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Abstract 

A numerical technique designed to  solve a wide class of convecti\el! domi- 
nated flou problems is presented. An attractive feature of the technique is i t5 

ability t o  resolve the behavior of field quantities possessing large gradients a n d  or 
shocks. The method is a finite-difference technique knoun as flus-corrected trans- 
port (FCT) that maintains four important numerical considerations - stahilitj .  
accuracy. monotonicity. a n d  conservation. T h e  theory a n d  methodolog~ of two- 
dimensional FCT is presented. T h e  method is applied in demonstrative example 
calculations of a 2-D Riemann problem with known exact solutions and to the 
Euler equations in a study of classical Rayleigh-Taylor and Kelvin-Helmholtz 
instability problems. The FCT solver has been vectorized for execution on the 
Cray I S  - a typical call with a 50 by 50 mesh requires about 0.00428 cpu seconds 
of execution time per call to the  routine. Additionally. we have maintained a 
modular structure for the solver that  eases its implementation. Fortran listings 
of two versions of the 2-D FCT solvers are appended with a driver main progranl 
illustrating the  call sequence for t h e  modules. 
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1 Introduction -. 

Many fluid mechanics and heat. transfer processes are dominated by nonlinear 
convective phenomena. Such effects often produce flows which exhibit extreme 
gradients and/or  shocks. Following von Neumann and Richtmyer’s important 
discovery of the artificial viscosity method [l],  continued research in computa- 
tional fluid mechanics has been directed towards properly treating convective 
terms. Much of the current work has focused on methods based on several im- 
portant  mathematical issues. Godunov [2] was among the first to  recognize the 
importance of positivity of convective equat.ions, and most computationalists now 
affirm the superiority of methods which preserve positivity 131. Additionally, the 
integral conservation relations of the continuum equations have been recognized 
and widely used in many numerical techniques [4]. Finally, t,he inaccuracies of 
first-order methods, especially in regions of large gradients, have been studied in 
some depth 151. Thus, investiga.tions into numerical techniques for the solution of 
convectively-dominated problems have converged on the development of second- 
(and higher) order accurate numerical methods which are both conservative and 
m on o t on e. 

In one dimension, numerical solutions of convectively-dominated flows with 
adequate stability, accuracy, monotonicity and conservation are now common- 
place. Current efforts are  aimed towards applying these techniques in multidi- 
mensional problems where aspects such as shear and geometry effects are rnan- 
ifested. This paper presents a numerical technique which addresses the solution 
of convectively-dominated flows in two dimensions. 

T h e  large majority of general solvers for t.his class of problems utilize finite- 
difference techniques. Presently, finite-difference techniques appear to  have an 
edge in accuracy, computational efficiency, and storage over other approaches. 
For certain problems, t,he moving finite element met.hod discussed by Gelinas e t .  
al. 161 has been demonstrat>ed to be extremely accurate. However, to  our knowl- 
edge, this t.echnique has had little a.pplication to  mult,idimensional problems, it 
is relatively computationally inefficient, and requires user-specified parameters 
tha t  are problem-dependent. Thus,  following the current. direct.ion in solving 
convective problems, our discussion shall focus on finit,e-difference methods. Fur- 
thermore, we choose to concentrate on the solution of a system of Eulerian con- 
servation equations. 

All finite-difference schemes exhibit numerical diffusion (dissipation) and/or  
dispersion error due to  truncation. It is this fact which causes great difficultmy 
in numerically describing convectively-dominated flows - especially flows which 

’ Posit,i\ i t y  iniplies t h a t  if a property of the system is posit,ive at, soiiie iiist.ant in t,ime, then i t  
~ i l u e t  ~-eiiiniii positive a t  all 1at.er times also. For example, if the field represents t,lie density or 
energy of a iiiaierial! ~iegat~ive values are not pliysically nieai~ii~gfiil.  

~- 
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exhibit shock-type regions. In early techniques, the differential equations were 
replaced by Taylor series expansions tha t  yield algebraic equations endowed with 
the desirable characteristics of monotonicity, conservation. high-order, and sta- 
bility, although all four characteristics could not be concurrent in one method. 
In fact. Godunov 12; proved tha t  there were no linear second- or higher-order 
schemes that could always guarantee monotonicity. In Van Leer’s 51 study of 
conservative finite-difference methods, a generalized theory for hyperbolic sys- 
tems of conservation laws was established which unified many schemes such as 
the methods of Lax i7;. Lax-R’endroff ‘81, Rusanov 19, and Godunox 21. Van Leer 
also recognized tha t  on]! the first-order accurate methods are monotone and sta- 
ble. However, these low-order methods gained their stability by being strong13 
dissipatixe. and often caused drastic smoothing of the solution. Thus. first-order 
accurate methods such as Lax and upwind differencing , lo’  yield solutions Lvith 
an extreme lack of detail. On the other hand. linear second-order methods. such 
as the Lax-Mendroff and LlacCormack j l l ]  techniques are known to be ~ c a k l ~  
dissipatke and susceptible to nonlinear instabilities 151. In regions of high gra- 
dients andiior shocks. unphj  sical oscillations occur which excite false modes of 
behavior in the physical system. For example. enforced conservation under such 
false modes can cause a positive definite field to  become negative Introducing 
artificial diffusion into the numerical scheme has been a traditional approach to 
dampen spurious oscillations in regions of large gradients 11.12 . that is. numer- 
ical dissipation is directly added t o  a scheme so tha t  shocks and discontinuities 
are spread over distances which  can be resolved on a practical computational 
mesh. This is. at best. a compromise approach If the oscillations are total11 
damped.  the solution exhibits the same massive diffusion as the linear first-order 
techniques. On the other hand, if the oscillatior:s are not totally damped. then 
nothing h a s  been gained over standard high-order methods. 

In the discussion to  this point, the  first-order methods. higher-order methods. 
and the artificial diffusion approach were lznear methods. That  is. the same oper- 
ations are applied to  e \er \  finite-difference point during every timestep. \’an Leer 
13; and Boris and Book , 1 4 ’  were among the first to recognize that  if accuracy 

a n d  monotonicity are desired, nonlzriear techniques are necessary. By allom ing 
the numerical diffusion to be nonlinear in space and time. the sebere limitation 
of large diffusion could be ayoided in smooth regions and yet be incorporated lo- 
cally near steep gradients to  ensure monotonicit). These “positivitl -preser\ ing” 
methods as categorized in a recent review by \Yoodward and Colella 115,. fall into 
two general classes: (I) linear hybridization. and (2) those based on Godunov‘s 
nonlinear technique. The  recent appearance of Total Variational Diminishing 
(TVD) techniques. which are also positivitj preserving i16j, introduces yet a 
third category to  this classification system. 

A high-order. nonlinear scheme based on the Goduno\ method e\ol \ed from 
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the studies by van Leer [13,17,18,19,20]. In Godunov’s method, the nonlinearity is 
introduced explicitly into the method using exact solutions to the Riemann prob- 
lem. Instead of building a solution by piecing together smooth, small-amplitude 
solutions. the solution is formed using discontinuous functions. However, this ap- 
proach is the most complex of the monotonocity-preserving techniques. Another 
drawback is tha t  it requires the construction of characteristics of the hyperbolic 
system of equations which can become complex especially if a nonideal gas la\? 
is used. Roe ‘21.22’ and h’oodward and Colella 115.233 are among the major 
contributors to  this approach. The  PPM (Piecewise-Parabolic Method) scheme 
of U’oodward and Colella is an  example utilizing this technique ;23; .  

In linear hjbridization. the results of a low-order scheme are blended with 
a high-order scheme to take advantage of the strong points of each. In smooth 
regions (regions with small gradients) the high-order scheme is used exclusivel~. 
assuring proper accuracy. Near regions of large gradients, however. the ]OM’- 

order scheme is weighted with the high-order scheme to  an extent sufficient to 
maintain monotonicit?. Currentl>.  there are a number of numerical techniques 
based on the linear hybridization principle. such a5 t h e  n o r k  of Boris a n d  Boob 
114’. Chapman [24]. and Forester 1 2 5 .  

The  T\’D schemes represent a n  effort to place the study of h) perbolic s> stems 
of equations on a rigorous mathematical foundation. A partial list of contributors 
to  this effort include Harten /16 . Davis 1261. Yee e t .  al. 127 , Sweby j28] and Osher 
and Chakravarthy j29.30,. Although many of the T\’D techniques dexeloped 
utilize Riemann solvers and as such can be classified as Godunov-type approaches. 
the work of Davis is analogous to  the linear h> bridization approach. 

In the present ~ 7 o r k .  we focus on one of the first linear hybridization tech- 
niques to  be developed - the  flux-corrected transport ( F C T )  method devised 
by Boris and Book 14’. F C T  is a  ell-founded and Nidely used monotonicit!- 
preserx ing method. It has found use in a \$ ide dibersit! of topics siich as shallow 
water instability problems :31 . plasma ph> sics ,32.331. transport of a barium 
cloud :34 . atmospheric physics ‘351, two-phase flow problems ‘36:. and recently 
in detonation problems 313.37.381. In ,39.40]. F C T  has been extensive13 gener- 
alized. Zalesak 141, reformulated the original F C T  method in terms of a linear 
hybridization and developed a truly two-dimensional algorithm which maintains 
monotonicity. Early F C T  algorithms were known to  “terrace” the solution in 
regions of large gradients which was attr ibuted to  the specific nonlinear action 
of the  monotonicity constraint on dispersive errors. Recent work by Book and 
Fry [42] and Zalesak 1431 have proposed extensions of the FCT technique to deal 
with this problem. The  present work incorporates the improvements discussed 
in 142/. 

In this study, we devise a bectorized version of F C T  to solve two-dimensional 
transport-dominated fluids,’heat transfer problems. ’4s a benchmarking exam- 
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ple, we consider two-dimensional Riemann problems which have known exact 
solutions [44]. Also, we examine several classical fluids problems which describe 
instabilities of the Kelvin-Helmholtz and Raylejgh-Taylor varieties. The  instabil- 
ity problems were studied to show that the numerical stability and monotonicity 
of F C T  does not preclude the description of a flow field which is physically un- 
stable. 

The  remainder of the paper is organized as follows. First. we discuss the 
mathematical foundation of F C T .  Then. the comparison of F C T  to  the exact 
2-D Riemann problem for several different initial conditions is presented. In 
the next section. F C T  is applied to the field equations for a single phase ideal 
compressible fluid t o  stud) flow instabiliies. Finally. we provide a guide in the 
use of the F C T  solution modules and include Fortran listing of these routines in 
an .4ppendix. 

2 Two-Dimensional Flux-Corrected Transport 

In this section, an F C T  method is developed which incorporates the four im- 
portant numerical considerations - stability: accuracy, monotonicity, and conser- 
vation - for solving two-dimensional. convectively-dominated flou7s with regions 
of large gradients. The  generalized 2-D transport equation of interest in Eulerian 
form is: 

M here p is any dependent property of the flow, e.g. density. momentum, or energj. 
z a n d  y are the two spatial variables. i is time, a n d  21 a n d  o are t h e  velocitie5 in 
the T and y directions. respectilely. The  terms on the right-hand side represent 
flux and algebraic source terms such as drag. heat transfer between two phases, 
combustion sources. volumetric heat input. etc. 

We shall closely follow the 1-D F C T  de\elopment given in 13’ and 45 , and also 
incorporate the approach in 142, which allows the method to have either sixth- 
order accurate amplitude error or sixth-order accurate phase error. Figure 1 
shous the two-dimensional computational grid used by the  algorithm: the points 
in the center of the indicated cells are  the finite-difference grid points. The 
interfacial areas A I , ] .  B1,] and the volumes A I , ,  are also depicted. So te  that  the 
geometry is generalized for a nonuniform mesh. However, if the  mesh is uniform. 
then the interfacial areas and the volumes become A * , ]  = Ay; B,,j = Ax and 
A l j  = A r A y .  Also, if the interfacial areas and volumes are  properly chosen. 
then orthogonal s ~ s t e m s  other than the Cartesian system depicted in Figure 1 
can hc used. 
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A i , j  

Figure 1. The tno-dimensional grid used by the F C T  routines. "X's" denote 
boundary point5 while all interior points are denoled by dots. The 
areas. A ,  
of some of the interior computational tells are oi i t l ine~ h) the 
dashed lines. 

and B, ,. in each direction. and the lolumes. -I, ,. 

The initial field of values for t h e  dependent variable p is denoted by " p ' " .  The 
first step in the FCT method is to  con\ectively transport the pc field according 
to 
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which is a general five-point conservative finite-difference operator acting on the 
po. Equation (2) is the two-dimensional extension of the  one-dimensional three- 
point formula found in 1421. The  6 t  represents the timestrep, while the coefficients 
represented by the symbol "7" are for increased phase-error control, and will 
be discussed shortly. The  midpoint velocities and interface areas on the cell 
interfaces in Equation ( 2 )  are defined by: 

= -12: 1 , j  2. ' , ,341 1 (36) 

(W 

1 
2 
1 
2 
1 

2 2  

1 A , - '  E -lAt,J + AtAi,j' 

Bt,,+ 2 = - 1B, Bt 3'1 ( 3 d )  

Source terms on the right-hand side in Equation (1 )  are then added to the p' 
solution: 

where pT is denoted as the tranported quantit). of p .  
Next, the quantity p T  is diffused using the formula 

\vhere the diffusion coeffcients denoted by the s).mbols ' *A" and "v" are defined 
later. The  interface ~ o l u m e s  appearing in Equation 5 are as: 

and boundary interface values are: 

A ; , J  = h,J ( 7 4  

An.+ = A X ] '  (76) 

where N is the maximum number of grid points in the z-direction. A similar 
definition describes the boundary interface values in the y-direction. The quantity 
py>J has now been both transported and diffused. 



The  convective transport ,  sources, and diffusion have been broken into stages 
for two reasons. First, the  vectorization process is more easily treated. Second, 
we compute antidiffusive fluxes using rather than the The  uncorrected 
antidiffusive fluxes are then defined as: 

and 

are modified local Courant numbers. 
and Gf,- L .  This 

correction operates on the FZT; ,, and G, 3 ~ 1  such that no new extrema are  intro- 
duced numericall! into the solution and is implemented to  eliminate or reduce the 
numerical diffusion introduced b\ Equation (5). Although a number of method- 
ologies could be conceived to mat he ma tic all^ perform this step. two methods 
are used in this stud!. one formulated b! Boris and Book 3 .  and the other by 
Zaleqak 4 1  . The  flux-correction strateg! b> Boris and Book extended to  two 
dimensions is: 

\$e next compute "corrected" antidiffushe fluxes Flz 
,I 

G:3+1 = S,,-;max{O.min G1>?-;  I. Sr,3- ;A~3- l (h , , -?  - & , - I ) .  
(13)  

S*,3-&(ij13 - 5 1 , 3 - 1 ) : 1  

where Sz,,-i is defined as the sign of the quantity - 52,3 . It is obxious 
from Equations ( 2 ) ,  ( 4 ) .  and ( 5 )  that  the basic F C T  algorithm is two-dimensional. 
However. the flux-correction method of Boris and Book requires that we first flux- 
correct in one direction using Equation (12) .  and then in the second direction 
using Equation (13 ) .  The  flux-correction algorithm of Zalesak is a t rue  tuo- 
dimensional limiter and is explained in detail in , 41  . In Section 4 .  we pro\.ide a 
comparison of results obtained from these two limiters. 

-i 
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Once the corrected antidiffusive fluxes are obtained, the time advanced solu- 
tion is given as: 

We have yet to  define the coefficients for Equations (2) and (5). From 4 2 : .  a 
reduction in error (in one dimension) occurs if: 

To reduce the relative phase errors t o  fourth order. the 3 coefficients in Equa- 
tion (2)  are set equal to zero. Therefore. extending to two dimensions and using 
Equation (15). we have: 

The  FCT algorithms Lvhich reduce the phase errors to fourth order w i l l  henceforth 
be referred as "P4" algorithms. 

The  P4 algorithms are useful because the! are simple (both mat her ria tic all^ 
and for programming) and reduce the operation count of the algorithm for effi- 
c i e n q .  HoweLer. the P4 algorithm described above has a drawback. Near regions 
of large gradient. instead of smoothlj  increasing from some small to a large value. 
the P4 algorithm "terraces" its wa1- through the gradient (See j42 and 146 for a 
more detailed discussion of the terracing phenonienom). This terracing problem 
may be great11 reduced by a further reduction in the relative phase errors to 
sixth order The -) coeficients were introduced in Equation (2 )  for exact]? thi. 
purpose. Setting. 

and using Equations ( 1 7 )  in Equation (15) implies that:  

(1  7 a )  

(1 i b )  

Equations (17) and (18) together reduce the phase errors in the F C T  algorithm 
to  sixth order: henceforth. algorithnis which perform this reduction are termed 
'*P6" a 1 gor i t h ms . 
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Up t o  this point, the  treatment of boundary conditions has to a large part  
been ignored. Because boundary conditions are so varied and problem-specific, 
it is difficult t o  provide universal guidance. The  discussion of boundary con- 
ditions for the 1-D FCT algorithms (See [3] and 1451) applies directly to the 
two-dimensional algorithms. The  listing in Appendix C includes subroutine GB- 
COND, a subroutine which calculates symmetric, periodic, or anti-symmetric 
boundary conditions. The  F C T  driver listed in Appendix C should also provide 
insight t oLvards the proper treatment of boundary conditions. 

3 Two-Dimensional FCT - Code Structure 

The  two different flux-limiting strategies discussed in the previous section have 
led t o  two FCT solvers. both of which are listed in the Appendices. The  2-D F C T  
routine Lvhich uses the 1-D Boris;Book limiter in an alternating direction fashion 
is called QL1.JK2D and is listed in i\ppendix A .  The solcer listed in -4ppendix B 
uses the Zalesah limiter and is called FCT2D. 

The  attractive characteristics of the one-dimensional F C T  sohe r  ETBFCT 
(discussed in 13 and 145 ) were, for the most par t .  retained in the two-dimensional 
sol\ers.  The  modularization of the F C T  algorithms simplifies the insertion of the 
sol\er into other software. The software modules are cectorized for optimum 
execution on the Cray. The  present 2-D modules are designed to  solve Eulerian 
systems on]).  

Both Q\l-IK2D and FCT2D treat  the equations outlined in the previous sec- 
tion. B j  comparing the listings of the two routines. it can quicklj be confirmed 
tha t  large blocks of software are virtually identical. In addition. both solvers 
mahe use of t\vo auxiliarj routines. VELOCE and GBCO5D.  listed in .4ppendix 
C .  .4 major difference in the t w o  routines is tha t  Q\YIK2D incorporates the flux- 
limiter internal]:, while FCT2D treats the Zalesak limiter as a separate entit:,. 
The  Zalesak limiter is located in the routine FLIMIT. which we ha \e  adapted 
virtually unchanged from Reference 3; .  

The  following is a brief description of each of the five routines: 
1 . Q \V I K 2 D ( R H 0 0. R H 0 N , S 0 U R C E, L X B C ) R X B C . LY B C , RI'  B C ) - t a k es 

the  solution of the previous timestep. RHOO. and calculates a new solution 
R H O 3  using the theorj  outlined in the previous section. The  boundary con- 
ditions on the periphery of the domain are  specified by using the four vectors 
LXBC. RXBC. LYBC, and RYBC. SOURCE is an array which contains posqible 
source terms of the problem as defined by Equation (1). 

2. ~'ELOCE(U.l ' .DT.IS\VIT) - calculates velocitl-dependent terms 
{ e l +  ; , J .  at ,J-  +. P,+ 3 .  K ~ , ~ + A ,  ut, X 1 > 3 -  1 I } .  The  time increment is DT.  If IS\l'IT 
is zero. then the coeficienis for fourth-order accurate phase error are calculated: 

-_ 

A 

if ISWIT is one: then coefficients for the sixth-order accurate phase error are 
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computed. 
3. FCT2D (RH 0 0 ,RH 0 N ,S OU RCE .LXBC ,RXBC ,LY B C .RYBC) - uses the 

same calling argument list as QWIKZD (see above). 
4 .  FLIMIT(FLX,FLY.FTD,LXBC,RXBC,LYBC,RYBC.TX,TY,FAA) - per- 

forms the flux-correction strategy as outlined b\ Zalesak 141;. The  arrays FLX 
and FLY contain the uncorrected antidiffusive fluxes FtA k , j  and Gt,3+;,  respec- 
tively, as defined by Equations (8) and (9). FTD contains the a r ra j  of the 
transported and  diffused solution as defined b j  Equation ( 5 ) .  The four bound- 
ary vectors are again LXBC. RXBC, LYBC. RYBC. The  arrays TX and TJ’ 
are  the corrected fluxes f’y1,3 and GC , which are used in Equation ( 1 4 ) .  The  
array F24A contains the solution from the previous timestep which is used only 
if the FOLD array is TRGE. In the Common Block LIMIT. the logical xariables 
PRLIM. JPRLJM. and FOLD must be specified in the driLer to be either TRL-E 
or F.4LSE. See the next section for a discussion on the importance for assigning 
proper values to these variables. 

5 .  GBCOND(F.LXBC.RXBC,LYBC.R\I’BC) - is a subroutine for setting 
boundarj  conditions for the variable “ F “ .  The  vectors LXBC. RXBC. L\7BC. 
and RYBC are used to  assign certain boundary conditions on the four sides of 
a computational domain. It is emphasized that the computational grid does 
not coincide with the boundary of the physical domain (See Figure 1). In  fact. 
the computational boundary points lie one-half of a grid spacing awa3 from the 
physical boundary. The  reader is referred to  Appendix A for more details. 

‘ , 3  -e 5 

The Two-Dimensional Riemann Problem 

In this section. we describe the two-dimensional Riemann problem and t h e  
construction of exact solutions for four different initial conditions as presented b\ 
\2’dgner ‘441. The tn.0-dimensional Riemann problem \vas chosen to  demonstratc 
the FCT algorithm because: ( I )  it is a nonlinear conxective problem: (2)  it 

contains features tha t  introduce numerical difficulties such as shocks and regions 
of large gradient; and (3) a family of exact analj,tical solutions exist for this 
problem so that quantitative accuracy comparisons can be made. In this study. 
we include results showing the effects of grid resolution. the two flux-limiters, 
and the differences between P4 and P6 algorithms. 

The  Riemann problem in two space Cartesian coordinates is: 

where f and g are real nonlinear functions satisfying j”  2 0 and g” 2 0 for all 
real u .  Here, f ’  = d j / d u  and g‘ = dg/’du. 
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The initial conditions chosen by iyagner are: 

u1 for J 2 0.  y 2 0.  
212 for x 5 0, y 2 0:  
u3 for x 5 0 ;  y 5 0 :  

u(o.s,y) = 

u4 for s 2 0.  y 5 0.  

T h u s .  the infinite domain is di\.ided int,o quadrants where discontinuities ma! 
exist as shown in Figure 2. 

- 0. 
a a  a 
--I + -u' + --(I' - ar ar a p  

Figure 2. The  two-dimensional Riemann problem with initial 
conditions as chosen by \l'agner and J ( u )  = g ( u )  = u' .  

M'agner j 4 4 )  shows tha t  when f ( u )  = g ( u ) ,  the  solutions are unique and obey 
the entropy condition (See 1441 for further discussion of the  entropy condition). 
M'e have chosen the simple nonlinear functions 

J ( u )  = g(21) = u2 

to satisfy this condition so tha t  Equat,ion (1) becomes 

a a 2  a 
at a x  dY 
-If + -u + -u2 = 0. 

c 

The  form of the solution t o  Equation (22) with initial condition Equation (20) 
varies with the values of the constants ul, 212, u 3 .  u4 relative t o  each other. There 
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are a total of t,wenty-four cases to  be considered, but  reflections, inversions, and 
reflected inversions reduce the number to  eight unique cases. Four of these eight 
cases were chosen to illustrate the accuracy and stability of the two-dimensional 
FCT algorithms. 

Wagner's solution extends across an  infinite two-dimensional domain. Since 
the computational domain must remain finite, comparison t o  \4'agner's exact so- 
lution becomes invalid as the numerical calculation departs from the initial state 
near the boundaries. As such. computations were terminated before important 
structures such as shocks and rarefactions left the finite computational domain. 

Case 1. A Simple Shock and  Rarefaction 

'4 simple shock arid rarefaction results from setting initial conditions to u1  = 
u2 = u3 = w and u 4  = 2%. with 2' > w. Figure 3 depicts these initial conditions 
and a sketch sho\ving the anticipated location of the shock and the rarefaction 
wave. For the initial conditions specified by Equation (20) '  rarefaction contours 
\vi11 a l u ~ a y ~  be parallel t o  one of the axes, as this case and the remaining cases 
w i 11 d em on st r ate. 

In Figure 3, a smooth curve of discontinuity I' (shock) is shown tha t  separates 
the rarefaction region from regions of constant value. This curve is described by 
the equations 

x, = f'(s)f = 2si and ( 2 3 4  

Y? = Y(+, ( 2 3 6 )  
parametrized b j  s.2 for 21' 5 s 5 I ) .  where i is the time coordinate. (Do not 
confuse this -,(s) M i t h  t h e  coeficient -, used to denote a phase error control 
l a r i ab le  in the previous section.) 

.4long the rarefaction contours. sho\vn in Figure 3. the value of s is a con- 
s tant .  Once the x and 3 locations of a point on the shock surface are knoMn. 
the solution is constant above the shock surface (positive y-direction) and the 
solution along the rarefaction in the negative y-direction retain the calue of P 

consistent with the shock surface. It remains t o  define the function ~ ( s ) .  Using 
the Rankine-Hugoniot condition and the proper initial condition. ~ ( s )  is given 
b j  the generalized integral: 
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which for our particular choice of functions of f and g (Equation (21)) reduces 
to  

(U' - s)2 

(w - v) ' 
Y(S) = 2s + 

Y 

Figure 3. Case of a simple shock and rarefaction. The  I' denotes 
the shock surface. L'ertical lines of constant value. 5 .  

denote the rarefaction region. M'hen computing actual values 
it is convenient to  break the domain into three parts in the 
x-direction. as shown. 

rr 

(25) 

On the computational grid. the exact solution is determined in a single sweep 
in the x-direction. Given the time and 5 location: 5 is determined from Equation 
(23a). If 5 5 w ,  the  solution must be in Region 1 in Figure 3. If s 2 v ,  the 
solution is in Region 111. If s is between u: and r ,  the  solution falls in Region 
I1 and Equation (25) is used to  determine y(5) while Equation (23b) is used to  
determine y p .  With a determination of z,. y.. and s, all solution values are known 
for a given T. This procedure is continued across in the x-direction until the entire 
cornputational domain is covered. Final!!, when 5 = 1 1 .  the end of the curve r 
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is known and the y location of the shock remains fixed for all remaining 5. The 
particular choice of initial conditions chosen for this case is: u1 = uz = 213 = 0 
and u4 = 5 .  

Case 2.  Four j u m p  shocks 

T h e  case where u1 < u z  < u4 < u2 for the initial conditions specified by 
Equation (20) is shown in Figure 4 .  Figure 4 also shows the behavior of the field 
as predicted by 144;. The  solution is a series of jump shocks in ivhich rarefaction 
zones are absent. 

Figure 4. A case consisting of a series of shocks wi th  no 
rarefactions. When the points Q, P: and R are 
found, the solution is complete. 

To construct the exact solution, we use a theorem by Guckenheimer 147; which 
6 t ates : 

THEOREM . '4 shock surjace between two constant states a,b, in  a solution 
to  the Riemann problem lies in a plane which passes through the line 
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Using Equation (21) in Equation (26),  the  relation of interest is simply 

1 = ( u t  b ) t ,  y = ( a  + b) t  

Thus,  in Figure 4 .  the point P is 1ocat.ed at 

1 = (211 - Q ) 1 .  y = (u, - 2 1 3 ) t .  

(27) 

Points Q and R may also be deduced from this theorem. They are 

Point Q 
Point R 

' ( u l  - u 2 ) t .  (21 :  - u3)f;  
j ( u 3  - u4) f .  ( u l  - u 4 ) t ;  

It is eas? to see tha t .  once Points Q. P. and R are known. all of the necessary 
regions have been defined. The  specific initial conditions chosen for our stud!. 
are. u l  = 0.5. 212 = 1.0. u 3  = 3.0. u4 = 2.0. 

Case 3. Triple Shock ivith Shock Stem 

\Vhen the initial conditions are  set such tha t  u1 < u2 < uz < u 4  the exact 
solution is physically analogous to a triple shock with a shock stem. Figure 5 
shows the location of the '.triple shock" at Point P with the shock stem running 
from Point Q to Point P. \Ye note from Figure 5 :  that  once Points Q, P: and R 
are located. all of the regions may be mapped. Using Equations ( 2 3 ) . ( 2 4 ) .  and 
(26 ) .  the points are given as 

Point Q ( u l  - u 2 ) t .  ( u?  1 u 3 ) f  

Point P (211 - u s ) t . ( u l  - ulg)f, 

The  shock curve r is created in the same manner as in Case 1. The  specific 
initial condition for this case. u1 = -2.0. u: = -1.0, u3 = -0.5. u4 = 2.0. is 
shown in Figure 5 .  The negative initial conditions for this example point out 
tha t .  although phJsica1 analogy is convenient in interpreting the results, it can 
be carried too far. The  system solved is strictly mathematical. 

16 
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Figure 5 .  The case resulting in a triple shock Ivith a shock stem (from 
point Q to P )  and a single rarefaction region. Again. vertical 
lines denote the rarefaction zone lvhere the value of the 
dependent variable is invariant in the y direction. The 
points Q. P: and R must be found to obtain a solution. 

Case 4. Cusp Shock 

\Yhen the initial conditions of Equation (20) are set such that u 2  5 u 4  5 u y  5 
211, the  solution produces a set cusp shock. Figure 6 depicts this situation and 
pertinent points which must be found. In our study we chose 211 = 213 2 212 = 214 

s u c h  t ha t  Point Q and Point T coincide. Thus,  Point Q determines where the two 
rarefactions meet and. in our case. where the shocks begin. Point Q is located 
at  ( 2 ~ ~ 2 , 2 2 1 1 2 ) .  Points R and S are locations where shocks end and rarefactions 
begin. The  construction of this case can be simplified by noting tha t  the solution 
is symmetric about line L1 (see Figure 6). Therefore, we need only locate Point 
Q and construct only one of the rarefactions according to  the procedure outlined 
for the  first case. Then,  the region on the other side of line L1 is constructed by 
reflecting the solution about the line z = y. Our specific initial condition for this 
case was u1 = u s  = 1.0 and u 2  = u4 = -2.0. 
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Figure 6. The  case resulting in a cusp shock with tlvo rarefaction 
zones. The  solution exhibits symmetry. so only half the 
solution m u s t  be calculated. For the initial condition 
of interest. points Q and T coincide. Points S and T 
are the tivo points which must be found. 

Results for the 2-D Riemann Problem 

In each of the four cases described, the effects of grid resolution, type of flux- 
limiter, and the order accuracy of the phase error of the solver were investigated. 
A total of eight runs were required for each example to  perform such an investi- 
gation. Table 1 summarizes the required schedule for each example. In Appendix 
C a listing of the driver which sets up the initial and boundary conditions. shoivs 
proper use of the CFL condition. and illustrates the calls to the FCT subrou- 
tines is provided. An auxiliary routine that computes the exact solution, error 
measures, and then prints outs the results has been omitted. 

c 
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Table 1. The  eight case5 run for each example problem to compare 
the effects of flux-limiter, phase accuracy and grid resolution. 

Algorithm /Limiter Phase Accuracy Grid Resolution 

Q\I’IKZD/Boris & Book 
QWIK2DjiBoris &- Book 
Q\2 IKZDjBoris & Book 
Q\I’IK2D, Boris & Book 
F CT2D Zalesak 
F C T 2 D ,’ Zal es ak 
F C T2D ,,’ Zalesak 
FCT2D ,’Zalesak 

Fourth Order 
Sixth Order 
Fourth Order 
Sixth Order 
Fourth Order 
Sixth Order 
Fourth Order 
Sixth Order 

100 x 100 
100 x 100 

50 x 50 
50 x 50 

100 x 100 
100 x 100 
50 x 50 
50 >: 50 

To evaluate and compare the accuracies of each of the runs. the f o l l o ~ i n g  
error measures are introduced: 

L, = max ‘z1 - u , , ~ !  

u h e r e  S is t h e  number of grid points (either I O 0  >. I O 0  or 50 r 5 0 ) .  u is the 
analytic solution at { Z J }  and u , ,  is the calculated solution. Since all dependent 
and independent variables for this problem are nondimensional. the domain goes 
from 0 to  1 in both dimensions. 

The  values of L1 .  L p .  and L ,  versus time for each of the  eight cases of our 
four example problems have been included in .4ppendix D. The  L1 xalues have 
been multiplied by a factor of 100: the L2 values have been multiplied b? 1000. 
Therefore, i t  mal. be noted immediately that the FCT solvers are highly accurate 
in that the L1-error usually falls between 0.003 and 0.042 and the L2-error falls 
between 0.0003 and 0.0043. Since the Courant number for all of the cases was 
held constant a t  0.2. the 50 x 50 gridpoint cases required only half the number 
of timesteps as the 100 x 100 gridpoint cases. Thus. although the number of 
timesteps for the two grid systems is different, the absolute time at an) point 
along the abscissa for a particular case is approximately the same. Because 
of the different initial conditions, times from each example problem cannot be 
compared. The  numerical values of time were deemed irrelevant. 
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A common characteristic for all of the L-error measures in all cases is the 
oscillatory behavior. These oscillations are explained by noting the difference in 
“wavelength” of the 100 x 100 calculations and the 50 x 50 calculations. The  
observed wavelength for the latter is twice that  of the former. When a shock for 
the exact solution synchronizes spatially with the finite-difference grid, the L- 
error measures are at their minimum values. When the shock is directly between 
two finite-difference points. the errors are a t  a maximum. Thus. as the shock 
travels across the grid system. minima and maxima are continually observed 
with continuous values connecting the extrema. Since the distance between finite- 
difference points on the 50 x 50 grid is twice that of the 100 x 100 grid (since the 
Courant number remains the same),  the discrepancy in wavelength is explained. 

Figure 7 compares the error measures obtained on a 100 x 100 grid and 
on a 50 >i 50 grid for the simple shock with rarefaction example. (Note the 
scale difference on the ordinate between the t\vo figures.) The  QWIKZD softlhare 
utilizing the Boris ’Booh flux-limiter and the fourth-order accurate phases were 
used. N o t  s u r p r i s i n g l ~ ,  the higher resolution grid pro\ ides more accurac?.  All 
three of the error measures for the 100 Y 100 grid are about a factor of two lower 
than those for the 50 x 50 grid. The  effect of grid resolution on accurac!’ is 
well-known ,48  . A smaller Ax implies a small error. and our results confirm this 
fact. However. the fact that  grid refinement b j  a factor of two only produced a 
factor of two increase in accuracy is significant. Most of the error is occurring 
near shocks \\here the F C T  algorithm is only first order accurate. This study 
was conducted only to determine the results of varying grid size; the execution 
times were not weighted in these results to  determine an “accuracy ’efficiency“ 
fact or. 

A prerequisite to understanding the discussion comparing the I-D Boris, Book 
t o  the Zalesak limiter requires a more detailed explanation of the manner in 
u hich Zalesak‘s limiter is used. Zalesak‘s limiter has three u3er-specified options 
that must be set bj the FCT solver prior to t h e  call to the flux-limiter rou- 
tine FLI34JT. These option variables are Fortran logical variables and are called 
PRLIM, JPRLIM. and FOLD. ilctivating the PRLIhl parameter (2 .e .  setting it 
equal t o  TRUE)  zeroes the flux under certain specific circumstances. causing the 
limiter t o  be more diffusive. The  second logical parameter, JPRLJh4. “pre-limits“ 
the fluxes using the Boris/Book limiter before passing on t o  the multidimensional 
limiter of Zalesak. (PRLIM is ignored when JPRLIM is set equal to TRUE.) The  
third parameter. FOLD, allows the  limiter to  look back t o  the solution from the 
previous timestep to  find upper and  lower bounds on the new solution. Since 
PRLIM is ignored when JPRLIh4 is TRUE,  it can be shown that  there are only 
six unique cases of values for these three parameters. These six cases have been 
run for the simple rarefaction and shock problem and the cusp shock problem 
using fourth order accurate phases on the 50 by 50 grid system. The  six cases 
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for the cusp shock example are shown in Appendix E. In studying these figures. 
we observe that the first two cases, Figures E.l  and E.2, are much more accurate 
than Figures E.3 through E.6 (In fact. in E.3 and E.4 the errors are so large as t o  
go off the scale of the graph. The  important observation to note, however, is that  
these results are highlj inaccurate). In the first two cases JPRLIM was TRUE 
while in the latter four cases i t  was set to FALSE. Obviously, “pre-limiting” the 
fluxes using the Boris:/BooA limiter provides the most accurate results. Finally. 
in comparing E.1 to  E.2. the FOLD parameter has little effect on the results. but  
setting it FALSE does result in a slightly smaller L,. Thus.  the combination 
which. for the 2-D Riemann problem. appears t o  offer the most accuracy using 
the FCT2D algorithm which utilizes FLIMIT is: { PRLIM.  JPRLIM. FOLD 
1 ==+ { TRUE. TRUE,  F.4LSE). This combination specifies pre-limiting the 
fluxes using the Boris ’Book limiter and nof  looking back a t  the solution on the 
prel ious timestep. The  above specification of variables \vas applied throughout 
the study. Although this discussion has centered around the results obtained for 
the cusp shock example problem. we have also performed this study using the 
simple shock ana’ rarefaction problem. The  same results were obtained. 

Since our stud? using FCT2D utilized the pre-limiter of Boris and Book on 
Zalesak’s multidimensional limiter. it is natural  t o  ask what difference there is 
between Q\%’IK2D which only uses the Boris,’Book limiter. and FCT2D mith the 
JPRLIM parameter turned on. This difference can be resolved b) comparing 
any QM’TKZD result in Appendix D to any FCT2D result Mhich shares the same 
order of accuracy of algorithm. and grid resolution. e.g. ,D . l l  and ,D.5]. In the 
figures. a difference is not discernable: numerically, the two agreed me11 \vithin 
0.1% of one another, However. QM’IK2D which uses the Boris,’Book limiter is 
six times faster on a Cra) I S  than the FCT2DIFLIhl IT  software which uses the 
Zalcsak limiter. The  same result is observed for several problems other than the 
2-D Riemann problem. Clearly. the QM’IK2D algorithm. since i t  is cornparable 
in accurac) and much greater in efficiency. is the method of choice. 

\ l e  no\\ focus on cornparing the results obtained from the P4 algorithm to 
those of the P6 algorithm. T h e  ‘.plateau”, or “terracing”. effect of the P4 schemes 
can be clear13 seen in Figure 8a. The  additional phase accuracj of the PG al- 
gorithm does to  a certain extent cure the stair-stepping problem. as shown in 
Figure 8b. Honeber. the additional reduction of dispersion error does not reduce 
the error measures. Figures DI and D2 compare the P4 to  the P6 results for the 
simple s h o d  and rarefaction example on the 100 by 100 grid using QWIK2D. 
The  L ,  measures are higher for the P6  case than for the P4 case. E\en the 
L2 measures are marginally larger in the P 6  case than  for P4,  although, on the 
aberage. the P6 case does have a slightly smaller L,. For the four jump  shock 
exainple (See Figures D9 and 010) the L ,  errors are  slight]:, larger, the L2 errors 
are comparable. and the L ,  errors are slightly smaller for the  P6 case compared 

. 
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* Figure 8. Results for the cusp ,shock problem demonstrating the differences in 
terracing between the P4 scheme (top figure) and the  P6 scheme (bottom figure). 
3 o t e  the difference in the width of the  ello ow band around the red cusp region. 
Difference in the red color is due only to the photographic reproduction process. 
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to the  P4 results. For the triple shock example (Figures D17 and D l S )  all of the 
error measures were smaller for the P4 results compared to  the error measures 
of the  P6 results, Finally, Figures D25 and D26 compare the error measures for 
the  cusp shock example. As in the first two examples, the P4 L1 error measure 
is smaller than its P6 counterpart. the  L2 errors are comparable, and the  P6 L ,  
error is noticeably smaller than those for P4. Thus. the results depend on the 
particular initial conditions chosen as applied to  the 2-D Riemann problem. 

The  P6 algorithm eliminates the st air-stepping effect by introducing diffusion 
in regions of large gradient. This additional diffusion explains the slightly greater 
accuracy of the P4 algorithm, especially for the L1 and L:! errors which are taken 
over the entire region. 

5 A Numerical Study of Hydrodynamic Insta- 
bility 

In this section. we use the two-dimensional FCT algorithm lo  numerically 
compute a class of hydrodynamic instabilities, demonstrating that the gain in 
numerical stabilit! does not preclude the description of a flow field that is known 
to be physically unstable. Specifically. we examine three test problems to illus- 
t ra te  Kelvin-Helmholtz and  Rayleigh-Taylor instabilities in a single component. 
compressible ideal gas. These classical unstable flows have been theoreticall! and 
experimentally well-studied ;49,, and thus,  we shall not present a detailed dis- 
cussion of instability theory. Furthermore, the FCT method has been previously 
applied to  this class of flows by Boris and his coworkers at the Naval Research 
Laboratory. and it is this work \vhich we follow in assessing the qualitative agree- 
ment of the numerical computations. 

The principles of conservation of mass. momentum and energ! for a friction- 
less. nonconducting compressible gas are represented by the Euler equations. .4 
precise mathematical statement of these laws is expressed in the follo\ving set of 
nonlinear partial differential equations: 

Conservation of Mass 

a a a 
- p  + - ( p u )  - ( p v )  = 0 
at ax aY 

Conservation of Momentum 

a 
&J 

( P  - pu?)  + -((put’) = b, 
a a 
at 
- ( P )  + 
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a a a 
ax aY 

+?I) i- -(pvu) + - (P  + P V 2 )  = b, 

Conservation of Energy 

a u2 v 2  a u2  v2 P 
- ( p ( e  - - i -)) - - ( p u ( t  + - + - - -))< 
at 2 2  d X  2 2 P  

where the two-dimensional vejocitl- field (u, u) are, respecti\relg, the components 
in the x and y directions, p is the gas density, P is the  gas pressure, e is the 
specific internal energ)’, and b,: b, are body force components. 

For the sake of simplicity, the computations are restricted to a thermalll- 
perfect ideal gas and introduce a nondimensionalizat ion based on a reference 
undisturbed sound speed and an arbitrary 1engt.h scale which is appropriately 
chosen to  resolve the fluid motions. M‘ith this choice: the conservat,ion equations 
are retained in their identical form and the ideal gas law is given by: 

P = (7 - 1 ) p e  (35) 

where 3 is the constant adiabatic index. 
A discussion of the problem-specific initial and boundary conditions are de- 

ferred t o  those sections tha t  detail the example calculations. In each of the 
following computations. a fixed mesh of 50 by 50 uniformly spaced cells is used 
and an appropriate time step is chosen based on the CFL condition: 

2 9 4  

( U i  - c )  (ir - c)’ - 
} At 5 ,5 ma>;{ i 

6x2 by2 

Mhere c is the local sound speed and L? is a constant whose value must be taken 
less than  0.5. 

1. Kelvin-Helmholtz Tnstabilit,~. 

It has long been known tha t  a shear la>er is unstable and when perturbed 
produces a Kelvin-Helmholtz instability which occurs even in the absence of 
viscosity. To demonstrate a computation of this unstable flow, we consider a 
metastable flow initial condition defined by u ( y ) .  v = 0. In particular. a velocit~. 
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profile is chosen with a stagnation plane along the centerline of the computational 
domain, and a free shear layer is specified as: 

u ( y )  = Utanh(Ay)  

where y is measured from the stagnation plane, L’ is a characteristic outer flow 
velocity and A is related to  the inverse of the shear layer thickness. In these 
calculations, nondimensional I; and A are given the values 0.1 and 0.56, respec- 
tively. 

This field is then perturbed b j  superimposing a disturbance along the stag- 
nation plane. This perturbed, divergent-free velocity field, ( u ’ ,  v‘), is taken as 

u’ = c sin(rs lA) exp( -7;ylX) * sgn(  y) 

G’ = t cos(7rdX) exp(-rylX) 

where sgn(y) has the value of 1 above the stagnation plane and -1 below it. 
\Vith the proper choice of A a fixed n u m b e r  of disturbances can be produced 
that grow and interact u i th  time. A t  the  flom entrance and exit planes. peri- 
odic boundarj  conditions are assigned. imp11 ing that  a n y  variable crossing these 
planes reappears at the opposite boundarj .  Zero gradients are imposed on the 
top and bottom boundaries for all transported variables. To graphically display 
the resultant flow field, massless marker particles are placed on the stagnation 
plane that  are allowed to advect in a Lagrangian fashion according to the local 
flow field. (This Lagrangian marker particle scheme is given in -4ppendix F.) 

I n  Figure 9. three time planes displa! ing the marker particle ficld are shown. 
Actual numerical computations are represented on one-half of the domain and 
we have placed adjacent. repetitive calculations to  better displaj the growth and 
interaction of the disturbances. In  these figures. the delelopment of vortical cells 
which roll up the shear region is observed. Later in time. these vortices grow 
and interact to  eLentual coalescence. These calculations close11 resemble Boris’ 
prior calculations 50 and the interested reader should consult this reference for 
discussion of a comparison to  linearized theory. 

2 .  R ay I ei gh - Tay lor 1 ns t>a bi li  t.y 

\$’hen a fluid is accelerated in the direction of a density gradient, the fluid mo- 
tion is unstable and a Rayleigh-Taylor instability ivill be produced. For example, 
when a fluid is heated from below an unstable densit) stratification is produced 
whereby a thin light layer is formed under a heavy field. T h e  less dense layer 
eventually breaks into mushroom-shaped plumes or thermals i51j that  are well- 
recognized features of the instability. 
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Figure 9. Three time frames showing the evolution of the Kelvin-Helmholtz insta- 
bility using a marker particle field. 
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A similar flow field is produced when considering the acceleration of a thin 
dense layer [52]. We examine this case by treating the Euler equations with an 
intial density field given by a thin layer of dense particles held in metastable equi- 
librium by a hydrostatic pressure field. In this calculation. a single component 
body force is assigned within each cell as determined bs the number of particles 
contained mithin each cell. As such, the marker particles participate in the com- 
putations by forcing the flow t o  be unstable. Each particle is assigned a densit) 
and moved with the frictionless compressible fluid in a Lagrangian fashion. The  
body force is determined by depositing the particle density at the computational 
cell corners according to bilinear interpolation (See Appendix F for details). 

To produce the instability. the dense layer is perturbed with a prescribed 
periodic disturbance of the marker field. In this rectangular domain, we treat 
the top and bottom boundaries as impermeable walls and impose periodic con- 
ditions on the right and left boundaries. A fixed number of instabilitj ‘*cells“ 
are produced by the perturbed field which are then allowed to  grow and interact. 
In t h e  following calculation, we use 2000 marker particles. placed in i t ia l l~  across 
the domain in two cells. Each marker was assigned a densit? of 1.0 and a grax it! 
constant of 0.05. 

Figure 10 shows a sequence of the particle field which drive the unstable 
flm. The  initial quiescent field was perturbed t o  form two disturbances. As the  
particles seek a new state  of equilibrium. a down\vardly-moving spike is first seen. 
These disturbances e\ entually open to  produce mushroom-shaped caps that later 
become dispersed due to  the spreading of the marker particles. Further in time. 
the markers move to  the bottom of the domain. establishing a stable densit! 
stratification. 

3 .  Shock-\va\.e Interaction wi th  Densitj./Temperat ure  Discont i-  
n u i t y  

In this final study. the unstable flow generated when a shoch wave interacts 
with a density and temperature discontinuity ( 2 . e .  a combustion wave) is exam- 
ined. hiarkstein [ 5 3 ,  first studied this flow in experiments in which he passed 
a shock through a spherical flame surface. He found tha t  the combustion wave 
quickly becomes “wrinkled”, producing a mechanism to  accelerate combustjon. 
hlarkstein correctly recognized tha t  the resulting unstable flow was actually a 
manifestation of a Rayleigh-Taylor instability. 

In this s t u d y ,  we examine a similar flou configuration and treat the evolution 
of the flow field when a shock passes through a spherical “bubble” jnterface 
separating a discontinuity in density and temperature.  A shock t8ube geometrj 
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Figure 10. Four time frames showing the development of the Rayleigh- 
Taylor instability using 2000 marker particles. 
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density and temperature in a cylindrical coordinate system. The  re- 
flected shocks continue to interact with the bubble surface to  form a 
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is select,ed by treating reflective wall boundaries on the periphery of the com- 
putational domain. A uniform high pressure (Ps /Po = 1 . 7 )  is placed on the gas 
driver section in the upper one-fifth of the domain. Release of this pressure pro- 
duces a shock which moves at a Mach number of 1.12, which is consistent with 
hlarkstein’s experiments. A sequence of shock rarefaction patterns are then seen 
to  interact with the low-density bubble in Figure 11. The  contact surface of the 
bubble was marked with tracer particles which follow local gas velocities. 

In these numerical calculations, a domain with a 3 to  1 aspect ratio using 150 
b j  50 computational cells is considered. To simulate the experiment of Markstein. 
a C J  lindrical coordinate system is used. The  low density. constant pressure bubble 
is taken to be 0.13 that of the surrounding ambient gas density (the time constant 
for the time variable is scaled by 0.48 ms). After the shock passes through tile 
discontinuity. a center jet is seen to  evohe as high density gas is collapsed into 
the center of the bubble. Continual interaction with reflected shocks cause the 
bubble surface to be stretched over the jet spike forming a Kehin  vortex ring. 
Clearly. as Markstein first noted. the shock interaction easily produces L orticit!, 
b j  the Ray le igh-Tay lor and K elvin-Helmh 01 tz mechanisms. Similar experiment a1 
flow patterns were seen in 153,’ and the interested reader should refer to 153: and 
154 for further details. 

6 Conclusions and Summary 

In this study, we present a two-dimensional numerical technique capable of 
addressing a large class of convectively-dominated heat transferifluid mechanics 
problems. In keeping with the current direction of research. the method is a 
nonlinear finite-difference technique that exhibits stabilit?. accurac?. monotonic- 
i t j  and conserxation exen for flows containing regions u i th  large gradients The  
technique is a n  extension of the well-documented 3-D FCT method introduced 
b\ Boris and Booh. The  algorithms in the Appendices are lectorized and mod- 
ularized so as to be computationall! efficient. compact. and eaq-to-use.  

All of the aforementioned attribues of the F C T  technique has been demon- 
strated in benchmarking calculations of a 2-D Riemann problem for four differ- 
ent sets of initial conditions. The  time-dependent L-error measures shown in 
Appendix D clearly indicate the accuracy and stability of the technique. The  
method’s eficiency has also been gauged b j  a call to QWIK2D for a 50 b j  50 
computational grid requiring only 0.00428 cpu second of execution time on the 
Cray I S .  In solving several of the classical instability problems, we have shown 
tha t  the stability of FCT does not preclude the solution of problems known to 
be physicall:, unstable. It has been shown previouslj 39 tha t  F C T  does not 
preclude new maxima and minima to  be introduced p h y s i c a l l y  into the solution. 
Thus.  the F C T  approach can truly trach the physics of a problem - not an 
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artificial numerical path tha t  can mask physical phenomena. 
The Zalesak limiter is a t rue two-dimensional limiter. In (411, the  Zalesak 

limiter was shown to be more accurate than  using a 1-D version of FCT with 
the BorisiBo6K limiter in an alternating direction methodology. However, we 
have observed tha t  our 2-D FCT soher  which uses the 1-D Boris/Book limiter 
to  be a most accurate approach in solving the 2-D Riemann problem for several 
sets of initial conditions. Additionally, QM’IK2D is much more efficient. These 
observations concur with / 3 i ] .  Me therefore recommend the QVv-lK2D software 
over tha t  of the FCT2D, FLIhlIT combination. 

The  PG FCT algorithm. generally. is slightly less accurate than the P4 algo- 
rithm due t o  the additional diffusion terms. However, the sixth-order accurate 
phases greatly reduces the terracing effect that  many researchers find objection- 
able. This additional diffusion may also be necessary for the solution of certain 
complex problems which have \cry large amplitude shocks a n d / o r  large gradi- 
ents. Thus.  we recommend the P6 algorithm as a first choice. If slightly higher 
accuracj is desired and t h e  stair-stepping phenomena is no t  objectionable. then 
the  P4 algorithm ma) be tried. 

Because software de~e lopmen t .  especiall~ Ivith today‘s complex vector ma- 
chines and the new parallel processors, is a time consuming ar t .  the mathemati- 
cal description of a numerical technique alone supplies an jncomplete tool to the 
user. Boris and Book have set an open, broad-minded example for the positivitJ- 
preserving computational community by publishing a listing of their 1-D FCT 
technique along with detailed instruction of its use. \Ye continue in this spirit b! 
including listings of F C T  software for two-dimensional calculations. 

-4 ck n ow I e d g m en t s 
\Ye gratefull! acknowledge the suggestion by ,41ex Tread\va! to  examine \Zag- 

ner’s work a s  a two-dimensional test problem w i t h  a n  exact sollition to  compare 
against the results of the F C T  method. b’e also thank Alex and Rick Gix ler who 
took the time to  review this work. 
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Appendix A 
A Fortran Listing of the FCT 

Subroutine QWIK2D 
-. 

c * * * * % * * * * * * * * * * * * * * m % % ~ % * % * * % % * % * % % % * * * ~ % * % % % % % % % % % % % * % m ~ : m % ~ n m % % %  
n 

"1 % * % * * * * * * * % * % * % t * % % * % m % ~ *  
'4 

v 

m C ISSUED BY 
C * SANDIA LABORATORIES, * 

* A PRIME CONTRACTOR * 

C * UNITED STATES * 
c * DEPARTMENT * 
P * OF 1: 

* 

n u 
n * * * * * * * * 
b TO THE Y. 

" 
1 
u 
1 * * * * * $ t * * * * t * * * * * * * * *  ---NOTICE--- * * * $ * * * * * * * % * * * * * * % * *  

* ENERGY * 
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C *THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED* 
C * BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED * 

* STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, 
NOR ANY OF THEIR EMPLOYEES, 

* NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR * 
* EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR * 
* ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE * 

0 * * * * * * x n r * *  * * * * * * * * * *  ACCURACY, 
* COMPLETENESS * 
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c OF ANY 
* INFORMATION, * 
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* OR PROCESS * 
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* OR REPRESENTS * 
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OWNED 
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" * *  x *  s 
1 * *  * *  
1 * *  * *  
1 * * * * - * * * * * * * * * * * * * * *  
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u 

n u 

SUBROUTINE QWIKBD(RHO0, RHON, SOURCE, LXBC, RXBC, LYBC, RYBC) 
C 
~ * * * * % * ~ % * * * * * Z * * * X * * * * * * * * * * * * ) * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * Z  

C 
C SUBROUTINE FCT2D IS A TWO-DIMENSIONAL NUMERICAL SOLVER 
C WHICH USES THE FLUX-CORRECTED TRANSPORT TECHNIQUE OF 
n BORIS AND BOOK. THE APPROACH IS ANALOGOUS TO 2 

1 
U 

?. 
2 

THAT USED IN BORIS' FCT CODE - ETEFCT 

l * * * * * % n * * * * * * t * * * r * * * * * * * * * * * * * * * * * ~ * ~ * * * * * * ~ ~ ~ * * * * * * * * * * * * * *  

J THE EQUATION SOLVED: 

-I D(R) + D(U R) + D(V R) = SOURCE 

I .  

1 
.J 

1 
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C DT DX DY 
C 
C WHERE U AND V ARE VELOCITY COMPONENTS 
C IN THE X AND Y DIRECTIONS. 
C 
C * * * * * * * * $ t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * ~ * * * Z * * * * * * * *  

C THE GRID SYSTEM IS NX BY NY. 
C 
C PRIOR TO CALLING THIS SUBPROGRAM, THE SUBROUTINE VELOCE 
C MUST BE CALLED TO CALCULATE THE VELOCITY-RELATED VECTORS. 

THESE VECTORS ARE THEN PASSED THROUGH COMMON BLKB. 
C 
C THE INTERFACIAL AREAS AND VOLUMES OF THE GRID NETWORK 
c MUST BE FIRST DEFINED IN THE MAIN DRIVER AND THEN PASSED 
C IN COMMON BLK4. 

pl b 

r T  
.> - BOUNDARY CONDITIONS ARE SPECIFIED IN THE MAIN DRIVER 

LXBC, RXBC, LYBC AND RYBC. 
J AND PASSED BY THE ARGUMENT LIST USING THE VECTORS 
1 

-. 
LXBC VECTOR DEFINES B.C. AT BOTTOM (IN X DIRECTION) 
RXBC VECTOR DEFINES B.C. AT TOP (IN X DIRECTION) 

rJ LYBC VECTOR DEFINES B.C. AT LEFT (IN Y DIRECTION) 
s RYBC VECTOR DEFINES B.C. AT RIGHT (IN Y DIRECTION) 
C 
C BOUNDARY CONDITIONS ARE SET TO SYMMETRIC,REFLECTIVE 
C OR PERIODIC. SEE THE GBCOND SUBROUTINE IN ANOTHER APPENDIX. 
C 
C SOURCE TERMS ARE TAKEN AS FOLLOWS: 
C 
C SOURCE = C(X,Y) D(F) + D(X,Y) D(G) + S(X,Y) 
C DX DY 
C 

C 
C"* DIMENSION AND DEFINE ALL OF THE ARRAYS USED IN THE 
C*** SOLVER 
C 

- 

C * ~ t ~ * * * * * * * * * * * * f * * ~ x * * ~ * x * * ~ ~ * * * * ~ * ~ * * ~ a ~ ~ ~ ~ ~ * * * ~ * * n Y * * $ * * * ~ * * * ~ x ~ *  

PARAMETER (NX=50, NXMlXNX-1, NY=50, NYMl=NY-l, MXNX=100) 
REAL MULH, NULH, LALH, KALH 
REAL LXBC(NX),RXBC(NX),LYBC(NY),RYBC(NY),FTDO(MXNX),FTDP(MXNX) 
REAL RHOO(NX,NY), RHON(NX,NY), SOURCE(NX,NY) 

C 
C*'* INCLUDE THE NECESSARY COMMON BLOCKS 
C 

COMMON /SHAREl/ BIGF(NX,NY), BIGG(NX,NY), TX(NX,NY), TY(NX,NY), 
1 SCRHl(NX,NY), SCRH2(NX,NY), RHOT(NX,NY) 

C 
COMMON /BLK3/ ADUDTH(NX,NY), BDUDTH(NX,NY), MULH(NX,NY), 
1 LALH(NX,NY) , NULH(NX,NY) , KALH(NX,NY), 
2 GX( NX , NY ) , GY(NX,NY) 

C 

C 
C*** DEFINE THE CONVECTIVE TRANSPORT FLUX AT THE MIDPOINTS 
C 

COMMON /BLK4/ AH(NiL,NY),BH(NX,NY),VOL(NX,NY),RVOL(NX,NY) 

DO 10 J=2,NYM1 
DO 10 I=l,NXMl 

10 SCRHl(I,J)= 0.5xAD~~DTH(I,J)*(RHOO(I,J)+RHOO(I+l,J)) 
1 - GX(I,J)*(RHOO(I+1,J)-RHOO(I,J)) 

C 
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DO 20 1=2,NXM1 

c 
- * * *  LI TRANSPORT THE SOLUTION AND ADD THE SOURCE TERMS. 

DO 30 1=2,NXMl 
1 
u 

n 
ir 

2 * * *  CALL GBCOND TO SET BOUNDARY VALUES 
C 

CALL GBCOND(RHON,LXBC,RXBC,LYBC,RYBC) - 
U 

C * * *  
C * * *  

DEFINE THE UNCORRECTED ANTIDIFFUSIVE FLUXES AT THE INTERIOR 
GRID POINTS AND THE DIFFUSIVE FLUX EMBEDDED IN A LOW ORDER SCHEME 

DO 40 I=l,NXMl 
BIGF(I,J)= MULH(I,J)*(RHON(I+l,J) - RHON(I,J)) 

40 SCRH~ (I, J) = NULH( I, J) * (RHOO( I+ 1, J) - RHOO( I, J 1)  
C 

DO 50 I=2,NXMr 

'1 
.J 

- * * *  d CALCULATE THE TRANSPORTED AND DIFFUSED SOLUTION 

DO 60 I=B,NXMl 
DO 60 J=B,NYMl 

1 
u 

60 RHOT( I, J) = RHON( I, J) + RVOL( I, J) * ( SCRH~ ( I, J) - SCRH~ ( 1-1 J) 
1 + SCRH2(I,J) - SCRH2(I,J-l)) 

0 U 

z*** CALL GBCOND TO SET BOUNDARY VALUES 
n 
1" 

CALL GBCOND(RHOT,LXBC,RXBC,LYBC,RYBC) 
1 

1" 

LJ - ' * * *  
I r t *  J 

PERFORM THE STRONG FLUX LIMITER IN SPLIT 
DIRECTIONS ON THE ANTIDIFFUSION FLUX 

DO 70 J=l,NY 
n 
Ll 

7 
Y 



.- C 

C 

C 

n 

90 

100 

110 

120 

130 

BIGF(I,J)= AMINl( BIGF(I,J), TY(1,J) ) 
BIGF(I,J)= AMAX1( BIGF(I,J), 0.0 ) 
TX(I,J)= BIGF(I,J)*RHON(I,J) 

DO 100 J=2,NYM1 
DO 100 I=:,NX 
SCRHl(I,J)= (RHOT(I,J+l) - RHOT(I,J))*VOL(I,J) 
SCRH2(I,J)= (RHOT(1,J) - RHOT(1,J-l))*VOL(I,J) 

DO 110 I=l,NX 
FTDO(I)= (l.O-ABS(LXBC(I)))*RHOT(I,NY-2) + LXBC(I)*RHOT(I,3) 
FTDP(I)= RXBC(I)*RHOT(I,NY-2) + (l.O-ABS(RXBC(I)))*RHOT(I,3) 
SCRH2(1,1)= (RHOT(1,l) - FTDO(I))*VOL(I,l) 
SCRHl(I,NY)= (FTDP(1) - RHOT(I,NY))*VOL(I,NY) 

DO 120 J=l,NYb!l 
DO 120 I=2,NXM1 
RHON(I,J)= SIGN(l.O,BIGG(I,J)) 
BIGG(I,J)= ABS(BIGG(1,J)) 
TY(I,J)= RHON(I,J)*SCRH2(I,J) 
BIGG(I,J)= AMINl( BIGG(I,J), TY(1,J) ) 
TY(I,J)= RHON(I.J)*SCRHl(I.J+l) . I -  ~ 

BIGG(I,J)= AM IN^^ BIGG(I,J), TY(I,J) 
BIGG(I,J)= AMAXl( BIGG(1.J). 0.0 . , , , ~ - ,  

TY(I,J)= BIGG(I,J)'RHON(I,J) 

CALCULATE THE FINAL SOLUTION BY ANTIDIFFUSING 
THE TRANSPORTED AND DIFFUSED SOLUTION 

DO 130 I=2,NXM1 
DO 130 J=2,NYM1 
RHON(I,J)= RHOT(1,J) - RVOL(I.J)"( TX(1.J) - TX(1-1.J) . , _  

1 + TY(1,J) - TY(1.J-1)) 
C 
c* * a SET BOUNDARY VALUES USING GBCOND 
C 

C 
CALL GBCOND(RHON,LXBC,RXBC,LYBC,RYBC) 

RETURN 
END 
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Appendix B 
A Fortran Listing of the FCT 
Subroutine FCT2D and the 

Flux-limiting Subroutine FLIMIT 
~ * % % * % * * * % * * * * * ~ * t * * * * * * * * * * * Z * * * t * * * * * * * * % * % ~ * % % % % % % % * * * * % * % % % * % % *  

C 
% % * * % % % * * * * * * * * * * % % * * * * * %  C 

C 
C * SANDIA LABORATORIES, * 
C * A PRIME CONTRACTOR * 
C * * % * * * * *  TO THE 
C * UNITED STATES * 

* DEPARTMENT * * OF * 
ENERGY 

C 
C 

C *THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED* 
C * BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED * 

* STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, 
NOR ANY OF THEIR EMPLOYEES, 

C 
C 
C * NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR * 
C * EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR * 

* ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE * * * * * * * * * * * a  
C 

ACCURACY, 
* COMPLETENESS * 

C 

* OR USEFULNESS * 
* * * OF ANY % 

C 
e 

* INFORMATION, * 
* * * APPARATUS, * % 

C 

* * * * *  * PRODUCT * * * *  
C 
C 
c e * DISCLOSED, 

* ISSUED BY % 

* 

n b 

* * 
C l * * * * * t * * * * % * * $ * * * * % *  ---NOTICE--- % * % * * % % % * * * $ * % % % % % % % *  

* 
* * 

% * * * * * * * * *  % 

* * 
* * 
* * 
% * 

% 

* 
% * 

* * % 

* * 
* % 

% * 
* * * * * * * * *  

% * 
* * 

n 
i, 

* * 

* 
* * 
* * 
% * 

* OR PROCESS * 

* OR REPRESENTS * 
THAT ITS 

* *  USE WOULD NOT * x  

INFRINGE 
PRIVATELY * *  

n 

n * * * *  " * *  " 
* * 
* * * * * * A * *  * *  * *  

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 
C BORIS AND BOOK AND THE FLUX-LIMITER BY ZALESAK. 
c 
C CODE - ETBFCT. 
C 
c THIS SUBROUTINE ALSO CALLS SUBROUTINES FLIMIT AND GBCOND. 
c THESE ROUTINES MUST BE INCLUDED IN ORDER FOR THIS ROUTINE 
C TO EXECUTE. 

* *  
* *  
* *  

* *  
A 9  

OWNED 
RIGHTS. * *  * *  

* *  * *  
* *  * *  
* * * * * * * * * * * * A * * % * * * *  

SUBROUTINE FCT2D(RHOO,RHON,SOURCE,LXBC,RXBC,LYBC,RYBC) 

~ r * * * * % % * * % % * * * * * * z * * * $ * * * * m * * ~ * * * * * * * * * * * * * * ~ * ~ * * * * * * * * * * * % * *  

SUBROUTINE FCT2D IS A TWO-DIMENSIONAL NUMERICAL 
WHICH USES THE FLUX-CORRECTED TRANSPORT TECHNIQUE OF 

SOLVER 

THE APPROACH IS ANALOGOUS TO THAT USED IN BORIS' FCT 
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C THE EQUATION SOLVED: " 
b 

C D(R) + D(U R) + D(V R) = SOURCE 
C DT DX DY 
C 
z WHERE U AND V ARE VELOCITY COMPONENTS 
C IN THE X AND Y DIRECTIONS. 
C 
c * % % % % * % * % % * * * % % % % * % % * * % % % % % % % % ~ % % ~ * % % % * % % % % % % % ~ % ~ * * * % * * ~ * % % * % x  
C THE GRID SYSTEM IS NX BY NY. 
C 
C PRIOR TO CALLING THIS SUBPROGRAM, THE SUBROUTINE VELOCE 

THESE VECTORS ARE THEN PASSED THROUGH COMMON BLKB. 

THE INTERFACIAL AREAS AND VOLUMES OF THE GRID NETWORK 

MUST BE CALLED TO CALCULATE THE VELOCITY-RELATED VECTORS. m " 
1 

7 " 
$1 e 

C MUST BE FIRST DEFINED IN THE MAIN DRIVER AND THEN PASSED 
C IN COMMON BLK4. 
C 
c BOUNDARY CONDITIONS ARE SPECIFIED IN THE MAIN DRIVER 
C AND PASSED BY THE ARGUMENT LIST USING THE VECTORS 
c LXBC, RXBC, LYBC AND RYBC. 
C 
C LXBC VECTOR DEFINES B.C. AT BOTTOM (IN X DIRECTION) 
C RXBC VECTOR DEFINES B.C. AT TOP (IN X DIRECTION) 
C LYBC VECTOR DEFINES B.C. AT LEFT (IN Y DIRECTION) 
C RYBC VECTOR DEFINES B.C. AT RIGHT (IN Y DIRECTION) 

C BOUNDARY CONDITIONS ARE SET TO SYMMETRIC,REFLECTIVE 
C OR PERIODIC. SEE THE GBCOND SUBROUTINE IN ANOTHER APPENDIX. 
C 
C SOURCE TERMS ARE TAKEN AS FOLLOWS: 
C 
C SOURCE = C(X,Y) D(F) + D(X,Y) D(G) + S(X,Y) 
c DX DY 
c 
C 
c* * r DIMENSION AND DEFINE ALL OF THE ARRAYS USED IN THE 
C*** SOLVER 
C 

P e 

~ * ~ * * * * * * ~ * * * * * * * i * x * ~ ~ ~ * * ~ r * ~ * * r ~ ~ * * ~ ~ ~ * ~ * * * r n * ~ * ~ * * * * * ~ * * ~ ~ ~ n ~ ~ * * n *  

PARAMETER (NX=50, NXMl=NX-l, NY=50, NYMl=NY-l) 
REAL MULH, NULH, LALH, KALH 
REAL LXBC(NX),RXBC(NX),LYBC(NY),RYBC(NY) 
REAL RHOO(NX,NY), RHON(NX,NY), LNRHOT(NX,NY), SOURCE(NX,NY) 

n 
L 

c * * *  
C 

INCLUDE THE NECESSARY COMMON BLOCKS 

COMMON /SHAREl/ BIGF(NX,NY), BIGG(NX,NY), TX(NX,NY), TY(NX,NY), 
1 SCRHl(NX,NY), SCRHB(NX,NY), RHOT(NX,NY) 

C 
COMMON /BLK3/ ADUDTH(NX,NY), BDUDTH(NX,NY), MULH(NX,NY), 

1 LALH(NX,NY) , NULH(NX,NY) , KALH(NX,NY), 
2 GX (NX , NY) , GY(NX,NY) 

C 
COMMON /'BLK4/ AH(NX,NY),BH(NX.NY),VOL(NX,NY),RVOL(NX,NY) 

C c* * * 
C 

DEFINE THE CONVECTIVE TRANSPORT FLUX AT THE MIDPOINTS 
43 



DO 10 J=2,NYM1 
DO 10 I=l,NXMl 

10 SCRHl(I,J)= 0.5*ADUDTH(I,J)*~RHOO(I,J)+RHOO(I+l,J)) 
1 - GX(I,J)*(RHOO(I+1,J)-RHOO(I,J)) 

C 
DO 20 I=2,NXM1 
DO 20 J=l,NYMl 

20 SCRH2(I,J)= 0.5*BDUDTH(I,J)*(RHOO(I,J)+RHOO(I,J+l)) 
1 - GY(I,J)*(RHOO(I,J+1)-RHOO(I,J)) 

C 
C*** TRANSPORT THE SOLUTION AND ADD THE SOURCE TERMS. 
C 

DO 30 1=2,NXMl 
DO 30 J=2,NYM1 

30 RHON(I,J)= VOL(I,J)*RHOO(I,J) - SCRHl(1,J) + SCRHl(1-1,J) 
1 - SCRH2(I,J) + SCRHB(1,J-1) + SOURCE(1,J) 

C 
C ' * *  CALL GBCOND TO SET BOUNDARY VALUES 
C 

C 
C*** DEFINE THE UNCORRECTED ANTIDIFFUSIVE FLUXES AT THE INTERIOR 
C"* GRID POINTS 
C 

CALL GBCOND(RHON,LXBC,RXBC,LYBC,RYBC) 

DO 40 I=l,NXMl 
DO 40 J=l,NYMl 
BIGF(I,J)= MULH(I,J)"(RHON(I+1,J)"RVOL(I+l,J) 

40 BIGG(I,J)= KALH(I,J)*(RHON(I,J+l)'RVOL(I,J+1) 
1 - RHON(I,J)"RVOL(I,J)) 

1 - RHON(I,J)*RVOL(I,J)) 
C 

DO 50 I=l,NXMl 
50 BIGF(I,NY)= MULH(I,NY)*(RHON(I+1,NY)*RVOL(I+l,NY) 

1 - RHON(I,NY)*RVOL(I,NY)) 
C 

DO 60 J=l,NYMl 
60 BIGG(NX,J)= KALH(NX,J)*(RHON(NX,J+l)*RVOL(NX,J+l) 

1 - RHON(NX,J)*RVOL(NX,J)) 
C 
C ' * *  DEFINE THE ?IFFUSIVE FLUXES 
C 

DO 70 I=l,NXMl 
DO 70 J=2,NYM1 

70 SCRHl(I,J)= NULE(I,J)*(RHOO(I+l,J) - RHOO(1,J)) 
C 

DO 80 I=2,NXM1 
DO 80 J=l,NYMl 

80 SCRH2(I,J)= LALH(I,J)*(RHOO(I,J+l) - RHOO(1,J)) 
C 
C a * *  CALCULATE THE TRANSPORTED AND DIFFUSED SOLUTION 
C 

DO 90 1=2,NXMl 
DO 90 J=2,NYM1 

90 LNRHOT(I.J)= RHON(1,J) + SCRHl(1,J) - SCRHl(1-1,J) 
1 + SCRH2(I,J) - SCRH2(1,J-l) 

c 
, I *  * * CALL GBCOND TO SET BOUNDARY VALUES 

CALL GBCOND(LNRHOT,LXBC,RXBC,LYBC,RYBC) 
C 
C * * *  DIVIDE OUT THE GRID VOLUME 

44 

-. 

.. 



C 
DO 100 I=l,NX 
DO 100 J=l,NY 

130 RHOT(I,J)= RVOL(I,J)*LNRHOT(I,J) 
C 
C*** CALL THE FLUX LIMITER SUBROUTINE WHICH CORRECTS THE 
C*** ANTIDIFFUSION 
C 

C 
C * * *  CALCULATE THE FINAL SOLUTION BY ANTIDIFFUSING THE 
C*** TRANSPORTED AND DIFFUSED SOLUTION 

C 

CALL FLIMIT(BIGF,BIGG,RHOT,LXBC,RXBC,LYBC,RYBC,TX,T~,RHOO) 

r- c, 

DO 110 I=2,NXM1 
DO 110 J=2.NYM1 

1 io RHON( I, J> =RHOT( I, J> -RVOL( I, J) * ( TX( I, J>  -TX( 1-1, J >  
l+TY(I,J)-TY(I,J-l)) 

n 
4 

FLIMIT IS A VECTORIZED ASC FORTRAN MODULE WHICH IMPLEMENTS ZALESAK'S 
MULTIDIMENSIONAL FLUX LIMITER [JCP 31, 335 (1979)I IN 2D CARTESIAN 
GEOMETRY. IT INCORPORATES AS OPTION A "PRE-LIMITING" STEP UTILIZING 
THE STRONG I-D LIMITER OF BORIS AND BOOK (WHEN JPRLIM = .TRUE. > ,  
AND THE ABILITY TO LOOK BACK TO THE PREVIOUS TIMESTEF FOR UPPER AND 
LOWER BOUNDS ON THE NEW SOLUTION ( WHEN FOLD = .TRUE. ) .  

UTILIZATION 

FLIMIT - SUBROUTINE CALLED AT EVERY TIMESTEP FOR EACH 
CONVECTIVE EQUATION BEING SOLVED 

AUXILIARY ROUTINES CALLED BY ABOVE: 

GBCOND - APPLY SIMPLE PERIODIC OR REFLECTING BOUNDARY 
CONDITIONS TO SCRATCH AND INTERMEDIATE ARRAYS 
AFTER INTERIOR VALUES ARE KNOWN 

CALLING SEQUENCE 

FLX, FLY - RAW (UNLIMITED) ANTIDIFFUSIVE FLUXES. DIMENSIONALLY 
THESE FLUXES SHOULD BE IN THE SAME UNITS AS FTD 
(BELOW) MULTIPLIED BY AN AREA 

FTD 

NX, NY 

- ARRAY CONTAINING THE TIME-ADVANCED, LOW ORDER 
( "TRANSPORTED AND DIFFUSED" ) SOLUTION 

- DIMENSIONS OF MESH (RESTRICTED AT COMPILE TIME 
BY VARIABLE DIMENSIONING TO NX ( =  MX AND NY ( =  MY, 
WHERE MX AND MY ARE DEFINED IN PARAMETER STATEMENT 

45 



SX, SY, SM - SCRATCH ARRAYS C 
C 
C 
C 
C 
C 
C 
C 

c 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

c: 
s 
C 
C 
C 
C 
C 
C 

C 

C 

n 
LJ 

n " 

n 
v 

r 4  
CI 

C 

C 
C 
C 
C 
C 
C 
C 

TX, TY - CORRECTED ANTIDIFFUSIVE FLUXES RETURNED BY FLIMIT 

FAA - ARRAY CONTAINING THE SOLUTION FROM THE PREVIOUS 
TIMESTEP (USED ONLY IF FOLD = .TRUE. ) 

LXBC , RXBC - BOUNDARY CONDITION VECTORS ( SEE COMMENTS IN 
LYBC, RYBC SUBROUTINE GBCOND ) 

THE COMMON BLOCK /LIMIT/ CONTAINS THREE SCALAR LOGICAL VARIABLES 
WHICH MAY BE SET BY THE USER FROM OUTSIDE THE SUBROUTINE: 

PRLIM 

JPRLIM 

FOLD 

SETTING PRLIM = .TRUE. ZEROES THE FLUX WHENEVER 
ITS SIGN DIFFERS FROM THAT OF THE CORRESPONDING 
FIRST DIFFERENCE IN FTD - IT IS A SIMPLIFIED VERSION 
OF EQ (14') IN JCP 31, PG 349. 

SETTING JPRLIM = .TRUE. CAUSES THE FLUXES TO BE 
"PRE-LIMITED" USING THE STRONG l-D LIMITER OF BORIS 
AND BOOK BEFORE PASSING THE RESIDUAL FLUXES ON TO 
THE MULTIDIMENSIONAL LIMITER - SEE JCP 31, PP 349-350 

SETTING FOLD = .TRUE. ALLOWS THE LIMITER TO LOOK BACK 
TO THE SOLUTION FROM THE PREVIOUS TIMESTEP (WHICH 
MUST BE STORED IN ARRAY FAA ) TO FIND UPPER AND 
LOWER BOUNDS ON THE NEW SOLUTION 

THE MOST CONSERVATIVE (I.E., MOST DIFFUSIVE) CHOICE IS OBTAINED BY SETTING 
JPRLIM = .TRUE. AND FOLD = .FALSE. ( PRLIM IS IRRELEVANT WHEN JPRLIM 
IS .TRUE. ) THIS IS THE RECOMMENDED CHOICE FOR THE FIRST ATTEMPT. 

THE BOUNDARY CONDITION SUBROUTINE GBCOND CAN BE REPLACED BY A MORE 
COMPLICATED PROBLEM-DEPENDENT PRESCRIPTION WHICH VARIES AS A FUNCTION 
OF THE ARRAY BEING BOUNDED. 

SUBROUTINE FLIMIT(FLX,FLY,FTD,LXBC.RXBC,LYBC,RYBC,TX,TY,FAA) 

PARAMETER (MXNX=100, NX=100, NXM=NX-1, NY=100, NYM=NY-l) 
LOGICAL PRLIM, JPRLIM, FOLD 
REAL LXBC(NX) ,RXBCcNX) ,LYBC(NY) ,RYBC(NY) 
REAL ALXBC(NX) ,ARXBC(NX), ALYBC(NY), ARYBC(NY) 
REAL PLXBC(NX) ,PRXBC(NX),PLYBC(NY),PRYBC(NY) 
REAL FTDO(MXNX), FTDP(MXNX) 
DIMENSION FLX(NX,NY), FLY(NX,NY), FTD(NX,NY), TX(NX,NY), 
1 TY(NX,NY), SX(NX,NY), SY(NX,NY), FAA(NX,NY), SM(NX,NY) 

COMMON /BLK4/ AH(NX,NY),BH(NX,NY),VOL(NX,NY),RVOL(NX,NY) 
COMMON /LIMIT/ PRLIM, JPRLIM, FOLD 

NOTE THAT FLX AND FLY MUST BE REAL FLUXES (LIKE GRAMS FOR EX.) 
FLX( I, J) IS CENTERED BETWEEN FTD( I, J) AND FTD(I+l, J) 
FLY(1,J) IS CENTERED BETWEEN FTD(1,J) AND FTD(I,J+l) 
FLX(1,J) DEFINED I=l,NXM J=l,NY 
FLY(1,J) DEFINED J=l,NYM I=l,NX 

C** SET VECTORS FOR BOUNDARY CONDITIONS 
C 

DO 1 I=l,NX 

* -  

.e 



ARXBC(I)=ABS(RXBC(I)) 
PLXBC(I)=l.-ALXBC(I) 

1 PRXBC(I)=l.-ARXBC(1) 

.. 

C 

C 
C 

C 

C 

C 

C 

DO 5 J=l,NY 
ALYBC(J)=ABS(LYBC(J)) 
ARYBC(J)=ABS(RYBC(J)) 
PLYBC(J)=l.-ALYBC(J) 

5 PRYBC(J)=l.-ARYES(J) 

IF ( .NOT. JPRLIM ) GO TO 70 

DO 10 J=l,NY 
DO 10 I=2.NXM 

DO 20 J=l.NY 
FTDO(J)= PLYBC(J)*FTD(NX-2.J) + LYBC(J)*FTD(3.J) 
FTDP(J)= RYBC(J)"FTD(NX-B,J) + PRYBC(J)*FTD(B,J) 
sY(l,J)= (FTD(1,J) - FTDO(J))*VOL(l,J) 

20 SX(NX,J)= (FTDP(J) - FTD(NX,J))*VOL(NX,J) 

DO 30 J=l,NY 
DO 30 I=l,NXM 
SM(I,J)= SIGN(l.O,FLX(I,J)) 

TY(I,J)= SM(I,J)*SY(I.J) 
FLX(I,J)= ABS(FLX(I,J)) 

30 

40 
s 

50 
C 

60 

70  
C 

C 

C 

I 

. I - ,  

FLX(I,J)= AM IN^^ FLX(I,J), TY(I,J) 
TY(I,J)= SM(I,J)*SX(I+l.J) 
FLX(I,J)= AMIN1( FLX(1,J): TY(1,J) ) 
FLX(I,J)= AMAX1( FLX(I,J), 0.0 ) 
FLX(I,J)= FLX(I,J)*SM(I,J) 

DO 40 J=2,NYM 
DO 40 I=l.NX 

DO 50 I=l,NX 
FTDO(I)= PLXBC(I)'FTD(I,NY-2) + LXBC(I)*FTD(I,3) 
FTDP(I)= RXBC(I)"FTD(I,NY-2) + PRXBC(I)"FTD(I,3) 
SY(I,1)= (FTD(1,l) - FTDO(I))'VOL(I,l) 
SX(I,NY)= (FTDP(1) - FTD(I,NY))"VOL(I,NY) 

CONTINUE 

IF ( .NOT. PRLIM ) GO TO 100 
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C 
DO 210 J=l,NY 
DO 210 I=l,NXM 

210 SM(I,J)= AMAX1( SM(I,J), SIGN(TX(I+l,J>,FLX(I,J)) > 
C 

DO 220 J=l,NY 
DO 220 I=l,NXM 

220 SX(I,J)= AMINl(SX(I,J>,SM(I,J)) 
C 

DO 220 J=l,NYM 
DO 230 I=l,NX 

230 SM(I,J)= -SIGN(TX(I,J),FLY(I,J)) 
C 

DO 240 J=l,NYM 
DO 240 I=l,NX 

240 SM(I,J)= AMAX1( SM(I,J), SIGN(TX(I,J+l),FLY(I,J)) ) 
C 

DO 250 G=l,NYM 
DO 250 I=l,NX 

250 SY(I,J)= AMINl(SY(I,J>,SM(I,J)) 
C 

C 
IF ( FOLD ) GO TO 270 

DO 260 J=l,NY 
DO 260 I=l,NX 

260 SM(I,J)= FTD(1,J) 
C 

C 
GO TO 290 

270 CONTINUE 
DO 280 J=l,NY 
DO 280 I=l,NX 

280 SM(I,J)= AMINl(FTD(I,J),FAA(I.J)) 

290 CONTINUE 
C 

DO 300 J=2,NYM 
DO 300 1=2,NXM 
TX(I,J)= (FTD(1,J) - AMIN1( SI%:(I-l,J), SM(I,J), SM(I+l,J), 
1 SM(I,J-1), SM(I,J+l)) )*VOL(I,J) 

300 CONTINUE 
c 

DO 310 J=l,NY 
DO 310 I=l,NXM 

310 TY(I,J)= SX(I,J)'FLX(I,J) 
C 

DO 320 J=2,NYM 
DO 320 I=2,NXM 

320 SM(I,J)= AMAXl(O.O,TY(I,J)) - AMINl(O.O,TY(I-l,J)) 
C 

DO 330 J=l,NYM 
DO 330 I=l,NX 

330 TY(I,J)= SY(I,J)*FLY(I,J) 
C 

DO 340 J=2,NYM 
DO 340 I=2,NXM 
SM(I,J)= SM(1.J) + (AMAXl(O.O.TY(I,J)) - AMINl(O.O,TY(I,J-l)) ) 

340 TY(1,J) =1.0 
C 

DO 350 J=2,NYM 
DO 350 I=2,NXM 
IF (SM(1,J) .LE. TX(1,J)) GO TO 350 

49 



TY(I,J)= TX(I,J)/SM(I,J) 
350 CONTINUE 

C 
DO 355 J=B,NYM 
DO 355 1=2,NXM 

355 TX(I,J)= TY(1,J) 
C 

C 
CALL GBCOND(TX, ALXBC, ARXBC, ALYBC, ARYBC) 

DO 360 J=l,NY 
DO 360 I=l,NXM 

360 SM(I,J)= SIGN(TX(I,J),FLX(I,J)) 
C 

DO 370 J=l,NY 
DO 370 I=l,NXM 

370 SM(I,J)= AMAXl( SM(I,J), -SIGN(TX(I+l,J>,FLX(I,J)) ) 
C 

DO 380 J=l,NY 
DO 380 I=l,NXM 

380 SX(I,J)= SX(I,J)*SM(I,J) 
C 

DO 390 J=l,NYM 
DO 390 I=l,NX 

390 SM(I,J)= SIGN(TX(I,J),FLY(I,J)) 
C 

DO 400 J=l,NYM 
DO 400 I=l,NX 

400 SM(I,J)= AMAXl( SM(I,J), -SIGN(TX(I,J+l),FLY(I,J)) ) 
C 

DO 410 J=l,NYM 
DO 410 I=l,NX 

410 SY(I,J)= SY(I,J)”SM(I,J) 
C 

DO 420 J=l,NY 
DO 420 I=l,NXM 

420 TX(I,J)= FLX(I,J)*SX(I,J) 
C 

DO 430 J=l,NYM 
DO 430 I=l,NX 

470  TY(I,J)= FLY(I,J)’SY(I,J) 
C 

RETURN 
END 
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Appendix C 
A Fortran Listing of the FCT Driver 

for the 2-D Riemann Problem and the 
Auxiliary Subroutines VELOCE and GBCOND 

~ * * * * % % * * $ * f * % * * * * * * * * * * * * * * * * * * * * * * * * * * % * % * * * * % $ % ~ m * * * n n % ~ ~ ~ . % * * * *  

C 
C 
C * ISSUED BY * 
C * SANDIA LABORATORIES, * 
C * A PRIME CONTRACTOR * 
C 
C * UNITED STATES * 
C * DEPARTMENT * 
C * OF * 
C ENERGY 
C 
C *THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPOh’SORED* 
C * BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED * 

C * NOR ANY OF THEIR EMPLOYEES, * 
C * NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR * 

* EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR * 
C * ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE * 

ACCURACY, 
A * * * COMPLETENESS * * * 
i: * * * OR USEFULNESS * * * 
‘1 * % * OF ANY * * * 
Yr U * * * INFORMATION, ’ * * 
C * * * APPARATUS, * * * 

- * * * OR PROCESS * * x 

P J * % * DISCLOSED, * * t 

2 * OR REPRESENTS * 
1 * * * *  THAT ITS * *  * r 

. . . . . . . . . . . . . . . . . . . . . . . . .  

TO THE z * * * * * * *  * 

* * 
z * * * t ~ * * t * * * * * * * * x * * *  ---NOTICE--- * * * * a * * * * ~ * * * * * * * * * * *  

* STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, CI 1 
U 

m 
U 

1 * * * * * * * * * * *  * * * * * * * * * *  * 
4 

U 

v 

* * * * * * *  A * * * * *  PRODUCT u 

v 

* % * * 1 

J 

1 
d 

* % * x 

7 * *  * v * * r * * *  v * * a * * * * * *  

* *  USE WOULD NOT * *  
* *  INFRINGE 

-I PRIVATELY * * 
s * *  OWNED 
A * *  RIGHTS. * *  

7 * *  
r *  

J 

1 * *  * *  
n * *  * *  
n * *  * *  

0 

U 

” 
n . . . . . . . . . . . . . . . . . . . .  v - 
U 

PROGRAM DRIVER 
” r * * * * * * * * * * * * * * ~ * * * z ~ * * % % * * * * * * a * * ~ * * * ~ * * * * * * * ~ * * * ~ * * * *  ” 
C a * ”  THIS PROGRAM TESTS THE 2-D FLUX CORRECTING * 

* C x * *  ALGORITHM ON A RIEMANN PROBLEM IN THE INFINITE 
C*** DOMAIN WITH CONSTANT VALUE INITIAL CONDITIONS IN * 
7’”‘ EACH QUADRANT. REFER TO THE WORK BY WAGNER. * 
’ ;**** r * * ~ * * * * * * * * * * * * * * * , * ~ * * * * ~ * * * * * ~ * * * * * * * * * * ’ * * n * * * *  

1 
Y 

PARAMETER (NX=50, NY=50, NXNY=NX*NY, SMALL=l.OE-20) 
7 
I 

- * * *  COMMON BLK5, BLK7, AND BLK8 ARE USED IN THE SUBROUTINE 
: * * *  WHICH COMPUTES THE EXACT SOLUTION. A LISTING OF THIS 
: * ; * *  LATTER ROUTINE EAS NOT BEEN APPENDED. 
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LOGICAL PRLIM,JPRLIM,FOLD 
REAL LXBC(NX),RXBC(NX),LYBC(NY),RYBC(NY),ZERO(NX,NY) 
DIMENSION U(NX,NY),V(NX,NY) 
COMMON /BLK4/ AH(NX,NY),P,H(NX,NY),VOL(NX,NY),RVOL(NX,NY) 
COMMON /BLK5/ R(NX,NY), RN(NX,NY), REXACT(NX,NY) 
COMMON /BLK7/ XG(NX), XREF(NX), YG(NY), YREF(NY) 
COMMON /BLK8/ RQl,RQ2,RQ3,RQ4,Al,A2,SUM,DEPRESS 
COMMON /LIMIT/ PRLIM,JPRLIM,FOLD 
DATA ZERO / NXNY * 0.0 / 

C 

C 
C'*" SPECIFY NONDIMENSIONAL LENGTH OF THE BOUNDARIES IN 
C * * *  BOTH DIRECTIONS, INITIALIZE A COUNTER, AND INITIALIZE 
C * * *  A SUMMATION FARAYETER USED IN THE EXACT SOLUTION ROUTINE 
C 

~ * l z * % * * * * * * % t n * * * * * t * * * * * * * * * * * * * * * t * * * ~ ~ * * * * * ~ * * * * * * 1 * * * ~ * l * * *  

BOUNDX= 1.0 
BOUNDY= 1.0 
ICOUNT= 1 
RTOTTOT= 0.0 

C 

C 
,I' CI * L SPECIFY NCASE, THE SELECTION OF EXACT SOLUTION DESIRED 
C * * l  TO BE COMPUTED BY THE SUBROUTINE EXACT1 
C *  * ' NCASE=l : SIMPLE SHOCK AND RAREFRACTION 
c* * * NCASE=2 : CASE OF FOUR SIMPLE SHOCK JUMPS 
Cm * * NCASE=3 : A TRIPLE SHOCK WITH SHOCK STEM 
c* * * NCASE=4 : THE CUSP SHOCK 
C 

~ * d * * r i z i , * j * a ~ , , ~ * a ~ * * > j n m * ~ ~ ~ * ~ ~ * ~ ~ ~ * : ~ * * * * * l * * * * 7 * * ~ ~ * * * * n n ~ * *  

READ(5.*) NCASE 
WRITE(6,lO) NCASE 

10 FORMAT( 1H , "NCASE = " ,I2/) 
i, u 
~ * * * * m l 1 * ~ * i * * * i , * * n * * * n * * * * * * n n ~ * * * ~ * ~ ~ v * i * : * ~ * * * * * * n * ~ * * ~ 1 * * * ' ~  

n 
" 
v 

7 %  x SPECIFY INITIAL CONDITIONS BASED ON THE CHOICE OF NCASE 
7 
J 

IF (NCASE .EQ. 1) THEN 
RQ1= 0.0 
RQ2= 0.0 
RQ3= 0.0 
RQ4= 5.0 

RQ1= 0.5 
RQ2= 1.0 
RQ3= 3.0 
RQ4= 2.0 

ELSE IF (NCASE .E$. 2) THEN 

ELSE IF (NCASE .EQ. 3 )  THEN 
RQ1= -2.0 
RQ2= -1.0 
RQ3= -0.5 
RQ4= 2.0 

RQ1= 1.0 
RQ2= -2.0 
RQ3= 1.0 
RQ4= -2.0 

ELSE IF (NCASE .E$. 4) THEN 

END IF 52 
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.. 

'i 

IF (NCASE .NE. 1) THEN 
Al= (RQ2-RQl)/(RQ2-RQ3) 
A2= (RQ4-RQ3)/(RQ4-RQl) 

END IF 
n 
b 

~ * * n * * * * % % * * * * * % n % * n r * * * * * * * * * t * * * * * * * * * * n * * n * * * % * n ~ % * * % n n % % n  

c: 
U p * t * *  DEFINE GRID QUANTITIES. XREF AND YREF ARE USED IN THE 
C**n EXACT SOLUTION SUBROUTINE. AH AND BH ARE THE AREAS, 
C*** VOL IS THE VOLUME OF A CELL, AND RVOL IS THE RECIPROCAL 
C*** VOLUME OF A CELL. 
C 

DX= BOUNDX/FLOAT(NX-1) 
DYE BOUNDY/FLOAT(NY-1) 
DO 20 I=l,NX 

20 XG(I)= DX*(I-l) 
DO 30 J=l,NY 

30 YG(J)= DY*(J-l) 
DO 40 I=l,NX 

40 XREF(I)= XG(1) - 0.5"BOUNDX 
DO 50 J=l,NY 

50 YREF(J)= YG(J) - 0.5'BOUNDY 
1 
U 

DO 60 I=l,NX 
DO 60 J=l,NY 
AH(I,J)= DY 
BH(I,J)= DX 
VOL(I,J)= DX'DY 

60 RVOL(I,J)= l.O/VOL(I,J) 
1 -. 
~ * * * * * * * ~ * * n * * * * * * * r . * * * * * * * * * ~ * % ~ ~ ~ ~ * * * * * % * * * * * ~ ~ * * * * * * % * * * ~ * *  

2 * * *  MAP THE INITIAL CONDITIONS ONTO THE 2-D GRID 
n " 

1 
J 

NXHALF= 0.5*NX 
NYHALF= 0.5"NY 

DO 70 I=l,NXHALF 
DO 70  J=1, NYHALF 

. 
7 0  R(I,J)= RQ3 

1 
J 

DO 80 I=NXHALFtl.NX 
DO 80 J=l,NYHALF 

80 R(I,J)= RQ4 
1 
d 

DO 90 1=1 , NXHALF 
DO 90 J=NYHALF+l,NY 

90 R(I,J)= RQ2 
2 

DO 100 I=NXHALF+l,NX 
DO 100 J=NYHALF+l,NY 

100 R(I,J)= RQl 
4 
J 

. * ~ * i * * * t * * * * l * * * " r r ~ * % * * ~ , ~ ~ ~ * ~ * r ~ ~ ~ ~ * * * ~ ~ * * ~ ~ * * ~ ~ * n * * * * * ~ ~ * %  

- 
- ?  x 8 READ IN THE VALUES OF PRLIM, JPRLIM (WHICH CAN 

7 %  1 L THE LIKITER TO LOOK BACK TO THE PREVIOUS SOLUTION) 
L. > * * *  PRE-LIMIT THE FLUXES), AND FOLD (WHICH ALLOWS 
7 
2 

READ(5,llO) PRLIM,JPRLIM,FOLD 
5 3  110 FORMAT(3L7) 
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WRITE(6,120) PRLIM,JPRLIM,FOLD 
120 FORMAT(1H /5X,"PRLIM = ",L7/5X,"JPRLIM = ",L7/5X, 

1 "FOLD = ",L7//) 
m 
U 

" ~ % % % * * * % * * * * % * * * % * * * % % % % % % % % % * % r n r n ~ % % % % * % ~ % % % % ~ % % % ~ r n % % % % % n % % * % % * % % %  

" - * * *  DEFINE THE BOUNDARY CONDITIONS 
n 
J 

n 
J 

DO 130 I=l,NX 
LXBC(I)= 1.0 

130 RXBC(I)= 1.0 
C 

DO 140 J=l,NY 
LYBC(J)= 1.0 

140 RYBC(J)= 1.0 
C 

C 
C % %  x READ IN INITIAL TIME, SET THE COURANT NUMBER, THE MAXIMUM 
Z %  * z NUMBER OF TIME STEPS, THE PRINT COUNTER, THE PRINT 
" % * *  " INTERVAL, THE PLOT COUNTER, THE PLOT INTERVAL, AND THE 

C % * * + % % * % j * % * ~ * % % * X * * I ~ m * % 1 t * ~ t ~ * ~ 1 % * 1 * * % ~ % * % * * * % * * ~ * * % % ~ % % * % * m * % % ~  

v - * ' *  SWITCH FOR FOURTH- OR SIXTH-ORDER ACCURATE PHASE ERRORS 
rn 
b 

READ(5,*) TIME,COURANT,NSTEP,IPRINT,IPRINTX,IPLOT,IPLOTX,ISWIT 
WRITE(6,150) TIME,COURANT,NSTEP,IPRINT,IPRINTX,IPLOT,IPLOTX,ISWIT 

150 FORMAT( 1H /5X, "INITIAL TIME = " ,G10.4;5X, 
1 "COURANT NUMBER = " , G10.415X. " N S T E P  = ' I ,  I6/5X, 
2 "PRINT COUNTER, IPRINT = " ,I3t'5X, "PRINT INTERVAL = " ,13/ 5X, 
3 "PLOT COUNTER, IPLOT = ",13/5X,"PLOT INTERVAL = ",I3/5X, 
4 "SWITCH PARAMETER = " ,  13//5X, "ISWIT = 0 IMPLIES FOURTH ORDER" 
5 /5X,"ISWIT = 1 IMPLIES SIXTH ORDER"//) 

C 
IF (NX .E$. 100) THEN 
WRITE(6,160) 

ELSE IF (NX .E$. 50) THEN 
WRITE(6,170) 

END IF 

160 FORMAT(1H :5X,"COMPUTING ON A 100 BY 100 GRID"/) 

170 FORMAT( 1H /5X, "COMPUTING ON A 50 BY 50 GRID" ,') 
1 
d 

~ l z r t X x * * 1 n $ % , * t % * 1 * X * * * r n % m * * ~ * z ~ , ~ * * ~ n ~ * ~ ~ j ~ 1 ~ * * ~ ~ 1 1 ~ ~ % * ~ % ~ ~ ~ ~ ~ = 8 n ~  

C 
c*  I x BEGIN STEPPING THE SOLUTION 
C 

DO 500 ISTEP=l,NSTEP 
C 
C*** ESTABLISH THE VELOCITY FIELD 
C 

DO 180 I=l,NX 
DO 180 J=l,NY 
U(I,J)= R(1,J) 

180 V(I,J)= R(1,J) 

SET THE TIME STEP ACCORDING TO THE COURANT CONDITION 
PI 
v 
u * * * *  
c1 " 

UMAX= 0.0 
DO 190 I=l.NX 
DO 190 J=l,NY 
VELABS= ABS(U(1,J)) 

190 UMAX= AMAXl(UMAX,VELABS) 
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WAX= 0.0 
DO 200 I=l,NX 
DO 200 J=l,NY 
VELABS= ABS(V(1.J)) 

200 VMAX= AMAXl(VMAX,VELABS) 
“I 
CI 

DT1= DX*COURANT/(UMAX + SMALL) 
DT2= DY*COURANT/(VMAX + SMALL) 
DT= AMINl(DTl,DT2) 
DTH= 0.5”DT 

C 
C * * *  COMPUTATION AT HALF STEP 
C 

CALL VELOCE(U,V,DTH,ISWIT) 
CALL QWIK2D(R,RN,ZERO,LXBC,RXBC,LYBC,RYBC) 

C 
e * * *  COMPUTATION TO FULL STEP 
C 

DO 210 I=l,NX 
DO 210 J=l,NY 
U(I,J)= RN(1,J) 

210 V(I,J)= RN(I,J) - 
i 

CALL VELOCE(U,V,DT,ISWIT) 
CALL QWIK2D(R,RN,ZERO,LXBC,RXBC,LYBC,RYBC) 

c 
cr*r SHIFT SOLUTION VECTOR 
C 

DO 220 I=l,NX 
DO 220 J=l,NY 

220 R(I,J)= RN(1,J) 

TIME= TIME + DT 
C 

n ” 
f * * : * * * ~ * * * * * * * * * * * ) * * * n n * * ~ * * * * * * * ~ * * ~ ~ ~ * ~ * ~ * * * * * * ~ ~ ~ * n * $ * n * * ) ~ ’ *  
cr 
1 
4 

2**’ PRINTOUT OF SOLUTION 
1 
2 

IPRINT= IPRINT+l 
IF (IPRINT .EQ. IPRINTX) THEN 

C A L L  EXACT1(ISTEP,DT,TIME,”ALF,RTOTTOTTOT,~C~SE,~~~~J~T) 
IPRINT= 1 

END IF 
C 

C 

C 

C 

C 

~ * ) ) * * , ~ * * * * * * ~ n r ~ r * * * r ? ~ ~ * ~ ~ * * ~ * * * ~ ~ x ’ ~ n * * ~ ~ u ~ ~ ~ * ~ ’ ~ ~ * ? ~ ~ ? ~ ~ ~ * ~ ~ ~ ~  

500 CONTINUE 

END 

c * * ~ ’ * * * * * * * * * * * * * * * ~ * * * * * * ~ * ~ * * * * ~ ~ r j ~ ~ r ) * r * ~ * ~ * ~ a ~ a * * ~ ’ * * * ~ * * ’ ~ ~ ~  

SUBROUTINE VELOCE(U,V,DT,ISWIT) 

SUBROUTINE VELOCE COMPUTES DIFFUSION AND ANTIDIFFUSION 
COEFFICIENTS AND THE CONVECTIVE MASS FLUXES OVER DENSITY 

n 
v 

f 
d 

? 
cr 
1 
_I 

U,V ARE RESPECTIVELY THE VELOCITY COMPONENTS IN THE X AND Y 
DIRECTION. 

PARAMETER (NX=50, NXMl=NZ-l, NY=50, NYMl=NY-l) 
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~ REAL MULH, NULH, LALH, KALH, U(NX,NY), V(NX,NY) 
n 
b 

COMMON 

COMMON 
1 

1 
2 
COMMON 

DTH= 0. 

DO 100 
DO 100 

7 
J 

1 “ 

/SHAREl/ BIGF(NX,NY), BIGG(NX,NY), TX(NX,NY), TY(NX,NY), 

/BLK3/ ADUDTH(NX,NY), BDUDTH(NX,NY), MULH(NX,NY), 
LALH(NX,NY) , NULH(NX,NY) , KALH(NX,NY), 
GX(NX,NY) , GY(NX,NY) 

/BLK4/ AH(NX,NY),BH(NX,NY),VOL(NX,NY),RVOL(NX,NY) 

SCRHl(NX,NY), SCRHB(NX,NY), RHOT(NX,NY) 

.- 
5*DT 

1=1 ,NXMl 
J=1 ,NY 

ADUDTH(I,J)= AH(I,J)”DTH*(U(I,J)+U(I+l,J)) 
100 SCRHl(I,J)= 0.5”ADUDTH(I,J)’(RVOL(I,J)+RVOL(I+l,J)) 

IF (ISWIT .EQ. 1) GO TO 115 

DO 110 I=l,NXMl 
DO 110 J=l,NY 

s 

1 
Io 

a - ‘ * *  FOURTH-ORDER PEASE EgRORS - -  ORIGINAL VERSION * x * * * * * r * * * * * * * * * * x  
,-l 
v 

GX(I,J)= 0.0 
110 NULH(I,J)=(O.5~SCRH1(I,J)’SCRHl(I,J))*O.5 

1 * ( V O L ( I , J ) T V O L ( I + l , J > ) / 3 .  
c 

C 
GO TO 125 

115 DO 120 I=l,NXMl 
DO 120 J=l,NY 

n 
4 

2 * * *  SIXTH-ORDER DISPERSIVE (PHASE) ERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 
4 

GX(I,J)= (l.O+SCRHl(I,J)*SCRHl(I,J))*O.5* 
1 (VOL(I,J)+VOL(I+l,J))/5.0 

1 (VOL(I,J)+VOL(I+l,J)) ’30.0 
120 NULH(I,J)= (-1.0 + 4.OxSCRH1(I,J)”SCRH1(I,J))*0.5* 

7 

125 CONTINUE 
7 
U 

”r*~irliz~*rri**r,nl*1**z~*rrr*zrt**7~*~~~*~~~**~**~****~**n~*i~**~z***‘****~”~*~* ” - 
2 

DO 130 I=l.NXMl 
DO 130 J=l.NY 

130 MULH(I,J)=(l.O-SCRH1(I,J)‘SCRHl(I,J))*O.5 
1 ”(VOL(I,J)+VOL(I+l,J))/6. 

C 
DO 149 I=l,NX 
DO 140 J=l.NYMl 
BDUDTH(I,J)= BH(I,J)*DTH*(V(I,J)+V(I,J+l)) 

140 SCRHl(I,J)= O.~*BDUDTH(I,C~)’(RVOL(I.J)+RVOL(I,J+~)) 
n 
v 

IF (ISWIT .EQ. 1) GO TO 160 

DO 150 I=l,NX 
DO 150 J=1 ,NYl!l 

1 
I 

’ r * *  FOURTH-ORDER PHASE ERRORS -- ORIGINAL VERSION * * * * * * * ’ * * * * * * * * * *  

GY(I,J)= 0.0 

~. 
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150 LALH(I,J)=(0.5+SCRHl(I,J)*SCRHl(I,J))*O.5 
1 *(VOL(I,J)+VOL(I,J+1))/3. 

rrl 
v 

GO TO 180 

160 DO 170 I=l,NX 
7 “ 

DO 170 J=l,NYMl 
1 
2 

- *  

- d - * * *  SIXTH-ORDER DISPERSIVE (PHASE) ERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 
v ,~ 

GY(I,J)= (l.O+SCRH1(I,J)*SCRHl(I,J))*O.5 
1 *(VOL(I,J)tVOL(I,J+1))/5.0 

170 LALH(I,J)= (-1.0 + 4 . O ” S C R H l ( I , J ) * S C R H l ( I , J ) ) * 0 . 5 *  
1 (VOL(I,J)+VOL(I,J+1))/30.0 

n 

DO 190 I=l,NX 
DO 190 J=l,NYMl 

190 K A L H ( I , J ) = ( l . O - S C R H 1 ( I . J ) ” 1 ( I , J ) ) * O . 5  
1 *(VOL(I,J)tVOL(I,J+l))/E 

C 
RETURN 
END 

C 
C ~ * 1 X * * * * * * ~ z * * r * * I ~ * ~ ~ ~ * * * ~ Y ~ * ~ * * x * ~ * * * * * ~ * * ~ * * * * ~ ~ ~ ~ ~ * % Y * * ~ * * * * * * ~ ~ * ~  

n i, 

SUBROUTINE GBCOND(F, LXBC, RXBC, LYBC, RYBC) 

GBCOND IS A SIMPLE ROUTINE FOR SETTING BOUNDARY CONDITIONS 
ON THE NX BY NY ARRAY OF F. 

CONSIDER THE RECTANGULAR REGION: 

n 
U 

1 
i, 

n v 

1 
J 

1 
v 

LXBC 
RXBC 
LYBC 
RYEC 

IS THE 
IS THE 
IS THE 
IS THE 

VECTOR 
VECTOR 
VECTOR 
VECTOR 

OF 
OF 
OF 
OF 

B.C. ON BOTTOM (IN X DIRECTION) 
B.C. ON TOP (IN X DIRECTION) 
LEFT B.C. (IN Y DIRECTION) 
RIGHT B.C. (IN Y DIRECTION) 

2 

-7 THESE VECTORS TAKE ON VALUES -1.0, 0.0, AND 1.0: 
7 , RBC = -1.0 - ANTISYMMETRIC BOUNDARY CONDITIONS 

RBC = 0.0 - PERIODIC BOUNDARY CONDITIONS ,I 
b 

c RBC = 1.0 - SYMMETRIC BOUN3ARY CONDITIONS 
1 “ 

PARAMETER (NXNY=50, NX=50, NXM=NX-1, NY=50. NYM=NY-1) 
REAL LXBC(NX).RXBC(NX),LYBC(NY),RYBC(NY),BCl(NXNY).BC2(NX~~Y) 
DIMENSION F(NX,NY) 

DO 10 J=2,NYM 
rl ” 

BC1(J)=l.-LYBC(J)xLYBC(J) 
BC2(J)=l.-RYBC(J)’RYBC(J) 
F(l,J)= BCl(J)’F(NXM,J) +LYBC(J)*F(2,J) 

10 F(NX,J)= RYBC(J)*F(NXM.J) BC2(J)*F(2,J) 
-7 
v 

DO 20 I=l,NX 
BCl(I)=l.-LXBC(I)*LXBC(I) 
BC2(1)=1.-RXBC(I)’RXBC(I) 
F(I,l)= BCl(I)*F(I,NYM) + LXBC(I)*F(I,2) 

RETURN 57 
END 

20 F(I,NY)= RXBC(I)*F(I,NYM) + BC2(I)”F(I,2) 



Appendix D 
Error-measure results for each 

of the four 2-D Riemann examples. 
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QM'IK2D Results for the simple shock and rarefaction problem. Fig. D1 uses P4 on a 100 
x 100 grid. Fig. D2 uses P6 on a 100 x 100 grid. Fig. D3 uses P4 on a 50 x 50 grid. Fig. 
D4 uses P6 on a 50 x 50 grid. Xote ordinate scale change on coarser grid. 

59 



THE TWO-DIMENSIONAL RIEMANN PROBLEM 
SIMPLE SHOCK AND RAREFACI'ION 

ERROR MeAsUREs L, .  4. L, 
3.0 I I I I I I I I I I 

6.0 I I I I I I 1 I I 

1% x loo0 5.4 - _ _ _  _ _ _ _ _  
- LI x 100 - 

1 

THE TWO-DIMENSIONAL RIEMANN PROBLEM 
SIMPLE SHOCK AND RAREFACI'ION 

ERROR YEASURIS L,. 4. L, 
3.0 I I I I I I I I I I I 

2 4  

w 2.1 
p: 

4 2 1.5 

a 

2 1.8 

&? 12 

Ei 0.9 

0.6 

1 0.3 1 
0.0 I I I I I I I I 1 I I 

I I1 21 31 41 51 61' 71 81 91 I01  
NUMBER OF TIMESTEPS 

Figure D5 

L 
4.8 t -- 1 

0.8 1 -1 
0.0 Irllllrrlll 

I 8 11 16 21 a 31 38 41 48 51 
NUMBER OF T I M F S E P S  

0.3 
Oa6 1 
0.0 ' I I I I I I I 

I I1 21 31 41 51 81 71 81 91 101 

NUMBER OF TIMESTEPS 

Figure D6 

THE TWO-DIMENSIONAL RIEMANN PROBLEM 
SIYPl,E SHOCK AND RAREFAClloW 
ERROR YEASUm L,. 4. L 

4.8 

0.6 1 1 
0.0 1 I I I I I I I I 1 

1 6 11 16 21 26 31 38 41 48 SI 
NUMBER OF TIMESIEPS 

Figure D7 Figure D8 

FCT2D/FLIMIT Results for the simple shock and rarefaction problem. Fig. D5 uses P4 
on a 100 x 100 grid. Fig. D6 uses P6 on a 100 x 100 grid. Fig. D7 uses P4 on a 50 7: 50 
grid. Fig. D8 uses P6 on a 50 >: 50 grid. Note ordinate scale change on coarser grid. 
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Q\I.'JK2D Results for the four simple jump shock problem. Fig. D9 uses P4 on a 100 x 
100 grid. Fig. D10 uses P6 on a 100 x 100 grid. Fig. D11 uses P4 on a 50 x 50 grid. Fig. 
D12 uses P6 on a 50 Y 50 grid. Kote ordinate scale change on coarser grid. 
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FCT2D/FLIMIT Results for the four simple jump shock problem. Fig. D13 uses P4 on a 
100 x 100 grid. Fig. D14 uses P6 on a 100 x 100 grid. Fig. D15 uses P4 on a 50 x 50 
grid. Fig. D16 uses P6 on a 50 x 50 grid. Kote ordinate scale change on coarser grid. 
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QWIK2D Results for the triple shock with shock stem problem. Fig. D17 uses P4 on a 
100 Y 100 grid. Fig. D l 8  uses PG on a 100 x 100 grid. Fig. D19 uses P4 on a 50 x 50 
grid. Fig. D20 uses P6 on a 50 r 50 grid. Note ordinate scale change on coarser grid. 
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FCT2DlFLIMIT Results for the triple shock with shock stem problem. Fig. D21 uses P4 
on a 100 >: 100 grid. Fig. D22 uses P6 on a 100 A 100 grid. Fig. D23 uses P4 on a 50 x 
50 grid. Fig. D24 uses P6 on a 50 x 50 grid, Note ordinate scale change on coarser grid. 
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QM'IKZD Results for the cusp shock problem. Fig. D25 uses P4 on a 100 x 100 grid. Fig. 
D26 uses P6 on a 100 x 100 grid. Fig. D27 uses P4 on a 50 x 50 grid. Fig. D28 uses P6 
on a 50 x 50 grid. Note ordinate scale change on coarser grid. 
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FCT2D/FLIMIT Results for the cusp shock problem. Fig. D29 uses P4 on a 100 x 100 
grid. Fig. D30 uses P6 on a 100 x 100 grid. Fig. D33 uses P4 on a 50 x 50 grid. Fig. 
D32 uses P6 on a 50 x 50 grid. Note ordinate scale change on coarser grid. 
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Appendix E 
Results from Varying the FLIMIT 

Parameters PRLIM, JPRLIM, and FOLD 
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FCT2DiFLIMIT Results (the 2-D Zalesak limiter) from varying the the  user-specified 
variables PRLIhl, JPRLIhl, and FOLD for all possible combinations. Results are for the 
simple shock and rarefaction problem using P4 on a 50 x 50 grid. 
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FCT2D/FLIT\IIT Results (the 2-D Zalesak limiter) from varying the the user-specified 
variables P R L I h l ,  JPRLIM, and FOLD for all possible combinations. Results are for the 
simple shock and rarefaction problem using P4 on a 50 x 50 grid. 
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13 Appendix F - Marker Particle Algorithm 

Appendix F 
Marker Particle Transport Algorithm 

In this ,4ppendix we provide a description of the marker particle transport  
algorithm that  was used in the flow instability studies. Quasiparticle methods. 
such as PIC 155’. MAC i56:, and ’1’ORTEX ‘571. are  well established computa- 
tional tools for tracking phenomena. particularly when numerical diffusion effects 
are  to akoided. Similar to these methods, we consider a finite number of marker 
particles which are Lagrangian advected by the local flow velocities without any 
interparticle collisional effect. ?iluch of the following algorithm was taken from 
references 58, and ‘591. 

First .  we define a set of marker particles that can be temporally varied and 
for the kth member of this set me assign a current spatial location. r; = (T;. y;). 
and a local xeloci t~.  v; = (2~i .v;) .  The  superscript n signifies a current time 
for all temp or all^ varied quantities. The  set of marher particles is overlaid on a 
computational fixed grid of uniform spacing. (Ax.  A y ) .  and physical boundary 
locations enclosing the domain are defined as s,. 21. y,, yl. 

For all marker particles we store previous time values of the marker velocitk 
and time advance the location of particles using an Adams-Bashforth method: 

Additionall). we make boundarj  modifications. For example. in the x direction. 
periodic constraints can be enforced by a correction z;+l = zt - T I  A x;+’ when 
x k  n-1 - x! < 0 and Mhen 5 ,  - zn-I < 0 then These 
modifications irnpl! t h a t  a particle crossing a physical boundarj  reappears at tile 
opposite houndar) Similar corrections are used for the other direction and these 
forrnulaes can be modified to  treat s! mmetric or reflective houndarg. constraints. 

M ith a new location for each particle. we then determine the fixed computa- 
tional cell location containing the particle and the lower left grid location of this 
cell is giLen b) 2 k  = x;-’/Az--l and jii = YE’’ ’ A y l l .  With this information. we 
then determine bilinear area ratios tha t  are used for interpolation. In reference 
to Figure [F . l { .  .41,r12.A3 and A4 are given as: 

= Z I  - xr - x:-’. 
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"here the g supercript refers t o  fixed grid quantities. With these relatio iships, 
marker particle velocities are determined using the fixed grid hydrodynan ic cal- 
culations as interpolated to  the marker particle according to: 

When a marker particle carries with it assigned quantities and become at t h e  
in the hydrodynamic calculations, the transported quanitity is interpolated c nto 
the fixed grid coordinate system using bilinear interpolation: 

f r , + I , j k + l  = a 4 3 f k  ; fz, j , + 1  = A4fk 

All of the above computations are revised during each t ime step of the hvdrod 1 

namics calculations. 
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