDDELTRIG

The Blddeltrig procedure produces a SQL script which creates the delete
trigger. The trigger is created to ensure that no primary key value in this
table can be deleted if a foreign keys exist that points to it.

• This procedure is invoked when you select one of the following:

- 'Build Delete Trigger Code' item under the 'Create Sq! Code'
option in the 'BUILD SQL CODE' form.

- 'Build Delete Trigger Code' item under the 'More' option in the
'FOREIGNKEYS' form.

• Output:
" 'dataowner.name'-'table.name'_del_trig.sql". · stored in the direc·
tory that TOT was invoked from. The code created is based on the
data that is stored in the database. This should be run, for the pri
mary key table, every time that a new foreign key is created which
points to the primary key in this table.

* Actual Code:

1. Since all of our application tables are stored in the 'mtfmsa'
database, our first step is to hardcode which database to use.

2. Before a trigger is created, the convention to use is to drop the
trigger first. The syntax for dropping a trigger is as follows:

- DROP TRIGGER trigger.name
'trigger.name' is the name of the trigger.

- Create trigger:
• CREATE TRIGGER trigger.name ON table.name FOR

DELETE AS
•BEGIN

•
•
•
•END

'trigger.name' is the name of the trigger. The trigger name
has the following format, " 'table.name' _d". Since trigger
names can only be 30 characters or less, if necessary the
'table.name' is trimmed to 26 characters.

40

* Body of trigger:

1. Declare variables.

2. Check to see if any rows are to be deleted.

3. For each row being deleted, check each table which has a foreign
key pointing at (the primary key of) this table. IF there are
entries in any of them THEN print error message and roll back
this transaction.

E.4 ADD Column RULE

* This procedure is invoked as part of creating the code for building a
table.

* Output: " 'dataowner.name'-'table.name' _crule.sql" • stored in the
directory that TOT was invoked from.

* Actual Code:

1. Before a rule is added to a column, one must drop the rule for
that column first. Before dropping a rule one must un-bind all
references to it. The syntax for dropping a rule is:

- DROP RULE rule.name

2. Create rule:

- CREATE RULE" 'dataowner.name'.'rule.name'"

3. Bind the rule to the column:

- EXECUTE sp_bindrule rule.name,
" 'table.name'. 'column.name' " AS rule_text

E.5 ADD Column DEFAULT

* This procedure is invoked as part of creating the code for building a
table.

* Output: " 'dataowner.name'-'table.name' _cdefault.sql" · stored in the
directory that TOT was invoked from.

* Actual Code:

41

1. Before a default is added to a column, one must drop the default
for that column first. Before dropping a default one must un-bind
all references to it. The syntax for dropping a default is:

DROP DEFAULT default.name

2. Create default:
CREATE DEFAULT" 'dataowner.name'.'default.name'"

3. Bind the default to the column:

- EXECUTE sp_binddefault default.name,
" 'table.name'.'column.name' " AS default_text

E.6 ADDTYPE

The Addtype procedure is different in that is does not produce a SQL script.
The adding of a datatype is processed as soon as you execute the 'Create
type' item.

* This procedure is invoked when you select the 'Create Type' item
under the 'More' option in the 'DATATYPES' form. This directly
submits an EXECUTE sp_addtype to the server. For best results:

Add the current form information into the database before invok
ing 'Create Type'. Do this by selecting option 2, item 'add'.

Clear the form. Select option 3.

Find the information from the database of the type you want to
add.

Enter the datatype on the form and select 'By Example' item
of option 1.

Create type. Select the 'Create Type' item under option 4.

* Output: none

* Actual Code:

1. Before a type is added, any existing definition must be dropped.
The syntax for dropping a datatype is as follows:

- EXECUTE sp.droptype datatype

2. Create datatype:

- EXECUTE sp..addtype datatype, definition

42

'definition' is the physical or SQL Server-supplied type (char, int,
etc.) on which the user-defined datatype is based.

3. Add datatype rule, if needed. See Appendix E. 7

4. Add datatype default, if needed. See Appendix E.8

E. 7 ADD Datatype RULE

* This procedure is invoked as part of adding a user-defined datatype.
This directly submits DROP RULE, CREATE RULE and EXECUTE
sp_bindrule for each datatype stored in the 'datatype__rules' table.

* Output: none

* Actual Code:

1. Before a rule is added to a datatype, one must drop the rule for
that datatype first. Before dropping a rule one must un-bind all
references to it. The syntax for dropping a default is:

- DROP RULE rule.name

2. Create rule:

- CREATE RULE rule..name

3. Bind the rule to the datatype:

- EXECUTE sp_bindrule rule.name, datatype, futureonly AS
rule_text

'futureonly' prevents existing columns of a user-defined datatype
from inheriting the new rule.

E.8 ADD Datatype DEFAULT

* This procedure is invoked as part of adding a user-defined datatype.
This directly submits DROP DEFAULT, CREATE DEFAULT and
EXECUTE sp_binddefault for each datatype
stored in the 'datatype_defaults' table.

* Output: none

* Actual Code:

43

1. Before a default is added to a datatype, one must drop the default
for that datatype first. Before dropping a default one must un
bind all references to it. The syntax for dropping a default is:

- DROP DEFAULT default.name

2. Create default:

- CREATE DEFAULT default.name

3. Bind the default to the datatype:

- EXECUTE sp.binddefault default.name, datatype, future
only AS defaulLtext

'futureonly' prevents existing columns of a user-defined datatype
from inheriting the new rule.

F Appendix: Primary, Alternate and Foreign key
options available using TOT

The use of keys in a database schema allow one to specify one or more
columns within a table which must be unique among all rows entered in
that table. A primary key is the column or set of columns which serves as
the principle unique specifier for that table. In the case of tables where one
chooses to create a serial number which serves as the unique key, there must
be some data stored in other columns which specify uniquely the values
which are of interest in that row. This is identified as the alternate key.
When one wishes to maintain data integrity by demanding that a value
in a table be one which has previously been entered into another table, a
Foreign Key describes that relation. SYBASE maintains a foreignkeys table,
but that guarantees no relational integrity. To maintain integrity, one needs
SYBASE triggers.

TOT allows one to automatically generate the code for keys. Some
features of this are:

1. TOT requires a primary key. It can consist of one or more columns.
This is enforced in BUILDTABLE.

2. For a primary key with multiple columns, TOT will create the key
using 'sp.primarykey' with the order specified in the 'column.order'
column. To utilize this as a foreign key, one will need to create trigger
code outside of TOT.

44

3. For a foreign key consisting of a single column, in addition to hav
ing the foreign key declared automatically, INSERT, UPDATE and
DELETE triggers will be created to enforce referential integrity.

4. If the primary key is a serial number (datatype = sntype) then the
code will be written to cause that serial number to be automatically
generated by the insert trigger UNLESS that key is a foreign key to
another table. BUILDFKEY will report an error if it writes serial
number generation code but there is no alternate key specified for
that table.

5. One may have tables in which no alternate key is specified. No Rela
tional Model rule requires more than one key in a table.

In Section 2 the indices which are created for each key are described.
Additional detailed information on triggers created by TOT is contained in
Appendix E

G Appendix: Defaults and Rules

Defaults and rules are two tools that Sybase offers the system designer for
guiding the use of a table. A default value is one that is put into a column
when a row is inserted without specifying a value for that column. A rule
is a restriction of the values allowed to be inserted in a column.

A default is an expression composed of ·constants and functions of con
stants. See "Expressions" in the Sybase Commands Manual. Depending on
the data type of the column it might be an integer (-1), a datetime (get
date()). or a character string (user...name()+'did not put anything here').
To use a default you must first create it, giving it a name. See "CREATE
DEFAULT" in the Sybase Commands Reference. The default can then be
bound to a specific column in a table. A default can also be bound to
a user-defined datatype. Any further tables created thereafter using that
datatype will have that default bound to each column of that datatype. A
default may be bound to more than one datatype or default or both. See
"sp.bindefault" in the Sybase Commands Reference.

A rule is a logical expression involving constants, functions, operators,
and at most one local variable. See "Expressions" in the Sybase Commands
Manual. If that expression does not evaluate to TRUE when a row is in
serted, then the row is rejected. The value that you are attempting to insert
is substituted for the local variable when the expression is evaluated. For

45

example, you can require (@myJnteger > 3)'or (@made_date < geLdate()).
Rules must be created. See "CREATE RULE" in the SYJIASE Commands
Manual. They can then be bound to either columns or user datatypes or
both, just as defaults can. See "sp_bindrule" in the Sybase Commands Man
ual.

To provide a more complicated default or rule you must use a trigger.
Right now we have no rules defined for the system. The only default we have
defined is for the datetime stamp. Our datetime datatype differs from the
system datetime datetimestamp only in having the default of the current
time.

In managing these entities one must be quite careful. H you change a
rule or default you must bind the new version to everything that has the old
binding.

H Appendix: Instructions for installation of TOT.

A complete package to install TOT requires a set of instructions plus the
following items:

1. Transact-SQL script to create a suitable set of default data types

2. Transact-SQL script to create the TOT tables

3. Transact-SQL scripts to create the TOT triggers

4- A script plus data files to enter the TOT schema into the TOT tables
via bulk copy

5. Sybase APT-SQL code (forms and application code) for the TOT data
entry and TOT BUILD procedures.

H one also wishes to utilize the serial number system for which TOT can
generate automatic triggers, the above list should be augmented with

1. A script plus data files to enter the Serials schema into the TOT tables
via bulk copy
OR

2. Transact-SQL code created by TOT to create these tables.

3. A Transact-SQL script for creating the Serial Generator stored proce
dure.

46

An installation package for TOT is not available at this time.
TOT data entry and BUILD applications run under SYBASE APT

Execute. To modify the APT-SQL code one needs APT-Workbench.

References

[1] J. Harvey Trimble Jr and David Chappell. A Visual Introduction to
SQL. John Wiley and Sons, New York, 1989.

[2] Mark A. Linton, Paul R. Calder, and John M. Vlissides. Interviews:
A c++ graphical interface toolkit. Technical Report CSL-TR-88-358,
Stanford University, July 1988.

[3] John M. Vlissides and Mark A. Linton. Applying object-oriented de
sign to structured graphics. In Proceeding of the 1988 USENIX C++
Conference, pages 81-94, October 1988.

41

