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ABSTRACT 

The effect of surface modes of propagation on coupling to fast waves in the 

LHRF is studied theoretically and experimentally. The previously reported 'up-

down' poloidal phasing asymmetry for coupling to a uniform plasma is shown 

to be due to the properties of a mode which carries energy along the plasma-

conducting wall interface. Comparison of the theory with coupling experiments 

performed on the PLT tokamak with a phased array of twelve dielectric-loaded 

waveguides at 800 MHz shows that the observed dependence of the net reflection 

coefficient on toroidal phase angle can be explained only if the surface wave is 

taken into account. 
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1. INTRODUCTION 

In recent years, efficient non-inductive current drive using the slow wave in 

the lower hybrid range of frequencies (LHRF) flj <S ui <£ fte has been demon­

strated in many tokamak experiments[l]. However, the extrapolation of this 

current drive technique to a tokamak reactor is not straightforward, because of 

the observed current drive density limit for a fixed frequency and the problem of 

wave accessibility to the core of a large, hot plasma at high frequencies. For this 

reason, several recent experiments have been carried out to investigate current 

drive with the other propagating plasma wave in the LHRF: the fast wave(2-7]. 

It was shown theoretically in Refs. [8,9] that efficient coupling to the fast 

wave with a phased array of open-ended waveguides is much more difficult than 

coupling to the slow mode. In this paper, we show that under some circum­

stances, much of the incident rf power from a fast wave antenna in the LHRF 

is coupled not to the desired propagating fast wave, but to a non-penetrating 

surface mode which carries energy away from the antenna along the plasma 

boundary. This surface mode does not correspond to the waveguide-like modes 

involving spectral energy in 1 < njj < " j ) e r , t discussed by Brambilla[10], nor 

to the similar mode involving fast waves with njj < 1 propagating in the low 

density edge region studied by Theilhaber and Bers[9]. Both of the latter modes 

require a density or magnetic field gradient, while the surface wave discussed 

here can exist at the boundary of a plasma with V n e , VJ3 0 = 0 everywhere 

in the plasma. The surface mode here discussed is related to the surface wave 

in the ICRF discussed by Messiaen, et o2.[ll], while th>! mode of Theilhaber 

and Bers is clearly analogous to the 'coaxial mode' in the ICRF also discussed 

in Ref. [11]. It is shown that the 'up-down' poloidal phasing asymmetry for 

coupling to a uniform plasma reported in Ref. [12] is due to the properties of 

the surface mode. 

We then compare the theory with the results of coupling experiments per­

formed on the PLT tokamak wich a 3 x 4 phased array of dielectric-loaded 

waveguides at 800 MHz[6]. The observed dependence of the net reflection coef-
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ficent on toroidal phase angle can be explained only if the surface wave is taken 

into account. With this caveat, general agreement between the coupling theory 

and the experimental results is demonstrated. 

2. THEORY OF THE SURFACE MODE 

We consider only the phased waveguide array coupler, for which the the­

ory h^s been exhaustively developed[9,10,12-16], and we shall use the notation 

of, and frequently refer to, Ref. [12]. However, our conclusions concerning the 

surface mode and its importance apply to other coupler designs; in particu­

lar, the surface mode may also be important in experiments employing loop 

antennas(4,5] or other types of couplers[7]. 

Since it was shown in Ref. [12] that many of the qualitative features of 

the coupling physics are determined only by the plasma parameters near the 

waveguide openings, we first consider the situation in which the plasma adjacent 

to the coupler is uniform. (We later will relax this restriction.) For the case 

with n e = 1.1 x 1 0 1 2 c m " 3 , B0 = 20 kG, / = 800 MHz, Fig. 9 of [12] shows[17] 

that when the phasing is such that most of the spectral power is concentrated 

near rij, = —1 (but not TI S = +1), nz = 0, very low net reflection coefficients 

axe found. At this value of density and magnetic field, neither slow nor fast 

waves can propagate in the plasma with this (ny,)^) , as the slow lower hybrid 

wave must have n2

x > 1 to propagate above ne = n c = 8 x 10 9 c m - 3 , while the 

fast wave with v?z < 1 can propagate only at densities below ne\mtoff s 3.47 x 

lQ~2fB(l-nl), that is, below n e ~ 5.5X10 1 1 c m - 3 in this case[10,9]. Therefore, 

with these parameters the power may propagate away from the antenna only 

along the plasma-conducting wall interface. 

Since the mode that carries most of the power away from the antenna ev­

idently is most important for n , w 0. we shall temporarily consider the case 

where nz = 0, ny / 0, corresponding to a poloidal array of infinitely wide 

waveguides. This is the opposite limit from that considered by BrambillaflO] 

and Theilhaber and Bers[9], where it was assumed that riy = 0, nz ^ 0. In 
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the algorithm used in this work, all of the information about the plasma is 

embedded in the admittance matrix Y ( n y , n I ) which connects the transverse 

components of the wave electric and magnetic fields at x = 0 + : B r ( 7 > , , n „ z = 

0 + ) = Y(Tij,,n r) • ET(715,71.5,3; = 0 + ) , in which E x = E • (I — xx) and similarly 

for Bj". For the uniform case under consideration here, analytic expressions 

for Y may be simply derived, and are given in [16,18] for slow and fast wave 

excitation, respectively. For our present purposes, we note that Eq. (2) of [12] 

gives the denominator of each of the four components of Y^- as 

El"\x = 0 + , n , , n , ) 3 * « ( » = 0 + , n „ n x ) 

- ^ ( a = 0 + , n > , n , ) £ / " t ( * = 0 + , n f 1 n , ) . (1) 

Also, the approximation ££"** = 0, which yields the expression of Ref. [18] for 

the fast wave admittance of a uniform plasma 

_B, nj"\S-nl)-iDny • 
*21 ~ "S 5 Za T2 ' V /̂ Ey S - n\ - nj 

in which n{.a,t = n^ a * t (f i s ,n») is the index of refraction for the fast wave in the 

x-direction, becomes exact for nz = 0. In this case, the fast and slow waves 

completely decouple, and are conventionally[19] referred to as the extraordinary 

(X) and ordinary (O) modes, respectively. Furthermore, if nz = 0, the dispersion 

relation for the fast (X) mode reduces to n^"** = t / 4 £ — r&. The appropriate 

branch of the square root is determined by causality: for RL/S > r.*, the 

condition that the mode carry enerjy only in the positive x-direction (away 

from the antenna) implies that nx > 0 (forward wave), while for RL/S < n2,, 

the wave amplitude must decay for x > 0, so that nx = +iJn2 - ^f-. For 

the LHRF, S&l, D « w | e / (wf i e ) , and since RL = S2 - D2 identically, for 

OJ < u>ij e/n e, nla,t is pure positive imaginary for any value of ny. 

Substitution of this X-mode dispersion relation into Eq. 2 with nz = 0 reveals 

a simple pole at ny = —VS, but not at Tiy = +yS. Now, it is easily shown that, 

in general, if Re(Y,j) = 0, the x-component of the time-averaged Poynting flux 

vanishes, i. e. the real part of the admittance represents power flow away from 

the coupling structure. With u < wl j e /n e and S > 0 (below the lower hybrid 
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resonance density), Y21 is purely imaginary, but the causal resolution of the 

pole, guaranteed by the inclusion of an imaginary part to n s with the proper 

sign[12], yields a spike in the real part of Y21 at the pole. The width of the spike 

is proportional to In^n , ) and its height is inversely proportional to Im(n y ) , so 

that the residue of the pole (the area beneath the spike) is independent of the 

size of the imaginary part introduced. 

The pole thus implies power flow away from the antenna. Since the plasma 

does not support a propagating mode at ( n ^ n , ) = (—V^O), the Poynting 

vector must lie in the x = 0 plane as Imfn^) —» 0. One can visualize the 

introduction of the small imaginary part to ( n s , n , ) as a slight distortion of the 

x = 0 + surface so that power flowing along x = 0 eventually passes through this 

surface at large z or y. No matter how small Im(nj,, n , ) is taken to be, all of 

the energy leaving the antenna is now properly accounted for, whether it flows 

into the plasma or along the surface. 

This property of the algorithm was pointed out by Brambilla[10]; he showed 

that the power trapped between the slow and fast wave cutoffs and the mode-

conversion point in sn inhomogeneous plasma is represented by poles in the 

admittance matrix elements, and he resolved the poles in a way equivalent to 

the method adopted here. In an earlier report [15], Brambilla considered the case 

in which the plasma is replaced by a vacuum layer of finite thickness, bounded 

by a perfectly conducting sheet parallel to the x = 0 plane. This stripline can 

carry power only in the direction parallel to the walls, so that the real part of the 

admittance is composed of a series of spikes corresponding to the eigenmodes 

of the stripline. For fast wave launching into a plasma with a low density at 

x = 0 + , the waves with |n , | < 1 can form similar eigenmodes between x = 0 

and the fast wave cutoff, and Theilhaber and Bers[9] demonstrated that these 

eigenmodes imply poles in the admittance appropriate to their problem. 

However, none of these waveguide-like modes can occur when the plasma is 

taken to be uniform for x > 0. But under some circumstances, a true surface 

mode[20,21] can exist at the interface between two media with different dielectric 

or ferromagnetic properties. Such a mode is evanescent in both media in the 
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direction normal to the interface but carries energy along the interface. Perhaps 

the best-known example of this phenomenon in plasma physics is the Trivelpiece-

Gould mode[22] that exists at the interface between an unmagnetized plasma 

and a vacuum or dielectric. Another surface mode exists at the interface between 

two magnetized cold plasmas or between a magnetized plasma and a vacuum or 

dielectric[23,24] with the static magnetic field parallel to the interface. A similar 

surface wave at the interface between a cold magnetized plasma and a perfectly 

conducting sheet was described by Seshadri[25,26]. The boundary conditions at 

a perfectly conducting sheet imply that the electric field of the mode must be 

normal to the interface; it results from a surface charge on the plasma. In the 

absence of a surface charge of magnetic monopoles, the magnetic field in the 

plasma must He in the plane x = 0 + , so that the Poynting vector of the mode 

also lies in the plane, as required for a surface wave. Next, we explicitly show 

that such a mode can be constructed using only plasma modes decaying away 

from the interface; simple reflection at x > 0 mimics the surface mode, but is 

clearly not a causal solution in the situation under consideration. 

The superposition of the two causal solutions in the uniform cold magnetized 

plasma permit us to satisfy the two boundary conditions 

£„(x = 0 + ) = E*™ + Ef"*= 0 

£ , ( s = 0 + ) = Eibm+E{"*= R,(oxl)E'"'v' + Rfa,tE$'"t = 0 

where the ratio R = Ex/Ey for each of the two modes is determined by the 

plasma parameters, nv, and nz. These two equations are satisfied if R,tow — 

Rfatti which is also exactly the condition that the denominator of the Y matrix 

elements (Eq. 1) vanish. Thus we see that the existence of a pole in the Y matrix 

elements for the uniform plasma implies the propagation of the surface mode 

along the plasma-conducting sheet interface. It is also now clear that no surface 

wave exists in this situation as B0 —t 0: the two cold plasma modes become 

degenerate in this limit and R.to^, = R/„.t trivially. 

As shown above, the case of nz = 0 so that the surface wave propagates 

normal to Bo can be treated simply, because the two cold plasma modes com-
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pletely decouple. Then we may satisfy the condition Ez = 0 by exciting only 

the X-mode. For the X-mode(19], Ey/Ex = (n= - S)/(nvnz - iD), or 

^L = i ( 5 - ^ ) ( 3 ) 

where, again, we have chosen the causal root of n a . Now, Ey = 0 is satisfied by 

n y = ±VS, but if we substitute n , = +%/S back into Eq. 3, we see that both 

numerator and denominator vanish for this choice. Therefore, the only proper 

root is 

n s = -VS, (4) 

and we once again arrive at the dispersion relation for the surface wave with 

nz = 0 . 

The surface wave exists only for densities below the lower hybrid resonance 

density, at which 5 = 0; for densities much lower than this limiting value, such 

as is characteristic of edge plasma in a tokamak for the LHRF, the surface wave 

• dispersion approaches that of a vacuum wave propagating poloidally along the 

plasma surface (nt = 0, ny = 1). For the parameters of Ref. [12], Fig. 9, a 

surface mode propagates with nz = 0 at n y = —0.995 . 

It is natural to attempt to construct an O-mode surface wave for nz = 0, 

as this mode satisfies Ev = 0 identically. But an O-mode decaying in the 

positive x-direction cannot satisfy Ez = 0 nontrivially, so that an array of 

waveguides oriented to excite the slow wave cannot couple directly to a surface 

wave. This explains why for slow wave cases the code described in Ref. [12] 

agrees with simpler codes that cannot model this phenomenon. Another way to 

see that there is no O-mode surface wave is to observe that O-mode dispersion 

is independent of magnetic field, so that a hypothetical O-mode surface wave 

would exist as B0 —+ 0. But it has been shown above that no surface mode 

exists on a perfectly conducting sheet as B 0 -* "• 

We may generalize the surface mode dispersion relation for nz ^ 0, as was 

done for the similar surface mode at a magnetized plasma-vacuum interface in 
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Ref. [23], by setting R,iow = R/a,t, or 

{nynx\,iow +iD)(P -nl\,iow - n*) - nyn\nx\,iom 

{nvnz\}a,t +iD)[P-nZ\fa,t - n j ) - nynlnz\fa,t' 

in which nx\tiow, n T | / 0 , t are the solutions of the cold plasma dispersion relation 

with positive imaginary part. This equation is sufficiently complicated that 

solutions must be found numerically. Such a solution for the parameters of 

Ref. [12], Fig. 9 is shown in Fig. 1; a surface wave exists for ny,nz near the unit 

circle for 6^,30", where tanfl = ny/nz. 

We can demonstrate that the surface mode dominates the coupling behavior 

shown in Ref. [12], Fig. 9 and in the inhomogeneous case shown in Fig. 8, op 

cit. by setting Re(Y;j) — 0 for |n , | < n I | c r j t = 1.16 (minimum accessible ns 

for it, = 1.1 x 1 0 1 2 c m - 3 , B0 = 20 kG) and recomputing them. This does not 

permit the surface wave to carry energy away from the antenna. The contours 

of constant reflection for the two cases are shown in Figs. 2 and 3. Comparison 

of these plots with the corresponding plots in Ref. [12] in which the surface 

wave is taken into account shows that essentially all of the power leaving the 

antenna for phasings near 0° toroidal, —90° poloidal is coupled to the surface 

wave. No significant up-down asymmetry remains in the uniform plasma case, 

and the optimum toroidal phase angle is now such that most of the spectral 

energy is between the accessibility {\nz\ > 1.16) and cutoff (\nz\ < 1.73) limits. 

The remaining up-down asymmetry in the inhomogeneous case is attributable 

to the effect of the density gradient discussed in Refs. [8] and [27]. 

We next describe a simple calculation which makes these numerical results 

plausible, by analytically demonstrating the good impedance match which can 

be obtained between a waveguide array and the surface mode. We take the 

case of a single, infinitely wide, dielectric-filled waveguide as an idealization of 

an infinite (in the toroidal direction) array of waveguides excited in phase, and 

assume that only the reflected fundamental mode of the waveguide is impor­

tant. By carrying out the matching procedure of Brambil]a[l3], we obtain the 
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following expression for the reflection coefficient p: 

l-p=A=ik°a t -- V n s + ^ - 5 - n » J 

Jc 1+p '-2xJiJa'T S-n* (¥%) 2 (6) 

in which a is the height of the waveguide, &o = w/c and e is the dielectric 

constant of the material filling the waveguide, and the integral is to be computed 

over the contour shown in Ref. [12], Fig. 2b. The power reflection coefficient is 

given by 
a [ l - R e ( A ) ] 3 + [Im(A)]2 

m _ [ l + Re(A)]2 + [Im(A)P' 

and we see explicitly that if -D2 > S3, the only power transmitted is due to the 

surface mode at rtv = —\/S. If we assume that the contribution from the pole 

is much larger than the the principal value, we find A ~ T » § C 5 ^ ) * ! where 

a = |&oavS. If we evaluate this for the plasma parameters of Ref. [12], Fig. 9, 

and take a = 5.4 cm, e = 8.0, we obtain \p\2 =s 0.30. If a = 0.5 cm instead, we 

estimate \p\2 ss 0.89. Using the code described in Ref. [12] to model a single 

row of four waveguides 8.6 cm wide by 5.4 or 0.5 cm high, separated by 0.67 cm 

in the toroidal direction, radiating into a uniform plasma with the parameters 

of Ref. [12], Fig. 9, we obtain |p | 2 = 0.33 and 0.92, respectively, when the four 

guides are excited in phase. These are the power reflection coefficients for the 

inner pair of guides; the guides on the ends are calculated to have a somewhat 

higher \p\2. Considering the simplicity of the estimate, the agreement between 

the numerical result and the analytic estimate is excellent. We may thus con­

clude that the low reflection coefficients found in Ref. [12] result from the good 

impedance match between the waveguide and the surface mode. Unfortunately, 

this implies that the regime of low reflection coefficients discussed in Ref. [12] 

is of no use in fast wave current drive experiments, since almost none of the 

launched power penetrates the surface of the plasma. This is in agreement with 

the direct computation of the power spectrum that reaches the plasma core 

reported in Ref. [12]. 

The effect of a vacuum layer between the plasma edge ar.d the conduct­

ing wall on coupling and propagation of the surface wave may be assessed 
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by computing the phase change of the wave in propagating across the gap: 

A<£ = ikv f*r nx dx, in which n* = 1 — n? — n*. For the X-mode surface wave 

with n r = 0, \A<f>\ = koxf\l - S I 1 ' 2 a xp(upi/c)\l - (u/wgms)2\1/2, in which 

the geometric mean gyrofrequency w , m , = Vtt&c • Under typical conditions in 

the LHRF, this phase change is negligible compared to unity; for the example 

considered above, the gap would have to be about 60 cm to produce |A<£| ~ 1. 

Generally, a gap large enough to significantly affect the surface mode would also 

preclude efficient coupling to propagating fast waves (n, > 1), due to the long 

tunneling distance. In the experiment discussed in this paper, the gap between 

the plasma edge and the conducting vacuum vessel was less than 10 cm, and 

the other parameters were such that the effect of the gap on the surface mode 

was negligible. 

A substantial vacuum region between the plasma and the conducting wall 

permits the propagation of the 'coaxial mode'Jll], which is also the limit of the 

mode discussed by Theilhaber and Bers[9] in which the linear density profile is 

replaced by a vacuum region and a step. This mode is not a true surface wave; 

rather, it corresponds to a strip line with the plasma and the conducting sheet 

forming the two walls. 

The relationship between the coaxial mode and the surface mode considered 

in this paper can be quantified by calculating the dispersion relation for the 

case where the plasma density is zero for a distance 0 < x < xp in front of the 

conducting sheet, then uniform for x > sep. Matching tangential electric and 

magnetic field components at the plasma/vacuum boundary, and tangential 

electric fields at the conducting sheet, we obtain the dispersion relation for 

nt = 0 ; 

Jl-n2.tzR(k0x?Jl^~rf) n y ~ S . (7) 
Sy/r$ - RLIS - Dny 

If the gap is small, k0xp «§; 1, and the dispersion relation for the surface mode 

is given approximately by 7iy = — -/S — koxpD{\ — S). As kaxv ~ TT, new pairs 

of solutions appear, which correspond to the coaxial modes mentioned above. 

It can be shown that the lowest order pair of coaxial modes occurs when the 
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gap is between XQ/4. and Ao/2 wide, where the vacuum wavelength A0 = c / / -

For the case of Ref. [12], Fig. 9, except now permitting a vacuum gap, we find 

the lowest order coaxial modes appear at xp > 15.3 cm (x P = 0.4lAo). 

In situations where the vacuum gap is large enough to permit both the 

surface mode and the coaxial modes to propagate, and the antenna spectrum 

contains energy in the ranges of (n , ,n , ) where these modes can propagate, both 

types of modes will be excited. We may evaluate the partition of energy between 

the coaxial modes and the surface mode by comparing the residue at the poles 

of Yi\ which correspond to those modes. Again considering the only analytically 

tractable case, where n x = 0, we find that the admittance is given by 

S^n* - RL/S -Dny-iS- n2

y) tan(* 0s P y/l^) 
*21 = * " 1 / - 1 • ( 8 ) 

S - ny + V 1 - n ? tan(fc 0 s P V A - n?)(S^n» - RL/S - Dny) 

The residue can be easily evaluated at a pole, where the denominator of Eqn. 8 

vanishes (Eqn. 7 is satisfied), by evaluating the quotient of the numerator of 

Eqn. 8 and the derivative with respect to n s of the denominator at the pole. 

In Fig. 4, we plot the residue of Yu at the poles as a function of the sfee of 

the vacuum gap, normalized to the residue with xv ~ 0, which is equal to D. 

The plasma parameters are again those of Ref, [12], Fig. 9- For xp > 15.3 cm, 

the coaxial modes (one propagating in the positive y direction, the other in the 

negative y direction) are more important power sinks than the surface mode. 

Finally, we consider the effect of a smooth density gradient on the surface 
mode. In the foregoing, we showed that for a uniform plasma, the residue at the 
pole of Y2i(nv,nz) that represents the surface mode is equal to D for D2 > S3 2t 
1. We therefore might expect that the residue of Yz\ at the pole with a density 
ramp replacing the density step would be smaller, since D 2; u>*t/{wSlK) ~ n e . 
However, because •/§ is very close to unity throughout the edge region in the 
LHRF, the value of n s at which the pole occurs would not be expected to be 
strongly affected by finite dne/dx. These qualitative expectations are borne out 
by numerical calculation of l 2 i ( n y , n , = 0) witn a linear density ramp. The 
location of the pole and the residue of Y2i there were computed as a function 
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of the density gradient scale length o, with nt(x) = (1.1 x 10 1 2 cm~3)(x/a) for 
0 < x < a, ne = 1.1 x 10 1 2 c m - 3 for x > a. The magnetic field WP.S 20 kG, and 
the ion mass mi = 2m,,. As mentioned above., tor a = 0, the residue is D sa 2.0; 
we plot the residue of Yjj normalised te> thi- value in Fig. 5. Though the level 
of the coupling between a given antenna and the surface mode depends on the 
density gradient in front of the antenna, the gross properties of the mode are 
unchanged by finite dnc/dx. 

3. COMPARISON OI THEORY AND EXPERIMENT 

The experiments were performed using a ?, x 4 array of dielectric (e -- 8.8) 

filled waveguides; each waveguide \f&. 3.25 cm wide (in the toroidal direction) 

and 5.08 cm high (in the poloidal direction). The guides were mounted in a steel 

frame which maintained a distance of 0.7 cm between the guides in ths toroidal 

direction and 2.9 cm in the poHdfd direction[28]. The array was mounted in 

an outside midplane port on the Princeton Large Torus (PLT)[29], a circular 

cross-section tokamak with H. = 132 cm, a = 40 cm. The limiters were placed at 

minor radii in the range «i — 3ti to a = 43 cm during these experiments; a pair of 

graphite limiters were fixed at cither side cf the waveguide array at a = 4t( cm. 

The plasma current and line-averaged density were varied over the ranges 200 

- 400 kA and 1 x 10 1 2 c m - 3 - 3 x 10 1 3 c m - 3 , respectively. Deuterium gas was 

used. Hf power at 800 MHz was suppled by the same set of klystrons as had been 

used for lower hybrid slow wav* current drive experiments on PLT[30,31]; the 

rf system was described in detail in Ref. [32]. Further information concerning 

the waveguide array, the tokamak, the rf system, and diagnostic techniques is 

given in Ref. [33]. 

The experimental results on waveguide array-plasma ouplki^ may be sum­
marized as follows. With fixed plasma conditions, the net reflection coefficient R 
as a function of toroidal ph?je angle A<fo- always had a minimum at A<£r = 0°, 
and a broad maximum at &<j>r near 130°, as is shown in Figs. 6 and 7a. As the 
line-averaged density n e was raised with A^r fixed, R dropped substantially 
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^Figs. 7 and 8a). Both of these dependences are in sharp contrast to the behav­

ior observed in experiments with slow wave arrays (Fig. 6b, for example). As 

has been shown in Refs. [34-36] and others, the observed behavior of slow wave 

arrays is in good agreement with the well-developed coupling theory. 

To compare results from the coupling theory to the experiment, one must 

have information on the density profile in the neighborhood of the coupler. 

Langmuir probe data[37] provided a measurement of the density profile in the 

range o = 42 - 45 cm, though the absolute value of the edge density was 

not calibrated, and these measurements were not performed under conditions 

precisely identical to those under which the waveguide coupling data was taken. 

Absolute values for the edge density and its dependence on n e were obtained by 

fitting the results of 2.45 GHz lower hybrid slow wave coupling measurements 

to the theory of Ref. [16]; this procedure has been shown to give values of edge 

density in agreement with detailed probe measuremcnts[3S]. 

For simulation of the phase scan shown in Fig. 6, in which fi e = 1.5 x 

10" c m - 3 , Ip = 400 kA, BT — 31.3 kG, and r H m = 40 cm, we take nt{r = 

43 cm) = 1.3 x 1 0 1 1 cm - *, and ( V n e ) | e r f j e = 4 x 10 1 1 c m - 4 . This linear profile is 

assumed to extend to the limiter radius, and the profile inside the limiter is taken 

to be parabolic. The predicted contours of constant net reflection coefficient[12] 

for this case are shown in Fig. 9. As discussed in Sec. 2, the effect of the surface 

wave is to predict a strong up-down poloidal phasing asymmetry, which was not 

observed. Furthermore, the dependence of R on A<f>r at a fixed poloidal phasing 

of 0° (the conditions under which the data of Fig. 6 was taken) is unlike what 

was seen in the experiment, with R predicted have a mejdmum at A(f>x = 0°. 

Rather, the observed dependence was more like that predicted for near-optimal 

poloidal phasing, so that the surface wave with n, = 0, n y ~ — 1 is strongly 

excited with Atfrr — 0°. A simple error in poloidal phase calibration is ruled out 

by the fact that we found no significantly better coupling at any other poloidal 

phasing. 

If the poloidal phasing were for some reason ineffective, so that the array 
acted like three independent 1x4 arrays, then the width of the launched poloidal 
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spectrum would increase by a factor of ~ 4. The surface wave loading would 

be strong only for toroidal phasings near 0°, and the up-down asymmetry of 

that mode would not be observable from reflection coefficient data alone. The 

toroidal phase^dependence of the coupling under these circumstances can be 

computed simply by using a 1 x 4 array in the code. The dependence of R 

on Atpr thus calculated is shown in Fig. 10, where it is compared with the 

analogous curve obtained from the full 3 x 4 case at &<j>p = 0°. The qualitative 

behavior observed (Fig. 6a) is clearly much closer to that predicted by assuming 

that the rows of the array axe effectively decoupled. 

There is, ia fact, a good reason to expect that the poloidal phasing might 

be considerably less effective than the toroidal phasing in our experimental 

configuration, where the spaces between the rows were somewhat more than 

half the height of the guides, while the toroidal spacing was < 10% of the width 

of the guides. The theory described ia [12], like all theories of the Brambilla 

type, assumes that a perfectly conducting sheet fills all the spaces between the 

waveguide openings and the remainder of the * = C plane. The surface currents 

that flow on the conducting sheet in the idealized model permit discontinuity in 

the transverse magnetic field at x = 0; this effect is quite important[15]. Bench 

tests with single[39] and double waveguides[40] have shown important differences 

in the fields in the plane of the waveguide openings between situations with and 

without a ground plane. As pointed out by Greene[39], currents flowing on 

the outer suiface of the waveguides can be substantial; these currents would be 

expected to produce sharp peaks in the electric field at the edges of the guides, 

and consequently to spread the launched spectrum to higher |TIJ| j than predicted 

by the idealized theory. In our experiment, arc tracks which were observed on 

the top and bottom surfaces of the waveguides are evidence that strong fringing 

fields existed in the gaps between the rows of guides. 

We conclude that a reasonable model for the coupling is to assume that the 
3 x 4 array acted as though it were composed of three independent 1 x 4 arrays. 
The excited n^-spectrum is thus about four times as broad as it would have 
been in the true 3 x 4 case, so that though the spectrum is peaked at ny = 0, 
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the surface wave at riy ~ — 1, n z = 0 is still strongly excited for toroidal phase 

angles :S90D. TO explain the minimum in R at A<AT — 0°i we must invoke the 

surface wave — Fig. 10a also shows the R(A<foO predicted for the 4 x 1 array 

with Re(yjj) set equal to zero for TS* < 1, so that the surfac^wave is not allowed 

to cany energy away from the coupler. Comparison of these curves with the 

experimental data (Fig. 6a) shows that the X-mode surface wave appears to 

dominate the loading for phase angles near A<£r — 0°. 

We model the two-guide density scan of Fig. 7a by assuming proportionality 

between nc and ( V n e ) j e j J e , as suggested by the edge density measurements, 

that ne\ci9t is fixed at 1.3 x 1 0 u c m - 3 , and that nCQ = 1.5fie, as is appropriate 

for a parabolic profile. We compute the "scattering matrices" for a 1 x 4 array, 

but then treat the outer pair of guides as passive when computing R — in the 

experiment the outer guides were terminated. The results of this computation 

are shown in Fig. 7b. Given that the magnitude of R was not absolutely cali­

brated in Fig. 7a, the qualitative agreement between the model results and the 

experiment is rather good. 

The same scattering matrices were used to predict the reflection coefficient 

as a function of n e with a fixed toroidal phase angle of 180", for comparison 

with the data shown in Fig. 8a. In this case, all four guides were powered. 

The observed reduction in R as fi, is raised is accurately reproduced by the 

theory but the magnitude of R found in the experiment was about 0.2 lower 

than the theoretical value for all densities. A similar offset is seen comparing 

the theory and experiment for the phase scan at fixed density (Figs. 6a and 

ICa). The simplest explanation for this discrepancy is that some fraction / 'o f 

the power is lost in the coaxial lines connecting the directional coupler;.; and 

the waveguide array. Since this loss is squared for the reflected power, the 

true reflection coefficient would be (1 — / ) ~ l times the value measured at the 

directional coupler. The experimental data of Fig. 8a is replotted in Fig. 8b 

with an assumed loss of / = 25% (1.25 dB), and compared with the theory. 

This "jf has been chosen to give the best fit to the data. 

Though the agreement between the theory and the experiment is quite good, 
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assuming this fairly large loss in the lines, in view of the differences between 

the experimental configuration and the idealized model, such good agreement 

must be regarded as somewhat fortuitous. In particular, the gaps between the 

giudes are not modelled properly, poloidal curvature effects are not included 

in the model, and the density profile is not known well enough for a precise 

comparison of theory and experiment. The fast wave coupling region extends 

much farther into the plasma than does the region that determines slow wave 

coupling. Stevens, et ai.[16] showed that for most experimental situations, the 

slow wave coupling efficiency depends only on a single parameter: the density 

at the face of the coupler, while fast wave coupling relies on tunneling through 

the outer few centimeters of the profile and is thus dependent on the density 

profile in a much larger region. The effect of density fluctuations on coupling 

is an unsolved problem, but one might expect that when the cutoff layer is 

located near the limiter radius, where fluctuation levels are highest, any such 

effect would be maximized. These fluctuations may have a decisive effect on the 

nature of the power that actually penetrates the plasma[41,42], so it is perhaps 

reasonable to expect some effect on the coupling. 

We conclude that given the greater sensitivity of fast wave coupling to factors 

not well characterized, either theoretically or experimentally, the level of quanti­

tative agreement between coupling theory and experiment seen in the slow wave 

case is not to be expected. However, the extent of the qualitative agreement 

that we do find shows that the basic coupling physics of the dielectric-loaded 

waveguide array fast wave coupler is reasonably well understood. In particular, 

the antenna could not have launched a large fraction of the incident power cll-
rectly into the slow wave branch without qualitatively changing the dependence 

of R vs. nc and vs. Afo- Carrying out the spectral analysis described in [12] 

for the case where Atj>T = 180°, n e = 5 x 1 0 l a cm 3 , we find that < 5% of the 

power that escapes the coupling region is on the slow wave branch. 
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4. SUMMARY AND CONCLUSIONS 

We have mads a detailed comparison between coupling measurements using 

a 3x4 dieleciric-loaded waveguide array and a complete linear coupling model 

including both slow and fast modes in the lower-hybrid range of frequencies. We 

have shown both analytically and numerically that the poloidaliy asymmetric 

coupling characteristics described in previous theoretical work are largely due to 

the excitation of surface modes. Moreover, these waves can dominate the cou­

pling properties over a wide range of plasma edge conditions and toroidal phase 

angles. The experimental results indicate a coupling dependence on toroidal 

phase angle th t we can explain only by invoking the presence of such surface 

waves. Good qualitative agreement between theory and experiment was ob­

tained; although certain nonideal conditions in the experiment, such as the 

presence of sizable gaps in the ground plane between adjacent waveguides and 

losses in the transmission lines, give rise to a plausible absolute discepancy be­

tween our idealized model and the experimental results. We conclude that these 

surface waves are likely to play an important role in attempts[43] to couple to 

the fast wav: in this frequency range. 
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Figures 

Fig. 1. The solution of Eq. 5, plotted as r = Jn^ -j- n\ as a function of 9 = 

ny/nz. The plot for 90° < 0 < 270° is obtained by reflcnting the plot around 

9 = 90°. 

Fig. 2. Contours cf power reflection coefficient for uniform plasma with n e = 

1.1 x 1 0 1 2 c m - 3 , BQ = 20 kG, with surface waves not allowed to carry energy, 

to be compared with Ref. [12], Fig. 9. 

Fig, 3. Contours of power reflection coefficient for the 'standard' fast wave array 

case of Ref. [12], Fig. 8, with the surface waves removed. 

Fig. 4. The residue of the admittance Y21 at the poles, with nx = 0, with 

a vacuum gap and a deuterium plasma with density 1.1 x 1 0 l a c m - 3 for 

x > x p ; B0 = 20 kG. 

Fig. 5. The residue of the admittance Y^i at the surface wave pole, with n , = 0, 

as a function of the density gradient scale length a, normalized to the residue 

with a = 0. The density at the end of the ramp is 1.1 x 10 1 2 c m - 3 ; B0 = 20 

kG. 

Fig. 6- Comparison of observed toroidal phase dependence of net reflection co­

efficient with slow and fast wave 800 MHz couplers, (a) Net reflection co­

efficient for 3 x 4 array vs. toroidal phase angle. 2?T = 31-3 kG, ne = 
1,5 x 1 0 1 3 c m - 3 , forward power 190 kW. (b) Similar curve obtained with 

1 x 6 slow wave coupler[38]. BT = 28 kG, n„ = 1.85 x 1 0 1 3 c m - 3 , forward 

power 12 kW. 

Fig. 7. Relative net power reflection for 2-waveguide subset of the 3 x 4 array 

vs. toroidal phase angle at six different lHe-averaged densities. Prf ~ 1 

kW. The curves are fits of the form a + bcos<t>. These curves are a relative 

measure of the plasma loading, and were calibrated by assuming that the 

minimum in R for the vacuum occurs at A(f>x = 0°, and taking the max­

imum reflection in the vacuum to be R = 1. [The dielectric filling makes 
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the waveguides a poor impedance match to the vacuum, so that the pair 

of guides with A ^ T = 180° are predicted to have a reflection coefficient 

of 0.93 in a vacuum, as shown in (b).] Having established the calibration 

with the vacuum curve, the phase scan was repeated at each value of n,.. 
o = vacuum x = 0.5 x 10 1 3 c m - 3 A = 1.1 x 1 0 i a c m - 3 

• --= 1.5 x 1 0 1 3 c m " 3 • = 2.0 x 1 0 i 3 c m " 3 o = 2.6 x 10 1 3 c m " 3 

(b) R( A4>T) predicted for two-waveguide density scan. Line-average densities 

o f « e = v a c u u m , 5 x l 0 1 2 c m - 3 , l x l G 1 3 c m - 3 , 1.5XlO 1 3 c m " 3 , 2 x l 0 1 3 c m - 3 , 

and 2.5 x 10 1 3 c m - 3 . 

Fig. 8. (a) Observed net power reflection for 3 x 4 fast wavt a^ray as a function 

of ne with A<£r = 180°, 7 P = 500 kA, BT = 31.3 kG. (b) R(n«.) predicted for 

density scan with A(J>T = 180°, and compared to experimental data, where 

a loss in the coaxial lines of 25% has been assumed. 

Fig. 9. Contours of power reflection coefficient for modeling of phase scan of 

Fig. 6a. 

Fig. 10 ComDaring the predictions of R(ZiaVr) for three models, (a) 1 x 4 array, 

with surface waves allowed (solid) and forbidden (dashed), (b) 3 x 4 array 

with A<j>p = 0°. 
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